Use FFABS instead of abs.
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / cavs.c
blobc5f48480ad5da3161b288e4f1f886a3563ec4b0f
1 /*
2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file cavs.c
24 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
28 #include "avcodec.h"
29 #include "bitstream.h"
30 #include "golomb.h"
31 #include "mpegvideo.h"
32 #include "cavs.h"
33 #include "cavsdata.h"
35 typedef struct {
36 MpegEncContext s;
37 Picture picture; ///< currently decoded frame
38 Picture DPB[2]; ///< reference frames
39 int dist[2]; ///< temporal distances from current frame to ref frames
40 int profile, level;
41 int aspect_ratio;
42 int mb_width, mb_height;
43 int pic_type;
44 int progressive;
45 int pic_structure;
46 int skip_mode_flag; ///< select between skip_count or one skip_flag per MB
47 int loop_filter_disable;
48 int alpha_offset, beta_offset;
49 int ref_flag;
50 int mbx, mby; ///< macroblock coordinates
51 int flags; ///< availability flags of neighbouring macroblocks
52 int stc; ///< last start code
53 uint8_t *cy, *cu, *cv; ///< current MB sample pointers
54 int left_qp;
55 uint8_t *top_qp;
57 /** mv motion vector cache
58 0: D3 B2 B3 C2
59 4: A1 X0 X1 -
60 8: A3 X2 X3 -
62 X are the vectors in the current macroblock (5,6,9,10)
63 A is the macroblock to the left (4,8)
64 B is the macroblock to the top (1,2)
65 C is the macroblock to the top-right (3)
66 D is the macroblock to the top-left (0)
68 the same is repeated for backward motion vectors */
69 vector_t mv[2*4*3];
70 vector_t *top_mv[2];
71 vector_t *col_mv;
73 /** luma pred mode cache
74 0: -- B2 B3
75 3: A1 X0 X1
76 6: A3 X2 X3 */
77 int pred_mode_Y[3*3];
78 int *top_pred_Y;
79 int l_stride, c_stride;
80 int luma_scan[4];
81 int qp;
82 int qp_fixed;
83 int cbp;
84 ScanTable scantable;
86 /** intra prediction is done with un-deblocked samples
87 they are saved here before deblocking the MB */
88 uint8_t *top_border_y, *top_border_u, *top_border_v;
89 uint8_t left_border_y[26], left_border_u[10], left_border_v[10];
90 uint8_t intern_border_y[26];
91 uint8_t topleft_border_y, topleft_border_u, topleft_border_v;
93 void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
94 void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
95 uint8_t *col_type_base;
96 uint8_t *col_type;
98 /* scaling factors for MV prediction */
99 int sym_factor; ///< for scaling in symmetrical B block
100 int direct_den[2]; ///< for scaling in direct B block
101 int scale_den[2]; ///< for scaling neighbouring MVs
103 int got_keyframe;
104 DCTELEM *block;
105 } AVSContext;
107 /*****************************************************************************
109 * in-loop deblocking filter
111 ****************************************************************************/
113 static inline int get_bs(vector_t *mvP, vector_t *mvQ, int b) {
114 if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
115 return 2;
116 if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
117 return 1;
118 if(b){
119 mvP += MV_BWD_OFFS;
120 mvQ += MV_BWD_OFFS;
121 if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
122 return 1;
123 }else{
124 if(mvP->ref != mvQ->ref)
125 return 1;
127 return 0;
130 #define SET_PARAMS \
131 alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
132 beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
133 tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
136 * in-loop deblocking filter for a single macroblock
138 * boundary strength (bs) mapping:
140 * --4---5--
141 * 0 2 |
142 * | 6 | 7 |
143 * 1 3 |
144 * ---------
147 static void filter_mb(AVSContext *h, enum mb_t mb_type) {
148 DECLARE_ALIGNED_8(uint8_t, bs[8]);
149 int qp_avg, alpha, beta, tc;
150 int i;
152 /* save un-deblocked lines */
153 h->topleft_border_y = h->top_border_y[h->mbx*16+15];
154 h->topleft_border_u = h->top_border_u[h->mbx*10+8];
155 h->topleft_border_v = h->top_border_v[h->mbx*10+8];
156 memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
157 memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
158 memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
159 for(i=0;i<8;i++) {
160 h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
161 h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
162 h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
163 h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
165 if(!h->loop_filter_disable) {
166 /* determine bs */
167 if(mb_type == I_8X8)
168 *((uint64_t *)bs) = 0x0202020202020202ULL;
169 else{
170 *((uint64_t *)bs) = 0;
171 if(partition_flags[mb_type] & SPLITV){
172 bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
173 bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
175 if(partition_flags[mb_type] & SPLITH){
176 bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
177 bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
179 bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
180 bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
181 bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
182 bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
184 if( *((uint64_t *)bs) ) {
185 if(h->flags & A_AVAIL) {
186 qp_avg = (h->qp + h->left_qp + 1) >> 1;
187 SET_PARAMS;
188 h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
189 h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
190 h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
192 qp_avg = h->qp;
193 SET_PARAMS;
194 h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
195 h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
196 bs[6],bs[7]);
198 if(h->flags & B_AVAIL) {
199 qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
200 SET_PARAMS;
