Rename var: val -> energy
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / flacenc.c
blob9b798d1ab180d43b9fbe7be36c4e05beef7f61f9
1 /**
2 * FLAC audio encoder
3 * Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "libavutil/crc.h"
23 #include "libavutil/lls.h"
24 #include "avcodec.h"
25 #include "bitstream.h"
26 #include "dsputil.h"
27 #include "golomb.h"
29 #define FLAC_MAX_CH 8
30 #define FLAC_MIN_BLOCKSIZE 16
31 #define FLAC_MAX_BLOCKSIZE 65535
33 #define FLAC_SUBFRAME_CONSTANT 0
34 #define FLAC_SUBFRAME_VERBATIM 1
35 #define FLAC_SUBFRAME_FIXED 8
36 #define FLAC_SUBFRAME_LPC 32
38 #define FLAC_CHMODE_NOT_STEREO 0
39 #define FLAC_CHMODE_LEFT_RIGHT 1
40 #define FLAC_CHMODE_LEFT_SIDE 8
41 #define FLAC_CHMODE_RIGHT_SIDE 9
42 #define FLAC_CHMODE_MID_SIDE 10
44 #define ORDER_METHOD_EST 0
45 #define ORDER_METHOD_2LEVEL 1
46 #define ORDER_METHOD_4LEVEL 2
47 #define ORDER_METHOD_8LEVEL 3
48 #define ORDER_METHOD_SEARCH 4
49 #define ORDER_METHOD_LOG 5
51 #define FLAC_STREAMINFO_SIZE 34
53 #define MIN_LPC_ORDER 1
54 #define MAX_LPC_ORDER 32
55 #define MAX_FIXED_ORDER 4
56 #define MAX_PARTITION_ORDER 8
57 #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
58 #define MAX_LPC_PRECISION 15
59 #define MAX_LPC_SHIFT 15
60 #define MAX_RICE_PARAM 14
62 typedef struct CompressionOptions {
63 int compression_level;
64 int block_time_ms;
65 int use_lpc;
66 int lpc_coeff_precision;
67 int min_prediction_order;
68 int max_prediction_order;
69 int prediction_order_method;
70 int min_partition_order;
71 int max_partition_order;
72 } CompressionOptions;
74 typedef struct RiceContext {
75 int porder;
76 int params[MAX_PARTITIONS];
77 } RiceContext;
79 typedef struct FlacSubframe {
80 int type;
81 int type_code;
82 int obits;
83 int order;
84 int32_t coefs[MAX_LPC_ORDER];
85 int shift;
86 RiceContext rc;
87 int32_t samples[FLAC_MAX_BLOCKSIZE];
88 int32_t residual[FLAC_MAX_BLOCKSIZE+1];
89 } FlacSubframe;
91 typedef struct FlacFrame {
92 FlacSubframe subframes[FLAC_MAX_CH];
93 int blocksize;
94 int bs_code[2];
95 uint8_t crc8;
96 int ch_mode;
97 } FlacFrame;
99 typedef struct FlacEncodeContext {
100 PutBitContext pb;
101 int channels;
102 int ch_code;
103 int samplerate;
104 int sr_code[2];
105 int max_framesize;
106 uint32_t frame_count;
107 FlacFrame frame;
108 CompressionOptions options;
109 AVCodecContext *avctx;
110 DSPContext dsp;
111 } FlacEncodeContext;
113 static const int flac_samplerates[16] = {
114 0, 0, 0, 0,
115 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
116 0, 0, 0, 0
119 static const int flac_blocksizes[16] = {
121 192,
122 576, 1152, 2304, 4608,
123 0, 0,
124 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
128 * Writes streaminfo metadata block to byte array
130 static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
132 PutBitContext pb;
134 memset(header, 0, FLAC_STREAMINFO_SIZE);
135 init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
137 /* streaminfo metadata block */
138 put_bits(&pb, 16, s->avctx->frame_size);
139 put_bits(&pb, 16, s->avctx->frame_size);
140 put_bits(&pb, 24, 0);
141 put_bits(&pb, 24, s->max_framesize);
142 put_bits(&pb, 20, s->samplerate);
143 put_bits(&pb, 3, s->channels-1);
144 put_bits(&pb, 5, 15); /* bits per sample - 1 */
145 flush_put_bits(&pb);
146 /* total samples = 0 */
147 /* MD5 signature = 0 */
151 * Sets blocksize based on samplerate
152 * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
154 static int select_blocksize(int samplerate, int block_time_ms)
156 int i;
157 int target;
158 int blocksize;
160 assert(samplerate > 0);
161 blocksize = flac_blocksizes[1];
162 target = (samplerate * block_time_ms) / 1000;
163 for(i=0; i<16; i++) {
164 if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
165 blocksize = flac_blocksizes[i];
168 return blocksize;
171 static av_cold int flac_encode_init(AVCodecContext *avctx)
173 int freq = avctx->sample_rate;
174 int channels = avctx->channels;
175 FlacEncodeContext *s = avctx->priv_data;
176 int i, level;
177 uint8_t *streaminfo;
179 s->avctx = avctx;
181 dsputil_init(&s->dsp, avctx);
183 if(avctx->sample_fmt != SAMPLE_FMT_S16) {
184 return -1;
187 if(channels < 1 || channels > FLAC_MAX_CH) {
188 return -1;
190 s->channels = channels;
191 s->ch_code = s->channels-1;
193 /* find samplerate in table */
194 if(freq < 1)
195 return -1;
196 for(i=4; i<12; i++) {
197 if(freq == flac_samplerates[i]) {
198 s->samplerate = flac_samplerates[i];
199 s->sr_code[0] = i;
200 s->sr_code[1] = 0;
201 break;
204 /* if not in table, samplerate is non-standard */
205 if(i == 12) {
206 if(freq % 1000 == 0 && freq < 255000) {
207 s->sr_code[0] = 12;
208 s->sr_code[1] = freq / 1000;
209 } else if(freq % 10 == 0 && freq < 655350) {
210 s->sr_code[0] = 14;
211 s->sr_code[1] = freq / 10;
212 } else if(freq < 65535) {
213 s->sr_code[0] = 13;
214 s->sr_code[1] = freq;
215 } else {
216 return -1;
218 s->samplerate = freq;
221 /* set compression option defaults based on avctx->compression_level */
222 if(avctx->compression_level < 0) {
223 s->options.compression_level = 5;
224 } else {
225 s->options.compression_level = avctx->compression_level;
227 av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
229 level= s->options.compression_level;
230 if(level > 12) {
