3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "bitstream.h"
23 #include "bytestream.h"
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 * Features and limitations:
42 * Reference documents:
43 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45 * http://openquicktime.sourceforge.net/plugins.htm
46 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
51 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53 * readstr http://www.geocities.co.jp/Playtown/2004/
58 /* step_table[] and index_table[] are from the ADPCM reference source */
59 /* This is the index table: */
60 static const int index_table
[16] = {
61 -1, -1, -1, -1, 2, 4, 6, 8,
62 -1, -1, -1, -1, 2, 4, 6, 8,
66 * This is the step table. Note that many programs use slight deviations from
67 * this table, but such deviations are negligible:
69 static const int step_table
[89] = {
70 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
81 /* These are for MS-ADPCM */
82 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83 static const int AdaptationTable
[] = {
84 230, 230, 230, 230, 307, 409, 512, 614,
85 768, 614, 512, 409, 307, 230, 230, 230
88 static const int AdaptCoeff1
[] = {
89 256, 512, 0, 192, 240, 460, 392
92 static const int AdaptCoeff2
[] = {
93 0, -256, 0, 64, 0, -208, -232
96 /* These are for CD-ROM XA ADPCM */
97 static const int xa_adpcm_table
[5][2] = {
105 static const int ea_adpcm_table
[] = {
106 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
110 static const int ct_adpcm_table
[8] = {
111 0x00E6, 0x00E6, 0x00E6, 0x00E6,
112 0x0133, 0x0199, 0x0200, 0x0266
115 // padded to zero where table size is less then 16
116 static const int swf_index_tables
[4][16] = {
118 /*3*/ { -1, -1, 2, 4 },
119 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
123 static const int yamaha_indexscale
[] = {
124 230, 230, 230, 230, 307, 409, 512, 614,
125 230, 230, 230, 230, 307, 409, 512, 614
128 static const int yamaha_difflookup
[] = {
129 1, 3, 5, 7, 9, 11, 13, 15,
130 -1, -3, -5, -7, -9, -11, -13, -15
135 typedef struct ADPCMChannelStatus
{
137 short int step_index
;
148 } ADPCMChannelStatus
;
150 typedef struct ADPCMContext
{
151 ADPCMChannelStatus status
[6];
154 /* XXX: implement encoding */
156 #ifdef CONFIG_ENCODERS
157 static int adpcm_encode_init(AVCodecContext
*avctx
)
159 if (avctx
->channels
> 2)
160 return -1; /* only stereo or mono =) */
162 if(avctx
->trellis
&& (unsigned)avctx
->trellis
> 16U){
163 av_log(avctx
, AV_LOG_ERROR
, "invalid trellis size\n");
167 switch(avctx
->codec
->id
) {
168 case CODEC_ID_ADPCM_IMA_WAV
:
169 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
170 /* and we have 4 bytes per channel overhead */
171 avctx
->block_align
= BLKSIZE
;
172 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
174 case CODEC_ID_ADPCM_IMA_QT
:
175 avctx
->frame_size
= 64;
176 avctx
->block_align
= 34 * avctx
->channels
;
178 case CODEC_ID_ADPCM_MS
:
179 avctx
->frame_size
= (BLKSIZE
- 7 * avctx
->channels
) * 2 / avctx
->channels
+ 2; /* each 16 bits sample gives one nibble */
180 /* and we have 7 bytes per channel overhead */
181 avctx
->block_align
= BLKSIZE
;
183 case CODEC_ID_ADPCM_YAMAHA
:
184 avctx
->frame_size
= BLKSIZE
* avctx
->channels
;
185 avctx
->block_align
= BLKSIZE
;
187 case CODEC_ID_ADPCM_SWF
:
188 if (avctx
->sample_rate
!= 11025 &&
189 avctx
->sample_rate
!= 22050 &&
190 avctx
->sample_rate
!= 44100) {
191 av_log(avctx
, AV_LOG_ERROR
, "Sample rate must be 11025, 22050 or 44100\n");
194 avctx
->frame_size
= 512 * (avctx
->sample_rate
/ 11025);
201 avctx
->coded_frame
= avcodec_alloc_frame();
202 avctx
->coded_frame
->key_frame
= 1;
207 static int adpcm_encode_close(AVCodecContext
*avctx
)
209 av_freep(&avctx
->coded_frame
);
215 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
217 int delta
= sample
- c
->prev_sample
;
218 int nibble
= FFMIN(7, abs(delta
)*4/step_table
[c
->step_index
]) + (delta
<0)*8;
219 c
->prev_sample
+= ((step_table
[c
->step_index
] * yamaha_difflookup
[nibble
]) / 8);
220 c
->prev_sample
= av_clip_int16(c
->prev_sample
);
221 c
->step_index
= av_clip(c
->step_index
+ index_table
[nibble
], 0, 88);
225 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus
*c
, short sample
)
227 int predictor
, nibble
, bias
;
229 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
231 nibble
= sample
- predictor
;
232 if(nibble
>=0) bias
= c
->idelta
/2;
233 else bias
=-c
->idelta
/2;
235 nibble
= (nibble
+ bias
) / c
->idelta
;
236 nibble
= av_clip(nibble
, -8, 7)&0x0F;
238 predictor
+= (signed)((nibble
& 0x08)?(nibble
- 0x10):(nibble
)) * c
->idelta
;
240 c
->sample2
= c
->sample1
;
241 c
->sample1
= av_clip_int16(predictor
);
243 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
244 if (c
->idelta
< 16) c
->idelta
= 16;
249 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus
*c
, short sample
)
