2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
29 #include "bitstream.h"
31 #include "mpegvideo.h"
37 Picture picture
; ///< currently decoded frame
38 Picture DPB
[2]; ///< reference frames
39 int dist
[2]; ///< temporal distances from current frame to ref frames
42 int mb_width
, mb_height
;
46 int skip_mode_flag
; ///< select between skip_count or one skip_flag per MB
47 int loop_filter_disable
;
48 int alpha_offset
, beta_offset
;
50 int mbx
, mby
; ///< macroblock coordinates
51 int flags
; ///< availability flags of neighbouring macroblocks
52 int stc
; ///< last start code
53 uint8_t *cy
, *cu
, *cv
; ///< current MB sample pointers
57 /** mv motion vector cache
62 X are the vectors in the current macroblock (5,6,9,10)
63 A is the macroblock to the left (4,8)
64 B is the macroblock to the top (1,2)
65 C is the macroblock to the top-right (3)
66 D is the macroblock to the top-left (0)
68 the same is repeated for backward motion vectors */
73 /** luma pred mode cache
79 int l_stride
, c_stride
;
86 /** intra prediction is done with un-deblocked samples
87 they are saved here before deblocking the MB */
88 uint8_t *top_border_y
, *top_border_u
, *top_border_v
;
89 uint8_t left_border_y
[26], left_border_u
[10], left_border_v
[10];
90 uint8_t intern_border_y
[26];
91 uint8_t topleft_border_y
, topleft_border_u
, topleft_border_v
;
93 void (*intra_pred_l
[8])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
94 void (*intra_pred_c
[7])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
95 uint8_t *col_type_base
;
98 /* scaling factors for MV prediction */
99 int sym_factor
; ///< for scaling in symmetrical B block
100 int direct_den
[2]; ///< for scaling in direct B block
101 int scale_den
[2]; ///< for scaling neighbouring MVs
107 /*****************************************************************************
109 * in-loop deblocking filter
111 ****************************************************************************/
113 static inline int get_bs(vector_t
*mvP
, vector_t
*mvQ
, int b
) {
114 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
))
116 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
121 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
124 if(mvP
->ref
!= mvQ
->ref
)
131 alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
132 beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
133 tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
136 * in-loop deblocking filter for a single macroblock
138 * boundary strength (bs) mapping:
147 static void filter_mb(AVSContext
*h
, enum mb_t mb_type
) {
148 DECLARE_ALIGNED_8(uint8_t, bs
[8]);
149 int qp_avg
, alpha
, beta
, tc
;
152 /* save un-deblocked lines */
153 h
->topleft_border_y
= h
->top_border_y
[h
->mbx
*16+15];
154 h
->topleft_border_u
= h
->top_border_u
[h
->mbx
*10+8];
155 h
->topleft_border_v
= h
->top_border_v
[h
->mbx
*10+8];
156 memcpy(&h
->top_border_y
[h
->mbx
*16], h
->cy
+ 15* h
->l_stride
,16);
157 memcpy(&h
->top_border_u
[h
->mbx
*10+1], h
->cu
+ 7* h
->c_stride
,8);
158 memcpy(&h
->top_border_v
[h
->mbx
*10+1], h
->cv
+ 7* h
->c_stride
,8);
160 h
->left_border_y
[i
*2+1] = *(h
->cy
+ 15 + (i
*2+0)*h
->l_stride
);
161 h
->left_border_y
[i
*2+2] = *(h
->cy
+ 15 + (i
*2+1)*h
->l_stride
);
162 h
->left_border_u
[i
+1] = *(h
->cu
+ 7 + i
*h
->c_stride
);
163 h
->left_border_v
[i
+1] = *(h
->cv
+ 7 + i
*h
->c_stride
);
165 if(!h
->loop_filter_disable
) {
168 *((uint64_t *)bs
) = 0x0202020202020202ULL
;
170 *((uint64_t *)bs
) = 0;
171 if(partition_flags
[mb_type
] & SPLITV
){
172 bs
[2] = get_bs(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
], mb_type
> P_8X8
);
173 bs
[3] = get_bs(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
], mb_type
> P_8X8
);
175 if(partition_flags
[mb_type
] & SPLITH
){
176 bs
[6] = get_bs(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
], mb_type
> P_8X8
);
177 bs
[7] = get_bs(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
], mb_type
> P_8X8
);
179 bs
[0] = get_bs(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
], mb_type
> P_8X8
);
180 bs
[1] = get_bs(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
], mb_type
> P_8X8
);
181 bs
[4] = get_bs(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
], mb_type
> P_8X8
);
182 bs
[5] = get_bs(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
], mb_type
> P_8X8
);
184 if( *((uint64_t *)bs
) ) {
185 if(h
->flags
& A_AVAIL
) {
186 qp_avg
= (h
->qp
+ h
->left_qp
+ 1) >> 1;
188 h
->s
.dsp
.cavs_filter_lv(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
189 h
->s
.dsp
.cavs_filter_cv(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
190 h
->s
.dsp
.cavs_filter_cv(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
194 h
->s
.dsp
.cavs_filter_lv(h
->cy
+ 8,h
->l_stride
,alpha
,beta
,tc
,bs
[2],bs
[3]);
195 h
->s
.dsp
.cavs_filter_lh(h
->cy
+ 8*h
->l_stride
,h
->l_stride
,alpha
,beta
,tc
,
198 if(h
->flags
& B_AVAIL
) {
199 qp_avg
= (h
->qp
+ h
->top_qp
[h
->mbx
] + 1) >> 1;
201 h
->s
.dsp
.cavs_filter_lh(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
202 h
->s
.dsp
.cavs_filter_ch(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
203 h
->s
.dsp
.cavs_filter_ch(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