231 av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
232 s->options.compression_level);
233 return -1;
236 s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
237 s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
238 s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
239 s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
240 s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
241 ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
242 ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
243 ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
244 ORDER_METHOD_SEARCH})[level];
245 s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
246 s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
248 /* set compression option overrides from AVCodecContext */
249 if(avctx->use_lpc >= 0) {
250 s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
252 if(s->options.use_lpc == 1)
253 av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
254 else if(s->options.use_lpc > 1)
255 av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
257 if(avctx->min_prediction_order >= 0) {
258 if(s->options.use_lpc) {
259 if(avctx->min_prediction_order < MIN_LPC_ORDER ||
260 avctx->min_prediction_order > MAX_LPC_ORDER) {
261 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
262 avctx->min_prediction_order);
263 return -1;
265 } else {
266 if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
267 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
268 avctx->min_prediction_order);
269 return -1;
272 s->options.min_prediction_order = avctx->min_prediction_order;
274 if(avctx->max_prediction_order >= 0) {
275 if(s->options.use_lpc) {
276 if(avctx->max_prediction_order < MIN_LPC_ORDER ||
277 avctx->max_prediction_order > MAX_LPC_ORDER) {
278 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
279 avctx->max_prediction_order);
280 return -1;
282 } else {
283 if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
284 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
285 avctx->max_prediction_order);
286 return -1;
289 s->options.max_prediction_order = avctx->max_prediction_order;
291 if(s->options.max_prediction_order < s->options.min_prediction_order) {
292 av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
293 s->options.min_prediction_order, s->options.max_prediction_order);
294 return -1;
296 av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
297 s->options.min_prediction_order, s->options.max_prediction_order);
299 if(avctx->prediction_order_method >= 0) {
300 if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
301 av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
302 avctx->prediction_order_method);
303 return -1;
305 s->options.prediction_order_method = avctx->prediction_order_method;
307 switch(s->options.prediction_order_method) {
308 case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
309 "estimate"); break;
310 case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
311 "2-level"); break;
312 case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
313 "4-level"); break;
314 case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
315 "8-level"); break;
316 case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
317 "full search"); break;
318 case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
319 "log search"); break;
322 if(avctx->min_partition_order >= 0) {
323 if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
324 av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
325 avctx->min_partition_order);
326 return -1;
328 s->options.min_partition_order = avctx->min_partition_order;
330 if(avctx->max_partition_order >= 0) {
331 if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
332 av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
333 avctx->max_partition_order);
334 return -1;
336 s->options.max_partition_order = avctx->max_partition_order;
338 if(s->options.max_partition_order < s->options.min_partition_order) {
339 av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
340 s->options.min_partition_order, s->options.max_partition_order);
341 return -1;
343 av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
344 s->options.min_partition_order, s->options.max_partition_order);
346 if(avctx->frame_size > 0) {
347 if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
348 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
349 av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
350 avctx->frame_size);
351 return -1;
353 } else {
354 s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
356 av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size);
358 /* set LPC precision */
359 if(avctx->lpc_coeff_precision > 0) {
360 if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
361 av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
362 avctx->lpc_coeff_precision);
363 return -1;
365 s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
366 } else {
367 /* default LPC precision */
368 s->options.lpc_coeff_precision = 15;
370 av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
371 s->options.lpc_coeff_precision);
373 /* set maximum encoded frame size in verbatim mode */
374 if(s->channels == 2) {
375 s->max_framesize = 14 + ((s->avctx->frame_size * 33 + 7) >> 3);