258 delta
= sample
- c
->predictor
;
260 nibble
= FFMIN(7, abs(delta
)*4/c
->step
) + (delta
<0)*8;
262 c
->predictor
+= ((c
->step
* yamaha_difflookup
[nibble
]) / 8);
263 c
->predictor
= av_clip_int16(c
->predictor
);
264 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
265 c
->step
= av_clip(c
->step
, 127, 24567);
270 typedef struct TrellisPath
{
275 typedef struct TrellisNode
{
283 static void adpcm_compress_trellis(AVCodecContext
*avctx
, const short *samples
,
284 uint8_t *dst
, ADPCMChannelStatus
*c
, int n
)
286 #define FREEZE_INTERVAL 128
287 //FIXME 6% faster if frontier is a compile-time constant
288 const int frontier
= 1 << avctx
->trellis
;
289 const int stride
= avctx
->channels
;
290 const int version
= avctx
->codec
->id
;
291 const int max_paths
= frontier
*FREEZE_INTERVAL
;
292 TrellisPath paths
[max_paths
], *p
;
293 TrellisNode node_buf
[2][frontier
];
294 TrellisNode
*nodep_buf
[2][frontier
];
295 TrellisNode
**nodes
= nodep_buf
[0]; // nodes[] is always sorted by .ssd
296 TrellisNode
**nodes_next
= nodep_buf
[1];
297 int pathn
= 0, froze
= -1, i
, j
, k
;
299 assert(!(max_paths
&(max_paths
-1)));
301 memset(nodep_buf
, 0, sizeof(nodep_buf
));
302 nodes
[0] = &node_buf
[1][0];
305 nodes
[0]->step
= c
->step_index
;
306 nodes
[0]->sample1
= c
->sample1
;
307 nodes
[0]->sample2
= c
->sample2
;
308 if((version
== CODEC_ID_ADPCM_IMA_WAV
) || (version
== CODEC_ID_ADPCM_IMA_QT
) || (version
== CODEC_ID_ADPCM_SWF
))
309 nodes
[0]->sample1
= c
->prev_sample
;
310 if(version
== CODEC_ID_ADPCM_MS
)
311 nodes
[0]->step
= c
->idelta
;
312 if(version
== CODEC_ID_ADPCM_YAMAHA
) {
314 nodes
[0]->step
= 127;
315 nodes
[0]->sample1
= 0;
317 nodes
[0]->step
= c
->step
;
318 nodes
[0]->sample1
= c
->predictor
;
323 TrellisNode
*t
= node_buf
[i
&1];
325 int sample
= samples
[i
*stride
];
326 memset(nodes_next
, 0, frontier
*sizeof(TrellisNode
*));
327 for(j
=0; j
<frontier
&& nodes
[j
]; j
++) {
328 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
329 const int range
= (j
< frontier
/2) ? 1 : 0;
330 const int step
= nodes
[j
]->step
;
332 if(version
== CODEC_ID_ADPCM_MS
) {
333 const int predictor
= ((nodes
[j
]->sample1
* c
->coeff1
) + (nodes
[j
]->sample2
* c
->coeff2
)) / 256;
334 const int div
= (sample
- predictor
) / step
;
335 const int nmin
= av_clip(div
-range
, -8, 6);
336 const int nmax
= av_clip(div
+range
, -7, 7);
337 for(nidx
=nmin
; nidx
<=nmax
; nidx
++) {
338 const int nibble
= nidx
& 0xf;
339 int dec_sample
= predictor
+ nidx
* step
;
340 #define STORE_NODE(NAME, STEP_INDEX)\
343 dec_sample = av_clip_int16(dec_sample);\
344 d = sample - dec_sample;\
345 ssd = nodes[j]->ssd + d*d;\
346 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
348 /* Collapse any two states with the same previous sample value. \
349 * One could also distinguish states by step and by 2nd to last
350 * sample, but the effects of that are negligible. */\
351 for(k=0; k<frontier && nodes_next[k]; k++) {\
352 if(dec_sample == nodes_next[k]->sample1) {\
353 assert(ssd >= nodes_next[k]->ssd);\
357 for(k=0; k<frontier; k++) {\
358 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
359 TrellisNode *u = nodes_next[frontier-1];\
361 assert(pathn < max_paths);\
366 u->step = STEP_INDEX;\
367 u->sample2 = nodes[j]->sample1;\
368 u->sample1 = dec_sample;\
369 paths[u->path].nibble = nibble;\
370 paths[u->path].prev = nodes[j]->path;\
371 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
377 STORE_NODE(ms
, FFMAX(16, (AdaptationTable
[nibble
] * step
) >> 8));
379 } else if((version
== CODEC_ID_ADPCM_IMA_WAV
)|| (version
== CODEC_ID_ADPCM_IMA_QT
)|| (version
== CODEC_ID_ADPCM_SWF
)) {
380 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
381 const int predictor = nodes[j]->sample1;\
382 const int div = (sample - predictor) * 4 / STEP_TABLE;\
383 int nmin = av_clip(div-range, -7, 6);\
384 int nmax = av_clip(div+range, -6, 7);\
385 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
387 for(nidx=nmin; nidx<=nmax; nidx++) {\
388 const int nibble = nidx<0 ? 7-nidx : nidx;\
389 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
390 STORE_NODE(NAME, STEP_INDEX);\
392 LOOP_NODES(ima
, step_table
[step
], av_clip(step
+ index_table
[nibble
], 0, 88));
393 } else { //CODEC_ID_ADPCM_YAMAHA
394 LOOP_NODES(yamaha
, step
, av_clip((step
* yamaha_indexscale
[nibble
]) >> 8, 127, 24567));
405 if(nodes
[0]->ssd
> (1<<28)) {
406 for(j
=1; j
<frontier
&& nodes
[j
]; j
++)
407 nodes
[j
]->ssd
-= nodes
[0]->ssd
;
411 // merge old paths to save memory
412 if(i
== froze
+ FREEZE_INTERVAL
) {
413 p
= &paths
[nodes
[0]->path
];
414 for(k
=i
; k
>froze
; k
--) {
420 // other nodes might use paths that don't coincide with the frozen one.
421 // checking which nodes do so is too slow, so just kill them all.
422 // this also slightly improves quality, but I don't know why.