208 h
->top_qp
[h
->mbx
] = h
->qp
;
213 /*****************************************************************************
215 * spatial intra prediction
217 ****************************************************************************/
219 static inline void load_intra_pred_luma(AVSContext
*h
, uint8_t *top
,
220 uint8_t **left
, int block
) {
225 *left
= h
->left_border_y
;
226 h
->left_border_y
[0] = h
->left_border_y
[1];
227 memset(&h
->left_border_y
[17],h
->left_border_y
[16],9);
228 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16],16);
231 if((h
->flags
& A_AVAIL
) && (h
->flags
& B_AVAIL
))
232 h
->left_border_y
[0] = top
[0] = h
->topleft_border_y
;
235 *left
= h
->intern_border_y
;
237 h
->intern_border_y
[i
+1] = *(h
->cy
+ 7 + i
*h
->l_stride
);
238 memset(&h
->intern_border_y
[9],h
->intern_border_y
[8],9);
239 h
->intern_border_y
[0] = h
->intern_border_y
[1];
240 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16+8],8);
241 if(h
->flags
& C_AVAIL
)
242 memcpy(&top
[9],&h
->top_border_y
[(h
->mbx
+ 1)*16],8);
244 memset(&top
[9],top
[8],9);
247 if(h
->flags
& B_AVAIL
)
248 h
->intern_border_y
[0] = top
[0] = h
->top_border_y
[h
->mbx
*16+7];
251 *left
= &h
->left_border_y
[8];
252 memcpy(&top
[1],h
->cy
+ 7*h
->l_stride
,16);
255 if(h
->flags
& A_AVAIL
)
256 top
[0] = h
->left_border_y
[8];
259 *left
= &h
->intern_border_y
[8];
261 h
->intern_border_y
[i
+9] = *(h
->cy
+ 7 + (i
+8)*h
->l_stride
);
262 memset(&h
->intern_border_y
[17],h
->intern_border_y
[16],9);
263 memcpy(&top
[0],h
->cy
+ 7 + 7*h
->l_stride
,9);
264 memset(&top
[9],top
[8],9);
269 static void intra_pred_vert(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
271 uint64_t a
= unaligned64(&top
[1]);
273 *((uint64_t *)(d
+y
*stride
)) = a
;
277 static void intra_pred_horiz(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
281 a
= left
[y
+1] * 0x0101010101010101ULL
;
282 *((uint64_t *)(d
+y
*stride
)) = a
;
286 static void intra_pred_dc_128(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
288 uint64_t a
= 0x8080808080808080ULL
;
290 *((uint64_t *)(d
+y
*stride
)) = a
;
293 static void intra_pred_plane(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
297 uint8_t *cm
= ff_cropTbl
+ MAX_NEG_CROP
;
300 ih
+= (x
+1)*(top
[5+x
]-top
[3-x
]);
301 iv
+= (x
+1)*(left
[5+x
]-left
[3-x
]);
303 ia
= (top
[8]+left
[8])<<4;
308 d
[y
*stride
+x
] = cm
[(ia
+(x
-3)*ih
+(y
-3)*iv
+16)>>5];
311 #define LOWPASS(ARRAY,INDEX) \
312 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
314 static void intra_pred_lp(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
318 d
[y
*stride
+x
] = (LOWPASS(top
,x
+1) + LOWPASS(left
,y
+1)) >> 1;
321 static void intra_pred_down_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
325 d
[y
*stride
+x
] = (LOWPASS(top
,x
+y
+2) + LOWPASS(left
,x
+y
+2)) >> 1;
328 static void intra_pred_down_right(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
333 d
[y
*stride
+x
] = (left
[1]+2*top
[0]+top
[1]+2)>>2;
335 d
[y
*stride
+x
] = LOWPASS(top
,x
-y
);
337 d
[y
*stride
+x
] = LOWPASS(left
,y
-x
);
340 static void intra_pred_lp_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
344 d
[y
*stride
+x
] = LOWPASS(left
,y
+1);
347 static void intra_pred_lp_top(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
351 d
[y
*stride
+x
] = LOWPASS(top
,x
+1);
356 static inline void modify_pred(const int_fast8_t *mod_table
, int *mode
) {
357 *mode
= mod_table
[*mode
];
359 av_log(NULL
, AV_LOG_ERROR
, "Illegal intra prediction mode\n");
364 /*****************************************************************************
366 * motion compensation
368 ****************************************************************************/
370 static inline void mc_dir_part(AVSContext
*h
,Picture
*pic
,int square
,
371 int chroma_height
,int delta
,int list
,uint8_t *dest_y
,
372 uint8_t *dest_cb
,uint8_t *dest_cr
,int src_x_offset
,
373 int src_y_offset
,qpel_mc_func
*qpix_op
,
374 h264_chroma_mc_func chroma_op
,vector_t
*mv
){
375 MpegEncContext
* const s
= &h
->s
;
376 const int mx
= mv
->x
+ src_x_offset
*8;
377 const int my
= mv
->y
+ src_y_offset
*8;
378 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
379 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->l_stride
;
380 uint8_t * src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->c_stride
;
381 uint8_t * src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->c_stride
;
382 int extra_width
= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
383 int extra_height
= extra_width
;
385 const int full_mx
= mx
>>2;
386 const int full_my
= my
>>2;
387 const int pic_width
= 16*h
->mb_width
;
388 const int pic_height
= 16*h
->mb_height
;
392 if(mx
&7) extra_width
-= 3;
393 if(my
&7) extra_height
-= 3;
395 if( full_mx
< 0-extra_width
396 || full_my
< 0-extra_height
397 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
398 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
399 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->l_stride
, h
->l_stride
,
400 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
401 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->l_stride
;
405 qpix_op
[luma_xy
](dest_y
, src_y
, h
->l_stride
); //FIXME try variable height perhaps?