376 } else {
377 s->max_framesize = 14 + (s->avctx->frame_size * s->channels * 2);
380 streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
381 write_streaminfo(s, streaminfo);
382 avctx->extradata = streaminfo;
383 avctx->extradata_size = FLAC_STREAMINFO_SIZE;
385 s->frame_count = 0;
387 avctx->coded_frame = avcodec_alloc_frame();
388 avctx->coded_frame->key_frame = 1;
390 return 0;
393 static void init_frame(FlacEncodeContext *s)
395 int i, ch;
396 FlacFrame *frame;
398 frame = &s->frame;
400 for(i=0; i<16; i++) {
401 if(s->avctx->frame_size == flac_blocksizes[i]) {
402 frame->blocksize = flac_blocksizes[i];
403 frame->bs_code[0] = i;
404 frame->bs_code[1] = 0;
405 break;
408 if(i == 16) {
409 frame->blocksize = s->avctx->frame_size;
410 if(frame->blocksize <= 256) {
411 frame->bs_code[0] = 6;
412 frame->bs_code[1] = frame->blocksize-1;
413 } else {
414 frame->bs_code[0] = 7;
415 frame->bs_code[1] = frame->blocksize-1;
419 for(ch=0; ch<s->channels; ch++) {
420 frame->subframes[ch].obits = 16;
425 * Copy channel-interleaved input samples into separate subframes
427 static void copy_samples(FlacEncodeContext *s, int16_t *samples)
429 int i, j, ch;
430 FlacFrame *frame;
432 frame = &s->frame;
433 for(i=0,j=0; i<frame->blocksize; i++) {
434 for(ch=0; ch<s->channels; ch++,j++) {
435 frame->subframes[ch].samples[i] = samples[j];
441 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
444 * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
446 static int find_optimal_param(uint32_t sum, int n)
448 int k;
449 uint32_t sum2;
451 if(sum <= n>>1)
452 return 0;
453 sum2 = sum-(n>>1);
454 k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
455 return FFMIN(k, MAX_RICE_PARAM);
458 static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
459 uint32_t *sums, int n, int pred_order)
461 int i;
462 int k, cnt, part;
463 uint32_t all_bits;
465 part = (1 << porder);
466 all_bits = 4 * part;
468 cnt = (n >> porder) - pred_order;
469 for(i=0; i<part; i++) {
470 k = find_optimal_param(sums[i], cnt);
471 rc->params[i] = k;
472 all_bits += rice_encode_count(sums[i], cnt, k);
473 cnt = n >> porder;
476 rc->porder = porder;
478 return all_bits;
481 static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
482 uint32_t sums[][MAX_PARTITIONS])
484 int i, j;
485 int parts;
486 uint32_t *res, *res_end;
488 /* sums for highest level */
489 parts = (1 << pmax);
490 res = &data[pred_order];
491 res_end = &data[n >> pmax];
492 for(i=0; i<parts; i++) {
493 uint32_t sum = 0;
494 while(res < res_end){
495 sum += *(res++);
497 sums[pmax][i] = sum;
498 res_end+= n >> pmax;
500 /* sums for lower levels */
501 for(i=pmax-1; i>=pmin; i--) {
502 parts = (1 << i);
503 for(j=0; j<parts; j++) {
504 sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
509 static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
510 int32_t *data, int n, int pred_order)
512 int i;
513 uint32_t bits[MAX_PARTITION_ORDER+1];
514 int opt_porder;
515 RiceContext tmp_rc;
516 uint32_t *udata;
517 uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
519 assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
520 assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
521 assert(pmin <= pmax);
523 udata = av_malloc(n * sizeof(uint32_t));
524 for(i=0; i<n; i++) {
525 udata[i] = (2*data[i]) ^ (data[i]>>31);
528 calc_sums(pmin, pmax, udata, n, pred_order, sums);
530 opt_porder = pmin;
531 bits[pmin] = UINT32_MAX;
532 for(i=pmin; i<=pmax; i++) {
533 bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
534 if(bits[i] <= bits[opt_porder]) {
535 opt_porder = i;
536 *rc= tmp_rc;
540 av_freep(&udata);
541 return bits[opt_porder];
544 static int get_max_p_order(int max_porder, int n, int order)
546 int porder = FFMIN(max_porder, av_log2(n^(n-1)));
547 if(order > 0)
548 porder = FFMIN(porder, av_log2(n/order));
549 return porder;
552 static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
553 int32_t *data, int n, int pred_order,
554 int bps)
556 uint32_t bits;
557 pmin = get_max_p_order(pmin, n, pred_order);
558 pmax = get_max_p_order(pmax, n, pred_order);
559 bits = pred_order*bps + 6;
560 bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
561 return bits;
564 static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
565 int32_t *data, int n, int pred_order,
566 int bps, int precision)
568 uint32_t bits;
569 pmin = get_max_p_order(pmin, n, pred_order);
570 pmax = get_max_p_order(pmax, n, pred_order);
571 bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
572 bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
573 return bits;
577 * Apply Welch window function to audio block
579 static void apply_welch_window(const int32_t *data, int len, double *w_data)
581 int i, n2;
582 double w;
583 double c;
585 assert(!(len&1)); //the optimization in r11881 does not support odd len
586 //if someone wants odd len extend the change in r11881
588 n2 = (len >> 1);
589 c = 2.0 / (len - 1.0);
591 w_data+=n2;
592 data+=n2;
593 for(i=0; i<n2; i++) {
594 w = c - n2 + i;
595 w = 1.0 - (w * w);
596 w_data[-i-1] = data[-i-1] * w;
597 w_data[+i ] = data[+i ] * w;
602 * Calculates autocorrelation data from audio samples
603 * A Welch window function is applied before calculation.