423 memset(nodes
+1, 0, (frontier
-1)*sizeof(TrellisNode
*));
427 p
= &paths
[nodes
[0]->path
];
428 for(i
=n
-1; i
>froze
; i
--) {
433 c
->predictor
= nodes
[0]->sample1
;
434 c
->sample1
= nodes
[0]->sample1
;
435 c
->sample2
= nodes
[0]->sample2
;
436 c
->step_index
= nodes
[0]->step
;
437 c
->step
= nodes
[0]->step
;
438 c
->idelta
= nodes
[0]->step
;
441 static int adpcm_encode_frame(AVCodecContext
*avctx
,
442 unsigned char *frame
, int buf_size
, void *data
)
447 ADPCMContext
*c
= avctx
->priv_data
;
450 samples
= (short *)data
;
451 st
= avctx
->channels
== 2;
452 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
454 switch(avctx
->codec
->id
) {
455 case CODEC_ID_ADPCM_IMA_WAV
:
456 n
= avctx
->frame_size
/ 8;
457 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
458 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
459 bytestream_put_le16(&dst
, c
->status
[0].prev_sample
);
460 *dst
++ = (unsigned char)c
->status
[0].step_index
;
461 *dst
++ = 0; /* unknown */
463 if (avctx
->channels
== 2) {
464 c
->status
[1].prev_sample
= (signed short)samples
[0];
465 /* c->status[1].step_index = 0; */
466 bytestream_put_le16(&dst
, c
->status
[1].prev_sample
);
467 *dst
++ = (unsigned char)c
->status
[1].step_index
;
472 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
473 if(avctx
->trellis
> 0) {
475 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
*8);
476 if(avctx
->channels
== 2)
477 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
*8);
479 *dst
++ = buf
[0][8*i
+0] | (buf
[0][8*i
+1] << 4);
480 *dst
++ = buf
[0][8*i
+2] | (buf
[0][8*i
+3] << 4);
481 *dst
++ = buf
[0][8*i
+4] | (buf
[0][8*i
+5] << 4);
482 *dst
++ = buf
[0][8*i
+6] | (buf
[0][8*i
+7] << 4);
483 if (avctx
->channels
== 2) {
484 *dst
++ = buf
[1][8*i
+0] | (buf
[1][8*i
+1] << 4);
485 *dst
++ = buf
[1][8*i
+2] | (buf
[1][8*i
+3] << 4);
486 *dst
++ = buf
[1][8*i
+4] | (buf
[1][8*i
+5] << 4);
487 *dst
++ = buf
[1][8*i
+6] | (buf
[1][8*i
+7] << 4);
492 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]);
493 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4;
495 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]);
496 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4;
498 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]);
499 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4;
501 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]);
502 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4;
505 if (avctx
->channels
== 2) {
506 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
507 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
509 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
510 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
512 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
513 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
515 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
516 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
519 samples
+= 8 * avctx
->channels
;
522 case CODEC_ID_ADPCM_IMA_QT
:
526 init_put_bits(&pb
, dst
, buf_size
*8);
528 for(ch
=0; ch
<avctx
->channels
; ch
++){
529 put_bits(&pb
, 9, (c
->status
[ch
].prev_sample
+ 0x10000) >> 7);
530 put_bits(&pb
, 7, c
->status
[ch
].step_index
);
531 if(avctx
->trellis
> 0) {
533 adpcm_compress_trellis(avctx
, samples
+ch
, buf
, &c
->status
[ch
], 64);
535 put_bits(&pb
, 4, buf
[i
^1]);
536 c
->status
[ch
].prev_sample
= c
->status
[ch
].predictor
& ~0x7F;
538 for (i
=0; i
<64; i
+=2){
540 t1
= adpcm_ima_compress_sample(&c
->status
[ch
], samples
[avctx
->channels
*(i
+0)+ch
]);
541 t2
= adpcm_ima_compress_sample(&c
->status
[ch
], samples
[avctx
->channels
*(i
+1)+ch
]);
542 put_bits(&pb
, 4, t2
);
543 put_bits(&pb
, 4, t1
);
545 c
->status
[ch
].prev_sample
&= ~0x7F;
549 dst
+= put_bits_count(&pb
)>>3;
552 case CODEC_ID_ADPCM_SWF
:
556 init_put_bits(&pb
, dst
, buf_size
*8);
558 n
= avctx
->frame_size
-1;
560 //Store AdpcmCodeSize
561 put_bits(&pb
, 2, 2); //Set 4bits flash adpcm format
563 //Init the encoder state
564 for(i
=0; i
<avctx
->channels
; i
++){
565 c
->status
[i
].step_index
= av_clip(c
->status
[i
].step_index
, 0, 63); // clip step so it fits 6 bits
566 put_bits(&pb
, 16, samples
[i
] & 0xFFFF);
567 put_bits(&pb
, 6, c
->status
[i
].step_index
);
568 c
->status
[i
].prev_sample
= (signed short)samples
[i
];
571 if(avctx
->trellis
> 0) {
573 adpcm_compress_trellis(avctx
, samples
+2, buf
[0], &c
->status
[0], n
);
574 if (avctx
->channels
== 2)
575 adpcm_compress_trellis(avctx
, samples
+3, buf
[1], &c
->status
[1], n
);
577 put_bits(&pb
, 4, buf
[0][i
]);
578 if (avctx
->channels
== 2)
579 put_bits(&pb
, 4, buf
[1][i
]);
582 for (i
=1; i
<avctx
->frame_size
; i
++) {
583 put_bits(&pb
, 4, adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
*i
]));
584 if (avctx
->channels
== 2)
585 put_bits(&pb
, 4, adpcm_ima_compress_sample(&c
->status
[1], samples
[2*i
+1]));
589 dst
+= put_bits_count(&pb
)>>3;
592 case CODEC_ID_ADPCM_MS
:
593 for(i
=0; i
<avctx
->channels
; i
++){
597 c
->status
[i
].coeff1
= AdaptCoeff1
[predictor
];
598 c
->status
[i
].coeff2
= AdaptCoeff2
[predictor
];
600 for(i
=0; i
<avctx
->channels
; i
++){
601 if (c
->status
[i
].idelta
< 16)
602 c
->status
[i
].idelta
= 16;
604 bytestream_put_le16(&dst
, c
->status
[i
].idelta
);
606 for(i
=0; i
<avctx
->channels
; i
++){
607 c
->status
[i
].sample1
= *samples
++;
609 bytestream_put_le16(&dst
, c
->status
[i
].sample1
);
611 for(i
=0; i
<avctx
->channels
; i
++){
612 c
->status
[i
].sample2
= *samples
++;
614 bytestream_put_le16(&dst
, c
->status
[i
].sample2
);
617 if(avctx
->trellis
> 0) {
618 int n
= avctx
->block_align
- 7*avctx
->channels
;
620 if(avctx
->channels
== 1) {