201 h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
202 h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
203 h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
207 h->left_qp = h->qp;
208 h->top_qp[h->mbx] = h->qp;
211 #undef SET_PARAMS
213 /*****************************************************************************
215 * spatial intra prediction
217 ****************************************************************************/
219 static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top,
220 uint8_t **left, int block) {
221 int i;
223 switch(block) {
224 case 0:
225 *left = h->left_border_y;
226 h->left_border_y[0] = h->left_border_y[1];
227 memset(&h->left_border_y[17],h->left_border_y[16],9);
228 memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
229 top[17] = top[16];
230 top[0] = top[1];
231 if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
232 h->left_border_y[0] = top[0] = h->topleft_border_y;
233 break;
234 case 1:
235 *left = h->intern_border_y;
236 for(i=0;i<8;i++)
237 h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
238 memset(&h->intern_border_y[9],h->intern_border_y[8],9);
239 h->intern_border_y[0] = h->intern_border_y[1];
240 memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
241 if(h->flags & C_AVAIL)
242 memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
243 else
244 memset(&top[9],top[8],9);
245 top[17] = top[16];
246 top[0] = top[1];
247 if(h->flags & B_AVAIL)
248 h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
249 break;
250 case 2:
251 *left = &h->left_border_y[8];
252 memcpy(&top[1],h->cy + 7*h->l_stride,16);
253 top[17] = top[16];
254 top[0] = top[1];
255 if(h->flags & A_AVAIL)
256 top[0] = h->left_border_y[8];
257 break;
258 case 3:
259 *left = &h->intern_border_y[8];
260 for(i=0;i<8;i++)
261 h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
262 memset(&h->intern_border_y[17],h->intern_border_y[16],9);
263 memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
264 memset(&top[9],top[8],9);
265 break;
269 static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
270 int y;
271 uint64_t a = unaligned64(&top[1]);
272 for(y=0;y<8;y++) {
273 *((uint64_t *)(d+y*stride)) = a;
277 static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
278 int y;
279 uint64_t a;
280 for(y=0;y<8;y++) {
281 a = left[y+1] * 0x0101010101010101ULL;
282 *((uint64_t *)(d+y*stride)) = a;
286 static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
287 int y;
288 uint64_t a = 0x8080808080808080ULL;
289 for(y=0;y<8;y++)
290 *((uint64_t *)(d+y*stride)) = a;
293 static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
294 int x,y,ia;
295 int ih = 0;
296 int iv = 0;
297 uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
299 for(x=0; x<4; x++) {
300 ih += (x+1)*(top[5+x]-top[3-x]);
301 iv += (x+1)*(left[5+x]-left[3-x]);
303 ia = (top[8]+left[8])<<4;
304 ih = (17*ih+16)>>5;
305 iv = (17*iv+16)>>5;
306 for(y=0; y<8; y++)
307 for(x=0; x<8; x++)
308 d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
311 #define LOWPASS(ARRAY,INDEX) \
312 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
314 static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
315 int x,y;
316 for(y=0; y<8; y++)
317 for(x=0; x<8; x++)
318 d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
321 static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
322 int x,y;
323 for(y=0; y<8; y++)
324 for(x=0; x<8; x++)
325 d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
328 static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
329 int x,y;
330 for(y=0; y<8; y++)
331 for(x=0; x<8; x++)
332 if(x==y)
333 d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
334 else if(x>y)
335 d[y*stride+x] = LOWPASS(top,x-y);
336 else
337 d[y*stride+x] = LOWPASS(left,y-x);
340 static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
341 int x,y;
342 for(y=0; y<8; y++)
343 for(x=0; x<8; x++)
344 d[y*stride+x] = LOWPASS(left,y+1);
347 static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
348 int x,y;
349 for(y=0; y<8; y++)
350 for(x=0; x<8; x++)
351 d[y*stride+x] = LOWPASS(top,x+1);
354 #undef LOWPASS
356 static inline void modify_pred(const int_fast8_t *mod_table, int *mode) {
357 *mode = mod_table[*mode];
358 if(*mode < 0) {
359 av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
360 *mode = 0;
364 /*****************************************************************************
366 * motion compensation
368 ****************************************************************************/
370 static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
371 int chroma_height,int delta,int list,uint8_t *dest_y,
372 uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
373 int src_y_offset,qpel_mc_func *qpix_op,
374 h264_chroma_mc_func chroma_op,vector_t *mv){
375 MpegEncContext * const s = &h->s;
376 const int mx= mv->x + src_x_offset*8;
377 const int my= mv->y + src_y_offset*8;
378 const int luma_xy= (mx&3) + ((my&3)<<2);
379 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
380 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
381 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
382 int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
383 int extra_height= extra_width;
384 int emu=0;
385 const int full_mx= mx>>2;
386 const int full_my= my>>2;
387 const int pic_width = 16*h->mb_width;
388 const int pic_height = 16*h->mb_height;
390 if(!pic->data[0])
391 return;
392 if(mx&7) extra_width -= 3;
393 if(my&7) extra_height -= 3;
395 if( full_mx < 0-extra_width
396 || full_my < 0-extra_height
397 || full_mx + 16/*FIXME*/ > pic_width + extra_width
398 || full_my + 16/*FIXME*/ > pic_height + extra_height){