605 void ff_flac_compute_autocorr(const int32_t *data, int len, int lag,
606 double *autoc)
608 int i, j;
609 double tmp[len + lag + 1];
610 double *data1= tmp + lag;
612 apply_welch_window(data, len, data1);
614 for(j=0; j<lag; j++)
615 data1[j-lag]= 0.0;
616 data1[len] = 0.0;
618 for(j=0; j<lag; j+=2){
619 double sum0 = 1.0, sum1 = 1.0;
620 for(i=0; i<len; i++){
621 sum0 += data1[i] * data1[i-j];
622 sum1 += data1[i] * data1[i-j-1];
624 autoc[j ] = sum0;
625 autoc[j+1] = sum1;
628 if(j==lag){
629 double sum = 1.0;
630 for(i=0; i<len; i+=2){
631 sum += data1[i ] * data1[i-j ]
632 + data1[i+1] * data1[i-j+1];
634 autoc[j] = sum;
639 * Levinson-Durbin recursion.
640 * Produces LPC coefficients from autocorrelation data.
642 static void compute_lpc_coefs(const double *autoc, int max_order,
643 double lpc[][MAX_LPC_ORDER], double *ref)
645 int i, j, i2;
646 double r, err, tmp;
647 double lpc_tmp[MAX_LPC_ORDER];
649 for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
650 err = autoc[0];
652 for(i=0; i<max_order; i++) {
653 r = -autoc[i+1];
654 for(j=0; j<i; j++) {
655 r -= lpc_tmp[j] * autoc[i-j];
657 r /= err;
658 ref[i] = fabs(r);
660 err *= 1.0 - (r * r);
662 i2 = (i >> 1);
663 lpc_tmp[i] = r;
664 for(j=0; j<i2; j++) {
665 tmp = lpc_tmp[j];
666 lpc_tmp[j] += r * lpc_tmp[i-1-j];
667 lpc_tmp[i-1-j] += r * tmp;
669 if(i & 1) {
670 lpc_tmp[j] += lpc_tmp[j] * r;
673 for(j=0; j<=i; j++) {
674 lpc[i][j] = -lpc_tmp[j];
680 * Quantize LPC coefficients
682 static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
683 int32_t *lpc_out, int *shift)
685 int i;
686 double cmax, error;
687 int32_t qmax;
688 int sh;
690 /* define maximum levels */
691 qmax = (1 << (precision - 1)) - 1;
693 /* find maximum coefficient value */
694 cmax = 0.0;
695 for(i=0; i<order; i++) {
696 cmax= FFMAX(cmax, fabs(lpc_in[i]));
699 /* if maximum value quantizes to zero, return all zeros */
700 if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
701 *shift = 0;
702 memset(lpc_out, 0, sizeof(int32_t) * order);
703 return;
706 /* calculate level shift which scales max coeff to available bits */
707 sh = MAX_LPC_SHIFT;
708 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
709 sh--;
712 /* since negative shift values are unsupported in decoder, scale down
713 coefficients instead */
714 if(sh == 0 && cmax > qmax) {
715 double scale = ((double)qmax) / cmax;
716 for(i=0; i<order; i++) {
717 lpc_in[i] *= scale;
721 /* output quantized coefficients and level shift */
722 error=0;
723 for(i=0; i<order; i++) {
724 error += lpc_in[i] * (1 << sh);
725 lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
726 error -= lpc_out[i];
728 *shift = sh;
731 static int estimate_best_order(double *ref, int max_order)
733 int i, est;
735 est = 1;
736 for(i=max_order-1; i>=0; i--) {
737 if(ref[i] > 0.10) {
738 est = i+1;
739 break;
742 return est;
746 * Calculate LPC coefficients for multiple orders
748 static int lpc_calc_coefs(FlacEncodeContext *s,
749 const int32_t *samples, int blocksize, int max_order,
750 int precision, int32_t coefs[][MAX_LPC_ORDER],
751 int *shift, int use_lpc, int omethod)
753 double autoc[MAX_LPC_ORDER+1];
754 double ref[MAX_LPC_ORDER];
755 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
756 int i, j, pass;
757 int opt_order;
759 assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
761 if(use_lpc == 1){
762 s->dsp.flac_compute_autocorr(samples, blocksize, max_order, autoc);
764 compute_lpc_coefs(autoc, max_order, lpc, ref);
765 }else{
766 LLSModel m[2];
767 double var[MAX_LPC_ORDER+1], weight;
769 for(pass=0; pass<use_lpc-1; pass++){
770 av_init_lls(&m[pass&1], max_order);
772 weight=0;
773 for(i=max_order; i<blocksize; i++){
774 for(j=0; j<=max_order; j++)
775 var[j]= samples[i-j];
777 if(pass){
778 double eval, inv, rinv;
779 eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
780 eval= (512>>pass) + fabs(eval - var[0]);
781 inv = 1/eval;
782 rinv = sqrt(inv);
783 for(j=0; j<=max_order; j++)
784 var[j] *= rinv;
785 weight += inv;
786 }else
787 weight++;
789 av_update_lls(&m[pass&1], var, 1.0);
791 av_solve_lls(&m[pass&1], 0.001, 0);
794 for(i=0; i<max_order; i++){
795 for(j=0; j<max_order; j++)
796 lpc[i][j]= m[(pass-1)&1].coeff[i][j];
797 ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
799 for(i=max_order-1; i>0; i--)
800 ref[i] = ref[i-1] - ref[i];
