make mpa_decode_header() 10 times faster
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / liba52 / imdct.c
blob21a2a65656d3a1e8dfcae85fe508d49180cce728
1 /*
2 * imdct.c
3 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
4 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
6 * The ifft algorithms in this file have been largely inspired by Dan
7 * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html
9 * This file is part of a52dec, a free ATSC A-52 stream decoder.
10 * See http://liba52.sourceforge.net/ for updates.
12 * a52dec is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * a52dec is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include "a52.h"
28 #include "a52_internal.h"
29 #include "mm_accel.h"
31 typedef struct complex_s {
32 sample_t real;
33 sample_t imag;
34 } complex_t;
36 static uint8_t fftorder[] = {
37 0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,
38 8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,
39 4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180,
40 252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172,
41 2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178,
42 10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90,
43 254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174,
44 6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86
47 /* Root values for IFFT */
48 static sample_t roots16[3];
49 static sample_t roots32[7];
50 static sample_t roots64[15];
51 static sample_t roots128[31];
53 /* Twiddle factors for IMDCT */
54 static complex_t pre1[128];
55 static complex_t post1[64];
56 static complex_t pre2[64];
57 static complex_t post2[32];
59 static sample_t a52_imdct_window[256];
61 static void (* ifft128) (complex_t * buf);
62 static void (* ifft64) (complex_t * buf);
64 static inline void ifft2 (complex_t * buf)
66 sample_t r, i;
68 r = buf[0].real;
69 i = buf[0].imag;
70 buf[0].real += buf[1].real;
71 buf[0].imag += buf[1].imag;
72 buf[1].real = r - buf[1].real;
73 buf[1].imag = i - buf[1].imag;
76 static inline void ifft4 (complex_t * buf)
78 sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
80 tmp1 = buf[0].real + buf[1].real;
81 tmp2 = buf[3].real + buf[2].real;
82 tmp3 = buf[0].imag + buf[1].imag;
83 tmp4 = buf[2].imag + buf[3].imag;
84 tmp5 = buf[0].real - buf[1].real;
85 tmp6 = buf[0].imag - buf[1].imag;
86 tmp7 = buf[2].imag - buf[3].imag;
87 tmp8 = buf[3].real - buf[2].real;
89 buf[0].real = tmp1 + tmp2;
90 buf[0].imag = tmp3 + tmp4;
91 buf[2].real = tmp1 - tmp2;
92 buf[2].imag = tmp3 - tmp4;
93 buf[1].real = tmp5 + tmp7;
94 buf[1].imag = tmp6 + tmp8;
95 buf[3].real = tmp5 - tmp7;
96 buf[3].imag = tmp6 - tmp8;
99 /* basic radix-2 ifft butterfly */
101 #define BUTTERFLY_0(t0,t1,W0,W1,d0,d1) do { \
102 t0 = MUL (W1, d1) + MUL (W0, d0); \
103 t1 = MUL (W0, d1) - MUL (W1, d0); \
104 } while (0)
106 /* radix-2 ifft butterfly with bias */
108 #define BUTTERFLY_B(t0,t1,W0,W1,d0,d1) do { \
109 t0 = BIAS (MUL (d1, W1) + MUL (d0, W0)); \
110 t1 = BIAS (MUL (d1, W0) - MUL (d0, W1)); \
111 } while (0)
113 /* the basic split-radix ifft butterfly */
115 #define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \
116 BUTTERFLY_0 (tmp5, tmp6, wr, wi, a2.real, a2.imag); \
117 BUTTERFLY_0 (tmp8, tmp7, wr, wi, a3.imag, a3.real); \
118 tmp1 = tmp5 + tmp7; \
119 tmp2 = tmp6 + tmp8; \
120 tmp3 = tmp6 - tmp8; \
121 tmp4 = tmp7 - tmp5; \
122 a2.real = a0.real - tmp1; \
123 a2.imag = a0.imag - tmp2; \
124 a3.real = a1.real - tmp3; \
125 a3.imag = a1.imag - tmp4; \
126 a0.real += tmp1; \
127 a0.imag += tmp2; \
128 a1.real += tmp3; \
129 a1.imag += tmp4; \
130 } while (0)
132 /* split-radix ifft butterfly, specialized for wr=1 wi=0 */
