Rename var: val -> energy
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / mpegaudiodec.c
blobc4805be931ccdb0c8f757d14335cca1992cdb669
1 /*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard.
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file mpegaudiodec.c
24 * MPEG Audio decoder.
27 //#define DEBUG
28 #include "avcodec.h"
29 #include "bitstream.h"
30 #include "dsputil.h"
33 * TODO:
34 * - in low precision mode, use more 16 bit multiplies in synth filter
35 * - test lsf / mpeg25 extensively.
38 /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
39 audio decoder */
40 #ifdef CONFIG_MPEGAUDIO_HP
41 # define USE_HIGHPRECISION
42 #endif
44 #include "mpegaudio.h"
45 #include "mpegaudiodecheader.h"
47 #include "mathops.h"
49 /* WARNING: only correct for posititive numbers */
50 #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
51 #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
53 #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
55 /****************/
57 #define HEADER_SIZE 4
59 /* layer 3 "granule" */
60 typedef struct GranuleDef {
61 uint8_t scfsi;
62 int part2_3_length;
63 int big_values;
64 int global_gain;
65 int scalefac_compress;
66 uint8_t block_type;
67 uint8_t switch_point;
68 int table_select[3];
69 int subblock_gain[3];
70 uint8_t scalefac_scale;
71 uint8_t count1table_select;
72 int region_size[3]; /* number of huffman codes in each region */
73 int preflag;
74 int short_start, long_end; /* long/short band indexes */
75 uint8_t scale_factors[40];
76 int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
77 } GranuleDef;
79 #include "mpegaudiodata.h"
80 #include "mpegaudiodectab.h"
82 static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
83 static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
85 /* vlc structure for decoding layer 3 huffman tables */
86 static VLC huff_vlc[16];
87 static VLC huff_quad_vlc[2];
88 /* computed from band_size_long */
89 static uint16_t band_index_long[9][23];
90 /* XXX: free when all decoders are closed */
91 #define TABLE_4_3_SIZE (8191 + 16)*4
92 static int8_t table_4_3_exp[TABLE_4_3_SIZE];
93 static uint32_t table_4_3_value[TABLE_4_3_SIZE];
94 static uint32_t exp_table[512];
95 static uint32_t expval_table[512][16];
96 /* intensity stereo coef table */
97 static int32_t is_table[2][16];
98 static int32_t is_table_lsf[2][2][16];
99 static int32_t csa_table[8][4];
100 static float csa_table_float[8][4];
101 static int32_t mdct_win[8][36];
103 /* lower 2 bits: modulo 3, higher bits: shift */
104 static uint16_t scale_factor_modshift[64];
105 /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
106 static int32_t scale_factor_mult[15][3];
107 /* mult table for layer 2 group quantization */
109 #define SCALE_GEN(v) \
110 { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
112 static const int32_t scale_factor_mult2[3][3] = {
113 SCALE_GEN(4.0 / 3.0), /* 3 steps */
114 SCALE_GEN(4.0 / 5.0), /* 5 steps */
115 SCALE_GEN(4.0 / 9.0), /* 9 steps */
118 static DECLARE_ALIGNED_16(MPA_INT, window[512]);
121 * Convert region offsets to region sizes and truncate
122 * size to big_values.
124 void ff_region_offset2size(GranuleDef *g){
125 int i, k, j=0;
126 g->region_size[2] = (576 / 2);
127 for(i=0;i<3;i++) {
128 k = FFMIN(g->region_size[i], g->big_values);
129 g->region_size[i] = k - j;
130 j = k;
134 void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
135 if (g->block_type == 2)
136 g->region_size[0] = (36 / 2);
137 else {
138 if (s->sample_rate_index <= 2)
139 g->region_size[0] = (36 / 2);
140 else if (s->sample_rate_index != 8)
141 g->region_size[0] = (54 / 2);
142 else
143 g->region_size[0] = (108 / 2);
145 g->region_size[1] = (576 / 2);
148 void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
149 int l;
150 g->region_size[0] =
151 band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
152 /* should not overflow */
153 l = FFMIN(ra1 + ra2 + 2, 22);
154 g->region_size[1] =
155 band_index_long[s->sample_rate_index][l] >> 1;
158 void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
159 if (g->block_type == 2) {
160 if (g->switch_point) {
161 /* if switched mode, we handle the 36 first samples as
162 long blocks. For 8000Hz, we handle the 48 first
163 exponents as long blocks (XXX: check this!) */
164 if (s->sample_rate_index <= 2)
165 g->long_end = 8;
166 else if (s->sample_rate_index != 8)
167 g->long_end = 6;
168 else
169 g->long_end = 4; /* 8000 Hz */
171 g->short_start = 2 + (s->sample_rate_index != 8);
172 } else {
173 g->long_end = 0;
174 g->short_start = 0;
176 } else {
177 g->short_start = 13;
178 g->long_end = 22;
182 /* layer 1 unscaling */
183 /* n = number of bits of the mantissa minus 1 */
184 static inline int l1_unscale(int n, int mant, int scale_factor)
186 int shift, mod;
187 int64_t val;
189 shift = scale_factor_modshift[scale_factor];
190 mod = shift & 3;
191 shift >>= 2;
192 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
193 shift += n;
194 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
195 return (int)((val + (1LL << (shift - 1))) >> shift);
198 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
200 int shift, mod, val;
202 shift = scale_factor_modshift[scale_factor];
203 mod = shift & 3;
204 shift >>= 2;
206 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
207 /* NOTE: at this point, 0 <= shift <= 21 */
208 if (shift > 0)
209 val = (val + (1 << (shift - 1))) >> shift;
210 return val;
213 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
214 static inline int l3_unscale(int value, int exponent)
216 unsigned int m;
217 int e;
219 e = table_4_3_exp [4*value + (exponent&3)];
220 m = table_4_3_value[4*value + (exponent&3)];
221 e -= (exponent >> 2);
222 assert(e>=1);
223 if (e > 31)
224 return 0;
225 m = (m + (1 << (e-1))) >> e;
227 return m;
230 /* all integer n^(4/3) computation code */
231 #define DEV_ORDER 13
233 #define POW_FRAC_BITS 24
234 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
235 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
236 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
238 static int dev_4_3_coefs[DEV_ORDER];
240 #if 0 /* unused */
241 static int pow_mult3[3] = {
242 POW_FIX(1.0),
243 POW_FIX(1.25992104989487316476),
244 POW_FIX(1.58740105196819947474),
246 #endif
248 static void int_pow_init(void)
250 int i, a;
252 a = POW_FIX(1.0);
253 for(i=0;i<DEV_ORDER;i++) {
254 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
255 dev_4_3_coefs[i] = a;
259 #if 0 /* unused, remove? */
260 /* return the mantissa and the binary exponent */
261 static int int_pow(int i, int *exp_ptr)
263 int e, er, eq, j;
264 int a, a1;
266 /* renormalize */
267 a = i;
268 e = POW_FRAC_BITS;
269 while (a < (1 << (POW_FRAC_BITS - 1))) {
270 a = a << 1;
271 e--;
273 a -= (1 << POW_FRAC_BITS);
274 a1 = 0;
275 for(j = DEV_ORDER - 1; j >= 0; j--)
276 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
277 a = (1 << POW_FRAC_BITS) + a1;
278 /* exponent compute (exact) */
279 e = e * 4;
280 er = e % 3;
281 eq = e / 3;
282 a = POW_MULL(a, pow_mult3[er]);
283 while (a >= 2 * POW_FRAC_ONE) {
284 a = a >> 1;
285 eq++;
287 /* convert to float */
288 while (a < POW_FRAC_ONE) {
289 a = a << 1;
290 eq--;
292 /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
293 #if POW_FRAC_BITS > FRAC_BITS
294 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
295 /* correct overflow */
296 if (a >= 2 * (1 << FRAC_BITS)) {
297 a = a >> 1;
298 eq++;
300 #endif
301 *exp_ptr = eq;
302 return a;
304 #endif
306 static int decode_init(AVCodecContext * avctx)
308 MPADecodeContext *s = avctx->priv_data;
309 static int init=0;
310 int i, j, k;
312 s->avctx = avctx;
314 #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
315 avctx->sample_fmt= SAMPLE_FMT_S32;
316 #else
317 avctx->sample_fmt= SAMPLE_FMT_S16;
318 #endif
319 s->error_resilience= avctx->error_resilience;
321 if(avctx->antialias_algo != FF_AA_FLOAT)
322 s->compute_antialias= compute_antialias_integer;
323 else
324 s->compute_antialias= compute_antialias_float;
326 if (!init && !avctx->parse_only) {
327 /* scale factors table for layer 1/2 */
328 for(i=0;i<64;i++) {
329 int shift, mod;
330 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
331 shift = (i / 3);
332 mod = i % 3;
333 scale_factor_modshift[i] = mod | (shift << 2);
336 /* scale factor multiply for layer 1 */
337 for(i=0;i<15;i++) {
338 int n, norm;
339 n = i + 2;
340 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
341 scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
342 scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
343 scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