399 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
400 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
401 src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
402 emu=1;
405 qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
406 if(!square){
407 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
410 if(emu){
411 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
412 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
413 src_cb= s->edge_emu_buffer;
415 chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
417 if(emu){
418 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
419 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
420 src_cr= s->edge_emu_buffer;
422 chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
425 static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
426 uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
427 int x_offset, int y_offset,qpel_mc_func *qpix_put,
428 h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
429 h264_chroma_mc_func chroma_avg, vector_t *mv){
430 qpel_mc_func *qpix_op= qpix_put;
431 h264_chroma_mc_func chroma_op= chroma_put;
433 dest_y += 2*x_offset + 2*y_offset*h->l_stride;
434 dest_cb += x_offset + y_offset*h->c_stride;
435 dest_cr += x_offset + y_offset*h->c_stride;
436 x_offset += 8*h->mbx;
437 y_offset += 8*h->mby;
439 if(mv->ref >= 0){
440 Picture *ref= &h->DPB[mv->ref];
441 mc_dir_part(h, ref, square, chroma_height, delta, 0,
442 dest_y, dest_cb, dest_cr, x_offset, y_offset,
443 qpix_op, chroma_op, mv);
445 qpix_op= qpix_avg;
446 chroma_op= chroma_avg;
449 if((mv+MV_BWD_OFFS)->ref >= 0){
450 Picture *ref= &h->DPB[0];
451 mc_dir_part(h, ref, square, chroma_height, delta, 1,
452 dest_y, dest_cb, dest_cr, x_offset, y_offset,
453 qpix_op, chroma_op, mv+MV_BWD_OFFS);
457 static void inter_pred(AVSContext *h, enum mb_t mb_type) {
458 if(partition_flags[mb_type] == 0){ // 16x16
459 mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
460 h->s.dsp.put_cavs_qpel_pixels_tab[0],
461 h->s.dsp.put_h264_chroma_pixels_tab[0],
462 h->s.dsp.avg_cavs_qpel_pixels_tab[0],
463 h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
464 }else{
465 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
466 h->s.dsp.put_cavs_qpel_pixels_tab[1],
467 h->s.dsp.put_h264_chroma_pixels_tab[1],
468 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
469 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
470 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
471 h->s.dsp.put_cavs_qpel_pixels_tab[1],
472 h->s.dsp.put_h264_chroma_pixels_tab[1],
473 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
474 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
475 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
476 h->s.dsp.put_cavs_qpel_pixels_tab[1],
477 h->s.dsp.put_h264_chroma_pixels_tab[1],
478 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
479 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
480 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
481 h->s.dsp.put_cavs_qpel_pixels_tab[1],
482 h->s.dsp.put_h264_chroma_pixels_tab[1],
483 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
484 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
486 /* set intra prediction modes to default values */
487 h->pred_mode_Y[3] = h->pred_mode_Y[6] = INTRA_L_LP;
488 h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP;
491 /*****************************************************************************
493 * motion vector prediction
495 ****************************************************************************/
497 static inline void set_mvs(vector_t *mv, enum block_t size) {
498 switch(size) {
499 case BLK_16X16:
500 mv[MV_STRIDE ] = mv[0];
501 mv[MV_STRIDE+1] = mv[0];
502 case BLK_16X8:
503 mv[1] = mv[0];
504 break;
505 case BLK_8X16:
506 mv[MV_STRIDE] = mv[0];
507 break;
511 static inline void store_mvs(AVSContext *h) {
512 h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0];
513 h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1];
514 h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2];
515 h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3];
518 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) {
519 int den = h->scale_den[src->ref];
521 *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
522 *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
525 static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) {
526 int ax, ay, bx, by, cx, cy;
527 int len_ab, len_bc, len_ca, len_mid;
529 /* scale candidates according to their temporal span */
530 scale_mv(h, &ax, &ay, mvA, mvP->dist);
531 scale_mv(h, &bx, &by, mvB, mvP->dist);
532 scale_mv(h, &cx, &cy, mvC, mvP->dist);
533 /* find the geometrical median of the three candidates */
534 len_ab = abs(ax - bx) + abs(ay - by);
535 len_bc = abs(bx - cx) + abs(by - cy);
536 len_ca = abs(cx - ax) + abs(cy - ay);
537 len_mid = mid_pred(len_ab, len_bc, len_ca);
538 if(len_mid == len_ab) {
539 mvP->x = cx;
540 mvP->y = cy;
541 } else if(len_mid == len_bc) {
542 mvP->x = ax;
543 mvP->y = ay;
544 } else {
545 mvP->x = bx;
546 mvP->y = by;
550 static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw,
551 vector_t *col_mv) {
552 vector_t *pmv_bw = pmv_fw + MV_BWD_OFFS;
553 int den = h->direct_den[col_mv->ref];
554 int m = col_mv->x >> 31;
556 pmv_fw->dist = h->dist[1];
557 pmv_bw->dist = h->dist[0];
558 pmv_fw->ref = 1;
559 pmv_bw->ref = 0;
560 /* scale the co-located motion vector according to its temporal span */
561 pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m;
562 pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m);
563 m = col_mv->y >> 31;
564 pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m;