622 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
624 *dst
++ = (buf
[0][i
] << 4) | buf
[0][i
+1];
626 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
627 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
);
629 *dst
++ = (buf
[0][i
] << 4) | buf
[1][i
];
632 for(i
=7*avctx
->channels
; i
<avctx
->block_align
; i
++) {
634 nibble
= adpcm_ms_compress_sample(&c
->status
[ 0], *samples
++)<<4;
635 nibble
|= adpcm_ms_compress_sample(&c
->status
[st
], *samples
++);
639 case CODEC_ID_ADPCM_YAMAHA
:
640 n
= avctx
->frame_size
/ 2;
641 if(avctx
->trellis
> 0) {
644 if(avctx
->channels
== 1) {
645 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
647 *dst
++ = buf
[0][i
] | (buf
[0][i
+1] << 4);
649 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
650 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
);
652 *dst
++ = buf
[0][i
] | (buf
[1][i
] << 4);
656 for(i
= 0; i
< avctx
->channels
; i
++) {
658 nibble
= adpcm_yamaha_compress_sample(&c
->status
[i
], samples
[i
]);
659 nibble
|= adpcm_yamaha_compress_sample(&c
->status
[i
], samples
[i
+avctx
->channels
]) << 4;
662 samples
+= 2 * avctx
->channels
;
670 #endif //CONFIG_ENCODERS
672 static av_cold
int adpcm_decode_init(AVCodecContext
* avctx
)
674 ADPCMContext
*c
= avctx
->priv_data
;
675 unsigned int max_channels
= 2;
677 switch(avctx
->codec
->id
) {
678 case CODEC_ID_ADPCM_EA_R1
:
679 case CODEC_ID_ADPCM_EA_R2
:
680 case CODEC_ID_ADPCM_EA_R3
:
684 if(avctx
->channels
> max_channels
){
688 switch(avctx
->codec
->id
) {
689 case CODEC_ID_ADPCM_CT
:
690 c
->status
[0].step
= c
->status
[1].step
= 511;
692 case CODEC_ID_ADPCM_IMA_WS
:
693 if (avctx
->extradata
&& avctx
->extradata_size
== 2 * 4) {
694 c
->status
[0].predictor
= AV_RL32(avctx
->extradata
);
695 c
->status
[1].predictor
= AV_RL32(avctx
->extradata
+ 4);
704 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int shift
)
708 int sign
, delta
, diff
, step
;
710 step
= step_table
[c
->step_index
];
711 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
712 if (step_index
< 0) step_index
= 0;
713 else if (step_index
> 88) step_index
= 88;
717 /* perform direct multiplication instead of series of jumps proposed by
718 * the reference ADPCM implementation since modern CPUs can do the mults
720 diff
= ((2 * delta
+ 1) * step
) >> shift
;
721 predictor
= c
->predictor
;
722 if (sign
) predictor
-= diff
;
723 else predictor
+= diff
;
725 c
->predictor
= av_clip_int16(predictor
);
726 c
->step_index
= step_index
;
728 return (short)c
->predictor
;
731 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
735 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
736 predictor
+= (signed)((nibble
& 0x08)?(nibble
- 0x10):(nibble
)) * c
->idelta
;
738 c
->sample2
= c
->sample1
;
739 c
->sample1
= av_clip_int16(predictor
);
740 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
741 if (c
->idelta
< 16) c
->idelta
= 16;
746 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
748 int sign
, delta
, diff
;
753 /* perform direct multiplication instead of series of jumps proposed by
754 * the reference ADPCM implementation since modern CPUs can do the mults
756 diff
= ((2 * delta
+ 1) * c
->step
) >> 3;
757 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
758 c
->predictor
= ((c
->predictor
* 254) >> 8) + (sign
? -diff
: diff
);
759 c
->predictor
= av_clip_int16(c
->predictor
);
760 /* calculate new step and clamp it to range 511..32767 */
761 new_step
= (ct_adpcm_table
[nibble
& 7] * c
->step
) >> 8;
762 c
->step
= av_clip(new_step
, 511, 32767);
764 return (short)c
->predictor
;
767 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int size
, int shift
)
769 int sign
, delta
, diff
;
771 sign
= nibble
& (1<<(size
-1));
772 delta
= nibble
& ((1<<(size
-1))-1);
773 diff
= delta
<< (7 + c
->step
+ shift
);
776 c
->predictor
= av_clip(c
->predictor
+ (sign
? -diff
: diff
), -16384,16256);
778 /* calculate new step */
779 if (delta
>= (2*size
- 3) && c
->step
< 3)
781 else if (delta
== 0 && c
->step
> 0)
784 return (short) c
->predictor
;
787 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus
*c
, unsigned char nibble
)
794 c
->predictor
+= (c
->step
* yamaha_difflookup
[nibble
]) / 8;
795 c
->predictor
= av_clip_int16(c
->predictor
);
796 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
797 c
->step
= av_clip(c
->step
, 127, 24567);
801 static void xa_decode(short *out
, const unsigned char *in
,
802 ADPCMChannelStatus
*left
, ADPCMChannelStatus
*right
, int inc
)
805 int shift
,filter
,f0
,f1
;
811 shift
= 12 - (in
[4+i
*2] & 15);
812 filter
= in
[4+i
*2] >> 4;
813 f0
= xa_adpcm_table
[filter
][0];
814 f1
= xa_adpcm_table
[filter
][1];
822 t
= (signed char)(d
<<4)>>4;
823 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
825 s_1
= av_clip_int16(s
);
830 if (inc
==2) { /* stereo */
833 s_1
= right
->sample1
;
834 s_2
= right
->sample2
;
835 out
= out
+ 1 - 28*2;
838 shift
= 12 - (in
[5+i
*2] & 15);
839 filter
= in
[5+i
*2] >> 4;
841 f0
= xa_adpcm_table
[filter
][0];
842 f1
= xa_adpcm_table
[filter
][1];
847 t
= (signed char)d
>> 4;
848 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
850 s_1
= av_clip_int16(s
);
855 if (inc
==2) { /* stereo */
856 right
->sample1
= s_1
;
857 right
->sample2
= s_2
;
867 /* DK3 ADPCM support macro */
868 #define DK3_GET_NEXT_NIBBLE() \
869 if (decode_top_nibble_next) \
871 nibble = last_byte >> 4; \
872 decode_top_nibble_next = 0; \
876 last_byte = *src++; \
877 if (src >= buf + buf_size) break; \
878 nibble = last_byte & 0x0F; \
879 decode_top_nibble_next = 1; \
882 static int adpcm_decode_frame(AVCodecContext
*avctx
,
883 void *data
, int *data_size
,
884 const uint8_t *buf
, int buf_size
)
886 ADPCMContext
*c
= avctx
->priv_data
;
887 ADPCMChannelStatus