344 dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
345 i, norm,
346 scale_factor_mult[i][0],
347 scale_factor_mult[i][1],
348 scale_factor_mult[i][2]);
351 ff_mpa_synth_init(window);
353 /* huffman decode tables */
354 for(i=1;i<16;i++) {
355 const HuffTable *h = &mpa_huff_tables[i];
356 int xsize, x, y;
357 unsigned int n;
358 uint8_t tmp_bits [512];
359 uint16_t tmp_codes[512];
361 memset(tmp_bits , 0, sizeof(tmp_bits ));
362 memset(tmp_codes, 0, sizeof(tmp_codes));
364 xsize = h->xsize;
365 n = xsize * xsize;
367 j = 0;
368 for(x=0;x<xsize;x++) {
369 for(y=0;y<xsize;y++){
370 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
371 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
375 /* XXX: fail test */
376 init_vlc(&huff_vlc[i], 7, 512,
377 tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
379 for(i=0;i<2;i++) {
380 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
381 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
384 for(i=0;i<9;i++) {
385 k = 0;
386 for(j=0;j<22;j++) {
387 band_index_long[i][j] = k;
388 k += band_size_long[i][j];
390 band_index_long[i][22] = k;
393 /* compute n ^ (4/3) and store it in mantissa/exp format */
395 int_pow_init();
396 for(i=1;i<TABLE_4_3_SIZE;i++) {
397 double f, fm;
398 int e, m;
399 f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
400 fm = frexp(f, &e);
401 m = (uint32_t)(fm*(1LL<<31) + 0.5);
402 e+= FRAC_BITS - 31 + 5 - 100;
404 /* normalized to FRAC_BITS */
405 table_4_3_value[i] = m;
406 // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
407 table_4_3_exp[i] = -e;
409 for(i=0; i<512*16; i++){
410 int exponent= (i>>4);
411 double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
412 expval_table[exponent][i&15]= llrint(f);
413 if((i&15)==1)
414 exp_table[exponent]= llrint(f);
417 for(i=0;i<7;i++) {
418 float f;
419 int v;
420 if (i != 6) {
421 f = tan((double)i * M_PI / 12.0);
422 v = FIXR(f / (1.0 + f));
423 } else {
424 v = FIXR(1.0);
426 is_table[0][i] = v;
427 is_table[1][6 - i] = v;
429 /* invalid values */
430 for(i=7;i<16;i++)
431 is_table[0][i] = is_table[1][i] = 0.0;
433 for(i=0;i<16;i++) {
434 double f;
435 int e, k;
437 for(j=0;j<2;j++) {
438 e = -(j + 1) * ((i + 1) >> 1);
439 f = pow(2.0, e / 4.0);
440 k = i & 1;
441 is_table_lsf[j][k ^ 1][i] = FIXR(f);
442 is_table_lsf[j][k][i] = FIXR(1.0);
443 dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
444 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
448 for(i=0;i<8;i++) {
449 float ci, cs, ca;
450 ci = ci_table[i];
451 cs = 1.0 / sqrt(1.0 + ci * ci);
452 ca = cs * ci;
453 csa_table[i][0] = FIXHR(cs/4);
454 csa_table[i][1] = FIXHR(ca/4);
455 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
456 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
457 csa_table_float[i][0] = cs;
458 csa_table_float[i][1] = ca;
459 csa_table_float[i][2] = ca + cs;
460 csa_table_float[i][3] = ca - cs;
461 // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
462 // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
465 /* compute mdct windows */
466 for(i=0;i<36;i++) {
467 for(j=0; j<4; j++){
468 double d;
470 if(j==2 && i%3 != 1)
471 continue;
473 d= sin(M_PI * (i + 0.5) / 36.0);
474 if(j==1){
475 if (i>=30) d= 0;
476 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
477 else if(i>=18) d= 1;
478 }else if(j==3){
479 if (i< 6) d= 0;
480 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
481 else if(i< 18) d= 1;
483 //merge last stage of imdct into the window coefficients
484 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
486 if(j==2)
487 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
488 else
489 mdct_win[j][i ] = FIXHR((d / (1<<5)));
490 // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
494 /* NOTE: we do frequency inversion adter the MDCT by changing
495 the sign of the right window coefs */
496 for(j=0;j<4;j++) {
497 for(i=0;i<36;i+=2) {
498 mdct_win[j + 4][i] = mdct_win[j][i];
499 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
503 #if defined(DEBUG)
504 for(j=0;j<8;j++) {
505 av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
506 for(i=0;i<36;i++)
507 av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
508 av_log(avctx, AV_LOG_DEBUG, "\n");
510 #endif
511 init = 1;
514 #ifdef DEBUG
515 s->frame_count = 0;
516 #endif
517 if (avctx->codec_id == CODEC_ID_MP3ADU)
518 s->adu_mode = 1;
519 return 0;
522 /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
524 /* cos(i*pi/64) */
526 #define COS0_0 FIXHR(0.50060299823519630134/2)
527 #define COS0_1 FIXHR(0.50547095989754365998/2)
528 #define COS0_2 FIXHR(0.51544730992262454697/2)
529 #define COS0_3 FIXHR(0.53104259108978417447/2)
530 #define COS0_4 FIXHR(0.55310389603444452782/2)
531 #define COS0_5 FIXHR(0.58293496820613387367/2)
532 #define COS0_6 FIXHR(0.62250412303566481615/2)
533 #define COS0_7 FIXHR(0.67480834145500574602/2)
534 #define COS0_8 FIXHR(0.74453627100229844977/2)
535 #define COS0_9 FIXHR(0.83934964541552703873/2)
536 #define COS0_10 FIXHR(0.97256823786196069369/2)
537 #define COS0_11 FIXHR(1.16943993343288495515/4)
538 #define COS0_12 FIXHR(1.48416461631416627724/4)
539 #define COS0_13 FIXHR(2.05778100995341155085/8)
540 #define COS0_14 FIXHR(3.40760841846871878570/8)
541 #define COS0_15 FIXHR(10.19000812354805681150/32)
543 #define COS1_0 FIXHR(0.50241928618815570551/2)
544 #define COS1_1 FIXHR(0.52249861493968888062/2)
545 #define COS1_2 FIXHR(0.56694403481635770368/2)
546 #define COS1_3 FIXHR(0.64682178335999012954/2)
547 #define COS1_4 FIXHR(0.78815462345125022473/2)
548 #define COS1_5 FIXHR(1.06067768599034747134/4)
549 #define COS1_6 FIXHR(1.72244709823833392782/4)
550 #define COS1_7 FIXHR(5.10114861868916385802/16)
552 #define COS2_0 FIXHR(0.50979557910415916894/2)
553 #define COS2_1 FIXHR(0.60134488693504528054/2)
554 #define COS2_2 FIXHR(0.89997622313641570463/2)
555 #define COS2_3 FIXHR(2.56291544774150617881/8)
557 #define COS3_0 FIXHR(0.54119610014619698439/2)
558 #define COS3_1 FIXHR(1.30656296487637652785/4)
560 #define COS4_0 FIXHR(0.70710678118654752439/2)
562 /* butterfly operator */
563 #define BF(a, b, c, s)\
565 tmp0 = tab[a] + tab[b];\
566 tmp1 = tab[a] - tab[b];\
567 tab[a] = tmp0;\
568 tab[b] = MULH(tmp1<<(s), c);\
571 #define BF1(a, b, c, d)\
573 BF(a, b, COS4_0, 1);\
574 BF(c, d,-COS4_0, 1);\
575 tab[c] += tab[d];\
578 #define BF2(a, b, c, d)\
580 BF(a, b, COS4_0, 1);\
581 BF(c, d,-COS4_0, 1);\
582 tab[c] += tab[d];\
583 tab[a] += tab[c];\
584 tab[c] += tab[b];\
585 tab[b] += tab[d];\
588 #define ADD(a, b) tab[a] += tab[b]
590 /* DCT32 without 1/sqrt(2) coef zero scaling. */
591 static void dct32(int32_t *out, int32_t *tab)
593 int tmp0, tmp1;
595 /* pass 1 */
596 BF( 0, 31, COS0_0 , 1);
597 BF(15, 16, COS0_15, 5);
598 /* pass 2 */
599 BF( 0, 15, COS1_0 , 1);
600 BF(16, 31,-COS1_0 , 1);
601 /* pass 1 */
602 BF( 7, 24, COS0_7 , 1);
603 BF( 8, 23, COS0_8 , 1);
604 /* pass 2 */
605 BF( 7, 8, COS1_7 , 4);
606 BF(23, 24,-COS1_7 , 4);
607 /* pass 3 */
608 BF( 0, 7, COS2_0 , 1);
609 BF( 8, 15,-COS2_0 , 1);
610 BF(16, 23, COS2_0 , 1);
611 BF(24, 31,-COS2_0 , 1);
612 /* pass 1 */
613 BF( 3, 28, COS0_3 , 1);
614 BF(12, 19, COS0_12, 2);
615 /* pass 2 */
616 BF( 3, 12, COS1_3 , 1);
617 BF(19, 28,-COS1_3 , 1);
618 /* pass 1 */
619 BF( 4, 27, COS0_4 , 1);
620 BF(11, 20, COS0_11, 2);
621 /* pass 2 */
622 BF( 4, 11, COS1_4 , 1);
623 BF(20, 27,-COS1_4 , 1);
624 /* pass 3 */
625 BF( 3, 4, COS2_3 , 3);
626 BF(11, 12,-COS2_3 , 3);
627 BF(19, 20, COS2_3 , 3);
628 BF(27, 28,-COS2_3 , 3);
629 /* pass 4 */
630 BF( 0, 3, COS3_0 , 1);
631 BF( 4, 7,-COS3_0 , 1);
632 BF( 8, 11, COS3_0 , 1);
633 BF(12, 15,-COS3_0 , 1);
634 BF(16, 19, COS3_0 , 1);
635 BF(20, 23,-COS3_0 , 1);
636 BF(24, 27, COS3_0 , 1);
637 BF(28, 31,-COS3_0 , 1);
641 /* pass 1 */
642 BF( 1, 30, COS0_1 , 1);
643 BF(14, 17, COS0_14, 3);
644 /* pass 2 */
645 BF( 1, 14, COS1_1 , 1);
646 BF(17, 30,-COS1_1 , 1);
647 /* pass 1 */
648 BF( 6, 25, COS0_6 , 1);
649 BF( 9, 22, COS0_9 , 1);
650 /* pass 2 */
651 BF( 6, 9, COS1_6 , 2);
652 BF(22, 25,-COS1_6 , 2);
653 /* pass 3 */
654 BF( 1, 6, COS2_1 , 1);
655 BF( 9, 14,-COS2_1 , 1);
656 BF(17, 22, COS2_1 , 1);
657 BF(25, 30,-COS2_1 , 1);
659 /* pass 1 */
660 BF( 2, 29, COS0_2 , 1);
661 BF(13, 18, COS0_13, 3);
662 /* pass 2 */
663 BF( 2, 13, COS1_2 , 1);
664 BF(18, 29,-COS1_2 , 1);
665 /* pass 1 */
666 BF( 5, 26, COS0_5 , 1);
667 BF(10, 21, COS0_10, 1);
668 /* pass 2 */
669 BF( 5, 10, COS1_5 , 2);
670 BF(21, 26,-COS1_5 , 2);
671 /* pass 3 */
672 BF( 2, 5, COS2_2 , 1);
673 BF(10, 13,-COS2_2 , 1);
674 BF(18, 21, COS2_2 , 1);
675 BF(26, 29,-COS2_2 , 1);
676 /* pass 4 */
677 BF( 1, 2, COS3_1 , 2);