407 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->l_stride
);
411 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->c_stride
,
412 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
413 src_cb
= s
->edge_emu_buffer
;
415 chroma_op(dest_cb
, src_cb
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
418 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->c_stride
,
419 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
420 src_cr
= s
->edge_emu_buffer
;
422 chroma_op(dest_cr
, src_cr
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
425 static inline void mc_part_std(AVSContext
*h
,int square
,int chroma_height
,int delta
,
426 uint8_t *dest_y
,uint8_t *dest_cb
,uint8_t *dest_cr
,
427 int x_offset
, int y_offset
,qpel_mc_func
*qpix_put
,
428 h264_chroma_mc_func chroma_put
,qpel_mc_func
*qpix_avg
,
429 h264_chroma_mc_func chroma_avg
, vector_t
*mv
){
430 qpel_mc_func
*qpix_op
= qpix_put
;
431 h264_chroma_mc_func chroma_op
= chroma_put
;
433 dest_y
+= 2*x_offset
+ 2*y_offset
*h
->l_stride
;
434 dest_cb
+= x_offset
+ y_offset
*h
->c_stride
;
435 dest_cr
+= x_offset
+ y_offset
*h
->c_stride
;
436 x_offset
+= 8*h
->mbx
;
437 y_offset
+= 8*h
->mby
;
440 Picture
*ref
= &h
->DPB
[mv
->ref
];
441 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 0,
442 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
443 qpix_op
, chroma_op
, mv
);
446 chroma_op
= chroma_avg
;
449 if((mv
+MV_BWD_OFFS
)->ref
>= 0){
450 Picture
*ref
= &h
->DPB
[0];
451 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 1,
452 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
453 qpix_op
, chroma_op
, mv
+MV_BWD_OFFS
);
457 static void inter_pred(AVSContext
*h
, enum mb_t mb_type
) {
458 if(partition_flags
[mb_type
] == 0){ // 16x16
459 mc_part_std(h
, 1, 8, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
460 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[0],
461 h
->s
.dsp
.put_h264_chroma_pixels_tab
[0],
462 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[0],
463 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[0],&h
->mv
[MV_FWD_X0
]);
465 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
466 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
467 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
468 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
469 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X0
]);
470 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 0,
471 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
472 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
473 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
474 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X1
]);
475 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 4,
476 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
477 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
478 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
479 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X2
]);
480 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 4,
481 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
482 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
483 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
484 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X3
]);
486 /* set intra prediction modes to default values */
487 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = INTRA_L_LP
;
488 h
->top_pred_Y
[h
->mbx
*2+0] = h
->top_pred_Y
[h
->mbx
*2+1] = INTRA_L_LP
;
491 /*****************************************************************************
493 * motion vector prediction
495 ****************************************************************************/
497 static inline void set_mvs(vector_t
*mv
, enum block_t size
) {
500 mv
[MV_STRIDE
] = mv
[0];
501 mv
[MV_STRIDE
+1] = mv
[0];
506 mv
[MV_STRIDE
] = mv
[0];
511 static inline void store_mvs(AVSContext
*h
) {
512 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 0] = h
->mv
[MV_FWD_X0
];
513 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 1] = h
->mv
[MV_FWD_X1
];
514 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 2] = h
->mv
[MV_FWD_X2
];
515 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 3] = h
->mv
[MV_FWD_X3
];
518 static inline void scale_mv(AVSContext
*h
, int *d_x
, int *d_y
, vector_t
*src
, int distp
) {
519 int den
= h
->scale_den
[src
->ref
];
521 *d_x
= (src
->x
*distp
*den
+ 256 + (src
->x
>>31)) >> 9;
522 *d_y
= (src
->y
*distp
*den
+ 256 + (src
->y
>>31)) >> 9;
525 static inline void mv_pred_median(AVSContext
*h
, vector_t
*mvP
, vector_t
*mvA
, vector_t
*mvB
, vector_t
*mvC
) {
526 int ax
, ay
, bx
, by
, cx
, cy
;
527 int len_ab
, len_bc
, len_ca
, len_mid
;
529 /* scale candidates according to their temporal span */
530 scale_mv(h
, &ax
, &ay
, mvA
, mvP
->dist
);
531 scale_mv(h
, &bx
, &by
, mvB
, mvP
->dist
);
532 scale_mv(h
, &cx
, &cy
, mvC
, mvP
->dist
);
533 /* find the geometrical median of the three candidates */
534 len_ab
= abs(ax
- bx
) + abs(ay
- by
);
535 len_bc
= abs(bx
- cx
) + abs(by
- cy
);
536 len_ca
= abs(cx
- ax
) + abs(cy
- ay
);
537 len_mid
= mid_pred(len_ab
, len_bc
, len_ca
);
538 if(len_mid
== len_ab
) {
541 } else if(len_mid
== len_bc
) {
550 static inline void mv_pred_direct(AVSContext
*h
, vector_t
*pmv_fw
,
552 vector_t
*pmv_bw
= pmv_fw
+ MV_BWD_OFFS
;
553 int den
= h
->direct_den
[col_mv
->ref
];
554 int m
= col_mv
->x
>> 31;