*cs
;
888 int n
, m
, channel
, i
;
889 int block_predictor
[2];
895 /* DK3 ADPCM accounting variables */
896 unsigned char last_byte
= 0;
897 unsigned char nibble
;
898 int decode_top_nibble_next
= 0;
901 /* EA ADPCM state variables */
902 uint32_t samples_in_chunk
;
903 int32_t previous_left_sample
, previous_right_sample
;
904 int32_t current_left_sample
, current_right_sample
;
905 int32_t next_left_sample
, next_right_sample
;
906 int32_t coeff1l
, coeff2l
, coeff1r
, coeff2r
;
907 uint8_t shift_left
, shift_right
;
909 int coeff
[2][2], shift
[2];//used in EA MAXIS ADPCM
914 //should protect all 4bit ADPCM variants
915 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
917 if(*data_size
/4 < buf_size
+ 8)
921 samples_end
= samples
+ *data_size
/2;
925 st
= avctx
->channels
== 2 ? 1 : 0;
927 switch(avctx
->codec
->id
) {
928 case CODEC_ID_ADPCM_IMA_QT
:
929 n
= buf_size
- 2*avctx
->channels
;
930 for (channel
= 0; channel
< avctx
->channels
; channel
++) {
931 cs
= &(c
->status
[channel
]);
932 /* (pppppp) (piiiiiii) */
934 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
935 cs
->predictor
= (*src
++) << 8;
936 cs
->predictor
|= (*src
& 0x80);
937 cs
->predictor
&= 0xFF80;
940 if(cs
->predictor
& 0x8000)
941 cs
->predictor
-= 0x10000;
943 cs
->predictor
= av_clip_int16(cs
->predictor
);
945 cs
->step_index
= (*src
++) & 0x7F;
947 if (cs
->step_index
> 88){
948 av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
952 cs
->step
= step_table
[cs
->step_index
];
954 samples
= (short*)data
+ channel
;
956 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
957 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F, 3);
958 samples
+= avctx
->channels
;
959 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] >> 4 , 3);
960 samples
+= avctx
->channels
;
967 case CODEC_ID_ADPCM_IMA_WAV
:
968 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
969 buf_size
= avctx
->block_align
;
971 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
973 for(i
=0; i
<avctx
->channels
; i
++){
974 cs
= &(c
->status
[i
]);
975 cs
->predictor
= *samples
++ = (int16_t)(src
[0] + (src
[1]<<8));
978 cs
->step_index
= *src
++;
979 if (cs
->step_index
> 88){
980 av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
983 if (*src
++) av_log(avctx
, AV_LOG_ERROR
, "unused byte should be null but is %d!!\n", src
[-1]); /* unused */
986 while(src
< buf
+ buf_size
){
989 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[i
], src
[4*i
] & 0x0F, 3);
991 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[i
], src
[4*i
] >> 4 , 3);
997 case CODEC_ID_ADPCM_4XM
:
998 cs
= &(c
->status
[0]);
999 c
->status
[0].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
1001 c
->status
[1].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
1003 c
->status
[0].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
1005 c
->status
[1].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
1007 if (cs
->step_index
< 0) cs
->step_index
= 0;
1008 if (cs
->step_index
> 88) cs
->step_index
= 88;
1010 m
= (buf_size
- (src
- buf
))>>st
;
1011 for(i
=0; i
<m
; i
++) {
1012 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] & 0x0F, 4);
1014 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F, 4);
1015 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] >> 4, 4);
1017 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4, 4);
1023 case CODEC_ID_ADPCM_MS
:
1024 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1025 buf_size
= avctx
->block_align
;
1026 n
= buf_size
- 7 * avctx
->channels
;
1029 block_predictor
[0] = av_clip(*src
++, 0, 7);
1030 block_predictor
[1] = 0;
1032 block_predictor
[1] = av_clip(*src
++, 0, 7);
1033 c
->status
[0].idelta
= (int16_t)((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
1036 c
->status
[1].idelta
= (int16_t)((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
1039 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
1040 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
1041 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
1042 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
1044 c
->status
[0].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
1046 if (st
) c
->status
[1].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
1048 c
->status
[0].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
1050 if (st
) c
->status
[1].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
1053 *samples
++ = c
->status
[0].sample1
;
1054 if (st
) *samples
++ = c
->status
[1].sample1
;
1055 *samples
++ = c
->status
[0].sample2
;
1056 if (st
) *samples
++ = c
->status
[1].sample2
;
1058 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0 ], src
[0] >> 4 );
1059 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
1063 case CODEC_ID_ADPCM_IMA_DK4
:
1064 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1065 buf_size
= avctx
->block_align
;
1067 c
->status
[0].predictor
= (int16_t)(src
[0] | (src
[1] << 8));
1068 c
->status
[0].step_index
= src
[2];
1070 *samples
++ = c
->status
[0].predictor
;
1072 c
->status
[1].predictor
= (int16_t)(src
[0] | (src
[1] << 8));
1073 c
->status
[1].step_index
= src
[2];
1075 *samples
++ = c
->status
[1].predictor
;
1077 while (src
< buf
+ buf_size
) {
1079 /* take care of the top nibble (always left or mono channel) */
1080 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1083 /* take care of the bottom nibble, which is right sample for
1084 * stereo, or another mono sample */
1086 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1089 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1095 case CODEC_ID_ADPCM_IMA_DK3
:
1096 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1097 buf_size
= avctx
->block_align
;
1099 if(buf_size