678 BF( 5, 6,-COS3_1 , 2);
679 BF( 9, 10, COS3_1 , 2);
680 BF(13, 14,-COS3_1 , 2);
681 BF(17, 18, COS3_1 , 2);
682 BF(21, 22,-COS3_1 , 2);
683 BF(25, 26, COS3_1 , 2);
684 BF(29, 30,-COS3_1 , 2);
686 /* pass 5 */
687 BF1( 0, 1, 2, 3);
688 BF2( 4, 5, 6, 7);
689 BF1( 8, 9, 10, 11);
690 BF2(12, 13, 14, 15);
691 BF1(16, 17, 18, 19);
692 BF2(20, 21, 22, 23);
693 BF1(24, 25, 26, 27);
694 BF2(28, 29, 30, 31);
696 /* pass 6 */
698 ADD( 8, 12);
699 ADD(12, 10);
700 ADD(10, 14);
701 ADD(14, 9);
702 ADD( 9, 13);
703 ADD(13, 11);
704 ADD(11, 15);
706 out[ 0] = tab[0];
707 out[16] = tab[1];
708 out[ 8] = tab[2];
709 out[24] = tab[3];
710 out[ 4] = tab[4];
711 out[20] = tab[5];
712 out[12] = tab[6];
713 out[28] = tab[7];
714 out[ 2] = tab[8];
715 out[18] = tab[9];
716 out[10] = tab[10];
717 out[26] = tab[11];
718 out[ 6] = tab[12];
719 out[22] = tab[13];
720 out[14] = tab[14];
721 out[30] = tab[15];
723 ADD(24, 28);
724 ADD(28, 26);
725 ADD(26, 30);
726 ADD(30, 25);
727 ADD(25, 29);
728 ADD(29, 27);
729 ADD(27, 31);
731 out[ 1] = tab[16] + tab[24];
732 out[17] = tab[17] + tab[25];
733 out[ 9] = tab[18] + tab[26];
734 out[25] = tab[19] + tab[27];
735 out[ 5] = tab[20] + tab[28];
736 out[21] = tab[21] + tab[29];
737 out[13] = tab[22] + tab[30];
738 out[29] = tab[23] + tab[31];
739 out[ 3] = tab[24] + tab[20];
740 out[19] = tab[25] + tab[21];
741 out[11] = tab[26] + tab[22];
742 out[27] = tab[27] + tab[23];
743 out[ 7] = tab[28] + tab[18];
744 out[23] = tab[29] + tab[19];
745 out[15] = tab[30] + tab[17];
746 out[31] = tab[31];
749 #if FRAC_BITS <= 15
751 static inline int round_sample(int *sum)
753 int sum1;
754 sum1 = (*sum) >> OUT_SHIFT;
755 *sum &= (1<<OUT_SHIFT)-1;
756 if (sum1 < OUT_MIN)
757 sum1 = OUT_MIN;
758 else if (sum1 > OUT_MAX)
759 sum1 = OUT_MAX;
760 return sum1;
763 /* signed 16x16 -> 32 multiply add accumulate */
764 #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
766 /* signed 16x16 -> 32 multiply */
767 #define MULS(ra, rb) MUL16(ra, rb)
769 #else
771 static inline int round_sample(int64_t *sum)
773 int sum1;
774 sum1 = (int)((*sum) >> OUT_SHIFT);
775 *sum &= (1<<OUT_SHIFT)-1;
776 if (sum1 < OUT_MIN)
777 sum1 = OUT_MIN;
778 else if (sum1 > OUT_MAX)
779 sum1 = OUT_MAX;
780 return sum1;
783 # define MULS(ra, rb) MUL64(ra, rb)
784 #endif
786 #define SUM8(sum, op, w, p) \
788 sum op MULS((w)[0 * 64], p[0 * 64]);\
789 sum op MULS((w)[1 * 64], p[1 * 64]);\
790 sum op MULS((w)[2 * 64], p[2 * 64]);\
791 sum op MULS((w)[3 * 64], p[3 * 64]);\
792 sum op MULS((w)[4 * 64], p[4 * 64]);\
793 sum op MULS((w)[5 * 64], p[5 * 64]);\
794 sum op MULS((w)[6 * 64], p[6 * 64]);\
795 sum op MULS((w)[7 * 64], p[7 * 64]);\
798 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
800 int tmp;\
801 tmp = p[0 * 64];\
802 sum1 op1 MULS((w1)[0 * 64], tmp);\
803 sum2 op2 MULS((w2)[0 * 64], tmp);\
804 tmp = p[1 * 64];\
805 sum1 op1 MULS((w1)[1 * 64], tmp);\
806 sum2 op2 MULS((w2)[1 * 64], tmp);\
807 tmp = p[2 * 64];\
808 sum1 op1 MULS((w1)[2 * 64], tmp);\
809 sum2 op2 MULS((w2)[2 * 64], tmp);\
810 tmp = p[3 * 64];\
811 sum1 op1 MULS((w1)[3 * 64], tmp);\
812 sum2 op2 MULS((w2)[3 * 64], tmp);\
813 tmp = p[4 * 64];\
814 sum1 op1 MULS((w1)[4 * 64], tmp);\
815 sum2 op2 MULS((w2)[4 * 64], tmp);\
816 tmp = p[5 * 64];\
817 sum1 op1 MULS((w1)[5 * 64], tmp);\
818 sum2 op2 MULS((w2)[5 * 64], tmp);\
819 tmp = p[6 * 64];\
820 sum1 op1 MULS((w1)[6 * 64], tmp);\
821 sum2 op2 MULS((w2)[6 * 64], tmp);\
822 tmp = p[7 * 64];\
823 sum1 op1 MULS((w1)[7 * 64], tmp);\
824 sum2 op2 MULS((w2)[7 * 64], tmp);\
827 void ff_mpa_synth_init(MPA_INT *window)
829 int i;
831 /* max = 18760, max sum over all 16 coefs : 44736 */
832 for(i=0;i<257;i++) {
833 int v;
834 v = ff_mpa_enwindow[i];
835 #if WFRAC_BITS < 16
836 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
837 #endif
838 window[i] = v;
839 if ((i & 63) != 0)
840 v = -v;
841 if (i != 0)
842 window[512 - i] = v;
846 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
847 32 samples. */
848 /* XXX: optimize by avoiding ring buffer usage */
849 void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
850 MPA_INT *window, int *dither_state,
851 OUT_INT *samples, int incr,
852 int32_t sb_samples[SBLIMIT])
854 int32_t tmp[32];
855 register MPA_INT *synth_buf;
856 register const MPA_INT *w, *w2, *p;
857 int j, offset, v;
858 OUT_INT *samples2;
859 #if FRAC_BITS <= 15
860 int sum, sum2;
861 #else
862 int64_t sum, sum2;
863 #endif
865 dct32(tmp, sb_samples);
867 offset = *synth_buf_offset;
868 synth_buf = synth_buf_ptr + offset;
870 for(j=0;j<32;j++) {
871 v = tmp[j];
872 #if FRAC_BITS <= 15
873 /* NOTE: can cause a loss in precision if very high amplitude
874 sound */
875 v = av_clip_int16(v);
876 #endif
877 synth_buf[j] = v;
879 /* copy to avoid wrap */
880 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
882 samples2 = samples + 31 * incr;
883 w = window;
884 w2 = window + 31;
886 sum = *dither_state;
887 p = synth_buf + 16;
888 SUM8(sum, +=, w, p);
889 p = synth_buf + 48;
890 SUM8(sum, -=, w + 32, p);
891 *samples = round_sample(&sum);
892 samples += incr;
893 w++;
895 /* we calculate two samples at the same time to avoid one memory
896 access per two sample */
897 for(j=1;j<16;j++) {
898 sum2 = 0;
899 p = synth_buf + 16 + j;
900 SUM8P2(sum, +=, sum2, -=, w, w2, p);
901 p = synth_buf + 48 - j;
902 SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
904 *samples = round_sample(&sum);
905 samples += incr;
906 sum += sum2;
907 *samples2 = round_sample(&sum);
908 samples2 -= incr;
909 w++;
910 w2--;
913 p = synth_buf + 32;
914 SUM8(sum, -=, w + 32, p);
915 *samples = round_sample(&sum);
916 *dither_state= sum;
918 offset = (offset - 32) & 511;
919 *synth_buf_offset = offset;
922 #define C3 FIXHR(0.86602540378443864676/2)
924 /* 0.5 / cos(pi*(2*i+1)/36) */
925 static const int icos36[9] = {
926 FIXR(0.50190991877167369479),
927 FIXR(0.51763809020504152469), //0
928 FIXR(0.55168895948124587824),
929 FIXR(0.61038729438072803416),
930 FIXR(0.70710678118654752439), //1
931 FIXR(0.87172339781054900991),
932 FIXR(1.18310079157624925896),
933 FIXR(1.93185165257813657349), //2
934 FIXR(5.73685662283492756461),
937 /* 0.5 / cos(pi*(2*i+1)/36) */
938 static const int icos36h[9] = {
939 FIXHR(0.50190991877167369479/2),
940 FIXHR(0.51763809020504152469/2), //0
941 FIXHR(0.55168895948124587824/2),
942 FIXHR(0.61038729438072803416/2),
943 FIXHR(0.70710678118654752439/2), //1
944 FIXHR(0.87172339781054900991/2),
945 FIXHR(1.18310079157624925896/4),
946 FIXHR(1.93185165257813657349/4), //2
947 // FIXHR(5.73685662283492756461),
950 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
951 cases. */
952 static void imdct12(int *out, int *in)
954 int in0, in1, in2, in3, in4, in5, t1, t2;
956 in0= in[0*3];
957 in1= in[1*3] + in[0*3];
958 in2= in[2*3] + in[1*3];
959 in3= in[3*3] + in[2*3];
960 in4= in[4*3] + in[3*3];
961 in5= in[5*3] + in[4*3];
962 in5 += in3;
963 in3 += in1;
965 in2= MULH(2*in2, C3);
966 in3= MULH(4*in3, C3);
968 t1 = in0 - in4;
969 t2 = MULH(2*(in1 - in5), icos36h[4]);
971 out[ 7]=
972 out[10]= t1 + t2;
973 out[ 1]=
974 out[ 4]= t1 - t2;
976 in0 += in4>>1;
977 in4 = in0 + in2;
978 in5 += 2*in1;
979 in1 = MULH(in5 + in3, icos36h[1]);
980 out[ 8]=
981 out[ 9]= in4 + in1;
982 out[ 2]=
983 out[ 3]= in4 - in1;
985 in0 -= in2;
986 in5 = MULH(2*(in5 - in3), icos36h[7]);
987 out[ 0]=
988 out[ 5]= in0 - in5;
989 out[ 6]=
990 out[11]= in0 + in5;
993 /* cos(pi*i/18) */
994 #define C1 FIXHR(0.98480775301220805936/2)
995 #define C2 FIXHR(0.93969262078590838405/2)
996 #define C3 FIXHR(0.86602540378443864676/2)
997 #define C4 FIXHR(0.76604444311897803520/2)
998 #define C5 FIXHR(0.64278760968653932632/2)
999 #define C6 FIXHR(0.5/2)
1000 #define C7 FIXHR(0.34202014332566873304/2)
1001 #define C8 FIXHR(0.17364817766693034885/2)
1004 /* using Lee like decomposition followed by hand coded 9 points DCT */
1005 static void imdct36(int *out, int *buf, int *in, int *win)
1007 int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
1008 int tmp[18], *tmp1, *in1;
1010 for(i=17;i>=1;i--)
1011 in[i] += in[i-1];
1012 for(i=17;i>=3;i-=2)
1013 in[i] += in[i-2];
1015 for(j=0;j<2;j++) {
1016 tmp1 = tmp + j;
1017 in1 = in + j;
1018 #if 0
1019 //more accurate but slower
1020 int64_t t0, t1, t2, t3;
1021 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1023 t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
1024 t1 = in1[2*0] - in1[2*6];
1025 tmp1[ 6] = t1 - (t2>>1);
1026 tmp1[16] = t1 + t2;
1028 t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
1029 t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
1030 t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