802 opt_order = max_order;
804 if(omethod == ORDER_METHOD_EST) {
805 opt_order = estimate_best_order(ref, max_order);
806 i = opt_order-1;
807 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
808 } else {
809 for(i=0; i<max_order; i++) {
810 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
814 return opt_order;
818 static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
820 assert(n > 0);
821 memcpy(res, smp, n * sizeof(int32_t));
824 static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
825 int order)
827 int i;
829 for(i=0; i<order; i++) {
830 res[i] = smp[i];
833 if(order==0){
834 for(i=order; i<n; i++)
835 res[i]= smp[i];
836 }else if(order==1){
837 for(i=order; i<n; i++)
838 res[i]= smp[i] - smp[i-1];
839 }else if(order==2){
840 int a = smp[order-1] - smp[order-2];
841 for(i=order; i<n; i+=2) {
842 int b = smp[i] - smp[i-1];
843 res[i]= b - a;
844 a = smp[i+1] - smp[i];
845 res[i+1]= a - b;
847 }else if(order==3){
848 int a = smp[order-1] - smp[order-2];
849 int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
850 for(i=order; i<n; i+=2) {
851 int b = smp[i] - smp[i-1];
852 int d = b - a;
853 res[i]= d - c;
854 a = smp[i+1] - smp[i];
855 c = a - b;
856 res[i+1]= c - d;
858 }else{
859 int a = smp[order-1] - smp[order-2];
860 int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
861 int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
862 for(i=order; i<n; i+=2) {
863 int b = smp[i] - smp[i-1];
864 int d = b - a;
865 int f = d - c;
866 res[i]= f - e;
867 a = smp[i+1] - smp[i];
868 c = a - b;
869 e = c - d;
870 res[i+1]= e - f;
875 #define LPC1(x) {\
876 int c = coefs[(x)-1];\
877 p0 += c*s;\
878 s = smp[i-(x)+1];\
879 p1 += c*s;\
882 static av_always_inline void encode_residual_lpc_unrolled(
883 int32_t *res, const int32_t *smp, int n,
884 int order, const int32_t *coefs, int shift, int big)
886 int i;
887 for(i=order; i<n; i+=2) {
888 int s = smp[i-order];
889 int p0 = 0, p1 = 0;
890 if(big) {
891 switch(order) {
892 case 32: LPC1(32)
893 case 31: LPC1(31)
894 case 30: LPC1(30)
895 case 29: LPC1(29)
896 case 28: LPC1(28)
897 case 27: LPC1(27)
898 case 26: LPC1(26)
899 case 25: LPC1(25)
900 case 24: LPC1(24)
901 case 23: LPC1(23)
902 case 22: LPC1(22)
903 case 21: LPC1(21)
904 case 20: LPC1(20)
905 case 19: LPC1(19)
906 case 18: LPC1(18)
907 case 17: LPC1(17)
908 case 16: LPC1(16)
909 case 15: LPC1(15)
910 case 14: LPC1(14)
911 case 13: LPC1(13)
912 case 12: LPC1(12)
913 case 11: LPC1(11)
914 case 10: LPC1(10)
915 case 9: LPC1( 9)
916 LPC1( 8)
917 LPC1( 7)
918 LPC1( 6)
919 LPC1( 5)
920 LPC1( 4)
921 LPC1( 3)
922 LPC1( 2)
923 LPC1( 1)
925 } else {
926 switch(order) {
927 case 8: LPC1( 8)
928 case 7: LPC1( 7)
929 case 6: LPC1( 6)
930 case 5: LPC1( 5)
931 case 4: LPC1( 4)
932 case 3: LPC1( 3)
933 case 2: LPC1( 2)
934 case 1: LPC1( 1)
937 res[i ] = smp[i ] - (p0 >> shift);
938 res[i+1] = smp[i+1] - (p1 >> shift);
942 static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
943 int order, const int32_t *coefs, int shift)
945 int i;
946 for(i=0; i<order; i++) {
947 res[i] = smp[i];
949 #ifdef CONFIG_SMALL
950 for(i=order; i<n; i+=2) {
951 int j;
952 int s = smp[i];
953 int p0 = 0, p1 = 0;
954 for(j=0; j<order; j++) {
955 int c = coefs[j];
956 p1 += c*s;
957 s = smp[i-j-1];
958 p0 += c*s;
960 res[i ] = smp[i ] - (p0 >> shift);
961 res[i+1] = smp[i+1] - (p1 >> shift);
963 #else
964 switch(order) {
965 case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
966 case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
967 case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
968 case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
969 case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
970 case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
971 case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
972 case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
973 default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
975 #endif
978 static int encode_residual(FlacEncodeContext *ctx, int ch)
980 int i, n;
981 int min_order, max_order, opt_order, precision, omethod;
982 int min_porder, max_porder;
983 FlacFrame *frame;
984 FlacSubframe *sub;
985 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
986 int shift[MAX_LPC_ORDER];
987 int32_t *res, *smp;
989 frame = &ctx->frame;