565 pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m);
568 static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) {
569 vector_t *dst = src + MV_BWD_OFFS;
571 /* backward mv is the scaled and negated forward mv */
572 dst->x = -((src->x * h->sym_factor + 256) >> 9);
573 dst->y = -((src->y * h->sym_factor + 256) >> 9);
574 dst->ref = 0;
575 dst->dist = h->dist[0];
576 set_mvs(dst, size);
579 static void mv_pred(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
580 enum mv_pred_t mode, enum block_t size, int ref) {
581 vector_t *mvP = &h->mv[nP];
582 vector_t *mvA = &h->mv[nP-1];
583 vector_t *mvB = &h->mv[nP-4];
584 vector_t *mvC = &h->mv[nC];
585 const vector_t *mvP2 = NULL;
587 mvP->ref = ref;
588 mvP->dist = h->dist[mvP->ref];
589 if(mvC->ref == NOT_AVAIL)
590 mvC = &h->mv[nP-5]; // set to top-left (mvD)
591 if((mode == MV_PRED_PSKIP) &&
592 ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
593 ((mvA->x | mvA->y | mvA->ref) == 0) ||
594 ((mvB->x | mvB->y | mvB->ref) == 0) )) {
595 mvP2 = &un_mv;
596 /* if there is only one suitable candidate, take it */
597 } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
598 mvP2= mvA;
599 } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
600 mvP2= mvB;
601 } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
602 mvP2= mvC;
603 } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
604 mvP2= mvA;
605 } else if(mode == MV_PRED_TOP && mvB->ref == ref){
606 mvP2= mvB;
607 } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
608 mvP2= mvC;
610 if(mvP2){
611 mvP->x = mvP2->x;
612 mvP->y = mvP2->y;
613 }else
614 mv_pred_median(h, mvP, mvA, mvB, mvC);
616 if(mode < MV_PRED_PSKIP) {
617 mvP->x += get_se_golomb(&h->s.gb);
618 mvP->y += get_se_golomb(&h->s.gb);
620 set_mvs(mvP,size);
623 /*****************************************************************************
625 * residual data decoding
627 ****************************************************************************/
629 /** kth-order exponential golomb code */
630 static inline int get_ue_code(GetBitContext *gb, int order) {
631 if(order) {
632 int ret = get_ue_golomb(gb) << order;
633 return ret + get_bits(gb,order);
635 return get_ue_golomb(gb);
639 * decode coefficients from one 8x8 block, dequantize, inverse transform
640 * and add them to sample block
641 * @param r pointer to 2D VLC table
642 * @param esc_golomb_order escape codes are k-golomb with this order k
643 * @param qp quantizer
644 * @param dst location of sample block
645 * @param stride line stride in frame buffer
647 static int decode_residual_block(AVSContext *h, GetBitContext *gb,
648 const residual_vlc_t *r, int esc_golomb_order,
649 int qp, uint8_t *dst, int stride) {
650 int i,pos = -1;
651 int level_code, esc_code, level, run, mask;
652 int level_buf[64];
653 int run_buf[64];
654 int dqm = dequant_mul[qp];
655 int dqs = dequant_shift[qp];
656 int dqa = 1 << (dqs - 1);
657 const uint8_t *scantab = h->scantable.permutated;
658 DCTELEM *block = h->block;
660 for(i=0;i<65;i++) {
661 level_code = get_ue_code(gb,r->golomb_order);
662 if(level_code >= ESCAPE_CODE) {
663 run = ((level_code - ESCAPE_CODE) >> 1) + 1;
664 esc_code = get_ue_code(gb,esc_golomb_order);
665 level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
666 while(level > r->inc_limit)
667 r++;
668 mask = -(level_code & 1);
669 level = (level^mask) - mask;
670 } else {
671 level = r->rltab[level_code][0];
672 if(!level) //end of block signal
673 break;
674 run = r->rltab[level_code][1];
675 r += r->rltab[level_code][2];
677 level_buf[i] = level;
678 run_buf[i] = run;
680 /* inverse scan and dequantization */
681 while(--i >= 0){
682 pos += run_buf[i];
683 if(pos > 63) {
684 av_log(h->s.avctx, AV_LOG_ERROR,
685 "position out of block bounds at pic %d MB(%d,%d)\n",
686 h->picture.poc, h->mbx, h->mby);
687 return -1;
689 block[scantab[pos]] = (level_buf[i]*dqm + dqa) >> dqs;
691 h->s.dsp.cavs_idct8_add(dst,block,stride);
692 return 0;
696 static inline void decode_residual_chroma(AVSContext *h) {
697 if(h->cbp & (1<<4))
698 decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
699 h->cu,h->c_stride);
700 if(h->cbp & (1<<5))
701 decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
702 h->cv,h->c_stride);
705 static inline int decode_residual_inter(AVSContext *h) {
706 int block;
708 /* get coded block pattern */
709 int cbp= get_ue_golomb(&h->s.gb);
710 if(cbp > 63){
711 av_log(h->s.avctx, AV_LOG_ERROR, "illegal inter cbp\n");
712 return -1;
714 h->cbp = cbp_tab[cbp][1];
716 /* get quantizer */
717 if(h->cbp && !h->qp_fixed)
718 h->qp = (h->qp + get_se_golomb(&h->s.gb)) & 63;
719 for(block=0;block<4;block++)
720 if(h->cbp & (1<<block))
721 decode_residual_block(h,&h->s.gb,inter_2dvlc,0,h->qp,
722 h->cy + h->luma_scan[block], h->l_stride);
723 decode_residual_chroma(h);
725 return 0;
728 /*****************************************************************************
730 * macroblock level
732 ****************************************************************************/
735 * initialise predictors for motion vectors and intra prediction
737 static inline void init_mb(AVSContext *h) {
738 int i;
740 /* copy predictors from top line (MB B and C) into cache */
741 for(i=0;i<3;i++) {
742 h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
743 h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
745 h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
746 h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
747 /* clear top predictors if MB B is not available */
748 if(!(h->flags & B_AVAIL)) {
749 h->mv[MV_FWD_B2] = un_mv;
750 h->mv[MV_FWD_B3] = un_mv;