+ 16 > (samples_end
- samples
)*3/8)
1102 c
->status
[0].predictor
= (int16_t)(src
[10] | (src
[11] << 8));
1103 c
->status
[1].predictor
= (int16_t)(src
[12] | (src
[13] << 8));
1104 c
->status
[0].step_index
= src
[14];
1105 c
->status
[1].step_index
= src
[15];
1106 /* sign extend the predictors */
1108 diff_channel
= c
->status
[1].predictor
;
1110 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1111 * the buffer is consumed */
1114 /* for this algorithm, c->status[0] is the sum channel and
1115 * c->status[1] is the diff channel */
1117 /* process the first predictor of the sum channel */
1118 DK3_GET_NEXT_NIBBLE();
1119 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
1121 /* process the diff channel predictor */
1122 DK3_GET_NEXT_NIBBLE();
1123 adpcm_ima_expand_nibble(&c
->status
[1], nibble
, 3);
1125 /* process the first pair of stereo PCM samples */
1126 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
1127 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
1128 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
1130 /* process the second predictor of the sum channel */
1131 DK3_GET_NEXT_NIBBLE();
1132 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
1134 /* process the second pair of stereo PCM samples */
1135 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
1136 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
1137 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
1140 case CODEC_ID_ADPCM_IMA_WS
:
1141 /* no per-block initialization; just start decoding the data */
1142 while (src
< buf
+ buf_size
) {
1145 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1147 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1150 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1152 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1159 case CODEC_ID_ADPCM_XA
:
1160 while (buf_size
>= 128) {
1161 xa_decode(samples
, src
, &c
->status
[0], &c
->status
[1],
1168 case CODEC_ID_ADPCM_IMA_EA_EACS
:
1169 samples_in_chunk
= bytestream_get_le32(&src
) >> (1-st
);
1171 if (samples_in_chunk
> buf_size
-4-(8<<st
)) {
1172 src
+= buf_size
- 4;
1176 for (i
=0; i
<=st
; i
++)
1177 c
->status
[i
].step_index
= bytestream_get_le32(&src
);
1178 for (i
=0; i
<=st
; i
++)
1179 c
->status
[i
].predictor
= bytestream_get_le32(&src
);
1181 for (; samples_in_chunk
; samples_in_chunk
--, src
++) {
1182 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], *src
>>4, 3);
1183 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[st
], *src
&0x0F, 3);
1186 case CODEC_ID_ADPCM_IMA_EA_SEAD
:
1187 for (; src
< buf
+buf_size
; src
++) {
1188 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] >> 4, 6);
1189 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[st
],src
[0]&0x0F, 6);
1192 case CODEC_ID_ADPCM_EA
:
1193 samples_in_chunk
= AV_RL32(src
);
1194 if (samples_in_chunk
>= ((buf_size
- 12) * 2)) {
1199 current_left_sample
= (int16_t)AV_RL16(src
);
1201 previous_left_sample
= (int16_t)AV_RL16(src
);
1203 current_right_sample
= (int16_t)AV_RL16(src
);
1205 previous_right_sample
= (int16_t)AV_RL16(src
);
1208 for (count1
= 0; count1
< samples_in_chunk
/28;count1
++) {
1209 coeff1l
= ea_adpcm_table
[ *src
>> 4 ];
1210 coeff2l
= ea_adpcm_table
[(*src
>> 4 ) + 4];
1211 coeff1r
= ea_adpcm_table
[*src
& 0x0F];
1212 coeff2r
= ea_adpcm_table
[(*src
& 0x0F) + 4];
1215 shift_left
= (*src
>> 4 ) + 8;
1216 shift_right
= (*src
& 0x0F) + 8;
1219 for (count2
= 0; count2
< 28; count2
++) {
1220 next_left_sample
= (int32_t)((*src
& 0xF0) << 24) >> shift_left
;
1221 next_right_sample
= (int32_t)((*src
& 0x0F) << 28) >> shift_right
;
1224 next_left_sample
= (next_left_sample
+
1225 (current_left_sample
* coeff1l
) +
1226 (previous_left_sample
* coeff2l
) + 0x80) >> 8;
1227 next_right_sample
= (next_right_sample
+
1228 (current_right_sample
* coeff1r
) +
1229 (previous_right_sample
* coeff2r
) + 0x80) >> 8;
1231 previous_left_sample
= current_left_sample
;
1232 current_left_sample
= av_clip_int16(next_left_sample
);
1233 previous_right_sample
= current_right_sample
;
1234 current_right_sample
= av_clip_int16(next_right_sample
);
1235 *samples
++ = (unsigned short)current_left_sample
;
1236 *samples
++ = (unsigned short)current_right_sample
;
1240 case CODEC_ID_ADPCM_EA_MAXIS_XA
:
1241 for(channel
= 0; channel
< avctx
->channels
; channel
++) {
1243 coeff
[channel
][i
] = ea_adpcm_table
[(*src
>> 4) + 4*i
];
1244 shift
[channel
] = (*src
& 0x0F) + 8;
1247 for (count1
= 0; count1
< (buf_size
- avctx
->channels
) / avctx
->channels
; count1
++) {
1248 for(i
= 4; i
>= 0; i
-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1249 for(channel
= 0; channel
< avctx
->channels
; channel
++) {
1250 int32_t sample
= (int32_t)(((*(src
+channel
) >> i
) & 0x0F) << 0x1C) >> shift
[channel
];
1252 c
->status
[channel
].sample1
* coeff
[channel
][0] +
1253 c
->status
[channel
].sample2
* coeff
[channel
][1] + 0x80) >> 8;
1254 c
->status
[channel
].sample2
= c
->status
[channel
].sample1
;
1255 c
->status
[channel
].sample1
= av_clip_int16(sample
);
1256 *samples
++ = c
->status
[channel
].sample1
;
1259 src
+=avctx
->channels
;
1262 case CODEC_ID_ADPCM_EA_R1
:
1263 case CODEC_ID_ADPCM_EA_R2
:
1264 case CODEC_ID_ADPCM_EA_R3
: {
1265 /* channel numbering
1267 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1268 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1269 const int big_endian
= avctx
->codec
->id
== CODEC_ID_ADPCM_EA_R3
;
1270 int32_t previous_sample
, current_sample
, next_sample
;
1271 int32_t coeff1
, coeff2
;
1273 unsigned int channel
;
1275 const uint8_t *srcC
;
1277 samples_in_chunk
= (big_endian
? bytestream_get_be32(&src
)
1278 : bytestream_get_le32(&src
)) / 28;
1279 if (samples_in_chunk
> UINT32_MAX
/(28*avctx