556 pmv_fw
->dist
= h
->dist
[1];
557 pmv_bw
->dist
= h
->dist
[0];
560 /* scale the co-located motion vector according to its temporal span */
561 pmv_fw
->x
= (((den
+(den
*col_mv
->x
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
562 pmv_bw
->x
= m
-(((den
+(den
*col_mv
->x
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
564 pmv_fw
->y
= (((den
+(den
*col_mv
->y
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
565 pmv_bw
->y
= m
-(((den
+(den
*col_mv
->y
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
568 static inline void mv_pred_sym(AVSContext
*h
, vector_t
*src
, enum block_t size
) {
569 vector_t
*dst
= src
+ MV_BWD_OFFS
;
571 /* backward mv is the scaled and negated forward mv */
572 dst
->x
= -((src
->x
* h
->sym_factor
+ 256) >> 9);
573 dst
->y
= -((src
->y
* h
->sym_factor
+ 256) >> 9);
575 dst
->dist
= h
->dist
[0];
579 static void mv_pred(AVSContext
*h
, enum mv_loc_t nP
, enum mv_loc_t nC
,
580 enum mv_pred_t mode
, enum block_t size
, int ref
) {
581 vector_t
*mvP
= &h
->mv
[nP
];
582 vector_t
*mvA
= &h
->mv
[nP
-1];
583 vector_t
*mvB
= &h
->mv
[nP
-4];
584 vector_t
*mvC
= &h
->mv
[nC
];
585 const vector_t
*mvP2
= NULL
;
588 mvP
->dist
= h
->dist
[mvP
->ref
];
589 if(mvC
->ref
== NOT_AVAIL
)
590 mvC
= &h
->mv
[nP
-5]; // set to top-left (mvD)
591 if((mode
== MV_PRED_PSKIP
) &&
592 ((mvA
->ref
== NOT_AVAIL
) || (mvB
->ref
== NOT_AVAIL
) ||
593 ((mvA
->x
| mvA
->y
| mvA
->ref
) == 0) ||
594 ((mvB
->x
| mvB
->y
| mvB
->ref
) == 0) )) {
596 /* if there is only one suitable candidate, take it */
597 } else if((mvA
->ref
>= 0) && (mvB
->ref
< 0) && (mvC
->ref
< 0)) {
599 } else if((mvA
->ref
< 0) && (mvB
->ref
>= 0) && (mvC
->ref
< 0)) {
601 } else if((mvA
->ref
< 0) && (mvB
->ref
< 0) && (mvC
->ref
>= 0)) {
603 } else if(mode
== MV_PRED_LEFT
&& mvA
->ref
== ref
){
605 } else if(mode
== MV_PRED_TOP
&& mvB
->ref
== ref
){
607 } else if(mode
== MV_PRED_TOPRIGHT
&& mvC
->ref
== ref
){
614 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
616 if(mode
< MV_PRED_PSKIP
) {
617 mvP
->x
+= get_se_golomb(&h
->s
.gb
);
618 mvP
->y
+= get_se_golomb(&h
->s
.gb
);
623 /*****************************************************************************
625 * residual data decoding
627 ****************************************************************************/
629 /** kth-order exponential golomb code */
630 static inline int get_ue_code(GetBitContext
*gb
, int order
) {
632 int ret
= get_ue_golomb(gb
) << order
;
633 return ret
+ get_bits(gb
,order
);
635 return get_ue_golomb(gb
);
639 * decode coefficients from one 8x8 block, dequantize, inverse transform
640 * and add them to sample block
641 * @param r pointer to 2D VLC table
642 * @param esc_golomb_order escape codes are k-golomb with this order k
643 * @param qp quantizer
644 * @param dst location of sample block
645 * @param stride line stride in frame buffer
647 static int decode_residual_block(AVSContext
*h
, GetBitContext
*gb
,
648 const residual_vlc_t
*r
, int esc_golomb_order
,
649 int qp
, uint8_t *dst
, int stride
) {
651 int level_code
, esc_code
, level
, run
, mask
;
654 int dqm
= dequant_mul
[qp
];
655 int dqs
= dequant_shift
[qp
];
656 int dqa
= 1 << (dqs
- 1);
657 const uint8_t *scantab
= h
->scantable
.permutated
;
658 DCTELEM
*block
= h
->block
;
661 level_code
= get_ue_code(gb
,r
->golomb_order
);
662 if(level_code
>= ESCAPE_CODE
) {
663 run
= ((level_code
- ESCAPE_CODE
) >> 1) + 1;
664 esc_code
= get_ue_code(gb
,esc_golomb_order
);
665 level
= esc_code
+ (run
> r
->max_run
? 1 : r
->level_add
[run
]);
666 while(level
> r
->inc_limit
)
668 mask
= -(level_code
& 1);
669 level
= (level
^mask
) - mask
;
671 level
= r
->rltab
[level_code
][0];
672 if(!level
) //end of block signal
674 run
= r
->rltab
[level_code
][1];
675 r
+= r
->rltab
[level_code
][2];
677 level_buf
[i
] = level
;
680 /* inverse scan and dequantization */
684 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
685 "position out of block bounds at pic %d MB(%d,%d)\n",
686 h
->picture
.poc
, h
->mbx
, h
->mby
);
689 block
[scantab
[pos
]] = (level_buf
[i
]*dqm
+ dqa
) >> dqs
;
691 h
->s
.dsp
.cavs_idct8_add(dst
,block
,stride
);
696 static inline void decode_residual_chroma(AVSContext
*h
) {
698 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
701 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
705 static inline int decode_residual_inter(AVSContext
*h
) {
708 /* get coded block pattern */
709 int cbp
= get_ue_golomb(&h
->s
.gb
);
711 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal inter cbp\n");
714 h
->cbp
= cbp_tab
[cbp
][1];
717 if(h
->cbp
&& !h
->qp_fixed
)
718 h
->qp
= (h
->qp
+ get_se_golomb(&h
->s
.gb
)) & 63;
719 for(block
=0;block
<4;block
++)
720 if(h
->cbp
& (1<<block
))
721 decode_residual_block(h
,&h
->s
.gb
,inter_2dvlc
,0,h
->qp
,
722 h
->cy
+ h
->luma_scan
[block
], h
->l_stride
);
723 decode_residual_chroma(h
);
728 /*****************************************************************************
732 ****************************************************************************/
735 * initialise predictors for motion vectors and intra prediction
737 static inline void init_mb(AVSContext
*h
) {
740 /* copy predictors from top line (MB B and C) into cache */
742 h
->mv
[MV_FWD_B2
+i
] = h
->top_mv
[0][h
->mbx
*2+i
];
743 h
->mv
[MV_BWD_B2
+i
] = h
->top_mv
[1][h
->mbx
*2+i
];
745 h
->pred_mode_Y
[1] = h
->top_pred_Y
[h
->mbx
*2+0];
746 h
->pred_mode_Y