1032 tmp1[10] = (t3 - t0 - t2) >> 32;
1033 tmp1[ 2] = (t3 + t0 + t1) >> 32;
1034 tmp1[14] = (t3 + t2 - t1) >> 32;
1036 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1037 t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
1038 t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
1039 t0 = MUL64(2*in1[2*3], C3);
1041 t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
1043 tmp1[ 0] = (t2 + t3 + t0) >> 32;
1044 tmp1[12] = (t2 + t1 - t0) >> 32;
1045 tmp1[ 8] = (t3 - t1 - t0) >> 32;
1046 #else
1047 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1049 t3 = in1[2*0] + (in1[2*6]>>1);
1050 t1 = in1[2*0] - in1[2*6];
1051 tmp1[ 6] = t1 - (t2>>1);
1052 tmp1[16] = t1 + t2;
1054 t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
1055 t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
1056 t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
1058 tmp1[10] = t3 - t0 - t2;
1059 tmp1[ 2] = t3 + t0 + t1;
1060 tmp1[14] = t3 + t2 - t1;
1062 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1063 t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
1064 t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
1065 t0 = MULH(2*in1[2*3], C3);
1067 t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
1069 tmp1[ 0] = t2 + t3 + t0;
1070 tmp1[12] = t2 + t1 - t0;
1071 tmp1[ 8] = t3 - t1 - t0;
1072 #endif
1075 i = 0;
1076 for(j=0;j<4;j++) {
1077 t0 = tmp[i];
1078 t1 = tmp[i + 2];
1079 s0 = t1 + t0;
1080 s2 = t1 - t0;
1082 t2 = tmp[i + 1];
1083 t3 = tmp[i + 3];
1084 s1 = MULH(2*(t3 + t2), icos36h[j]);
1085 s3 = MULL(t3 - t2, icos36[8 - j]);
1087 t0 = s0 + s1;
1088 t1 = s0 - s1;
1089 out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
1090 out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
1091 buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1092 buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1094 t0 = s2 + s3;
1095 t1 = s2 - s3;
1096 out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1097 out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
1098 buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1099 buf[ + j] = MULH(t0, win[18 + j]);
1100 i += 4;
1103 s0 = tmp[16];
1104 s1 = MULH(2*tmp[17], icos36h[4]);
1105 t0 = s0 + s1;
1106 t1 = s0 - s1;
1107 out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
1108 out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
1109 buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1110 buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1113 /* return the number of decoded frames */
1114 static int mp_decode_layer1(MPADecodeContext *s)
1116 int bound, i, v, n, ch, j, mant;
1117 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1118 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1120 if (s->mode == MPA_JSTEREO)
1121 bound = (s->mode_ext + 1) * 4;
1122 else
1123 bound = SBLIMIT;
1125 /* allocation bits */
1126 for(i=0;i<bound;i++) {
1127 for(ch=0;ch<s->nb_channels;ch++) {
1128 allocation[ch][i] = get_bits(&s->gb, 4);
1131 for(i=bound;i<SBLIMIT;i++) {
1132 allocation[0][i] = get_bits(&s->gb, 4);
1135 /* scale factors */
1136 for(i=0;i<bound;i++) {
1137 for(ch=0;ch<s->nb_channels;ch++) {
1138 if (allocation[ch][i])
1139 scale_factors[ch][i] = get_bits(&s->gb, 6);
1142 for(i=bound;i<SBLIMIT;i++) {
1143 if (allocation[0][i]) {
1144 scale_factors[0][i] = get_bits(&s->gb, 6);
1145 scale_factors[1][i] = get_bits(&s->gb, 6);
1149 /* compute samples */
1150 for(j=0;j<12;j++) {
1151 for(i=0;i<bound;i++) {
1152 for(ch=0;ch<s->nb_channels;ch++) {
1153 n = allocation[ch][i];
1154 if (n) {
1155 mant = get_bits(&s->gb, n + 1);
1156 v = l1_unscale(n, mant, scale_factors[ch][i]);
1157 } else {
1158 v = 0;
1160 s->sb_samples[ch][j][i] = v;
1163 for(i=bound;i<SBLIMIT;i++) {
1164 n = allocation[0][i];
1165 if (n) {
1166 mant = get_bits(&s->gb, n + 1);
1167 v = l1_unscale(n, mant, scale_factors[0][i]);
1168 s->sb_samples[0][j][i] = v;
1169 v = l1_unscale(n, mant, scale_factors[1][i]);
1170 s->sb_samples[1][j][i] = v;
1171 } else {
1172 s->sb_samples[0][j][i] = 0;
1173 s->sb_samples[1][j][i] = 0;
1177 return 12;
1180 static int mp_decode_layer2(MPADecodeContext *s)
1182 int sblimit; /* number of used subbands */
1183 const unsigned char *alloc_table;
1184 int table, bit_alloc_bits, i, j, ch, bound, v;
1185 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1186 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1187 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1188 int scale, qindex, bits, steps, k, l, m, b;
1190 /* select decoding table */
1191 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
1192 s->sample_rate, s->lsf);
1193 sblimit = ff_mpa_sblimit_table[table];
1194 alloc_table = ff_mpa_alloc_tables[table];
1196 if (s->mode == MPA_JSTEREO)
1197 bound = (s->mode_ext + 1) * 4;
1198 else
1199 bound = sblimit;
1201 dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
1203 /* sanity check */
1204 if( bound > sblimit ) bound = sblimit;
1206 /* parse bit allocation */
1207 j = 0;
1208 for(i=0;i<bound;i++) {
1209 bit_alloc_bits = alloc_table[j];
1210 for(ch=0;ch<s->nb_channels;ch++) {
1211 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1213 j += 1 << bit_alloc_bits;
1215 for(i=bound;i<sblimit;i++) {
1216 bit_alloc_bits = alloc_table[j];
1217 v = get_bits(&s->gb, bit_alloc_bits);
1218 bit_alloc[0][i] = v;
1219 bit_alloc[1][i] = v;
1220 j += 1 << bit_alloc_bits;
1223 #ifdef DEBUG
1225 for(ch=0;ch<s->nb_channels;ch++) {
1226 for(i=0;i<sblimit;i++)
1227 dprintf(s->avctx, " %d", bit_alloc[ch][i]);
1228 dprintf(s->avctx, "\n");
1231 #endif
1233 /* scale codes */
1234 for(i=0;i<sblimit;i++) {
1235 for(ch=0;ch<s->nb_channels;ch++) {
1236 if (bit_alloc[ch][i])
1237 scale_code[ch][i] = get_bits(&s->gb, 2);
1241 /* scale factors */
1242 for(i=0;i<sblimit;i++) {
1243 for(ch=0;ch<s->nb_channels;ch++) {
1244 if (bit_alloc[ch][i]) {
1245 sf = scale_factors[ch][i];
1246 switch(scale_code[ch][i]) {
1247 default:
1248 case 0:
1249 sf[0] = get_bits(&s->gb, 6);
1250 sf[1] = get_bits(&s->gb, 6);
1251 sf[2] = get_bits(&s->gb, 6);
1252 break;
1253 case 2:
1254 sf[0] = get_bits(&s->gb, 6);
1255 sf[1] = sf[0];
1256 sf[2] = sf[0];
1257 break;
1258 case 1:
1259 sf[0] = get_bits(&s->gb, 6);
1260 sf[2] = get_bits(&s->gb, 6);
1261 sf[1] = sf[0];
1262 break;
1263 case 3:
1264 sf[0] = get_bits(&s->gb, 6);
1265 sf[2] = get_bits(&s->gb, 6);
1266 sf[1] = sf[2];
1267 break;
1273 #ifdef DEBUG
1274 for(ch=0;ch<s->nb_channels;ch++) {
1275 for(i=0;i<sblimit;i++) {
1276 if (bit_alloc[ch][i]) {
1277 sf = scale_factors[ch][i];
1278 dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
1279 } else {
1280 dprintf(s->avctx, " -");
1283 dprintf(s->avctx, "\n");
1285 #endif
1287 /* samples */
1288 for(k=0;k<3;k++) {
1289 for(l=0;l<12;l+=3) {
1290 j = 0;
1291 for(i=0;i<bound;i++) {
1292 bit_alloc_bits = alloc_table[j];
1293 for(ch=0;ch<s->nb_channels;ch++) {
1294 b = bit_alloc[ch][i];
1295 if (b) {
1296 scale = scale_factors[ch][i][k];
1297 qindex = alloc_table[j+b];
1298 bits = ff_mpa_quant_bits[qindex];
1299 if (bits < 0) {
1300 /* 3 values at the same time */
1301 v = get_bits(&s->gb, -bits);
1302 steps = ff_mpa_quant_steps[qindex];
1303 s->sb_samples[ch][k * 12 + l + 0][i] =
1304 l2_unscale_group(steps, v % steps, scale);
1305 v = v / steps;
1306 s->sb_samples[ch][k * 12 + l + 1][i] =
1307 l2_unscale_group(steps, v % steps, scale);
1308 v = v / steps;
1309 s->sb_samples[ch][k * 12 + l + 2][i] =
1310 l2_unscale_group(steps, v, scale);
1311 } else {
1312 for(m=0;m<3;m++) {
1313 v = get_bits(&s->gb, bits);
1314 v = l1_unscale(bits - 1, v, scale);
1315 s->sb_samples[ch][k * 12 + l + m][i] = v;
1318 } else {
1319 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1320 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1321 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1324 /* next subband in alloc table */
1325 j += 1 << bit_alloc_bits;
1327 /* XXX: find a way to avoid this duplication of code */
1328 for(i=bound;i<sblimit;i++) {
1329 bit_alloc_bits = alloc_table[j];
1330 b = bit_alloc[0][i];
1331 if (b) {
1332 int mant, scale0, scale1;
1333 scale0 = scale_factors[0][i][k];
1334 scale1 = scale_factors[1][i][k];
1335 qindex = alloc_table[j+b];
1336 bits = ff_mpa_quant_bits[qindex];
1337 if (bits < 0) {
1338 /* 3 values at the same time */
1339 v = get_bits(&s->gb, -bits);
1340 steps = ff_mpa_quant_steps[qindex];
1341 mant = v % steps;
1342 v = v / steps;
1343 s->sb_samples[0][k * 12 + l + 0][i] =
1344 l2_unscale_group(steps, mant, scale0);
1345 s->sb_samples[1][k * 12 + l + 0][i] =
1346 l2_unscale_group(steps, mant, scale1);
1347 mant = v % steps;
1348 v = v / steps;
1349 s->sb_samples[0][k * 12 + l + 1][i] =