990 sub = &frame->subframes[ch];
991 res = sub->residual;
992 smp = sub->samples;
993 n = frame->blocksize;
995 /* CONSTANT */
996 for(i=1; i<n; i++) {
997 if(smp[i] != smp[0]) break;
999 if(i == n) {
1000 sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
1001 res[0] = smp[0];
1002 return sub->obits;
1005 /* VERBATIM */
1006 if(n < 5) {
1007 sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
1008 encode_residual_verbatim(res, smp, n);
1009 return sub->obits * n;
1012 min_order = ctx->options.min_prediction_order;
1013 max_order = ctx->options.max_prediction_order;
1014 min_porder = ctx->options.min_partition_order;
1015 max_porder = ctx->options.max_partition_order;
1016 precision = ctx->options.lpc_coeff_precision;
1017 omethod = ctx->options.prediction_order_method;
1019 /* FIXED */
1020 if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
1021 uint32_t bits[MAX_FIXED_ORDER+1];
1022 if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
1023 opt_order = 0;
1024 bits[0] = UINT32_MAX;
1025 for(i=min_order; i<=max_order; i++) {
1026 encode_residual_fixed(res, smp, n, i);
1027 bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
1028 n, i, sub->obits);
1029 if(bits[i] < bits[opt_order]) {
1030 opt_order = i;
1033 sub->order = opt_order;
1034 sub->type = FLAC_SUBFRAME_FIXED;
1035 sub->type_code = sub->type | sub->order;
1036 if(sub->order != max_order) {
1037 encode_residual_fixed(res, smp, n, sub->order);
1038 return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
1039 sub->order, sub->obits);
1041 return bits[sub->order];
1044 /* LPC */
1045 opt_order = lpc_calc_coefs(ctx, smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod);
1047 if(omethod == ORDER_METHOD_2LEVEL ||
1048 omethod == ORDER_METHOD_4LEVEL ||
1049 omethod == ORDER_METHOD_8LEVEL) {
1050 int levels = 1 << omethod;
1051 uint32_t bits[levels];
1052 int order;
1053 int opt_index = levels-1;
1054 opt_order = max_order-1;
1055 bits[opt_index] = UINT32_MAX;
1056 for(i=levels-1; i>=0; i--) {
1057 order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
1058 if(order < 0) order = 0;
1059 encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
1060 bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
1061 res, n, order+1, sub->obits, precision);
1062 if(bits[i] < bits[opt_index]) {
1063 opt_index = i;
1064 opt_order = order;
1067 opt_order++;
1068 } else if(omethod == ORDER_METHOD_SEARCH) {
1069 // brute-force optimal order search
1070 uint32_t bits[MAX_LPC_ORDER];
1071 opt_order = 0;
1072 bits[0] = UINT32_MAX;
1073 for(i=min_order-1; i<max_order; i++) {
1074 encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
1075 bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
1076 res, n, i+1, sub->obits, precision);
1077 if(bits[i] < bits[opt_order]) {
1078 opt_order = i;
1081 opt_order++;
1082 } else if(omethod == ORDER_METHOD_LOG) {
1083 uint32_t bits[MAX_LPC_ORDER];
1084 int step;
1086 opt_order= min_order - 1 + (max_order-min_order)/3;
1087 memset(bits, -1, sizeof(bits));
1089 for(step=16 ;step; step>>=1){
1090 int last= opt_order;
1091 for(i=last-step; i<=last+step; i+= step){
1092 if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
1093 continue;
1094 encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
1095 bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
1096 res, n, i+1, sub->obits, precision);
1097 if(bits[i] < bits[opt_order])
1098 opt_order= i;
1101 opt_order++;
1104 sub->order = opt_order;
1105 sub->type = FLAC_SUBFRAME_LPC;
1106 sub->type_code = sub->type | (sub->order-1);
1107 sub->shift = shift[sub->order-1];
1108 for(i=0; i<sub->order; i++) {
1109 sub->coefs[i] = coefs[sub->order-1][i];
1111 encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
1112 return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
1113 sub->obits, precision);
1116 static int encode_residual_v(FlacEncodeContext *ctx, int ch)
1118 int i, n;
1119 FlacFrame *frame;
1120 FlacSubframe *sub;
1121 int32_t *res, *smp;
1123 frame = &ctx->frame;
1124 sub = &frame->subframes[ch];
1125 res = sub->residual;
1126 smp = sub->samples;
1127 n = frame->blocksize;
1129 /* CONSTANT */
1130 for(i=1; i<n; i++) {
1131 if(smp[i] != smp[0]) break;
1133 if(i == n) {
1134 sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
1135 res[0] = smp[0];
1136 return sub->obits;
1139 /* VERBATIM */