[2] = h
->top_pred_Y
[h
->mbx
*2+1];
747 /* clear top predictors if MB B is not available */
748 if(!(h
->flags
& B_AVAIL
)) {
749 h
->mv
[MV_FWD_B2
] = un_mv
;
750 h
->mv
[MV_FWD_B3
] = un_mv
;
751 h
->mv
[MV_BWD_B2
] = un_mv
;
752 h
->mv
[MV_BWD_B3
] = un_mv
;
753 h
->pred_mode_Y
[1] = h
->pred_mode_Y
[2] = NOT_AVAIL
;
754 h
->flags
&= ~(C_AVAIL
|D_AVAIL
);
758 if(h
->mbx
== h
->mb_width
-1) //MB C not available
759 h
->flags
&= ~C_AVAIL
;
760 /* clear top-right predictors if MB C is not available */
761 if(!(h
->flags
& C_AVAIL
)) {
762 h
->mv
[MV_FWD_C2
] = un_mv
;
763 h
->mv
[MV_BWD_C2
] = un_mv
;
765 /* clear top-left predictors if MB D is not available */
766 if(!(h
->flags
& D_AVAIL
)) {
767 h
->mv
[MV_FWD_D3
] = un_mv
;
768 h
->mv
[MV_BWD_D3
] = un_mv
;
770 /* set pointer for co-located macroblock type */
771 h
->col_type
= &h
->col_type_base
[h
->mby
*h
->mb_width
+ h
->mbx
];
774 static inline void check_for_slice(AVSContext
*h
);
777 * save predictors for later macroblocks and increase
779 * @returns 0 if end of frame is reached, 1 otherwise
781 static inline int next_mb(AVSContext
*h
) {
788 /* copy mvs as predictors to the left */
790 h
->mv
[i
] = h
->mv
[i
+2];
791 /* copy bottom mvs from cache to top line */
792 h
->top_mv
[0][h
->mbx
*2+0] = h
->mv
[MV_FWD_X2
];
793 h
->top_mv
[0][h
->mbx
*2+1] = h
->mv
[MV_FWD_X3
];
794 h
->top_mv
[1][h
->mbx
*2+0] = h
->mv
[MV_BWD_X2
];
795 h
->top_mv
[1][h
->mbx
*2+1] = h
->mv
[MV_BWD_X3
];
796 /* next MB address */
798 if(h
->mbx
== h
->mb_width
) { //new mb line
799 h
->flags
= B_AVAIL
|C_AVAIL
;
800 /* clear left pred_modes */
801 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
802 /* clear left mv predictors */
807 /* re-calculate sample pointers */
808 h
->cy
= h
->picture
.data
[0] + h
->mby
*16*h
->l_stride
;
809 h
->cu
= h
->picture
.data
[1] + h
->mby
*8*h
->c_stride
;
810 h
->cv
= h
->picture
.data
[2] + h
->mby
*8*h
->c_stride
;
811 if(h
->mby
== h
->mb_height
) { //frame end
814 //check_for_slice(h);
820 static int decode_mb_i(AVSContext
*h
, int cbp_code
) {
821 GetBitContext
*gb
= &h
->s
.gb
;
822 int block
, pred_mode_uv
;
824 uint8_t *left
= NULL
;
829 /* get intra prediction modes from stream */
830 for(block
=0;block
<4;block
++) {
832 int pos
= scan3x3
[block
];
834 nA
= h
->pred_mode_Y
[pos
-1];
835 nB
= h
->pred_mode_Y
[pos
-3];
836 predpred
= FFMIN(nA
,nB
);
837 if(predpred
== NOT_AVAIL
) // if either is not available
838 predpred
= INTRA_L_LP
;
840 int rem_mode
= get_bits(gb
, 2);
841 predpred
= rem_mode
+ (rem_mode
>= predpred
);
843 h
->pred_mode_Y
[pos
] = predpred
;
845 pred_mode_uv
= get_ue_golomb(gb
);
846 if(pred_mode_uv
> 6) {
847 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra chroma pred mode\n");
851 /* save pred modes before they get modified */
852 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[5];
853 h
->pred_mode_Y
[6] = h
->pred_mode_Y
[8];
854 h
->top_pred_Y
[h
->mbx
*2+0] = h
->pred_mode_Y
[7];
855 h
->top_pred_Y
[h
->mbx
*2+1] = h
->pred_mode_Y
[8];
857 /* modify pred modes according to availability of neighbour samples */
858 if(!(h
->flags
& A_AVAIL
)) {
859 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[4] );
860 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[7] );
861 modify_pred(left_modifier_c
, &pred_mode_uv
);
863 if(!(h
->flags
& B_AVAIL
)) {
864 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[4] );
865 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[5] );
866 modify_pred(top_modifier_c
, &pred_mode_uv
);
869 /* get coded block pattern */
870 if(h
->pic_type
== FF_I_TYPE
)
871 cbp_code
= get_ue_golomb(gb
);
873 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra cbp\n");
876 h
->cbp
= cbp_tab
[cbp_code
][0];
877 if(h
->cbp
&& !h
->qp_fixed
)
878 h
->qp
= (h
->qp
+ get_se_golomb(gb
)) & 63; //qp_delta
880 /* luma intra prediction interleaved with residual decode/transform/add */
881 for(block
=0;block
<4;block
++) {
882 d
= h
->cy
+ h
->luma_scan
[block
];
883 load_intra_pred_luma(h
, top
, &left
, block
);
884 h
->intra_pred_l
[h
->pred_mode_Y
[scan3x3
[block
]]]
885 (d
, top
, left
, h
->l_stride
);
886 if(h
->cbp
& (1<<block
))
887 decode_residual_block(h
,gb
,intra_2dvlc
,1,h
->qp
,d
,h
->l_stride
);
890 /* chroma intra prediction */
891 /* extend borders by one pixel */
892 h
->left_border_u
[9] = h
->left_border_u
[8];
893 h
->left_border_v
[9] = h
->left_border_v
[8];
894 h
->top_border_u
[h
->mbx
*10+9] = h
->top_border_u
[h
->mbx
*10+8];
895 h
->top_border_v
[h
->mbx
*10+9] = h
->top_border_v
[h
->mbx
*10+8];
896 if(h
->mbx
&& h
->mby
) {
897 h
->top_border_u
[h
->mbx
*10] = h
->left_border_u
[0] = h
->topleft_border_u
;
898 h
->top_border_v
[h
->mbx
*10] = h
->left_border_v
[0] = h
->topleft_border_v
;
900 h
->left_border_u
[0] = h
->left_border_u
[1];
901 h
->left_border_v
[0] = h
->left_border_v
[1];
902 h
->top_border_u
[h
->mbx
*10] = h
->top_border_u
[h
->mbx
*10+1];
903 h
->top_border_v
[h
->mbx
*10] = h
->top_border_v
[h
->mbx
*10+1];
905 h
->intra_pred_c
[pred_mode_uv
](h
->cu
, &h
->top_border_u
[h
->mbx
*10],
906 h
->left_border_u
, h
->c_stride
);
907 h
->intra_pred_c
[pred_mode_uv
](h
->cv
, &h
->top_border_v
[h
->mbx
*10],
908 h
->left_border_v
, h
->c_stride
);
910 decode_residual_chroma(h
);
913 /* mark motion vectors as intra */
914 h
->mv
[MV_FWD_X0
] = intra_mv
;
915 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
916 h
->mv
[MV_BWD_X0