1350 l2_unscale_group(steps, mant, scale0);
1351 s->sb_samples[1][k * 12 + l + 1][i] =
1352 l2_unscale_group(steps, mant, scale1);
1353 s->sb_samples[0][k * 12 + l + 2][i] =
1354 l2_unscale_group(steps, v, scale0);
1355 s->sb_samples[1][k * 12 + l + 2][i] =
1356 l2_unscale_group(steps, v, scale1);
1357 } else {
1358 for(m=0;m<3;m++) {
1359 mant = get_bits(&s->gb, bits);
1360 s->sb_samples[0][k * 12 + l + m][i] =
1361 l1_unscale(bits - 1, mant, scale0);
1362 s->sb_samples[1][k * 12 + l + m][i] =
1363 l1_unscale(bits - 1, mant, scale1);
1366 } else {
1367 s->sb_samples[0][k * 12 + l + 0][i] = 0;
1368 s->sb_samples[0][k * 12 + l + 1][i] = 0;
1369 s->sb_samples[0][k * 12 + l + 2][i] = 0;
1370 s->sb_samples[1][k * 12 + l + 0][i] = 0;
1371 s->sb_samples[1][k * 12 + l + 1][i] = 0;
1372 s->sb_samples[1][k * 12 + l + 2][i] = 0;
1374 /* next subband in alloc table */
1375 j += 1 << bit_alloc_bits;
1377 /* fill remaining samples to zero */
1378 for(i=sblimit;i<SBLIMIT;i++) {
1379 for(ch=0;ch<s->nb_channels;ch++) {
1380 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1381 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1382 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1387 return 3 * 12;
1390 static inline void lsf_sf_expand(int *slen,
1391 int sf, int n1, int n2, int n3)
1393 if (n3) {
1394 slen[3] = sf % n3;
1395 sf /= n3;
1396 } else {
1397 slen[3] = 0;
1399 if (n2) {
1400 slen[2] = sf % n2;
1401 sf /= n2;
1402 } else {
1403 slen[2] = 0;
1405 slen[1] = sf % n1;
1406 sf /= n1;
1407 slen[0] = sf;
1410 static void exponents_from_scale_factors(MPADecodeContext *s,
1411 GranuleDef *g,
1412 int16_t *exponents)
1414 const uint8_t *bstab, *pretab;
1415 int len, i, j, k, l, v0, shift, gain, gains[3];
1416 int16_t *exp_ptr;
1418 exp_ptr = exponents;
1419 gain = g->global_gain - 210;
1420 shift = g->scalefac_scale + 1;
1422 bstab = band_size_long[s->sample_rate_index];
1423 pretab = mpa_pretab[g->preflag];
1424 for(i=0;i<g->long_end;i++) {
1425 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1426 len = bstab[i];
1427 for(j=len;j>0;j--)
1428 *exp_ptr++ = v0;
1431 if (g->short_start < 13) {
1432 bstab = band_size_short[s->sample_rate_index];
1433 gains[0] = gain - (g->subblock_gain[0] << 3);
1434 gains[1] = gain - (g->subblock_gain[1] << 3);
1435 gains[2] = gain - (g->subblock_gain[2] << 3);
1436 k = g->long_end;
1437 for(i=g->short_start;i<13;i++) {
1438 len = bstab[i];
1439 for(l=0;l<3;l++) {
1440 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1441 for(j=len;j>0;j--)
1442 *exp_ptr++ = v0;
1448 /* handle n = 0 too */
1449 static inline int get_bitsz(GetBitContext *s, int n)
1451 if (n == 0)
1452 return 0;
1453 else
1454 return get_bits(s, n);
1458 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1459 if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1460 s->gb= s->in_gb;
1461 s->in_gb.buffer=NULL;
1462 assert((get_bits_count(&s->gb) & 7) == 0);
1463 skip_bits_long(&s->gb, *pos - *end_pos);
1464 *end_pos2=
1465 *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1466 *pos= get_bits_count(&s->gb);
1470 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1471 int16_t *exponents, int end_pos2)
1473 int s_index;
1474 int i;
1475 int last_pos, bits_left;
1476 VLC *vlc;
1477 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1479 /* low frequencies (called big values) */
1480 s_index = 0;
1481 for(i=0;i<3;i++) {
1482 int j, k, l, linbits;
1483 j = g->region_size[i];
1484 if (j == 0)
1485 continue;
1486 /* select vlc table */
1487 k = g->table_select[i];
1488 l = mpa_huff_data[k][0];
1489 linbits = mpa_huff_data[k][1];
1490 vlc = &huff_vlc[l];
1492 if(!l){
1493 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1494 s_index += 2*j;
1495 continue;
1498 /* read huffcode and compute each couple */
1499 for(;j>0;j--) {
1500 int exponent, x, y, v;
1501 int pos= get_bits_count(&s->gb);
1503 if (pos >= end_pos){
1504 // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1505 switch_buffer(s, &pos, &end_pos, &end_pos2);
1506 // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1507 if(pos >= end_pos)
1508 break;
1510 y = get_vlc2(&s->gb, vlc->table, 7, 3);
1512 if(!y){
1513 g->sb_hybrid[s_index ] =
1514 g->sb_hybrid[s_index+1] = 0;
1515 s_index += 2;
1516 continue;
1519 exponent= exponents[s_index];
1521 dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1522 i, g->region_size[i] - j, x, y, exponent);
1523 if(y&16){
1524 x = y >> 5;
1525 y = y & 0x0f;
1526 if (x < 15){
1527 v = expval_table[ exponent ][ x ];
1528 // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
1529 }else{
1530 x += get_bitsz(&s->gb, linbits);
1531 v = l3_unscale(x, exponent);
1533 if (get_bits1(&s->gb))
1534 v = -v;
1535 g->sb_hybrid[s_index] = v;
1536 if (y < 15){
1537 v = expval_table[ exponent ][ y ];
1538 }else{
1539 y += get_bitsz(&s->gb, linbits);
1540 v = l3_unscale(y, exponent);
1542 if (get_bits1(&s->gb))
1543 v = -v;
1544 g->sb_hybrid[s_index+1] = v;
1545 }else{
1546 x = y >> 5;
1547 y = y & 0x0f;
1548 x += y;
1549 if (x < 15){
1550 v = expval_table[ exponent ][ x ];
1551 }else{
1552 x += get_bitsz(&s->gb, linbits);
1553 v = l3_unscale(x, exponent);
1555 if (get_bits1(&s->gb))
1556 v = -v;
1557 g->sb_hybrid[s_index+!!y] = v;
1558 g->sb_hybrid[s_index+ !y] = 0;
1560 s_index+=2;
1564 /* high frequencies */
1565 vlc = &huff_quad_vlc[g->count1table_select];
1566 last_pos=0;
1567 while (s_index <= 572) {
1568 int pos, code;
1569 pos = get_bits_count(&s->gb);
1570 if (pos >= end_pos) {
1571 if (pos > end_pos2 && last_pos){
1572 /* some encoders generate an incorrect size for this
1573 part. We must go back into the data */
1574 s_index -= 4;
1575 skip_bits_long(&s->gb, last_pos - pos);
1576 av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1577 if(s->error_resilience >= FF_ER_COMPLIANT)
1578 s_index=0;
1579 break;
1581 // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1582 switch_buffer(s, &pos, &end_pos, &end_pos2);
1583 // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1584 if(pos >= end_pos)
1585 break;
1587 last_pos= pos;
1589 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1590 dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1591 g->sb_hybrid[s_index+0]=
1592 g->sb_hybrid[s_index+1]=
1593 g->sb_hybrid[s_index+2]=
1594 g->sb_hybrid[s_index+3]= 0;
1595 while(code){
1596 static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1597 int v;
1598 int pos= s_index+idxtab[code];
1599 code ^= 8>>idxtab[code];
1600 v = exp_table[ exponents[pos] ];
1601 // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
1602 if(get_bits1(&s->gb))
1603 v = -v;
1604 g->sb_hybrid[pos] = v;
1606 s_index+=4;
1608 /* skip extension bits */
1609 bits_left = end_pos2 - get_bits_count(&s->gb);
1610 //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1611 if (bits_left < 0/* || bits_left > 500*/) {
1612 av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1613 s_index=0;
1614 }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
1615 av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1616 s_index=0;
1618 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1619 skip_bits_long(&s->gb, bits_left);
1621 i= get_bits_count(&s->gb);
1622 switch_buffer(s, &i, &end_pos, &end_pos2);
1624 return 0;
1627 /* Reorder short blocks from bitstream order to interleaved order. It
1628 would be faster to do it in parsing, but the code would be far more
1629 complicated */
1630 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1632 int i, j, len;
1633 int32_t *ptr, *dst, *ptr1;
1634 int32_t tmp[576];
1636 if (g->block_type != 2)
1637 return;
1639 if (g->switch_point) {
1640 if (s->sample_rate_index != 8) {
1641 ptr = g->sb_hybrid + 36;
1642 } else {
1643 ptr = g->sb_hybrid + 48;
1645 } else {
1646 ptr = g->sb_hybrid;
1649 for(i=g->short_start;i<13;i++) {
1650 len = band_size_short[s->sample_rate_index][i];
1651 ptr1 = ptr;
1652 dst = tmp;
1653 for(j=len;j>0;j--) {
1654 *dst++ = ptr[0*len];
1655 *dst++ = ptr[1*len];
1656 *dst++ = ptr[2*len];
1657 ptr++;
1659 ptr+=2*len;
1660 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1664 #define ISQRT2 FIXR(0.70710678118654752440)
1666 static void compute_stereo(MPADecodeContext *s,
1667 GranuleDef *g0, GranuleDef *g1)
1669 int i, j, k, l;
1670 int32_t v1, v2;
1671 int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1672 int32_t (*is_tab)[16];
1673 int32_t *tab0, *tab1;
1674 int non_zero_found_short[3];
1676 /* intensity stereo */
1677 if (s->mode_ext & MODE_EXT_I_STEREO) {
1678 if (!s->lsf) {
1679 is_tab = is_table;
1680 sf_max = 7;
1681 } else {
1682 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1683 sf_max = 16;