->channels
) ||
1280 28*samples_in_chunk
*avctx
->channels
> samples_end
-samples
) {
1281 src
+= buf_size
- 4;
1285 for (channel
=0; channel
<avctx
->channels
; channel
++) {
1286 srcC
= src
+ (big_endian
? bytestream_get_be32(&src
)
1287 : bytestream_get_le32(&src
))
1288 + (avctx
->channels
-channel
-1) * 4;
1289 samplesC
= samples
+ channel
;
1291 if (avctx
->codec
->id
== CODEC_ID_ADPCM_EA_R1
) {
1292 current_sample
= (int16_t)bytestream_get_le16(&srcC
);
1293 previous_sample
= (int16_t)bytestream_get_le16(&srcC
);
1295 current_sample
= c
->status
[channel
].predictor
;
1296 previous_sample
= c
->status
[channel
].prev_sample
;
1299 for (count1
=0; count1
<samples_in_chunk
; count1
++) {
1300 if (*srcC
== 0xEE) { /* only seen in R2 and R3 */
1302 current_sample
= (int16_t)bytestream_get_be16(&srcC
);
1303 previous_sample
= (int16_t)bytestream_get_be16(&srcC
);
1305 for (count2
=0; count2
<28; count2
++) {
1306 *samplesC
= (int16_t)bytestream_get_be16(&srcC
);
1307 samplesC
+= avctx
->channels
;
1310 coeff1
= ea_adpcm_table
[ *srcC
>>4 ];
1311 coeff2
= ea_adpcm_table
[(*srcC
>>4) + 4];
1312 shift
= (*srcC
++ & 0x0F) + 8;
1314 for (count2
=0; count2
<28; count2
++) {
1316 next_sample
= (int32_t)((*srcC
++ & 0x0F) << 28) >> shift
;
1318 next_sample
= (int32_t)((*srcC
& 0xF0) << 24) >> shift
;
1320 next_sample
+= (current_sample
* coeff1
) +
1321 (previous_sample
* coeff2
);
1322 next_sample
= av_clip_int16(next_sample
>> 8);
1324 previous_sample
= current_sample
;
1325 current_sample
= next_sample
;
1326 *samplesC
= current_sample
;
1327 samplesC
+= avctx
->channels
;
1332 if (avctx
->codec
->id
!= CODEC_ID_ADPCM_EA_R1
) {
1333 c
->status
[channel
].predictor
= current_sample
;
1334 c
->status
[channel
].prev_sample
= previous_sample
;
1338 src
= src
+ buf_size
- (4 + 4*avctx
->channels
);
1339 samples
+= 28 * samples_in_chunk
* avctx
->channels
;
1342 case CODEC_ID_ADPCM_EA_XAS
:
1343 if (samples_end
-samples
< 32*4*avctx
->channels
1344 || buf_size
< (4+15)*4*avctx
->channels
) {
1348 for (channel
=0; channel
<avctx
->channels
; channel
++) {
1349 int coeff
[2][4], shift
[4];
1350 short *s2
, *s
= &samples
[channel
];
1351 for (n
=0; n
<4; n
++, s
+=32*avctx
->channels
) {
1353 coeff
[i
][n
] = ea_adpcm_table
[(src
[0]&0x0F)+4*i
];
1354 shift
[n
] = (src
[2]&0x0F) + 8;
1355 for (s2
=s
, i
=0; i
<2; i
++, src
+=2, s2
+=avctx
->channels
)
1356 s2
[0] = (src
[0]&0xF0) + (src
[1]<<8);
1359 for (m
=2; m
<32; m
+=2) {
1360 s
= &samples
[m
*avctx
->channels
+ channel
];
1361 for (n
=0; n
<4; n
++, src
++, s
+=32*avctx
->channels
) {
1362 for (s2
=s
, i
=0; i
<8; i
+=4, s2
+=avctx
->channels
) {
1363 int level
= (int32_t)((*src
& (0xF0>>i
)) << (24+i
)) >> shift
[n
];
1364 int pred
= s2
[-1*avctx
->channels
] * coeff
[0][n
]
1365 + s2
[-2*avctx
->channels
] * coeff
[1][n
];
1366 s2
[0] = av_clip_int16((level
+ pred
+ 0x80) >> 8);
1371 samples
+= 32*4*avctx
->channels
;
1373 case CODEC_ID_ADPCM_IMA_AMV
:
1374 case CODEC_ID_ADPCM_IMA_SMJPEG
:
1375 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
1376 c
->status
[0].step_index
= bytestream_get_le16(&src
);
1378 if (avctx
->codec
->id
== CODEC_ID_ADPCM_IMA_AMV
)
1381 while (src
< buf
+ buf_size
) {
1386 if (avctx
->codec
->id
== CODEC_ID_ADPCM_IMA_AMV
)
1387 FFSWAP(char, hi
, lo
);
1389 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1391 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1396 case CODEC_ID_ADPCM_CT
:
1397 while (src
< buf
+ buf_size
) {
1399 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1401 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[1],
1404 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1406 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1412 case CODEC_ID_ADPCM_SBPRO_4
:
1413 case CODEC_ID_ADPCM_SBPRO_3
:
1414 case CODEC_ID_ADPCM_SBPRO_2
:
1415 if (!c
->status
[0].step_index
) {
1416 /* the first byte is a raw sample */
1417 *samples
++ = 128 * (*src
++ - 0x80);
1419 *samples
++ = 128 * (*src
++ - 0x80);
1420 c
->status
[0].step_index
= 1;
1422 if (avctx
->codec
->id
== CODEC_ID_ADPCM_SBPRO_4
) {
1423 while (src
< buf
+ buf_size
) {
1424 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1426 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1427 src
[0] & 0x0F, 4, 0);
1430 } else if (avctx
->codec
->id
== CODEC_ID_ADPCM_SBPRO_3
) {
1431 while (src
< buf
+ buf_size
&& samples
+ 2 < samples_end
) {
1432 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1433 src
[0] >> 5 , 3, 0);
1434 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1435 (src
[0] >> 2) & 0x07, 3, 0);
1436 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1437 src
[0] & 0x03, 2, 0);
1441 while (src
< buf
+ buf_size
&& samples
+ 3 < samples_end
) {
1442 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1443 src
[0] >> 6 , 2, 2);
1444 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1445 (src
[0] >> 4) & 0x03, 2, 2);
1446 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1447 (src
[0] >> 2) & 0x03, 2, 2);
1448 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1449 src
[0] & 0x03, 2, 2);
1454 case CODEC_ID_ADPCM_SWF
:
1458 int k0
, signmask
, nb_bits
, count
;
1459 int size
= buf_size
*8;
1461 init_get_bits(&gb
, buf
, size
);
1463 //read bits & initial values
1464 nb_bits
= get_bits(&gb
, 2)+2;
1465 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1466 table
= swf_index_tables
[nb_bits
-2];
1467 k0
= 1 << (nb_bits
-2);
1468 signmask
= 1 << (nb_bits
-1);
1470 while (get_bits_count(&gb
) <= size
- 22*avctx
->channels
) {
1471 for (i
= 0; i
< avctx
->channels
; i
++) {
1472 *samples
++ = c
->status
[i
].predictor
= get_sbits(&gb
, 16);
1473 c
->status
[i
].step_index
= get_bits(&gb
, 6);
1476 for (count
= 0; get_bits_count(&gb