] = intra_mv
;
917 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
918 if(h
->pic_type
!= FF_B_TYPE
)
919 *h
->col_type
= I_8X8
;
924 static void decode_mb_p(AVSContext
*h
, enum mb_t mb_type
) {
925 GetBitContext
*gb
= &h
->s
.gb
;
931 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_PSKIP
, BLK_16X16
, 0);
934 ref
[0] = h
->ref_flag
? 0 : get_bits1(gb
);
935 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
,ref
[0]);
938 ref
[0] = h
->ref_flag
? 0 : get_bits1(gb
);
939 ref
[2] = h
->ref_flag
? 0 : get_bits1(gb
);
940 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, ref
[0]);
941 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, ref
[2]);
944 ref
[0] = h
->ref_flag
? 0 : get_bits1(gb
);
945 ref
[1] = h
->ref_flag
? 0 : get_bits1(gb
);
946 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, ref
[0]);
947 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
, BLK_8X16
, ref
[1]);
950 ref
[0] = h
->ref_flag
? 0 : get_bits1(gb
);
951 ref
[1] = h
->ref_flag
? 0 : get_bits1(gb
);
952 ref
[2] = h
->ref_flag
? 0 : get_bits1(gb
);
953 ref
[3] = h
->ref_flag
? 0 : get_bits1(gb
);
954 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[0]);
955 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[1]);
956 mv_pred(h
, MV_FWD_X2
, MV_FWD_X1
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[2]);
957 mv_pred(h
, MV_FWD_X3
, MV_FWD_X0
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[3]);
959 inter_pred(h
, mb_type
);
961 if(mb_type
!= P_SKIP
)
962 decode_residual_inter(h
);
963 filter_mb(h
,mb_type
);
964 *h
->col_type
= mb_type
;
967 static void decode_mb_b(AVSContext
*h
, enum mb_t mb_type
) {
969 enum sub_mb_t sub_type
[4];
975 h
->mv
[MV_FWD_X0
] = dir_mv
;
976 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
977 h
->mv
[MV_BWD_X0
] = dir_mv
;
978 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
982 if(!(*h
->col_type
)) {
983 /* intra MB at co-location, do in-plane prediction */
984 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 1);
985 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 0);
987 /* direct prediction from co-located P MB, block-wise */
988 for(block
=0;block
<4;block
++)
989 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
990 &h
->col_mv
[(h
->mby
*h
->mb_width
+h
->mbx
)*4 + block
]);
993 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
996 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
997 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X16
);
1000 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 0);
1003 for(block
=0;block
<4;block
++)
1004 sub_type
[block
] = get_bits(&h
->s
.gb
,2);
1005 for(block
=0;block
<4;block
++) {
1006 switch(sub_type
[block
]) {
1008 if(!(*h
->col_type
)) {
1009 /* intra MB at co-location, do in-plane prediction */
1010 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1011 MV_PRED_BSKIP
, BLK_8X8
, 1);
1012 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1013 mv_scan
[block
]-3+MV_BWD_OFFS
,
1014 MV_PRED_BSKIP
, BLK_8X8
, 0);
1016 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
1017 &h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + block
]);
1020 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1021 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1024 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1025 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1026 mv_pred_sym(h
, &h
->mv
[mv_scan
[block
]], BLK_8X8
);
1030 for(block
=0;block
<4;block
++) {
1031 if(sub_type
[block
] == B_SUB_BWD
)
1032 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1033 mv_scan
[block
]+MV_BWD_OFFS
-3,
1034 MV_PRED_MEDIAN
, BLK_8X8
, 0);
1038 assert((mb_type
> B_SYM_16X16
) && (mb_type
< B_8X8
));
1039 flags
= partition_flags
[mb_type
];
1040 if(mb_type
& 1) { /* 16x8 macroblock types */
1042 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1044 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X8
);
1046 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1048 mv_pred_sym(h
, &h
->mv
[MV_FWD_X2
], BLK_16X8
);
1050 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_TOP
, BLK_16X8
, 0);
1052 mv_pred(h
, MV_BWD_X2
, MV_BWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 0);
1053 } else { /* 8x16 macroblock types */
1055 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1057 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_8X16
);
1059 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1061 mv_pred_sym(h
, &h
->mv
[MV_FWD_X1
], BLK_8X16
);
1063 mv_pred(h
, MV_BWD_X0
, MV_BWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 0);
1065 mv_pred(h
, MV_BWD_X1
, MV_BWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 0);
1068 inter_pred(h
, mb_type
);
1069 if(mb_type
!= B_SKIP
)
1070 decode_residual_inter(h
);
1071 filter_mb(h
,mb_type
);
1074 /*****************************************************************************
1078 ****************************************************************************/
1080 static inline int decode_slice_header(AVSContext
*h
, GetBitContext
*gb
) {
1082 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "unexpected start code 0x%02x\n", h
->stc
);
1084 if((h
->mby
== 0) && (!h
->qp_fixed
)){
1085 h
->qp_fixed
= get_bits1(gb
);
1086 h
->qp
= get_bits(gb
,6);
1088 /* inter frame or second slice can have weighting params */
1089 if((h
->pic_type
!= FF_I_TYPE
) || (!h
->pic_structure
&& h
->mby
>= h
->mb_width
/2))