134 #define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \
135 tmp1 = a2.real + a3.real; \
136 tmp2 = a2.imag + a3.imag; \
137 tmp3 = a2.imag - a3.imag; \
138 tmp4 = a3.real - a2.real; \
139 a2.real = a0.real - tmp1; \
140 a2.imag = a0.imag - tmp2; \
141 a3.real = a1.real - tmp3; \
142 a3.imag = a1.imag - tmp4; \
143 a0.real += tmp1; \
144 a0.imag += tmp2; \
145 a1.real += tmp3; \
146 a1.imag += tmp4; \
147 } while (0)
149 /* split-radix ifft butterfly, specialized for wr=wi */
151 #define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \
152 tmp5 = MUL (a2.real + a2.imag, w); \
153 tmp6 = MUL (a2.imag - a2.real, w); \
154 tmp7 = MUL (a3.real - a3.imag, w); \
155 tmp8 = MUL (a3.imag + a3.real, w); \
156 tmp1 = tmp5 + tmp7; \
157 tmp2 = tmp6 + tmp8; \
158 tmp3 = tmp6 - tmp8; \
159 tmp4 = tmp7 - tmp5; \
160 a2.real = a0.real - tmp1; \
161 a2.imag = a0.imag - tmp2; \
162 a3.real = a1.real - tmp3; \
163 a3.imag = a1.imag - tmp4; \
164 a0.real += tmp1; \
165 a0.imag += tmp2; \
166 a1.real += tmp3; \
167 a1.imag += tmp4; \
168 } while (0)
170 static inline void ifft8 (complex_t * buf)
172 sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
174 ifft4 (buf);
175 ifft2 (buf + 4);
176 ifft2 (buf + 6);
177 BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]);
178 BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]);
181 static void ifft_pass (complex_t * buf, sample_t * weight, int n)
183 complex_t * buf1;
184 complex_t * buf2;
185 complex_t * buf3;
186 sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
187 int i;
189 buf++;
190 buf1 = buf + n;
191 buf2 = buf + 2 * n;
192 buf3 = buf + 3 * n;
194 BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]);
196 i = n - 1;
198 do {
199 BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0],
200 weight[0], weight[2*i-n]);
201 buf++;
202 buf1++;
203 buf2++;
204 buf3++;
205 weight++;
206 } while (--i);
209 static void ifft16 (complex_t * buf)
211 ifft8 (buf);
212 ifft4 (buf + 8);
213 ifft4 (buf + 12);
214 ifft_pass (buf, roots16, 4);
217 static void ifft32 (complex_t * buf)
219 ifft16 (buf);
220 ifft8 (buf + 16);
221 ifft8 (buf + 24);
222 ifft_pass (buf, roots32, 8);
225 static void ifft64_c (complex_t * buf)
227 ifft32 (buf);
228 ifft16 (buf + 32);
229 ifft16 (buf + 48);
230 ifft_pass (buf, roots64, 16);
233 static void ifft128_c (complex_t * buf)
235 ifft32 (buf);
236 ifft16 (buf + 32);
237 ifft16 (buf + 48);
238 ifft_pass (buf, roots64, 16);
240 ifft32 (buf + 64);
241 ifft32 (buf + 96);
242 ifft_pass (buf, roots128, 32);
245 void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
247 int i, k;
248 sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;
249 const sample_t * window = a52_imdct_window;
250 complex_t buf[128];
252 for (i = 0; i < 128; i++) {
253 k = fftorder[i];
254 t_r = pre1[i].real;
255 t_i = pre1[i].imag;
256 BUTTERFLY_0 (buf[i].real, buf[i].imag, t_r, t_i, data[k], data[255-k]);
259 ifft128 (buf);
261 /* Post IFFT complex multiply plus IFFT complex conjugate*/
262 /* Window and convert to real valued signal */
263 for (i = 0; i < 64; i++) {
264 /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
265 t_r = post1[i].real;
266 t_i = post1[i].imag;
267 BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf[i].imag, buf[i].real);
268 BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf[127-i].imag, buf[127-i].real);
270 w_1 = window[2*i];
271 w_2 = window[255-2*i];
272 BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]);
273 delay[2*i] = a_i;
275 w_1 = window[2*i+1];
276 w_2 = window[254-2*i];
277 BUTTERFLY_B (data[2*i+1], data[254-2*i], w_1, w_2, b_r, delay[2*i+1]);
278 delay[2*i+1] = b_i;
282 void a52_imdct_256 (sample_t * data, sample_t * delay, sample_t bias)
