2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "libavcodec/dsputil.h"
27 #include "libavcodec/mpegvideo.h"
29 #include "gcc_fixes.h"
31 #include "dsputil_ppc.h"
32 #include "util_altivec.h"
33 // Swaps two variables (used for altivec registers)
36 __typeof__(a) swap_temp=a; \
41 // transposes a matrix consisting of four vectors with four elements each
42 #define TRANSPOSE4(a,b,c,d) \
44 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
45 __typeof__(a) _trans_acl = vec_mergel(a, c); \
46 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
47 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
49 a = vec_mergeh(_trans_ach, _trans_bdh); \
50 b = vec_mergel(_trans_ach, _trans_bdh); \
51 c = vec_mergeh(_trans_acl, _trans_bdl); \
52 d = vec_mergel(_trans_acl, _trans_bdl); \
56 // Loads a four-byte value (int or float) from the target address
57 // into every element in the target vector. Only works if the
58 // target address is four-byte aligned (which should be always).
59 #define LOAD4(vec, address) \
61 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
62 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
63 vec = vec_ld(0, _load_addr); \
64 vec = vec_perm(vec, vec, _perm_vec); \
65 vec = vec_splat(vec, 0); \
69 #define FOUROF(a) AVV(a,a,a,a)
71 int dct_quantize_altivec(MpegEncContext
* s
,
73 int qscale
, int* overflow
)
76 vector
float row0
, row1
, row2
, row3
, row4
, row5
, row6
, row7
;
77 vector
float alt0
, alt1
, alt2
, alt3
, alt4
, alt5
, alt6
, alt7
;
78 const vector
float zero
= (const vector
float)FOUROF(0.);
79 // used after quantize step
82 // Load the data into the row/alt vectors
84 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
86 data0
= vec_ld(0, data
);
87 data1
= vec_ld(16, data
);
88 data2
= vec_ld(32, data
);
89 data3
= vec_ld(48, data
);
90 data4
= vec_ld(64, data
);
91 data5
= vec_ld(80, data
);
92 data6
= vec_ld(96, data
);
93 data7
= vec_ld(112, data
);
95 // Transpose the data before we start
96 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
98 // load the data into floating point vectors. We load
99 // the high half of each row into the main row vectors
100 // and the low half into the alt vectors.
101 row0
= vec_ctf(vec_unpackh(data0
), 0);
102 alt0
= vec_ctf(vec_unpackl(data0
), 0);
103 row1
= vec_ctf(vec_unpackh(data1
), 0);
104 alt1
= vec_ctf(vec_unpackl(data1
), 0);
105 row2
= vec_ctf(vec_unpackh(data2
), 0);
106 alt2
= vec_ctf(vec_unpackl(data2
), 0);
107 row3
= vec_ctf(vec_unpackh(data3
), 0);
108 alt3
= vec_ctf(vec_unpackl(data3
), 0);
109 row4
= vec_ctf(vec_unpackh(data4
), 0);
110 alt4
= vec_ctf(vec_unpackl(data4
), 0);
111 row5
= vec_ctf(vec_unpackh(data5
), 0);
112 alt5
= vec_ctf(vec_unpackl(data5
), 0);
113 row6
= vec_ctf(vec_unpackh(data6
), 0);
114 alt6
= vec_ctf(vec_unpackl(data6
), 0);
115 row7
= vec_ctf(vec_unpackh(data7
), 0);
116 alt7
= vec_ctf(vec_unpackl(data7
), 0);
119 // The following block could exist as a separate an altivec dct
120 // function. However, if we put it inline, the DCT data can remain
121 // in the vector local variables, as floats, which we'll use during the
124 const vector
float vec_0_298631336
= (vector
float)FOUROF(0.298631336f
);
125 const vector
float vec_0_390180644
= (vector
float)FOUROF(-0.390180644f
);
126 const vector
float vec_0_541196100
= (vector
float)FOUROF(0.541196100f
);
127 const vector
float vec_0_765366865
= (vector
float)FOUROF(0.765366865f
);
128 const vector
float vec_0_899976223
= (vector
float)FOUROF(-0.899976223f
);
129 const vector
float vec_1_175875602
= (vector
float)FOUROF(1.175875602f
);
130 const vector
float vec_1_501321110
= (vector
float)FOUROF(1.501321110f
);
131 const vector
float vec_1_847759065
= (vector
float)FOUROF(-1.847759065f
);
132 const vector
float vec_1_961570560
= (vector
float)FOUROF(-1.961570560f
);
133 const vector
float vec_2_053119869
= (vector
float)FOUROF(2.053119869f