1686 tab0 = g0->sb_hybrid + 576;
1687 tab1 = g1->sb_hybrid + 576;
1689 non_zero_found_short[0] = 0;
1690 non_zero_found_short[1] = 0;
1691 non_zero_found_short[2] = 0;
1692 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1693 for(i = 12;i >= g1->short_start;i--) {
1694 /* for last band, use previous scale factor */
1695 if (i != 11)
1696 k -= 3;
1697 len = band_size_short[s->sample_rate_index][i];
1698 for(l=2;l>=0;l--) {
1699 tab0 -= len;
1700 tab1 -= len;
1701 if (!non_zero_found_short[l]) {
1702 /* test if non zero band. if so, stop doing i-stereo */
1703 for(j=0;j<len;j++) {
1704 if (tab1[j] != 0) {
1705 non_zero_found_short[l] = 1;
1706 goto found1;
1709 sf = g1->scale_factors[k + l];
1710 if (sf >= sf_max)
1711 goto found1;
1713 v1 = is_tab[0][sf];
1714 v2 = is_tab[1][sf];
1715 for(j=0;j<len;j++) {
1716 tmp0 = tab0[j];
1717 tab0[j] = MULL(tmp0, v1);
1718 tab1[j] = MULL(tmp0, v2);
1720 } else {
1721 found1:
1722 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1723 /* lower part of the spectrum : do ms stereo
1724 if enabled */
1725 for(j=0;j<len;j++) {
1726 tmp0 = tab0[j];
1727 tmp1 = tab1[j];
1728 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1729 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1736 non_zero_found = non_zero_found_short[0] |
1737 non_zero_found_short[1] |
1738 non_zero_found_short[2];
1740 for(i = g1->long_end - 1;i >= 0;i--) {
1741 len = band_size_long[s->sample_rate_index][i];
1742 tab0 -= len;
1743 tab1 -= len;
1744 /* test if non zero band. if so, stop doing i-stereo */
1745 if (!non_zero_found) {
1746 for(j=0;j<len;j++) {
1747 if (tab1[j] != 0) {
1748 non_zero_found = 1;
1749 goto found2;
1752 /* for last band, use previous scale factor */
1753 k = (i == 21) ? 20 : i;
1754 sf = g1->scale_factors[k];
1755 if (sf >= sf_max)
1756 goto found2;
1757 v1 = is_tab[0][sf];
1758 v2 = is_tab[1][sf];
1759 for(j=0;j<len;j++) {
1760 tmp0 = tab0[j];
1761 tab0[j] = MULL(tmp0, v1);
1762 tab1[j] = MULL(tmp0, v2);
1764 } else {
1765 found2:
1766 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1767 /* lower part of the spectrum : do ms stereo
1768 if enabled */
1769 for(j=0;j<len;j++) {
1770 tmp0 = tab0[j];
1771 tmp1 = tab1[j];
1772 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1773 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1778 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1779 /* ms stereo ONLY */
1780 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1781 global gain */
1782 tab0 = g0->sb_hybrid;
1783 tab1 = g1->sb_hybrid;
1784 for(i=0;i<576;i++) {
1785 tmp0 = tab0[i];
1786 tmp1 = tab1[i];
1787 tab0[i] = tmp0 + tmp1;
1788 tab1[i] = tmp0 - tmp1;
1793 static void compute_antialias_integer(MPADecodeContext *s,
1794 GranuleDef *g)
1796 int32_t *ptr, *csa;
1797 int n, i;
1799 /* we antialias only "long" bands */
1800 if (g->block_type == 2) {
1801 if (!g->switch_point)
1802 return;
1803 /* XXX: check this for 8000Hz case */
1804 n = 1;
1805 } else {
1806 n = SBLIMIT - 1;
1809 ptr = g->sb_hybrid + 18;
1810 for(i = n;i > 0;i--) {
1811 int tmp0, tmp1, tmp2;
1812 csa = &csa_table[0][0];
1813 #define INT_AA(j) \
1814 tmp0 = ptr[-1-j];\
1815 tmp1 = ptr[ j];\
1816 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1817 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1818 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1820 INT_AA(0)
1821 INT_AA(1)
1822 INT_AA(2)
1823 INT_AA(3)
1824 INT_AA(4)
1825 INT_AA(5)
1826 INT_AA(6)
1827 INT_AA(7)
1829 ptr += 18;
1833 static void compute_antialias_float(MPADecodeContext *s,
1834 GranuleDef *g)
1836 int32_t *ptr;
1837 int n, i;
1839 /* we antialias only "long" bands */
1840 if (g->block_type == 2) {
1841 if (!g->switch_point)
1842 return;
1843 /* XXX: check this for 8000Hz case */
1844 n = 1;
1845 } else {
1846 n = SBLIMIT - 1;
1849 ptr = g->sb_hybrid + 18;
1850 for(i = n;i > 0;i--) {
1851 float tmp0, tmp1;
1852 float *csa = &csa_table_float[0][0];
1853 #define FLOAT_AA(j)\
1854 tmp0= ptr[-1-j];\
1855 tmp1= ptr[ j];\
1856 ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
1857 ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
1859 FLOAT_AA(0)
1860 FLOAT_AA(1)
1861 FLOAT_AA(2)
1862 FLOAT_AA(3)
1863 FLOAT_AA(4)
1864 FLOAT_AA(5)
1865 FLOAT_AA(6)
1866 FLOAT_AA(7)
1868 ptr += 18;
1872 static void compute_imdct(MPADecodeContext *s,
1873 GranuleDef *g,
1874 int32_t *sb_samples,
1875 int32_t *mdct_buf)
1877 int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
1878 int32_t out2[12];
1879 int i, j, mdct_long_end, v, sblimit;
1881 /* find last non zero block */
1882 ptr = g->sb_hybrid + 576;
1883 ptr1 = g->sb_hybrid + 2 * 18;
1884 while (ptr >= ptr1) {
1885 ptr -= 6;
1886 v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1887 if (v != 0)
1888 break;
1890 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1892 if (g->block_type == 2) {
1893 /* XXX: check for 8000 Hz */
1894 if (g->switch_point)
1895 mdct_long_end = 2;
1896 else
1897 mdct_long_end = 0;
1898 } else {
1899 mdct_long_end = sblimit;
1902 buf = mdct_buf;
1903 ptr = g->sb_hybrid;
1904 for(j=0;j<mdct_long_end;j++) {
1905 /* apply window & overlap with previous buffer */
1906 out_ptr = sb_samples + j;
1907 /* select window */
1908 if (g->switch_point && j < 2)
1909 win1 = mdct_win[0];
1910 else
1911 win1 = mdct_win[g->block_type];
1912 /* select frequency inversion */
1913 win = win1 + ((4 * 36) & -(j & 1));
1914 imdct36(out_ptr, buf, ptr, win);
1915 out_ptr += 18*SBLIMIT;
1916 ptr += 18;
1917 buf += 18;
1919 for(j=mdct_long_end;j<sblimit;j++) {
1920 /* select frequency inversion */
1921 win = mdct_win[2] + ((4 * 36) & -(j & 1));
1922 out_ptr = sb_samples + j;
1924 for(i=0; i<6; i++){
1925 *out_ptr = buf[i];
1926 out_ptr += SBLIMIT;
1928 imdct12(out2, ptr + 0);
1929 for(i=0;i<6;i++) {
1930 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
1931 buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
1932 out_ptr += SBLIMIT;
1934 imdct12(out2, ptr + 1);
1935 for(i=0;i<6;i++) {
1936 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
1937 buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
1938 out_ptr += SBLIMIT;
1940 imdct12(out2, ptr + 2);
1941 for(i=0;i<6;i++) {
1942 buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
1943 buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
1944 buf[i + 6*2] = 0;
1946 ptr += 18;
1947 buf += 18;
1949 /* zero bands */
1950 for(j=sblimit;j<SBLIMIT;j++) {
1951 /* overlap */
1952 out_ptr = sb_samples + j;
1953 for(i=0;i<18;i++) {
1954 *out_ptr = buf[i];
1955 buf[i] = 0;
1956 out_ptr += SBLIMIT;
1958 buf += 18;
1962 #if defined(DEBUG)
1963 void sample_dump(int fnum, int32_t *tab, int n)
1965 static FILE *files[16], *f;
1966 char buf[512];
1967 int i;
1968 int32_t v;
1970 f = files[fnum];
1971 if (!f) {
1972 snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
1973 fnum,
1974 #ifdef USE_HIGHPRECISION
1975 "hp"
1976 #else
1977 "lp"
1978 #endif
1980 f = fopen(buf, "w");
1981 if (!f)
1982 return;
1983 files[fnum] = f;
1986 if (fnum == 0) {
1987 static int pos = 0;
1988 av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
1989 for(i=0;i<n;i++) {
1990 av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
1991 if ((i % 18) == 17)
1992 av_log(NULL, AV_LOG_DEBUG, "\n");
1994 pos += n;
1996 for(i=0;i<n;i++) {
1997 /* normalize to 23 frac bits */
1998 v = tab[i] << (23 - FRAC_BITS);
1999 fwrite(&v, 1, sizeof(int32_t), f);
2002 #endif
2005 /* main layer3 decoding function */
2006 static int mp_decode_layer3(MPADecodeContext *s)
2008 int nb_granules, main_data_begin, private_bits;
2009 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
2010 GranuleDef granules[2][2], *g;
2011 int16_t exponents[576];
2013 /* read side info */
2014 if (s->lsf) {
2015 main_data_begin = get_bits(&s->gb, 8);
2016 private_bits = get_bits(&s->gb, s->nb_channels);
2017 nb_granules = 1;
2018 } else {
2019 main_data_begin = get_bits(&s->gb, 9);
2020 if (s->nb_channels == 2)
2021 private_bits = get_bits(&s->gb, 3);
2022 else
2023 private_bits = get_bits(&s->gb, 5);
2024 nb_granules = 2;
2025 for(ch=0;ch<s->nb_channels;ch++) {
2026 granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
2027 granules[ch][1].scfsi = get_bits(&s->gb, 4);
2031 for(gr=0;gr<nb_granules;gr++) {
2032 for(ch=0;ch<s->nb_channels;ch++) {
2033 dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
2034 g = &granules[ch][gr];
2035 g->part2_3_length = get_bits(&s->gb, 12);
2036 g->big_values = get_bits(&s->gb, 9);
2037 if(g->big_values > 288){
2038 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
2039 return -1;
2042 g->global_gain = get_bits(&s->gb, 8);