1140 sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
1141 encode_residual_verbatim(res, smp, n);
1142 return sub->obits * n;
1145 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
1147 int i, best;
1148 int32_t lt, rt;
1149 uint64_t sum[4];
1150 uint64_t score[4];
1151 int k;
1153 /* calculate sum of 2nd order residual for each channel */
1154 sum[0] = sum[1] = sum[2] = sum[3] = 0;
1155 for(i=2; i<n; i++) {
1156 lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
1157 rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
1158 sum[2] += FFABS((lt + rt) >> 1);
1159 sum[3] += FFABS(lt - rt);
1160 sum[0] += FFABS(lt);
1161 sum[1] += FFABS(rt);
1163 /* estimate bit counts */
1164 for(i=0; i<4; i++) {
1165 k = find_optimal_param(2*sum[i], n);
1166 sum[i] = rice_encode_count(2*sum[i], n, k);
1169 /* calculate score for each mode */
1170 score[0] = sum[0] + sum[1];
1171 score[1] = sum[0] + sum[3];
1172 score[2] = sum[1] + sum[3];
1173 score[3] = sum[2] + sum[3];
1175 /* return mode with lowest score */
1176 best = 0;
1177 for(i=1; i<4; i++) {
1178 if(score[i] < score[best]) {
1179 best = i;
1182 if(best == 0) {
1183 return FLAC_CHMODE_LEFT_RIGHT;
1184 } else if(best == 1) {
1185 return FLAC_CHMODE_LEFT_SIDE;
1186 } else if(best == 2) {
1187 return FLAC_CHMODE_RIGHT_SIDE;
1188 } else {
1189 return FLAC_CHMODE_MID_SIDE;
1194 * Perform stereo channel decorrelation
1196 static void channel_decorrelation(FlacEncodeContext *ctx)
1198 FlacFrame *frame;
1199 int32_t *left, *right;
1200 int i, n;
1202 frame = &ctx->frame;
1203 n = frame->blocksize;
1204 left = frame->subframes[0].samples;
1205 right = frame->subframes[1].samples;
1207 if(ctx->channels != 2) {
1208 frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
1209 return;
1212 frame->ch_mode = estimate_stereo_mode(left, right, n);
1214 /* perform decorrelation and adjust bits-per-sample */
1215 if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
1216 return;
1218 if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
1219 int32_t tmp;
1220 for(i=0; i<n; i++) {
1221 tmp = left[i];
1222 left[i] = (tmp + right[i]) >> 1;
1223 right[i] = tmp - right[i];
1225 frame->subframes[1].obits++;
1226 } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
1227 for(i=0; i<n; i++) {
1228 right[i] = left[i] - right[i];
1230 frame->subframes[1].obits++;
1231 } else {
1232 for(i=0; i<n; i++) {
1233 left[i] -= right[i];
1235 frame->subframes[0].obits++;
1239 static void put_sbits(PutBitContext *pb, int bits, int32_t val)
1241 assert(bits >= 0 && bits <= 31);
1243 put_bits(pb, bits, val & ((1<<bits)-1));
1246 static void write_utf8(PutBitContext *pb, uint32_t val)
1248 uint8_t tmp;
1249 PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
1252 static void output_frame_header(FlacEncodeContext *s)
1254 FlacFrame *frame;
1255 int crc;
1257 frame = &s->frame;
1259 put_bits(&s->pb, 16, 0xFFF8);
1260 put_bits(&s->pb, 4, frame->bs_code[0]);
1261 put_bits(&s->pb, 4, s->sr_code[0]);
1262 if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
1263 put_bits(&s->pb, 4, s->ch_code);
1264 } else {
1265 put_bits(&s->pb, 4, frame->ch_mode);
1267 put_bits(&s->pb, 3, 4); /* bits-per-sample code */
1268 put_bits(&s->pb, 1, 0);
1269 write_utf8(&s->pb, s->frame_count);
1270 if(frame->bs_code[0] == 6) {
1271 put_bits(&s->pb, 8, frame->bs_code[1]);
1272 } else if(frame->bs_code[0] == 7) {
1273 put_bits(&s->pb, 16, frame->bs_code[1]);
1275 if(s->sr_code[0] == 12) {
1276 put_bits(&s->pb, 8, s->sr_code[1]);
1277 } else if(s->sr_code[0] > 12) {
1278 put_bits(&s->pb, 16, s->sr_code[1]);
1280 flush_put_bits(&s->pb);
1281 crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
1282 s->pb.buf, put_bits_count(&s->pb)>>3);
1283 put_bits(&s->pb, 8, crc);
1286 static void output_subframe_constant(FlacEncodeContext *s, int ch)
1288 FlacSubframe *sub;
1289 int32_t res;
1291 sub = &s->frame.subframes[ch];
1292 res = sub->residual[0];
1293 put_sbits(&s->pb, sub->obits, res);
1296 static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
1298 int i;
1299 FlacFrame *frame;
1300 FlacSubframe *sub;
1301 int32_t res;
1303 frame = &s->frame;
1304 sub = &frame->subframes[ch];
1306 for(i=0; i<frame->blocksize; i++) {
1307 res = sub->residual[i];
1308 put_sbits(&s->pb, sub->obits, res);
1312 static void output_residual(FlacEncodeContext *ctx, int ch)