);
134 const vector
float vec_2_562915447
= (vector
float)FOUROF(-2.562915447f
);
135 const vector
float vec_3_072711026
= (vector
float)FOUROF(3.072711026f
);
138 int whichPass
, whichHalf
;
140 for(whichPass
= 1; whichPass
<=2; whichPass
++)
142 for(whichHalf
= 1; whichHalf
<=2; whichHalf
++)
144 vector
float tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
145 vector
float tmp10
, tmp11
, tmp12
, tmp13
;
146 vector
float z1
, z2
, z3
, z4
, z5
;
148 tmp0
= vec_add(row0
, row7
); // tmp0 = dataptr[0] + dataptr[7];
149 tmp7
= vec_sub(row0
, row7
); // tmp7 = dataptr[0] - dataptr[7];
150 tmp3
= vec_add(row3
, row4
); // tmp3 = dataptr[3] + dataptr[4];
151 tmp4
= vec_sub(row3
, row4
); // tmp4 = dataptr[3] - dataptr[4];
152 tmp1
= vec_add(row1
, row6
); // tmp1 = dataptr[1] + dataptr[6];
153 tmp6
= vec_sub(row1
, row6
); // tmp6 = dataptr[1] - dataptr[6];
154 tmp2
= vec_add(row2
, row5
); // tmp2 = dataptr[2] + dataptr[5];
155 tmp5
= vec_sub(row2
, row5
); // tmp5 = dataptr[2] - dataptr[5];
157 tmp10
= vec_add(tmp0
, tmp3
); // tmp10 = tmp0 + tmp3;
158 tmp13
= vec_sub(tmp0
, tmp3
); // tmp13 = tmp0 - tmp3;
159 tmp11
= vec_add(tmp1
, tmp2
); // tmp11 = tmp1 + tmp2;
160 tmp12
= vec_sub(tmp1
, tmp2
); // tmp12 = tmp1 - tmp2;
163 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
164 row0
= vec_add(tmp10
, tmp11
);
166 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
167 row4
= vec_sub(tmp10
, tmp11
);
170 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
171 z1
= vec_madd(vec_add(tmp12
, tmp13
), vec_0_541196100
, (vector
float)zero
);
173 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
174 // CONST_BITS-PASS1_BITS);
175 row2
= vec_madd(tmp13
, vec_0_765366865
, z1
);
177 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
178 // CONST_BITS-PASS1_BITS);
179 row6
= vec_madd(tmp12
, vec_1_847759065
, z1
);
181 z1
= vec_add(tmp4
, tmp7
); // z1 = tmp4 + tmp7;
182 z2
= vec_add(tmp5
, tmp6
); // z2 = tmp5 + tmp6;
183 z3
= vec_add(tmp4
, tmp6
); // z3 = tmp4 + tmp6;
184 z4
= vec_add(tmp5
, tmp7
); // z4 = tmp5 + tmp7;
186 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
187 z5
= vec_madd(vec_add(z3
, z4
), vec_1_175875602
, (vector
float)zero
);
189 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
190 z3
= vec_madd(z3
, vec_1_961570560
, z5
);
192 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
193 z4
= vec_madd(z4
, vec_0_390180644
, z5
);
195 // The following adds are rolled into the multiplies above
196 // z3 = vec_add(z3, z5); // z3 += z5;
197 // z4 = vec_add(z4, z5); // z4 += z5;
199 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
200 // Wow! It's actually more efficient to roll this multiply
201 // into the adds below, even thought the multiply gets done twice!
202 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
204 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
205 // Same with this one...
206 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
208 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
209 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
210 row7
= vec_madd(tmp4
, vec_0_298631336
, vec_madd(z1
, vec_0_899976223
, z3
));
212 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
213 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
214 row5
= vec_madd(tmp5
, vec_2_053119869
, vec_madd(z2
, vec_2_562915447
, z4
));
216 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
217 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
218 row3
= vec_madd(tmp6
, vec_3_072711026
, vec_madd(z2
, vec_2_562915447
, z3
));
220 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
221 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
222 row1
= vec_madd(z1
, vec_0_899976223
, vec_madd(tmp7
, vec_1_501321110
, z4
));
224 // Swap the row values with the alts. If this is the first half,
225 // this sets up the low values to be acted on in the second half.