751 h->mv[MV_BWD_B2] = un_mv;
752 h->mv[MV_BWD_B3] = un_mv;
753 h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
754 h->flags &= ~(C_AVAIL|D_AVAIL);
755 } else if(h->mbx) {
756 h->flags |= D_AVAIL;
758 if(h->mbx == h->mb_width-1) //MB C not available
759 h->flags &= ~C_AVAIL;
760 /* clear top-right predictors if MB C is not available */
761 if(!(h->flags & C_AVAIL)) {
762 h->mv[MV_FWD_C2] = un_mv;
763 h->mv[MV_BWD_C2] = un_mv;
765 /* clear top-left predictors if MB D is not available */
766 if(!(h->flags & D_AVAIL)) {
767 h->mv[MV_FWD_D3] = un_mv;
768 h->mv[MV_BWD_D3] = un_mv;
770 /* set pointer for co-located macroblock type */
771 h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx];
774 static inline void check_for_slice(AVSContext *h);
777 * save predictors for later macroblocks and increase
778 * macroblock address
779 * @returns 0 if end of frame is reached, 1 otherwise
781 static inline int next_mb(AVSContext *h) {
782 int i;
784 h->flags |= A_AVAIL;
785 h->cy += 16;
786 h->cu += 8;
787 h->cv += 8;
788 /* copy mvs as predictors to the left */
789 for(i=0;i<=20;i+=4)
790 h->mv[i] = h->mv[i+2];
791 /* copy bottom mvs from cache to top line */
792 h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
793 h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
794 h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
795 h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
796 /* next MB address */
797 h->mbx++;
798 if(h->mbx == h->mb_width) { //new mb line
799 h->flags = B_AVAIL|C_AVAIL;
800 /* clear left pred_modes */
801 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
802 /* clear left mv predictors */
803 for(i=0;i<=20;i+=4)
804 h->mv[i] = un_mv;
805 h->mbx = 0;
806 h->mby++;
807 /* re-calculate sample pointers */
808 h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
809 h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
810 h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
811 if(h->mby == h->mb_height) { //frame end
812 return 0;
813 } else {
814 //check_for_slice(h);
817 return 1;
820 static int decode_mb_i(AVSContext *h, int cbp_code) {
821 GetBitContext *gb = &h->s.gb;
822 int block, pred_mode_uv;
823 uint8_t top[18];
824 uint8_t *left = NULL;
825 uint8_t *d;
827 init_mb(h);
829 /* get intra prediction modes from stream */
830 for(block=0;block<4;block++) {
831 int nA,nB,predpred;
832 int pos = scan3x3[block];
834 nA = h->pred_mode_Y[pos-1];
835 nB = h->pred_mode_Y[pos-3];
836 predpred = FFMIN(nA,nB);
837 if(predpred == NOT_AVAIL) // if either is not available
838 predpred = INTRA_L_LP;
839 if(!get_bits1(gb)){
840 int rem_mode= get_bits(gb, 2);
841 predpred = rem_mode + (rem_mode >= predpred);
843 h->pred_mode_Y[pos] = predpred;
845 pred_mode_uv = get_ue_golomb(gb);
846 if(pred_mode_uv > 6) {
847 av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
848 return -1;
851 /* save pred modes before they get modified */
852 h->pred_mode_Y[3] = h->pred_mode_Y[5];
853 h->pred_mode_Y[6] = h->pred_mode_Y[8];
854 h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
855 h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
857 /* modify pred modes according to availability of neighbour samples */
858 if(!(h->flags & A_AVAIL)) {
859 modify_pred(left_modifier_l, &h->pred_mode_Y[4] );
860 modify_pred(left_modifier_l, &h->pred_mode_Y[7] );
861 modify_pred(left_modifier_c, &pred_mode_uv );
863 if(!(h->flags & B_AVAIL)) {
864 modify_pred(top_modifier_l, &h->pred_mode_Y[4] );
865 modify_pred(top_modifier_l, &h->pred_mode_Y[5] );
866 modify_pred(top_modifier_c, &pred_mode_uv );
869 /* get coded block pattern */
870 if(h->pic_type == FF_I_TYPE)
871 cbp_code = get_ue_golomb(gb);
872 if(cbp_code > 63){
873 av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra cbp\n");
874 return -1;
876 h->cbp = cbp_tab[cbp_code][0];
877 if(h->cbp && !h->qp_fixed)
878 h->qp = (h->qp + get_se_golomb(gb)) & 63; //qp_delta
880 /* luma intra prediction interleaved with residual decode/transform/add */
881 for(block=0;block<4;block++) {
882 d = h->cy + h->luma_scan[block];
883 load_intra_pred_luma(h, top, &left, block);
884 h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]]
885 (d, top, left, h->l_stride);
886 if(h->cbp & (1<<block))
887 decode_residual_block(h,gb,intra_2dvlc,1,h->qp,d,h->l_stride);
890 /* chroma intra prediction */
891 /* extend borders by one pixel */
892 h->left_border_u[9] = h->left_border_u[8];
893 h->left_border_v[9] = h->left_border_v[8];
894 h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
895 h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
896 if(h->mbx && h->mby) {
897 h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
898 h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
899 } else {
900 h->left_border_u[0] = h->left_border_u[1];
901 h->left_border_v[0] = h->left_border_v[1];
902 h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
903 h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
905 h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
906 h->left_border_u, h->c_stride);
907 h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
908 h->left_border_v, h->c_stride);
910 decode_residual_chroma(h);
911 filter_mb(h,I_8X8);
913 /* mark motion vectors as intra */
914 h->mv[MV_FWD_X0] = intra_mv;
915 set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
916 h->mv[MV_BWD_X0] = intra_mv;
917 set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
918 if(h->pic_type != FF_B_TYPE)
919 *h->col_type = I_8X8;
921 return 0;
924 static void decode_mb_p(AVSContext *h, enum mb_t mb_type) {
925 GetBitContext *gb = &h->s.gb;
926 int ref[4];
928 init_mb(h);
929 switch(mb_type) {
930 case P_SKIP:
931 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
932 break;
933 case P_16X16:
934 ref[0] = h->ref_flag ? 0 : get_bits1(gb);
935 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]);
936 break;
937 case P_16X8:
938 ref[0] = h->ref_flag ? 0 : get_bits1(gb);
939 ref[2] = h->ref_flag ? 0 : get_bits1(gb);
940 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]);
941 mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]);
942 break;
943 case P_8X16:
944 ref[0] = h->ref_flag ? 0 : get_bits1(gb);
945 ref[1] = h->ref_flag ? 0 : get_bits1(gb);
946 mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]);
947 mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT, BLK_8X16, ref[1]);
948 break;
949 case P_8X8:
950 ref[0] = h->ref_flag ? 0 : get_bits1(gb);
951 ref[1] = h->ref_flag ? 0 : get_bits1(gb);
952 ref[2] = h->ref_flag ? 0 : get_bits1(gb);
953 ref[3] = h->ref_flag ? 0 : get_bits1(gb);
954 mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]);
955 mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]);
956 mv_pred(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]);
957 mv_pred(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]);
959 inter_pred(h, mb_type);
960 store_mvs(h);
961 if(mb_type != P_SKIP)
962 decode_residual_inter(h);
963 filter_mb(h,mb_type);
964 *h->col_type = mb_type;
967 static void decode_mb_b(AVSContext *h, enum mb_t mb_type) {
968 int block;
969 enum sub_mb_t sub_type[4];
970 int flags;
972 init_mb(h);
974 /* reset all MVs */
975 h->mv[MV_FWD_X0] = dir_mv;
976 set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
977 h->mv[MV_BWD_X0] = dir_mv;
978 set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
979 switch(mb_type) {
980 case B_SKIP:
981 case B_DIRECT:
982 if(!(*h->col_type)) {
983 /* intra MB at co-location, do in-plane prediction */
984 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
985 mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
986 } else
987 /* direct prediction from co-located P MB, block-wise */
988 for(block=0;block<4;block++)
989 mv_pred_direct(h,&h->mv[mv_scan[block]],
990 &h->col_mv[(h->mby*h->mb_width+h->mbx)*4 + block]);
991 break;
992 case B_FWD_16X16:
993 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
994 break;
995 case B_SYM_16X16:
996 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
997 mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16);
998 break;
999 case B_BWD_16X16:
1000 mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
1001 break;
1002 case B_8X8:
1003 for(block=0;block<4;block++)
1004 sub_type[block] = get_bits(&h->s.gb,2);
1005 for(block=0;block<4;block++) {
1006 switch(sub_type[block]) {
1007 case B_SUB_DIRECT:
1008 if(!(*h->col_type)) {
1009 /* intra MB at co-location, do in-plane prediction */
1010 mv_pred(h, mv_scan[block], mv_scan[block]-3,
1011 MV_PRED_BSKIP, BLK_8X8, 1);
1012 mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
1013 mv_scan[block]-3+MV_BWD_OFFS,
1014 MV_PRED_BSKIP, BLK_8X8, 0);
1015 } else
1016 mv_pred_direct(h,&h->mv[mv_scan[block]],
1017 &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]);
1018 break;
1019 case B_SUB_FWD:
1020 mv_pred(h, mv_scan[block], mv_scan[block]-3,
1021 MV_PRED_MEDIAN, BLK_8X8, 1);
1022 break;
1023 case B_SUB_SYM:
1024 mv_pred(h, mv_scan[block], mv_scan[block]-3,
1025 MV_PRED_MEDIAN, BLK_8X8, 1);
1026 mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8);
1027 break;
1030 for(block=0;block<4;block++) {
1031 if(sub_type[block] == B_SUB_BWD)
1032 mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
1033 mv_scan[block]+MV_BWD_OFFS-3,
1034 MV_PRED_MEDIAN, BLK_8X8, 0);
1036 break;
1037 default:
1038 assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8));
1039 flags = partition_flags[mb_type];
1040 if(mb_type & 1) { /* 16x8 macroblock types */
1041 if(flags & FWD0)
1042 mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
1043 if(flags & SYM0)
1044 mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8);
1045 if(flags & FWD1)
1046 mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
1047 if(flags & SYM1)
1048 mv_pred_sym(h, &h->mv[MV_FWD_X2], BLK_16X8);
1049 if(flags & BWD0)
1050 mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0);
1051 if(flags & BWD1)
1052 mv_pred(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
1053 } else { /* 8x16 macroblock types */
1054 if(flags & FWD0)
1055 mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
1056 if(flags & SYM0)
1057 mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16);
1058 if(flags & FWD1)
1059 mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1);
1060 if(flags & SYM1)
1061 mv_pred_sym(h, &h->mv[MV_FWD_X1], BLK_8X16);
1062 if(flags & BWD0)
1063 mv_pred(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
1064 if(flags & BWD1)
1065 mv_pred(h, MV_BWD_X1, MV_BWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 0);
1068 inter_pred(h, mb_type);
1069 if(mb_type != B_SKIP)
1070 decode_residual_inter(h);
1071 filter_mb(h,mb_type);
1074 /*****************************************************************************
1076 * slice level
1078 ****************************************************************************/
1080 static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) {
1081 if(h->stc > 0xAF)
1082 av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
1083 h->mby = h->stc;
1084 if((h->mby == 0) && (!h->qp_fixed)){
1085 h->qp_fixed = get_bits1(gb);
1086 h->qp = get_bits(gb,6);
1088 /* inter frame or second slice can have weighting params */
1089 if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2))
1090 if(get_bits1(gb)) { //slice_weighting_flag
1091 av_log(h->s.avctx, AV_LOG_ERROR,