1314 int i, j, p, n, parts;
1315 int k, porder, psize, res_cnt;
1316 FlacFrame *frame;
1317 FlacSubframe *sub;
1318 int32_t *res;
1320 frame = &ctx->frame;
1321 sub = &frame->subframes[ch];
1322 res = sub->residual;
1323 n = frame->blocksize;
1325 /* rice-encoded block */
1326 put_bits(&ctx->pb, 2, 0);
1328 /* partition order */
1329 porder = sub->rc.porder;
1330 psize = n >> porder;
1331 parts = (1 << porder);
1332 put_bits(&ctx->pb, 4, porder);
1333 res_cnt = psize - sub->order;
1335 /* residual */
1336 j = sub->order;
1337 for(p=0; p<parts; p++) {
1338 k = sub->rc.params[p];
1339 put_bits(&ctx->pb, 4, k);
1340 if(p == 1) res_cnt = psize;
1341 for(i=0; i<res_cnt && j<n; i++, j++) {
1342 set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
1347 static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
1349 int i;
1350 FlacFrame *frame;
1351 FlacSubframe *sub;
1353 frame = &ctx->frame;
1354 sub = &frame->subframes[ch];
1356 /* warm-up samples */
1357 for(i=0; i<sub->order; i++) {
1358 put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
1361 /* residual */
1362 output_residual(ctx, ch);
1365 static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
1367 int i, cbits;
1368 FlacFrame *frame;
1369 FlacSubframe *sub;
1371 frame = &ctx->frame;
1372 sub = &frame->subframes[ch];
1374 /* warm-up samples */
1375 for(i=0; i<sub->order; i++) {
1376 put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
1379 /* LPC coefficients */
1380 cbits = ctx->options.lpc_coeff_precision;
1381 put_bits(&ctx->pb, 4, cbits-1);
1382 put_sbits(&ctx->pb, 5, sub->shift);
1383 for(i=0; i<sub->order; i++) {
1384 put_sbits(&ctx->pb, cbits, sub->coefs[i]);
1387 /* residual */
1388 output_residual(ctx, ch);
1391 static void output_subframes(FlacEncodeContext *s)
1393 FlacFrame *frame;
1394 FlacSubframe *sub;
1395 int ch;
1397 frame = &s->frame;
1399 for(ch=0; ch<s->channels; ch++) {
1400 sub = &frame->subframes[ch];
1402 /* subframe header */
1403 put_bits(&s->pb, 1, 0);
1404 put_bits(&s->pb, 6, sub->type_code);
1405 put_bits(&s->pb, 1, 0); /* no wasted bits */
1407 /* subframe */
1408 if(sub->type == FLAC_SUBFRAME_CONSTANT) {
1409 output_subframe_constant(s, ch);
1410 } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
1411 output_subframe_verbatim(s, ch);
1412 } else if(sub->type == FLAC_SUBFRAME_FIXED) {
1413 output_subframe_fixed(s, ch);
1414 } else if(sub->type == FLAC_SUBFRAME_LPC) {
1415 output_subframe_lpc(s, ch);
1420 static void output_frame_footer(FlacEncodeContext *s)
1422 int crc;
1423 flush_put_bits(&s->pb);
1424 crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
1425 s->pb.buf, put_bits_count(&s->pb)>>3));
1426 put_bits(&s->pb, 16, crc);
1427 flush_put_bits(&s->pb);
1430 static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
1431 int buf_size, void *data)
1433 int ch;
1434 FlacEncodeContext *s;
1435 int16_t *samples = data;
1436 int out_bytes;
1438 s = avctx->priv_data;
1440 init_frame(s);
1442 copy_samples(s, samples);
1444 channel_decorrelation(s);
1446 for(ch=0; ch<s->channels; ch++) {
1447 encode_residual(s, ch);
1449 init_put_bits(&s->pb, frame, buf_size);
1450 output_frame_header(s);
1451 output_subframes(s);
1452 output_frame_footer(s);
1453 out_bytes = put_bits_count(&s->pb) >> 3;
1455 if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
1456 /* frame too large. use verbatim mode */
1457 for(ch=0; ch<s->channels; ch++) {
1458 encode_residual_v(s, ch);
1460 init_put_bits(&s->pb, frame, buf_size);
1461 output_frame_header(s);
1462 output_subframes(s);
1463 output_frame_footer(s);
1464 out_bytes = put_bits_count(&s->pb) >> 3;
1466 if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
1467 /* still too large. must be an error. */
1468 av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
1469 return -1;
1473 s->frame_count++;
1474 return out_bytes;
1477 static av_cold int flac_encode_close(AVCodecContext *avctx)
1479 av_freep(&avctx->extradata);
1480 avctx->extradata_size = 0;
1481 av_freep(&avctx->coded_frame);
1482 return 0;
1485 AVCodec flac_encoder = {
1486 "flac",
1487 CODEC_TYPE_AUDIO,
1488 CODEC_ID_FLAC,
1489 sizeof(FlacEncodeContext),
1490 flac_encode_init,
1491 flac_encode_frame,
1492 flac_encode_close,
1493 NULL,
1494 .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
1495 .long_name = "FLAC (Free Lossless Audio Codec)",