226 // If this is the second half, it puts the high values back in
227 // the row values where they are expected to be when we're done.
240 // transpose the data for the second pass
242 // First, block transpose the upper right with lower left.
248 // Now, transpose each block of four
249 TRANSPOSE4(row0
, row1
, row2
, row3
);
250 TRANSPOSE4(row4
, row5
, row6
, row7
);
251 TRANSPOSE4(alt0
, alt1
, alt2
, alt3
);
252 TRANSPOSE4(alt4
, alt5
, alt6
, alt7
);
257 // perform the quantize step, using the floating point data
258 // still in the row/alt registers
261 const vector
signed int* qmat
;
262 vector
float bias
, negBias
;
266 vector
signed int baseVector
;
268 // We must cache element 0 in the intra case
269 // (it needs special handling).
270 baseVector
= vec_cts(vec_splat(row0
, 0), 0);
271 vec_ste(baseVector
, 0, &oldBaseValue
);
273 qmat
= (vector
signed int*)s
->q_intra_matrix
[qscale
];
274 biasAddr
= &(s
->intra_quant_bias
);
278 qmat
= (vector
signed int*)s
->q_inter_matrix
[qscale
];
279 biasAddr
= &(s
->inter_quant_bias
);
282 // Load the bias vector (We add 0.5 to the bias so that we're
283 // rounding when we convert to int, instead of flooring.)
285 vector
signed int biasInt
;
286 const vector
float negOneFloat
= (vector
float)FOUROF(-1.0f
);
287 LOAD4(biasInt
, biasAddr
);
288 bias
= vec_ctf(biasInt
, QUANT_BIAS_SHIFT
);
289 negBias
= vec_madd(bias
, negOneFloat
, zero
);
293 vector
float q0
, q1
, q2
, q3
, q4
, q5
, q6
, q7
;
295 q0
= vec_ctf(qmat
[0], QMAT_SHIFT
);
296 q1
= vec_ctf(qmat
[2], QMAT_SHIFT
);
297 q2
= vec_ctf(qmat
[4], QMAT_SHIFT
);
298 q3
= vec_ctf(qmat
[6], QMAT_SHIFT
);
299 q4
= vec_ctf(qmat
[8], QMAT_SHIFT
);
300 q5
= vec_ctf(qmat
[10], QMAT_SHIFT
);
301 q6
= vec_ctf(qmat
[12], QMAT_SHIFT
);
302 q7
= vec_ctf(qmat
[14], QMAT_SHIFT
);
304 row0
= vec_sel(vec_madd(row0
, q0
, negBias
), vec_madd(row0
, q0
, bias
),
305 vec_cmpgt(row0
, zero
));
306 row1
= vec_sel(vec_madd(row1
, q1
, negBias
), vec_madd(row1
, q1
, bias
),
307 vec_cmpgt(row1
, zero
));
308 row2
= vec_sel(vec_madd(row2
, q2
, negBias
), vec_madd(row2
, q2
, bias
),
309 vec_cmpgt(row2
, zero
));
310 row3
= vec_sel(vec_madd(row3
, q3
, negBias
), vec_madd(row3
, q3
, bias
),
311 vec_cmpgt(row3
, zero
));
312 row4
= vec_sel(vec_madd(row4
, q4
, negBias
), vec_madd(row4
, q4
, bias
),
313 vec_cmpgt(row4
, zero
));
314 row5
= vec_sel(vec_madd(row5
, q5
, negBias
), vec_madd(row5
, q5
, bias
),
315 vec_cmpgt(row5
, zero
));
316 row6
= vec_sel(vec_madd(row6
, q6
, negBias
), vec_madd(row6
, q6
, bias
),
317 vec_cmpgt(row6
, zero
));
318 row7
= vec_sel(vec_madd(row7
, q7
, negBias
), vec_madd(row7
, q7
, bias
),
319 vec_cmpgt(row7
, zero
));
321 q0
= vec_ctf(qmat
[1], QMAT_SHIFT
);
322 q1
= vec_ctf(qmat
[3], QMAT_SHIFT