1092 "weighted prediction not yet supported\n");
1094 return 0;
1097 static inline void check_for_slice(AVSContext *h) {
1098 GetBitContext *gb = &h->s.gb;
1099 int align;
1100 align = (-get_bits_count(gb)) & 7;
1101 if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) {
1102 get_bits_long(gb,24+align);
1103 h->stc = get_bits(gb,8);
1104 decode_slice_header(h,gb);
1108 /*****************************************************************************
1110 * frame level
1112 ****************************************************************************/
1114 static void init_pic(AVSContext *h) {
1115 int i;
1117 /* clear some predictors */
1118 for(i=0;i<=20;i+=4)
1119 h->mv[i] = un_mv;
1120 h->mv[MV_BWD_X0] = dir_mv;
1121 set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
1122 h->mv[MV_FWD_X0] = dir_mv;
1123 set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
1124 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
1125 h->cy = h->picture.data[0];
1126 h->cu = h->picture.data[1];
1127 h->cv = h->picture.data[2];
1128 h->l_stride = h->picture.linesize[0];
1129 h->c_stride = h->picture.linesize[1];
1130 h->luma_scan[2] = 8*h->l_stride;
1131 h->luma_scan[3] = 8*h->l_stride+8;
1132 h->mbx = h->mby = 0;
1133 h->flags = 0;
1136 static int decode_pic(AVSContext *h) {
1137 MpegEncContext *s = &h->s;
1138 int skip_count;
1139 enum mb_t mb_type;
1141 if (!s->context_initialized) {
1142 s->avctx->idct_algo = FF_IDCT_CAVS;
1143 if (MPV_common_init(s) < 0)
1144 return -1;
1145 ff_init_scantable(s->dsp.idct_permutation,&h->scantable,ff_zigzag_direct);
1147 get_bits(&s->gb,16);//bbv_dwlay
1148 if(h->stc == PIC_PB_START_CODE) {
1149 h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE;
1150 if(h->pic_type > FF_B_TYPE) {
1151 av_log(s->avctx, AV_LOG_ERROR, "illegal picture type\n");
1152 return -1;
1154 /* make sure we have the reference frames we need */
1155 if(!h->DPB[0].data[0] ||
1156 (!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE))
1157 return -1;
1158 } else {
1159 h->pic_type = FF_I_TYPE;
1160 if(get_bits1(&s->gb))
1161 get_bits(&s->gb,16);//time_code
1163 /* release last B frame */
1164 if(h->picture.data[0])
1165 s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture);
1167 s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture);
1168 init_pic(h);
1169 h->picture.poc = get_bits(&s->gb,8)*2;
1171 /* get temporal distances and MV scaling factors */
1172 if(h->pic_type != FF_B_TYPE) {
1173 h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512;
1174 } else {
1175 h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512;
1177 h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512;
1178 h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0;
1179 h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0;
1180 if(h->pic_type == FF_B_TYPE) {
1181 h->sym_factor = h->dist[0]*h->scale_den[1];
1182 } else {
1183 h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0;
1184 h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0;
1187 if(s->low_delay)
1188 get_ue_golomb(&s->gb); //bbv_check_times
1189 h->progressive = get_bits1(&s->gb);
1190 if(h->progressive)
1191 h->pic_structure = 1;
1192 else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) )
1193 get_bits1(&s->gb); //advanced_pred_mode_disable
1194 skip_bits1(&s->gb); //top_field_first
1195 skip_bits1(&s->gb); //repeat_first_field
1196 h->qp_fixed = get_bits1(&s->gb);
1197 h->qp = get_bits(&s->gb,6);
1198 if(h->pic_type == FF_I_TYPE) {
1199 if(!h->progressive && !h->pic_structure)
1200 skip_bits1(&s->gb);//what is this?
1201 skip_bits(&s->gb,4); //reserved bits
1202 } else {
1203 if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1))
1204 h->ref_flag = get_bits1(&s->gb);
1205 skip_bits(&s->gb,4); //reserved bits
1206 h->skip_mode_flag = get_bits1(&s->gb);
1208 h->loop_filter_disable = get_bits1(&s->gb);
1209 if(!h->loop_filter_disable && get_bits1(&s->gb)) {
1210 h->alpha_offset = get_se_golomb(&s->gb);
1211 h->beta_offset = get_se_golomb(&s->gb);
1212 } else {
1213 h->alpha_offset = h->beta_offset = 0;
1215 check_for_slice(h);
1216 if(h->pic_type == FF_I_TYPE) {
1217 do {
1218 decode_mb_i(h, 0);
1219 } while(next_mb(h));
1220 } else if(h->pic_type == FF_P_TYPE) {
1221 do {
1222 if(h->skip_mode_flag) {
1223 skip_count = get_ue_golomb(&s->gb);
1224 while(skip_count--) {
1225 decode_mb_p(h,P_SKIP);
1226 if(!next_mb(h))
1227 goto done;
1229 mb_type = get_ue_golomb(&s->gb) + P_16X16;
1230 } else
1231 mb_type = get_ue_golomb(&s->gb) + P_SKIP;
1232 if(mb_type > P_8X8) {
1233 decode_mb_i(h, mb_type - P_8X8 - 1);
1234 } else
1235 decode_mb_p(h,mb_type);
1236 } while(next_mb(h));
1237 } else { /* FF_B_TYPE */
1238 do {
1239 if(h->skip_mode_flag) {
1240 skip_count = get_ue_golomb(&s->gb);
1241 while(skip_count--) {
1242 decode_mb_b(h,B_SKIP);
1243 if(!next_mb(h))
1244 goto done;
1246 mb_type = get_ue_golomb(&s->gb) + B_DIRECT;
1247 } else
1248 mb_type = get_ue_golomb(&s->gb) + B_SKIP;
1249 if(mb_type > B_8X8) {
1250 decode_mb_i(h, mb_type - B_8X8 - 1);
1251 } else
1252 decode_mb_b(h,mb_type);
1253 } while(next_mb(h));
1255 done:
1256 if(h->pic_type != FF_B_TYPE) {
1257 if(h->DPB[1].data[0])
1258 s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
1259 memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture));
1260 memcpy(&h->DPB[0], &h->picture, sizeof(Picture));
1261 memset(&h->picture,0,sizeof(Picture));
1263 return 0;
1266 /*****************************************************************************
1268 * headers and interface
1270 ****************************************************************************/
1273 * some predictions require data from the top-neighbouring macroblock.