2043 /* if MS stereo only is selected, we precompute the
2044 1/sqrt(2) renormalization factor */
2045 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
2046 MODE_EXT_MS_STEREO)
2047 g->global_gain -= 2;
2048 if (s->lsf)
2049 g->scalefac_compress = get_bits(&s->gb, 9);
2050 else
2051 g->scalefac_compress = get_bits(&s->gb, 4);
2052 blocksplit_flag = get_bits1(&s->gb);
2053 if (blocksplit_flag) {
2054 g->block_type = get_bits(&s->gb, 2);
2055 if (g->block_type == 0){
2056 av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
2057 return -1;
2059 g->switch_point = get_bits1(&s->gb);
2060 for(i=0;i<2;i++)
2061 g->table_select[i] = get_bits(&s->gb, 5);
2062 for(i=0;i<3;i++)
2063 g->subblock_gain[i] = get_bits(&s->gb, 3);
2064 ff_init_short_region(s, g);
2065 } else {
2066 int region_address1, region_address2;
2067 g->block_type = 0;
2068 g->switch_point = 0;
2069 for(i=0;i<3;i++)
2070 g->table_select[i] = get_bits(&s->gb, 5);
2071 /* compute huffman coded region sizes */
2072 region_address1 = get_bits(&s->gb, 4);
2073 region_address2 = get_bits(&s->gb, 3);
2074 dprintf(s->avctx, "region1=%d region2=%d\n",
2075 region_address1, region_address2);
2076 ff_init_long_region(s, g, region_address1, region_address2);
2078 ff_region_offset2size(g);
2079 ff_compute_band_indexes(s, g);
2081 g->preflag = 0;
2082 if (!s->lsf)
2083 g->preflag = get_bits1(&s->gb);
2084 g->scalefac_scale = get_bits1(&s->gb);
2085 g->count1table_select = get_bits1(&s->gb);
2086 dprintf(s->avctx, "block_type=%d switch_point=%d\n",
2087 g->block_type, g->switch_point);
2091 if (!s->adu_mode) {
2092 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
2093 assert((get_bits_count(&s->gb) & 7) == 0);
2094 /* now we get bits from the main_data_begin offset */
2095 dprintf(s->avctx, "seekback: %d\n", main_data_begin);
2096 //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
2098 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
2099 s->in_gb= s->gb;
2100 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
2101 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
2104 for(gr=0;gr<nb_granules;gr++) {
2105 for(ch=0;ch<s->nb_channels;ch++) {
2106 g = &granules[ch][gr];
2107 if(get_bits_count(&s->gb)<0){
2108 av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
2109 main_data_begin, s->last_buf_size, gr);
2110 skip_bits_long(&s->gb, g->part2_3_length);
2111 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
2112 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
2113 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
2114 s->gb= s->in_gb;
2115 s->in_gb.buffer=NULL;
2117 continue;
2120 bits_pos = get_bits_count(&s->gb);
2122 if (!s->lsf) {
2123 uint8_t *sc;
2124 int slen, slen1, slen2;
2126 /* MPEG1 scale factors */
2127 slen1 = slen_table[0][g->scalefac_compress];
2128 slen2 = slen_table[1][g->scalefac_compress];
2129 dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
2130 if (g->block_type == 2) {
2131 n = g->switch_point ? 17 : 18;
2132 j = 0;
2133 if(slen1){
2134 for(i=0;i<n;i++)
2135 g->scale_factors[j++] = get_bits(&s->gb, slen1);
2136 }else{
2137 for(i=0;i<n;i++)
2138 g->scale_factors[j++] = 0;
2140 if(slen2){
2141 for(i=0;i<18;i++)
2142 g->scale_factors[j++] = get_bits(&s->gb, slen2);
2143 for(i=0;i<3;i++)
2144 g->scale_factors[j++] = 0;
2145 }else{
2146 for(i=0;i<21;i++)
2147 g->scale_factors[j++] = 0;
2149 } else {
2150 sc = granules[ch][0].scale_factors;
2151 j = 0;
2152 for(k=0;k<4;k++) {
2153 n = (k == 0 ? 6 : 5);
2154 if ((g->scfsi & (0x8 >> k)) == 0) {
2155 slen = (k < 2) ? slen1 : slen2;
2156 if(slen){
2157 for(i=0;i<n;i++)
2158 g->scale_factors[j++] = get_bits(&s->gb, slen);
2159 }else{
2160 for(i=0;i<n;i++)
2161 g->scale_factors[j++] = 0;
2163 } else {
2164 /* simply copy from last granule */
2165 for(i=0;i<n;i++) {
2166 g->scale_factors[j] = sc[j];
2167 j++;
2171 g->scale_factors[j++] = 0;
2173 #if defined(DEBUG)
2175 dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
2176 g->scfsi, gr, ch);
2177 for(i=0;i<j;i++)
2178 dprintf(s->avctx, " %d", g->scale_factors[i]);
2179 dprintf(s->avctx, "\n");
2181 #endif
2182 } else {
2183 int tindex, tindex2, slen[4], sl, sf;
2185 /* LSF scale factors */
2186 if (g->block_type == 2) {
2187 tindex = g->switch_point ? 2 : 1;
2188 } else {
2189 tindex = 0;
2191 sf = g->scalefac_compress;
2192 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2193 /* intensity stereo case */
2194 sf >>= 1;
2195 if (sf < 180) {
2196 lsf_sf_expand(slen, sf, 6, 6, 0);
2197 tindex2 = 3;
2198 } else if (sf < 244) {
2199 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2200 tindex2 = 4;
2201 } else {
2202 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2203 tindex2 = 5;
2205 } else {
2206 /* normal case */
2207 if (sf < 400) {
2208 lsf_sf_expand(slen, sf, 5, 4, 4);
2209 tindex2 = 0;
2210 } else if (sf < 500) {
2211 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2212 tindex2 = 1;
2213 } else {
2214 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2215 tindex2 = 2;
2216 g->preflag = 1;
2220 j = 0;
2221 for(k=0;k<4;k++) {
2222 n = lsf_nsf_table[tindex2][tindex][k];
2223 sl = slen[k];
2224 if(sl){
2225 for(i=0;i<n;i++)
2226 g->scale_factors[j++] = get_bits(&s->gb, sl);
2227 }else{
2228 for(i=0;i<n;i++)
2229 g->scale_factors[j++] = 0;
2232 /* XXX: should compute exact size */
2233 for(;j<40;j++)
2234 g->scale_factors[j] = 0;
2235 #if defined(DEBUG)
2237 dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
2238 gr, ch);
2239 for(i=0;i<40;i++)
2240 dprintf(s->avctx, " %d", g->scale_factors[i]);
2241 dprintf(s->avctx, "\n");
2243 #endif
2246 exponents_from_scale_factors(s, g, exponents);
2248 /* read Huffman coded residue */
2249 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
2250 #if defined(DEBUG)
2251 sample_dump(0, g->sb_hybrid, 576);
2252 #endif
2253 } /* ch */
2255 if (s->nb_channels == 2)
2256 compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2258 for(ch=0;ch<s->nb_channels;ch++) {
2259 g = &granules[ch][gr];
2261 reorder_block(s, g);
2262 #if defined(DEBUG)
2263 sample_dump(0, g->sb_hybrid, 576);
2264 #endif
2265 s->compute_antialias(s, g);
2266 #if defined(DEBUG)
2267 sample_dump(1, g->sb_hybrid, 576);
2268 #endif
2269 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2270 #if defined(DEBUG)
2271 sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
2272 #endif
2274 } /* gr */
2275 if(get_bits_count(&s->gb)<0)
2276 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
2277 return nb_granules * 18;
2280 static int mp_decode_frame(MPADecodeContext *s,
2281 OUT_INT *samples, const uint8_t *buf, int buf_size)
2283 int i, nb_frames, ch;
2284 OUT_INT *samples_ptr;
2286 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2288 /* skip error protection field */
2289 if (s->error_protection)
2290 skip_bits(&s->gb, 16);
2292 dprintf(s->avctx, "frame %d:\n", s->frame_count);
2293 switch(s->layer) {
2294 case 1:
2295 s->avctx->frame_size = 384;
2296 nb_frames = mp_decode_layer1(s);
2297 break;
2298 case 2:
2299 s->avctx->frame_size = 1152;
2300 nb_frames = mp_decode_layer2(s);
2301 break;
2302 case 3:
2303 s->avctx->frame_size = s->lsf ? 576 : 1152;
2304 default:
2305 nb_frames = mp_decode_layer3(s);
2307 s->last_buf_size=0;
2308 if(s->in_gb.buffer){
2309 align_get_bits(&s->gb);
2310 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2311 if(i >= 0 && i <= BACKSTEP_SIZE){
2312 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
2313 s->last_buf_size=i;
2314 }else
2315 av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
2316 s->gb= s->in_gb;
2317 s->in_gb.buffer= NULL;
2320 align_get_bits(&s->gb);
2321 assert((get_bits_count(&s->gb) & 7) == 0);
2322 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2324 if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2325 av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2326 i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2328 assert(i <= buf_size - HEADER_SIZE && i>= 0);
2329 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2330 s->last_buf_size += i;
2332 break;
2334 #if defined(DEBUG)
2335 for(i=0;i<nb_frames;i++) {
2336 for(ch=0;ch<s->nb_channels;ch++) {
2337 int j;
2338 dprintf(s->avctx, "%d-%d:", i, ch);
2339 for(j=0;j<SBLIMIT;j++)
2340 dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
2341 dprintf(s->avctx, "\n");
2344 #endif
2345 /* apply the synthesis filter */
2346 for(ch=0;ch<s->nb_channels;ch++) {
2347 samples_ptr = samples + ch;
2348 for(i=0;i<nb_frames;i++) {
2349 ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2350 window, &s->dither_state,
2351 samples_ptr, s->nb_channels,
2352 s->sb_samples[ch][i]);