);
323 q2
= vec_ctf(qmat
[5], QMAT_SHIFT
);
324 q3
= vec_ctf(qmat
[7], QMAT_SHIFT
);
325 q4
= vec_ctf(qmat
[9], QMAT_SHIFT
);
326 q5
= vec_ctf(qmat
[11], QMAT_SHIFT
);
327 q6
= vec_ctf(qmat
[13], QMAT_SHIFT
);
328 q7
= vec_ctf(qmat
[15], QMAT_SHIFT
);
330 alt0
= vec_sel(vec_madd(alt0
, q0
, negBias
), vec_madd(alt0
, q0
, bias
),
331 vec_cmpgt(alt0
, zero
));
332 alt1
= vec_sel(vec_madd(alt1
, q1
, negBias
), vec_madd(alt1
, q1
, bias
),
333 vec_cmpgt(alt1
, zero
));
334 alt2
= vec_sel(vec_madd(alt2
, q2
, negBias
), vec_madd(alt2
, q2
, bias
),
335 vec_cmpgt(alt2
, zero
));
336 alt3
= vec_sel(vec_madd(alt3
, q3
, negBias
), vec_madd(alt3
, q3
, bias
),
337 vec_cmpgt(alt3
, zero
));
338 alt4
= vec_sel(vec_madd(alt4
, q4
, negBias
), vec_madd(alt4
, q4
, bias
),
339 vec_cmpgt(alt4
, zero
));
340 alt5
= vec_sel(vec_madd(alt5
, q5
, negBias
), vec_madd(alt5
, q5
, bias
),
341 vec_cmpgt(alt5
, zero
));
342 alt6
= vec_sel(vec_madd(alt6
, q6
, negBias
), vec_madd(alt6
, q6
, bias
),
343 vec_cmpgt(alt6
, zero
));
344 alt7
= vec_sel(vec_madd(alt7
, q7
, negBias
), vec_madd(alt7
, q7
, bias
),
345 vec_cmpgt(alt7
, zero
));
351 // Store the data back into the original block
353 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
355 data0
= vec_pack(vec_cts(row0
, 0), vec_cts(alt0
, 0));
356 data1
= vec_pack(vec_cts(row1
, 0), vec_cts(alt1
, 0));
357 data2
= vec_pack(vec_cts(row2
, 0), vec_cts(alt2
, 0));
358 data3
= vec_pack(vec_cts(row3
, 0), vec_cts(alt3
, 0));
359 data4
= vec_pack(vec_cts(row4
, 0), vec_cts(alt4
, 0));
360 data5
= vec_pack(vec_cts(row5
, 0), vec_cts(alt5
, 0));
361 data6
= vec_pack(vec_cts(row6
, 0), vec_cts(alt6
, 0));
362 data7
= vec_pack(vec_cts(row7
, 0), vec_cts(alt7
, 0));
365 // Clamp for overflow
366 vector
signed int max_q_int
, min_q_int
;
367 vector
signed short max_q
, min_q
;
369 LOAD4(max_q_int
, &(s
->max_qcoeff
));
370 LOAD4(min_q_int
, &(s
->min_qcoeff
));
372 max_q
= vec_pack(max_q_int
, max_q_int
);
373 min_q
= vec_pack(min_q_int
, min_q_int
);
375 data0
= vec_max(vec_min(data0
, max_q
), min_q
);
376 data1
= vec_max(vec_min(data1
, max_q
), min_q
);
377 data2
= vec_max(vec_min(data2
, max_q
), min_q
);
378 data4
= vec_max(vec_min(data4
, max_q
), min_q
);
379 data5
= vec_max(vec_min(data5
, max_q
), min_q
);
380 data6
= vec_max(vec_min(data6
, max_q
), min_q
);
381 data7
= vec_max(vec_min(data7
, max_q
), min_q
);
385 vector
bool char zero_01
, zero_23
, zero_45
, zero_67
;
386 vector
signed char scanIndexes_01
, scanIndexes_23
, scanIndexes_45
, scanIndexes_67
;
387 vector
signed char negOne
= vec_splat_s8(-1);
388 vector
signed char* scanPtr
=
389 (vector
signed char*)(s
->intra_scantable
.inverse
);
390 signed char lastNonZeroChar
;
392 // Determine the largest non-zero index.