1274 * this data has to be stored for one complete row of macroblocks
1275 * and this storage space is allocated here
1277 static void init_top_lines(AVSContext *h) {
1278 /* alloc top line of predictors */
1279 h->top_qp = av_malloc( h->mb_width);
1280 h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
1281 h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
1282 h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
1283 h->top_border_y = av_malloc((h->mb_width+1)*16);
1284 h->top_border_u = av_malloc((h->mb_width)*10);
1285 h->top_border_v = av_malloc((h->mb_width)*10);
1287 /* alloc space for co-located MVs and types */
1288 h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t));
1289 h->col_type_base = av_malloc(h->mb_width*h->mb_height);
1290 h->block = av_mallocz(64*sizeof(DCTELEM));
1293 static int decode_seq_header(AVSContext *h) {
1294 MpegEncContext *s = &h->s;
1295 int frame_rate_code;
1297 h->profile = get_bits(&s->gb,8);
1298 h->level = get_bits(&s->gb,8);
1299 skip_bits1(&s->gb); //progressive sequence
1300 s->width = get_bits(&s->gb,14);
1301 s->height = get_bits(&s->gb,14);
1302 skip_bits(&s->gb,2); //chroma format
1303 skip_bits(&s->gb,3); //sample_precision
1304 h->aspect_ratio = get_bits(&s->gb,4);
1305 frame_rate_code = get_bits(&s->gb,4);
1306 skip_bits(&s->gb,18);//bit_rate_lower
1307 skip_bits1(&s->gb); //marker_bit
1308 skip_bits(&s->gb,12);//bit_rate_upper
1309 s->low_delay = get_bits1(&s->gb);
1310 h->mb_width = (s->width + 15) >> 4;
1311 h->mb_height = (s->height + 15) >> 4;
1312 h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num;
1313 h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den;
1314 h->s.avctx->width = s->width;
1315 h->s.avctx->height = s->height;
1316 if(!h->top_qp)
1317 init_top_lines(h);
1318 return 0;
1321 static void cavs_flush(AVCodecContext * avctx) {
1322 AVSContext *h = avctx->priv_data;
1323 h->got_keyframe = 0;
1326 static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size,
1327 uint8_t * buf, int buf_size) {
1328 AVSContext *h = avctx->priv_data;
1329 MpegEncContext *s = &h->s;
1330 int input_size;
1331 const uint8_t *buf_end;
1332 const uint8_t *buf_ptr;
1333 AVFrame *picture = data;
1334 uint32_t stc;
1336 s->avctx = avctx;
1338 if (buf_size == 0) {
1339 if(!s->low_delay && h->DPB[0].data[0]) {
1340 *data_size = sizeof(AVPicture);
1341 *picture = *(AVFrame *) &h->DPB[0];
1343 return 0;
1346 buf_ptr = buf;
1347 buf_end = buf + buf_size;
1348 for(;;) {
1349 buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc);
1350 if(stc & 0xFFFFFE00)
1351 return FFMAX(0, buf_ptr - buf - s->parse_context.last_index);
1352 input_size = (buf_end - buf_ptr)*8;
1353 switch(stc) {
1354 case CAVS_START_CODE:
1355 init_get_bits(&s->gb, buf_ptr, input_size);
1356 decode_seq_header(h);
1357 break;
1358 case PIC_I_START_CODE:
1359 if(!h->got_keyframe) {
1360 if(h->DPB[0].data[0])
1361 avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
1362 if(h->DPB[1].data[0])
1363 avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
1364 h->got_keyframe = 1;
1366 case PIC_PB_START_CODE:
1367 *data_size = 0;
1368 if(!h->got_keyframe)
1369 break;
1370 init_get_bits(&s->gb, buf_ptr, input_size);
1371 h->stc = stc;
1372 if(decode_pic(h))
1373 break;
1374 *data_size = sizeof(AVPicture);
1375 if(h->pic_type != FF_B_TYPE) {
1376 if(h->DPB[1].data[0]) {
1377 *picture = *(AVFrame *) &h->DPB[1];
1378 } else {
1379 *data_size = 0;
1381 } else
1382 *picture = *(AVFrame *) &h->picture;
1383 break;
1384 case EXT_START_CODE:
1385 //mpeg_decode_extension(avctx,buf_ptr, input_size);
1386 break;
1387 case USER_START_CODE:
1388 //mpeg_decode_user_data(avctx,buf_ptr, input_size);
1389 break;
1390 default:
1391 if (stc >= SLICE_MIN_START_CODE &&
1392 stc <= SLICE_MAX_START_CODE) {
1393 init_get_bits(&s->gb, buf_ptr, input_size);
1394 decode_slice_header(h, &s->gb);
1396 break;
1401 static int cavs_decode_init(AVCodecContext * avctx) {
1402 AVSContext *h = avctx->priv_data;
1403 MpegEncContext * const s = &h->s;
1405 MPV_decode_defaults(s);
1406 s->avctx = avctx;
1408 avctx->pix_fmt= PIX_FMT_YUV420P;
1410 h->luma_scan[0] = 0;
1411 h->luma_scan[1] = 8;
1412 h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
1413 h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
1414 h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
1415 h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
1416 h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
1417 h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
1418 h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
1419 h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
1420 h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
1421 h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
1422 h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
1423 h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
1424 h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
1425 h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
1426 h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
1427 h->mv[ 7] = un_mv;
1428 h->mv[19] = un_mv;
1429 return 0;
1432 static int cavs_decode_end(AVCodecContext * avctx) {
1433 AVSContext *h = avctx->priv_data;
1435 av_free(h->top_qp);
1436 av_free(h->top_mv[0]);
1437 av_free(h->top_mv[1]);
1438 av_free(h->top_pred_Y);
1439 av_free(h->top_border_y);
1440 av_free(h->top_border_u);
1441 av_free(h->top_border_v);
1442 av_free(h->col_mv);
1443 av_free(h->col_type_base);
1444 av_free(h->block);
1445 return 0;
1448 AVCodec cavs_decoder = {
1449 "cavs",
1450 CODEC_TYPE_VIDEO,
1451 CODEC_ID_CAVS,
1452 sizeof(AVSContext),
1453 cavs_decode_init,
1454 NULL,
1455 cavs_decode_end,
1456 cavs_decode_frame,
1457 CODEC_CAP_DR1 | CODEC_CAP_DELAY,
1458 .flush= cavs_flush,