) <= size
- nb_bits
*avctx
->channels
&& count
< 4095; count
++) {
1479 for (i
= 0; i
< avctx
->channels
; i
++) {
1480 // similar to IMA adpcm
1481 int delta
= get_bits(&gb
, nb_bits
);
1482 int step
= step_table
[c
->status
[i
].step_index
];
1483 long vpdiff
= 0; // vpdiff = (delta+0.5)*step/4
1494 if (delta
& signmask
)
1495 c
->status
[i
].predictor
-= vpdiff
;
1497 c
->status
[i
].predictor
+= vpdiff
;
1499 c
->status
[i
].step_index
+= table
[delta
& (~signmask
)];
1501 c
->status
[i
].step_index
= av_clip(c
->status
[i
].step_index
, 0, 88);
1502 c
->status
[i
].predictor
= av_clip_int16(c
->status
[i
].predictor
);
1504 *samples
++ = c
->status
[i
].predictor
;
1505 if (samples
>= samples_end
) {
1506 av_log(avctx
, AV_LOG_ERROR
, "allocated output buffer is too small\n");
1515 case CODEC_ID_ADPCM_YAMAHA
:
1516 while (src
< buf
+ buf_size
) {
1518 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1520 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[1],
1523 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1525 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1531 case CODEC_ID_ADPCM_THP
:
1534 unsigned int samplecnt
;
1538 if (buf_size
< 80) {
1539 av_log(avctx
, AV_LOG_ERROR
, "frame too small\n");
1544 samplecnt
= bytestream_get_be32(&src
);
1546 for (i
= 0; i
< 32; i
++)
1547 table
[0][i
] = (int16_t)bytestream_get_be16(&src
);
1549 /* Initialize the previous sample. */
1550 for (i
= 0; i
< 4; i
++)
1551 prev
[0][i
] = (int16_t)bytestream_get_be16(&src
);
1553 if (samplecnt
>= (samples_end
- samples
) / (st
+ 1)) {
1554 av_log(avctx
, AV_LOG_ERROR
, "allocated output buffer is too small\n");
1558 for (ch
= 0; ch
<= st
; ch
++) {
1559 samples
= (unsigned short *) data
+ ch
;
1561 /* Read in every sample for this channel. */
1562 for (i
= 0; i
< samplecnt
/ 14; i
++) {
1563 int index
= (*src
>> 4) & 7;
1564 unsigned int exp
= 28 - (*src
++ & 15);
1565 int factor1
= table
[ch
][index
* 2];
1566 int factor2
= table
[ch
][index
* 2 + 1];
1568 /* Decode 14 samples. */
1569 for (n
= 0; n
< 14; n
++) {
1571 if(n
&1) sampledat
= *src
++ <<28;
1572 else sampledat
= (*src
&0xF0)<<24;
1574 sampledat
= ((prev
[ch
][0]*factor1
1575 + prev
[ch
][1]*factor2
) >> 11) + (sampledat
>>exp
);
1576 *samples
= av_clip_int16(sampledat
);
1577 prev
[ch
][1] = prev
[ch
][0];
1578 prev
[ch
][0] = *samples
++;
1580 /* In case of stereo, skip one sample, this sample
1581 is for the other channel. */
1587 /* In the previous loop, in case stereo is used, samples is
1588 increased exactly one time too often. */
1596 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
1602 #ifdef CONFIG_ENCODERS
1603 #define ADPCM_ENCODER(id,name,long_name_) \
1604 AVCodec name ## _encoder = { \
1608 sizeof(ADPCMContext), \
1609 adpcm_encode_init, \
1610 adpcm_encode_frame, \
1611 adpcm_encode_close, \
1613 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1616 #define ADPCM_ENCODER(id,name,long_name_)
1619 #ifdef CONFIG_DECODERS
1620 #define ADPCM_DECODER(id,name,long_name_) \
1621 AVCodec name ## _decoder = { \
1625 sizeof(ADPCMContext), \
1626 adpcm_decode_init, \
1629 adpcm_decode_frame, \
1630 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1633 #define ADPCM_DECODER(id,name,long_name_)
1636 #define ADPCM_CODEC(id,name,long_name_) \
1637 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1639 ADPCM_DECODER(CODEC_ID_ADPCM_4XM
, adpcm_4xm
, "4X Movie ADPCM");
1640 ADPCM_DECODER(CODEC_ID_ADPCM_CT
, adpcm_ct
, "Creative Technology ADPCM");
1641 ADPCM_DECODER(CODEC_ID_ADPCM_EA
, adpcm_ea
, "Electronic Arts ADPCM");
1642 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA
, adpcm_ea_maxis_xa
, "Electronic Arts Maxis CDROM XA ADPCM");
1643 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1
, adpcm_ea_r1
, "Electronic Arts R1 ADPCM");
1644 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2
, adpcm_ea_r2
, "Electronic Arts R2 ADPCM");
1645 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3
, adpcm_ea_r3
, "Electronic Arts R3 ADPCM");
1646 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS
, adpcm_ea_xas
, "Electronic Arts XAS ADPCM");
1647 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV
, adpcm_ima_amv
, "IMA AMV ADPCM");
1648 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
, "IMA Duck DK3 ADPCM");
1649 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
, "IMA Duck DK4 ADPCM");
1650 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS
, adpcm_ima_ea_eacs
, "IMA Electronic Arts EACS ADPCM");
1651 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD
, adpcm_ima_ea_sead
, "IMA Electronic Arts SEAD ADPCM");
1652 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
, "IMA QuickTime ADPCM");
1653 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG
, adpcm_ima_smjpeg
, "IMA Loki SDL MJPEG ADPCM");
1654 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
, "IMA Wav ADPCM");
1655 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS
, adpcm_ima_ws
, "IMA Westwood ADPCM");
1656 ADPCM_CODEC (CODEC_ID_ADPCM_MS
, adpcm_ms
, "Microsoft ADPCM");
1657 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2
, adpcm_sbpro_2
, "Sound Blaster Pro 2-bit ADPCM");
1658 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3
, adpcm_sbpro_3
, "Sound Blaster Pro 2.6-bit ADPCM");
1659 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4
, adpcm_sbpro_4
, "Sound Blaster Pro 4-bit ADPCM");
1660 ADPCM_CODEC (CODEC_ID_ADPCM_SWF
, adpcm_swf
, "Shockwave Flash ADPCM");
1661 ADPCM_DECODER(CODEC_ID_ADPCM_THP
, adpcm_thp
, "Nintendo Gamecube THP ADPCM");
1662 ADPCM_DECODER(CODEC_ID_ADPCM_XA
, adpcm_xa
, "CDROM XA ADPCM");
1663 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA
, adpcm_yamaha
, "Yamaha ADPCM");