393 zero_01
= vec_pack(vec_cmpeq(data0
, (vector
signed short)zero
),
394 vec_cmpeq(data1
, (vector
signed short)zero
));
395 zero_23
= vec_pack(vec_cmpeq(data2
, (vector
signed short)zero
),
396 vec_cmpeq(data3
, (vector
signed short)zero
));
397 zero_45
= vec_pack(vec_cmpeq(data4
, (vector
signed short)zero
),
398 vec_cmpeq(data5
, (vector
signed short)zero
));
399 zero_67
= vec_pack(vec_cmpeq(data6
, (vector
signed short)zero
),
400 vec_cmpeq(data7
, (vector
signed short)zero
));
403 scanIndexes_01
= vec_sel(scanPtr
[0], negOne
, zero_01
);
404 scanIndexes_23
= vec_sel(scanPtr
[1], negOne
, zero_23
);
405 scanIndexes_45
= vec_sel(scanPtr
[2], negOne
, zero_45
);
406 scanIndexes_67
= vec_sel(scanPtr
[3], negOne
, zero_67
);
409 scanIndexes_01
= vec_max(scanIndexes_01
, scanIndexes_23
);
410 scanIndexes_45
= vec_max(scanIndexes_45
, scanIndexes_67
);
413 scanIndexes_01
= vec_max(scanIndexes_01
, scanIndexes_45
);
416 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
417 vec_mergel(scanIndexes_01
, negOne
));
420 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
421 vec_mergel(scanIndexes_01
, negOne
));
424 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
425 vec_mergel(scanIndexes_01
, negOne
));
428 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
429 vec_mergel(scanIndexes_01
, negOne
));
431 scanIndexes_01
= vec_splat(scanIndexes_01
, 0);
434 vec_ste(scanIndexes_01
, 0, &lastNonZeroChar
);
436 lastNonZero
= lastNonZeroChar
;
438 // While the data is still in vectors we check for the transpose IDCT permute
439 // and handle it using the vector unit if we can. This is the permute used
440 // by the altivec idct, so it is common when using the altivec dct.
442 if ((lastNonZero
> 0) && (s
->dsp
.idct_permutation_type
== FF_TRANSPOSE_IDCT_PERM
))
444 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
447 vec_st(data0
, 0, data
);
448 vec_st(data1
, 16, data
);
449 vec_st(data2
, 32, data
);
450 vec_st(data3
, 48, data
);
451 vec_st(data4
, 64, data
);
452 vec_st(data5
, 80, data
);
453 vec_st(data6
, 96, data
);
454 vec_st(data7
, 112, data
);
458 // special handling of block[0]
464 oldBaseValue
/= s
->y_dc_scale
;
466 oldBaseValue
/= s
->c_dc_scale
;
469 // Divide by 8, rounding the result
470 data
[0] = (oldBaseValue
+ 4) >> 3;
473 // We handled the transpose permutation above and we don't
474 // need to permute the "no" permutation case.
475 if ((lastNonZero
> 0) &&
476 (s
->dsp
.idct_permutation_type
!= FF_TRANSPOSE_IDCT_PERM
) &&
477 (s
->dsp
.idct_permutation_type
!= FF_NO_IDCT_PERM
))
479 ff_block_permute(data
, s
->dsp
.idct_permutation
,
480 s
->intra_scantable
.scantable
, lastNonZero
);
487 AltiVec version of dct_unquantize_h263
488 this code assumes `block' is 16 bytes-aligned
490 void dct_unquantize_h263_altivec(MpegEncContext
*s
,
491 DCTELEM
*block
, int n
, int qscale
)
493 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num
, 1);
494 int i
, level
, qmul
, qadd
;
497 assert(s
->block_last_index
[n
]>=0);
499 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num
, 1);
501 qadd
= (qscale
- 1) | 1;
507 block
[0] = block
[0] * s
->y_dc_scale
;
509 block
[0] = block
[0] * s
->c_dc_scale
;
513 nCoeffs
= 63; //does not always use zigzag table
516 nCoeffs
= s
->intra_scantable
.raster_end
[ s
->block_last_index
[n
] ];
520 register const vector
signed short vczero
= (const vector
signed short)vec_splat_s16(0);
521 DECLARE_ALIGNED_16(short, qmul8
[]) =
523 qmul
, qmul
, qmul
, qmul
,
524 qmul
, qmul
, qmul
, qmul
526 DECLARE_ALIGNED_16(short, qadd8
[]) =
528 qadd
, qadd
, qadd
, qadd
,
529 qadd
, qadd
, qadd
, qadd
531 DECLARE_ALIGNED_16(short, nqadd8
[]) =
533 -qadd
, -qadd
, -qadd
, -qadd
,
534 -qadd
, -qadd
, -qadd
, -qadd
536 register vector
signed short blockv
, qmulv
, qaddv
, nqaddv
, temp1
;
537 register vector
bool short blockv_null
, blockv_neg
;
538 register short backup_0
= block
[0];
541 qmulv
= vec_ld(0, qmul8
);
542 qaddv
= vec_ld(0, qadd8
);
543 nqaddv
= vec_ld(0, nqadd8
);
545 #if 0 // block *is* 16 bytes-aligned, it seems.