1090 if(get_bits1(gb
)) { //slice_weighting_flag
1091 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
1092 "weighted prediction not yet supported\n");
1097 static inline void check_for_slice(AVSContext
*h
) {
1098 GetBitContext
*gb
= &h
->s
.gb
;
1100 align
= (-get_bits_count(gb
)) & 7;
1101 if((show_bits_long(gb
,24+align
) & 0xFFFFFF) == 0x000001) {
1102 get_bits_long(gb
,24+align
);
1103 h
->stc
= get_bits(gb
,8);
1104 decode_slice_header(h
,gb
);
1108 /*****************************************************************************
1112 ****************************************************************************/
1114 static void init_pic(AVSContext
*h
) {
1117 /* clear some predictors */
1120 h
->mv
[MV_BWD_X0
] = dir_mv
;
1121 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1122 h
->mv
[MV_FWD_X0
] = dir_mv
;
1123 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
1124 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
1125 h
->cy
= h
->picture
.data
[0];
1126 h
->cu
= h
->picture
.data
[1];
1127 h
->cv
= h
->picture
.data
[2];
1128 h
->l_stride
= h
->picture
.linesize
[0];
1129 h
->c_stride
= h
->picture
.linesize
[1];
1130 h
->luma_scan
[2] = 8*h
->l_stride
;
1131 h
->luma_scan
[3] = 8*h
->l_stride
+8;
1132 h
->mbx
= h
->mby
= 0;
1136 static int decode_pic(AVSContext
*h
) {
1137 MpegEncContext
*s
= &h
->s
;
1141 if (!s
->context_initialized
) {
1142 s
->avctx
->idct_algo
= FF_IDCT_CAVS
;
1143 if (MPV_common_init(s
) < 0)
1145 ff_init_scantable(s
->dsp
.idct_permutation
,&h
->scantable
,ff_zigzag_direct
);
1147 get_bits(&s
->gb
,16);//bbv_dwlay
1148 if(h
->stc
== PIC_PB_START_CODE
) {
1149 h
->pic_type
= get_bits(&s
->gb
,2) + FF_I_TYPE
;
1150 if(h
->pic_type
> FF_B_TYPE
) {
1151 av_log(s
->avctx
, AV_LOG_ERROR
, "illegal picture type\n");
1154 /* make sure we have the reference frames we need */
1155 if(!h
->DPB
[0].data
[0] ||
1156 (!h
->DPB
[1].data
[0] && h
->pic_type
== FF_B_TYPE
))
1159 h
->pic_type
= FF_I_TYPE
;
1160 if(get_bits1(&s
->gb
))
1161 get_bits(&s
->gb
,16);//time_code
1163 /* release last B frame */
1164 if(h
->picture
.data
[0])
1165 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1167 s
->avctx
->get_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1169 h
->picture
.poc
= get_bits(&s
->gb
,8)*2;
1171 /* get temporal distances and MV scaling factors */
1172 if(h
->pic_type
!= FF_B_TYPE
) {
1173 h
->dist
[0] = (h
->picture
.poc
- h
->DPB
[0].poc
+ 512) % 512;
1175 h
->dist
[0] = (h
->DPB
[0].poc
- h
->picture
.poc
+ 512) % 512;
1177 h
->dist
[1] = (h
->picture
.poc
- h
->DPB
[1].poc
+ 512) % 512;
1178 h
->scale_den
[0] = h
->dist
[0] ? 512/h
->dist
[0] : 0;
1179 h
->scale_den
[1] = h
->dist
[1] ? 512/h
->dist
[1] : 0;
1180 if(h
->pic_type
== FF_B_TYPE
) {
1181 h
->sym_factor
= h
->dist
[0]*h
->scale_den
[1];
1183 h
->direct_den
[0] = h
->dist
[0] ? 16384/h
->dist
[0] : 0;
1184 h
->direct_den
[1] = h
->dist
[1] ? 16384/h
->dist
[1] : 0;
1188 get_ue_golomb(&s
->gb
); //bbv_check_times
1189 h
->progressive
= get_bits1(&s
->gb
);
1191 h
->pic_structure
= 1;
1192 else if(!(h
->pic_structure
= get_bits1(&s
->gb
) && (h
->stc
== PIC_PB_START_CODE
)) )
1193 get_bits1(&s
->gb
); //advanced_pred_mode_disable
1194 skip_bits1(&s
->gb
); //top_field_first
1195 skip_bits1(&s
->gb
); //repeat_first_field
1196 h
->qp_fixed
= get_bits1(&s
->gb
);
1197 h
->qp
= get_bits(&s
->gb
,6);
1198 if(h
->pic_type
== FF_I_TYPE
) {
1199 if(!h
->progressive
&& !h
->pic_structure
)
1200 skip_bits1(&s
->gb
);//what is this?
1201 skip_bits(&s
->gb
,4); //reserved bits
1203 if(!(h
->pic_type
== FF_B_TYPE
&& h
->pic_structure
== 1))
1204 h
->ref_flag
= get_bits1(&s
->gb
);
1205 skip_bits(&s
->gb
,4); //reserved bits
1206 h
->skip_mode_flag
= get_bits1(&s
->gb
);
1208 h
->loop_filter_disable
= get_bits1(&s
->gb
);
1209 if(!h
->loop_filter_disable
&& get_bits1(&s
->gb
)) {
1210 h
->alpha_offset
= get_se_golomb(&s
->gb
);
1211 h
->beta_offset
= get_se_golomb(&s
->gb
);
1213 h
->alpha_offset
= h
->beta_offset
= 0;
1216 if(h
->pic_type
== FF_I_TYPE
) {
1219 } while(next_mb(h
));
1220 } else if(h
->pic_type
== FF_P_TYPE
) {
1222 if(h
->skip_mode_flag
) {
1223 skip_count
= get_ue_golomb(&s
->gb
);
1224 while(skip_count
--) {
1225 decode_mb_p(h
,P_SKIP
);
1229 mb_type
= get_ue_golomb(&s
->gb
) + P_16X16
;
1231 mb_type
= get_ue_golomb(&s
->gb
) + P_SKIP
;
1232 if(mb_type
> P_8X8
) {
1233 decode_mb_i(h
, mb_type
- P_8X8
- 1);
1235 decode_mb_p(h
,mb_type
);
1236 } while(next_mb(h
));
1237 } else { /* FF_B_TYPE */
1239 if(h
->skip_mode_flag
) {
1240 skip_count
= get_ue_golomb(&s
->gb
);
1241 while(skip_count
--) {
1242 decode_mb_b(h
,B_SKIP
);
1246 mb_type
= get_ue_golomb(&s
->gb
) + B_DIRECT
;
1248 mb_type
= get_ue_golomb(&s
->gb
) + B_SKIP
;
1249 if(mb_type
> B_8X8
) {
1250 decode_mb_i(h
, mb_type
- B_8X8
- 1);
1252 decode_mb_b(h
,mb_type
);
1253 } while(next_mb(h
));
1256 if(h
->pic_type
!= FF_B_TYPE
) {
1257 if(h
->DPB
[1].data
[0])
1258 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->DPB
[1]);
1259 memcpy(&h
->DPB
[1], &h
->DPB
[0], sizeof(Picture
));
1260 memcpy(&h
->DPB
[0], &h
->picture
, sizeof(Picture
));
1261 memset(&h
->picture
,0,sizeof(Picture
));
1266 /*****************************************************************************
1268 * headers and interface
1270 ****************************************************************************/
1273 * some predictions require data from the top-neighbouring macroblock.