2353 samples_ptr += 32 * s->nb_channels;
2356 #ifdef DEBUG
2357 s->frame_count++;
2358 #endif
2359 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2362 static int decode_frame(AVCodecContext * avctx,
2363 void *data, int *data_size,
2364 const uint8_t * buf, int buf_size)
2366 MPADecodeContext *s = avctx->priv_data;
2367 uint32_t header;
2368 int out_size;
2369 OUT_INT *out_samples = data;
2371 retry:
2372 if(buf_size < HEADER_SIZE)
2373 return -1;
2375 header = AV_RB32(buf);
2376 if(ff_mpa_check_header(header) < 0){
2377 buf++;
2378 // buf_size--;
2379 av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
2380 goto retry;
2383 if (ff_mpegaudio_decode_header(s, header) == 1) {
2384 /* free format: prepare to compute frame size */
2385 s->frame_size = -1;
2386 return -1;
2388 /* update codec info */
2389 avctx->channels = s->nb_channels;
2390 avctx->bit_rate = s->bit_rate;
2391 avctx->sub_id = s->layer;
2393 if(s->frame_size<=0 || s->frame_size > buf_size){
2394 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2395 return -1;
2396 }else if(s->frame_size < buf_size){
2397 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2398 buf_size= s->frame_size;
2401 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2402 if(out_size>=0){
2403 *data_size = out_size;
2404 avctx->sample_rate = s->sample_rate;
2405 //FIXME maybe move the other codec info stuff from above here too
2406 }else
2407 av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2408 s->frame_size = 0;
2409 return buf_size;
2412 static void flush(AVCodecContext *avctx){
2413 MPADecodeContext *s = avctx->priv_data;
2414 memset(s->synth_buf, 0, sizeof(s->synth_buf));
2415 s->last_buf_size= 0;
2418 #ifdef CONFIG_MP3ADU_DECODER
2419 static int decode_frame_adu(AVCodecContext * avctx,
2420 void *data, int *data_size,
2421 const uint8_t * buf, int buf_size)
2423 MPADecodeContext *s = avctx->priv_data;
2424 uint32_t header;
2425 int len, out_size;
2426 OUT_INT *out_samples = data;
2428 len = buf_size;
2430 // Discard too short frames
2431 if (buf_size < HEADER_SIZE) {
2432 *data_size = 0;
2433 return buf_size;
2437 if (len > MPA_MAX_CODED_FRAME_SIZE)
2438 len = MPA_MAX_CODED_FRAME_SIZE;
2440 // Get header and restore sync word
2441 header = AV_RB32(buf) | 0xffe00000;
2443 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2444 *data_size = 0;
2445 return buf_size;
2448 ff_mpegaudio_decode_header(s, header);
2449 /* update codec info */
2450 avctx->sample_rate = s->sample_rate;
2451 avctx->channels = s->nb_channels;
2452 avctx->bit_rate = s->bit_rate;
2453 avctx->sub_id = s->layer;
2455 s->frame_size = len;
2457 if (avctx->parse_only) {
2458 out_size = buf_size;
2459 } else {
2460 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2463 *data_size = out_size;
2464 return buf_size;
2466 #endif /* CONFIG_MP3ADU_DECODER */
2468 #ifdef CONFIG_MP3ON4_DECODER
2471 * Context for MP3On4 decoder
2473 typedef struct MP3On4DecodeContext {
2474 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
2475 int syncword; ///< syncword patch
2476 const uint8_t *coff; ///< channels offsets in output buffer
2477 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2478 } MP3On4DecodeContext;
2480 #include "mpeg4audio.h"
2482 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2483 static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
2484 /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2485 static const uint8_t chan_offset[8][5] = {
2486 {0},
2487 {0}, // C
2488 {0}, // FLR
2489 {2,0}, // C FLR
2490 {2,0,3}, // C FLR BS
2491 {4,0,2}, // C FLR BLRS
2492 {4,0,2,5}, // C FLR BLRS LFE
2493 {4,0,2,6,5}, // C FLR BLRS BLR LFE
2497 static int decode_init_mp3on4(AVCodecContext * avctx)
2499 MP3On4DecodeContext *s = avctx->priv_data;
2500 MPEG4AudioConfig cfg;
2501 int i;
2503 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2504 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2505 return -1;
2508 ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2509 if (!cfg.chan_config || cfg.chan_config > 7) {
2510 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2511 return -1;
2513 s->frames = mp3Frames[cfg.chan_config];
2514 s->coff = chan_offset[cfg.chan_config];
2515 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2517 if (cfg.sample_rate < 16000)
2518 s->syncword = 0xffe00000;
2519 else
2520 s->syncword = 0xfff00000;
2522 /* Init the first mp3 decoder in standard way, so that all tables get builded
2523 * We replace avctx->priv_data with the context of the first decoder so that
2524 * decode_init() does not have to be changed.
2525 * Other decoders will be initialized here copying data from the first context
2527 // Allocate zeroed memory for the first decoder context
2528 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2529 // Put decoder context in place to make init_decode() happy
2530 avctx->priv_data = s->mp3decctx[0];
2531 decode_init(avctx);
2532 // Restore mp3on4 context pointer
2533 avctx->priv_data = s;
2534 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2536 /* Create a separate codec/context for each frame (first is already ok).
2537 * Each frame is 1 or 2 channels - up to 5 frames allowed
2539 for (i = 1; i < s->frames; i++) {
2540 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2541 s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2542 s->mp3decctx[i]->adu_mode = 1;
2543 s->mp3decctx[i]->avctx = avctx;
2546 return 0;
2550 static int decode_close_mp3on4(AVCodecContext * avctx)
2552 MP3On4DecodeContext *s = avctx->priv_data;
2553 int i;
2555 for (i = 0; i < s->frames; i++)
2556 if (s->mp3decctx[i])
2557 av_free(s->mp3decctx[i]);
2559 return 0;
2563 static int decode_frame_mp3on4(AVCodecContext * avctx,
2564 void *data, int *data_size,
2565 const uint8_t * buf, int buf_size)
2567 MP3On4DecodeContext *s = avctx->priv_data;
2568 MPADecodeContext *m;
2569 int fsize, len = buf_size, out_size = 0;
2570 uint32_t header;
2571 OUT_INT *out_samples = data;
2572 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2573 OUT_INT *outptr, *bp;
2574 int fr, j, n;
2576 *data_size = 0;
2577 // Discard too short frames
2578 if (buf_size < HEADER_SIZE)
2579 return -1;
2581 // If only one decoder interleave is not needed
2582 outptr = s->frames == 1 ? out_samples : decoded_buf;
2584 avctx->bit_rate = 0;
2586 for (fr = 0; fr < s->frames; fr++) {
2587 fsize = AV_RB16(buf) >> 4;
2588 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2589 m = s->mp3decctx[fr];
2590 assert (m != NULL);
2592 header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2594 if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2595 break;
2597 ff_mpegaudio_decode_header(m, header);
2598 out_size += mp_decode_frame(m, outptr, buf, fsize);
2599 buf += fsize;
2600 len -= fsize;
2602 if(s->frames > 1) {
2603 n = m->avctx->frame_size*m->nb_channels;
2604 /* interleave output data */
2605 bp = out_samples + s->coff[fr];
2606 if(m->nb_channels == 1) {
2607 for(j = 0; j < n; j++) {
2608 *bp = decoded_buf[j];
2609 bp += avctx->channels;
2611 } else {
2612 for(j = 0; j < n; j++) {
2613 bp[0] = decoded_buf[j++];
2614 bp[1] = decoded_buf[j];
2615 bp += avctx->channels;
2619 avctx->bit_rate += m->bit_rate;
2622 /* update codec info */
2623 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2625 *data_size = out_size;
2626 return buf_size;
2628 #endif /* CONFIG_MP3ON4_DECODER */
2630 #ifdef CONFIG_MP2_DECODER
2631 AVCodec mp2_decoder =
2633 "mp2",
2634 CODEC_TYPE_AUDIO,
2635 CODEC_ID_MP2,
2636 sizeof(MPADecodeContext),
2637 decode_init,
2638 NULL,
2639 NULL,
2640 decode_frame,
2641 CODEC_CAP_PARSE_ONLY,
2642 .flush= flush,
2643 .long_name= "MP2 (MPEG audio layer 2)",
2645 #endif
2646 #ifdef CONFIG_MP3_DECODER
2647 AVCodec mp3_decoder =
2649 "mp3",
2650 CODEC_TYPE_AUDIO,
2651 CODEC_ID_MP3,
2652 sizeof(MPADecodeContext),
2653 decode_init,
2654 NULL,
2655 NULL,
2656 decode_frame,
2657 CODEC_CAP_PARSE_ONLY,
2658 .flush= flush,
2659 .long_name= "MP3 (MPEG audio layer 3)",
2661 #endif
2662 #ifdef CONFIG_MP3ADU_DECODER
2663 AVCodec mp3adu_decoder =
2665 "mp3adu",
2666 CODEC_TYPE_AUDIO,
2667 CODEC_ID_MP3ADU,
2668 sizeof(MPADecodeContext),
2669 decode_init,
2670 NULL,
2671 NULL,
2672 decode_frame_adu,
2673 CODEC_CAP_PARSE_ONLY,
2674 .flush= flush,
2675 .long_name= "ADU (Application Data Unit) MP3 (MPEG audio layer 3)",
2677 #endif
2678 #ifdef CONFIG_MP3ON4_DECODER
2679 AVCodec mp3on4_decoder =
2681 "mp3on4",
2682 CODEC_TYPE_AUDIO,
2683 CODEC_ID_MP3ON4,
2684 sizeof(MP3On4DecodeContext),
2685 decode_init_mp3on4,
2686 NULL,
2687 decode_close_mp3on4,
2688 decode_frame_mp3on4,
2689 .flush= flush,
2690 .long_name= "MP3onMP4",
2692 #endif