546 // first make sure block[j] is 16 bytes-aligned
547 for(j
= 0; (j
<= nCoeffs
) && ((((unsigned long)block
) + (j
<< 1)) & 0x0000000F) ; j
++) {
551 level
= level
* qmul
- qadd
;
553 level
= level
* qmul
+ qadd
;
560 // vectorize all the 16 bytes-aligned blocks
562 for(; (j
+ 7) <= nCoeffs
; j
+=8)
564 blockv
= vec_ld(j
<< 1, block
);
565 blockv_neg
= vec_cmplt(blockv
, vczero
);
566 blockv_null
= vec_cmpeq(blockv
, vczero
);
567 // choose between +qadd or -qadd as the third operand
568 temp1
= vec_sel(qaddv
, nqaddv
, blockv_neg
);
569 // multiply & add (block{i,i+7} * qmul [+-] qadd)
570 temp1
= vec_mladd(blockv
, qmulv
, temp1
);
571 // put 0 where block[{i,i+7} used to have 0
572 blockv
= vec_sel(temp1
, blockv
, blockv_null
);
573 vec_st(blockv
, j
<< 1, block
);
576 // if nCoeffs isn't a multiple of 8, finish the job
577 // using good old scalar units.
578 // (we could do it using a truncated vector,
579 // but I'm not sure it's worth the hassle)
580 for(; j
<= nCoeffs
; j
++) {
584 level
= level
* qmul
- qadd
;
586 level
= level
* qmul
+ qadd
;
593 { // cheat. this avoid special-casing the first iteration
597 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num
, nCoeffs
== 63);
601 extern void idct_put_altivec(uint8_t *dest
, int line_size
, int16_t *block
);
602 extern void idct_add_altivec(uint8_t *dest
, int line_size
, int16_t *block
);
604 void MPV_common_init_altivec(MpegEncContext
*s
)
606 if ((mm_flags
& MM_ALTIVEC
) == 0) return;
608 if (s
->avctx
->lowres
==0)
610 if ((s
->avctx
->idct_algo
== FF_IDCT_AUTO
) ||
611 (s
->avctx
->idct_algo
== FF_IDCT_ALTIVEC
))
613 s
->dsp
.idct_put
= idct_put_altivec
;
614 s
->dsp
.idct_add
= idct_add_altivec
;
615 s
->dsp
.idct_permutation_type
= FF_TRANSPOSE_IDCT_PERM
;
619 // Test to make sure that the dct required alignments are met.
620 if ((((long)(s
->q_intra_matrix
) & 0x0f) != 0) ||
621 (((long)(s
->q_inter_matrix
) & 0x0f) != 0))
623 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: q-matrix blocks must be 16-byte aligned "
624 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
628 if (((long)(s
->intra_scantable
.inverse
) & 0x0f) != 0)
630 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: scan table blocks must be 16-byte aligned "
631 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
636 if ((s
->avctx
->dct_algo
== FF_DCT_AUTO
) ||
637 (s
->avctx
->dct_algo
== FF_DCT_ALTIVEC
))
639 #if 0 /* seems to cause trouble under some circumstances */
640 s
->dct_quantize
= dct_quantize_altivec
;
642 s
->dct_unquantize_h263_intra
= dct_unquantize_h263_altivec
;
643 s
->dct_unquantize_h263_inter
= dct_unquantize_h263_altivec
;