1274 * this data has to be stored for one complete row of macroblocks
1275 * and this storage space is allocated here
1277 static void init_top_lines(AVSContext
*h
) {
1278 /* alloc top line of predictors */
1279 h
->top_qp
= av_malloc( h
->mb_width
);
1280 h
->top_mv
[0] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1281 h
->top_mv
[1] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1282 h
->top_pred_Y
= av_malloc( h
->mb_width
*2*sizeof(*h
->top_pred_Y
));
1283 h
->top_border_y
= av_malloc((h
->mb_width
+1)*16);
1284 h
->top_border_u
= av_malloc((h
->mb_width
)*10);
1285 h
->top_border_v
= av_malloc((h
->mb_width
)*10);
1287 /* alloc space for co-located MVs and types */
1288 h
->col_mv
= av_malloc( h
->mb_width
*h
->mb_height
*4*sizeof(vector_t
));
1289 h
->col_type_base
= av_malloc(h
->mb_width
*h
->mb_height
);
1290 h
->block
= av_mallocz(64*sizeof(DCTELEM
));
1293 static int decode_seq_header(AVSContext
*h
) {
1294 MpegEncContext
*s
= &h
->s
;
1295 int frame_rate_code
;
1297 h
->profile
= get_bits(&s
->gb
,8);
1298 h
->level
= get_bits(&s
->gb
,8);
1299 skip_bits1(&s
->gb
); //progressive sequence
1300 s
->width
= get_bits(&s
->gb
,14);
1301 s
->height
= get_bits(&s
->gb
,14);
1302 skip_bits(&s
->gb
,2); //chroma format
1303 skip_bits(&s
->gb
,3); //sample_precision
1304 h
->aspect_ratio
= get_bits(&s
->gb
,4);
1305 frame_rate_code
= get_bits(&s
->gb
,4);
1306 skip_bits(&s
->gb
,18);//bit_rate_lower
1307 skip_bits1(&s
->gb
); //marker_bit
1308 skip_bits(&s
->gb
,12);//bit_rate_upper
1309 s
->low_delay
= get_bits1(&s
->gb
);
1310 h
->mb_width
= (s
->width
+ 15) >> 4;
1311 h
->mb_height
= (s
->height
+ 15) >> 4;
1312 h
->s
.avctx
->time_base
.den
= ff_frame_rate_tab
[frame_rate_code
].num
;
1313 h
->s
.avctx
->time_base
.num
= ff_frame_rate_tab
[frame_rate_code
].den
;
1314 h
->s
.avctx
->width
= s
->width
;
1315 h
->s
.avctx
->height
= s
->height
;
1321 static void cavs_flush(AVCodecContext
* avctx
) {
1322 AVSContext
*h
= avctx
->priv_data
;
1323 h
->got_keyframe
= 0;
1326 static int cavs_decode_frame(AVCodecContext
* avctx
,void *data
, int *data_size
,
1327 uint8_t * buf
, int buf_size
) {
1328 AVSContext
*h
= avctx
->priv_data
;
1329 MpegEncContext
*s
= &h
->s
;
1331 const uint8_t *buf_end
;
1332 const uint8_t *buf_ptr
;
1333 AVFrame
*picture
= data
;
1338 if (buf_size
== 0) {
1339 if(!s
->low_delay
&& h
->DPB
[0].data
[0]) {
1340 *data_size
= sizeof(AVPicture
);
1341 *picture
= *(AVFrame
*) &h
->DPB
[0];
1347 buf_end
= buf
+ buf_size
;
1349 buf_ptr
= ff_find_start_code(buf_ptr
,buf_end
, &stc
);
1350 if(stc
& 0xFFFFFE00)
1351 return FFMAX(0, buf_ptr
- buf
- s
->parse_context
.last_index
);
1352 input_size
= (buf_end
- buf_ptr
)*8;
1354 case CAVS_START_CODE
:
1355 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1356 decode_seq_header(h
);
1358 case PIC_I_START_CODE
:
1359 if(!h
->got_keyframe
) {
1360 if(h
->DPB
[0].data
[0])
1361 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[0]);
1362 if(h
->DPB
[1].data
[0])
1363 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[1]);
1364 h
->got_keyframe
= 1;
1366 case PIC_PB_START_CODE
:
1368 if(!h
->got_keyframe
)
1370 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1374 *data_size
= sizeof(AVPicture
);
1375 if(h
->pic_type
!= FF_B_TYPE
) {
1376 if(h
->DPB
[1].data
[0]) {
1377 *picture
= *(AVFrame
*) &h
->DPB
[1];
1382 *picture
= *(AVFrame
*) &h
->picture
;
1384 case EXT_START_CODE
:
1385 //mpeg_decode_extension(avctx,buf_ptr, input_size);
1387 case USER_START_CODE
:
1388 //mpeg_decode_user_data(avctx,buf_ptr, input_size);
1391 if (stc
>= SLICE_MIN_START_CODE
&&
1392 stc
<= SLICE_MAX_START_CODE
) {
1393 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1394 decode_slice_header(h
, &s
->gb
);
1401 static int cavs_decode_init(AVCodecContext
* avctx
) {
1402 AVSContext
*h
= avctx
->priv_data
;
1403 MpegEncContext
* const s
= &h
->s
;
1405 MPV_decode_defaults(s
);
1408 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
1410 h
->luma_scan
[0] = 0;
1411 h
->luma_scan
[1] = 8;
1412 h
->intra_pred_l
[ INTRA_L_VERT
] = intra_pred_vert
;
1413 h
->intra_pred_l
[ INTRA_L_HORIZ
] = intra_pred_horiz
;
1414 h
->intra_pred_l
[ INTRA_L_LP
] = intra_pred_lp
;
1415 h
->intra_pred_l
[ INTRA_L_DOWN_LEFT
] = intra_pred_down_left
;
1416 h
->intra_pred_l
[INTRA_L_DOWN_RIGHT
] = intra_pred_down_right
;
1417 h
->intra_pred_l
[ INTRA_L_LP_LEFT
] = intra_pred_lp_left
;
1418 h
->intra_pred_l
[ INTRA_L_LP_TOP
] = intra_pred_lp_top
;
1419 h
->intra_pred_l
[ INTRA_L_DC_128
] = intra_pred_dc_128
;
1420 h
->intra_pred_c
[ INTRA_C_LP
] = intra_pred_lp
;
1421 h
->intra_pred_c
[ INTRA_C_HORIZ
] = intra_pred_horiz
;
1422 h
->intra_pred_c
[ INTRA_C_VERT
] = intra_pred_vert
;
1423 h
->intra_pred_c
[ INTRA_C_PLANE
] = intra_pred_plane
;
1424 h
->intra_pred_c
[ INTRA_C_LP_LEFT
] = intra_pred_lp_left
;
1425 h
->intra_pred_c
[ INTRA_C_LP_TOP
] = intra_pred_lp_top
;
1426 h
->intra_pred_c
[ INTRA_C_DC_128
] = intra_pred_dc_128
;
1432 static int cavs_decode_end(AVCodecContext
* avctx
) {
1433 AVSContext
*h
= avctx
->priv_data
;
1436 av_free(h
->top_mv
[0]);
1437 av_free(h
->top_mv
[1]);
1438 av_free(h
->top_pred_Y
);
1439 av_free(h
->top_border_y
);
1440 av_free(h
->top_border_u
);
1441 av_free(h
->top_border_v
);
1443 av_free(h
->col_type_base
);
1448 AVCodec cavs_decoder
= {
1457 CODEC_CAP_DR1
| CODEC_CAP_DELAY
,