284 int i, k;
285 sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;
286 const sample_t * window = a52_imdct_window;
287 complex_t buf1[64], buf2[64];
289 /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
290 for (i = 0; i < 64; i++) {
291 k = fftorder[i];
292 t_r = pre2[i].real;
293 t_i = pre2[i].imag;
294 BUTTERFLY_0 (buf1[i].real, buf1[i].imag, t_r, t_i, data[k], data[254-k]);
295 BUTTERFLY_0 (buf2[i].real, buf2[i].imag, t_r, t_i, data[k+1], data[255-k]);
298 ifft64 (buf1);
299 ifft64 (buf2);
301 /* Post IFFT complex multiply */
302 /* Window and convert to real valued signal */
303 for (i = 0; i < 32; i++) {
304 /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
305 t_r = post2[i].real;
306 t_i = post2[i].imag;
307 BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf1[i].imag, buf1[i].real);
308 BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf1[63-i].imag, buf1[63-i].real);
309 BUTTERFLY_0 (c_r, c_i, t_i, t_r, buf2[i].imag, buf2[i].real);
310 BUTTERFLY_0 (d_r, d_i, t_r, t_i, buf2[63-i].imag, buf2[63-i].real);
312 w_1 = window[2*i];
313 w_2 = window[255-2*i];
314 BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]);
315 delay[2*i] = c_i;
317 w_1 = window[128+2*i];
318 w_2 = window[127-2*i];
319 BUTTERFLY_B (data[128+2*i], data[127-2*i], w_1, w_2, a_i, delay[127-2*i]);
320 delay[127-2*i] = c_r;
322 w_1 = window[2*i+1];
323 w_2 = window[254-2*i];
324 BUTTERFLY_B (data[254-2*i], data[2*i+1], w_2, w_1, b_i, delay[2*i+1]);
325 delay[2*i+1] = d_r;
327 w_1 = window[129+2*i];
328 w_2 = window[126-2*i];
329 BUTTERFLY_B (data[129+2*i], data[126-2*i], w_1, w_2, b_r, delay[126-2*i]);
330 delay[126-2*i] = d_i;
334 static double besselI0 (double x)
336 double bessel = 1;
337 int i = 100;
340 bessel = bessel * x / (i * i) + 1;
341 while (--i);
342 return bessel;
345 void a52_imdct_init (uint32_t mm_accel)
347 int i, k;
348 double sum;
349 double local_imdct_window[256];
351 /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
352 sum = 0;
353 for (i = 0; i < 256; i++) {
354 sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));
355 local_imdct_window[i] = sum;
357 sum++;
358 for (i = 0; i < 256; i++)
359 a52_imdct_window[i] = SAMPLE (sqrt (local_imdct_window[i] / sum));
361 for (i = 0; i < 3; i++)
362 roots16[i] = SAMPLE (cos ((M_PI / 8) * (i + 1)));
364 for (i = 0; i < 7; i++)
365 roots32[i] = SAMPLE (cos ((M_PI / 16) * (i + 1)));
367 for (i = 0; i < 15; i++)
368 roots64[i] = SAMPLE (cos ((M_PI / 32) * (i + 1)));
370 for (i = 0; i < 31; i++)
371 roots128[i] = SAMPLE (cos ((M_PI / 64) * (i + 1)));
373 for (i = 0; i < 64; i++) {
374 k = fftorder[i] / 2 + 64;
375 pre1[i].real = SAMPLE (cos ((M_PI / 256) * (k - 0.25)));
376 pre1[i].imag = SAMPLE (sin ((M_PI / 256) * (k - 0.25)));
379 for (i = 64; i < 128; i++) {
380 k = fftorder[i] / 2 + 64;
381 pre1[i].real = SAMPLE (-cos ((M_PI / 256) * (k - 0.25)));
382 pre1[i].imag = SAMPLE (-sin ((M_PI / 256) * (k - 0.25)));
385 for (i = 0; i < 64; i++) {
386 post1[i].real = SAMPLE (cos ((M_PI / 256) * (i + 0.5)));
387 post1[i].imag = SAMPLE (sin ((M_PI / 256) * (i + 0.5)));
390 for (i = 0; i < 64; i++) {
391 k = fftorder[i] / 4;
392 pre2[i].real = SAMPLE (cos ((M_PI / 128) * (k - 0.25)));
393 pre2[i].imag = SAMPLE (sin ((M_PI / 128) * (k - 0.25)));
396 for (i = 0; i < 32; i++) {
397 post2[i].real = SAMPLE (cos ((M_PI / 128) * (i + 0.5)));
398 post2[i].imag = SAMPLE (sin ((M_PI / 128) * (i + 0.5)));
401 #ifdef LIBA52_DJBFFT
402 if (mm_accel & MM_ACCEL_DJBFFT) {
403 ifft128 = (void (*) (complex_t *)) fftc4_un128;
404 ifft64 = (void (*) (complex_t *)) fftc4_un64;
405 } else
406 #endif
408 ifft128 = ifft128_c;
409 ifft64 = ifft64_c;