Use FFABS instead of abs.
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / mdct.c
blobde32752899cbf3d2f476e01c61e7d4eca88e921f
1 /*
2 * MDCT/IMDCT transforms
3 * Copyright (c) 2002 Fabrice Bellard.
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "dsputil.h"
23 /**
24 * @file mdct.c
25 * MDCT/IMDCT transforms.
28 /**
29 * init MDCT or IMDCT computation.
31 int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
33 int n, n4, i;
34 float alpha;
36 memset(s, 0, sizeof(*s));
37 n = 1 << nbits;
38 s->nbits = nbits;
39 s->n = n;
40 n4 = n >> 2;
41 s->tcos = av_malloc(n4 * sizeof(FFTSample));
42 if (!s->tcos)
43 goto fail;
44 s->tsin = av_malloc(n4 * sizeof(FFTSample));
45 if (!s->tsin)
46 goto fail;
48 for(i=0;i<n4;i++) {
49 alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
50 s->tcos[i] = -cos(alpha);
51 s->tsin[i] = -sin(alpha);
53 if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
54 goto fail;
55 return 0;
56 fail:
57 av_freep(&s->tcos);
58 av_freep(&s->tsin);
59 return -1;
62 /* complex multiplication: p = a * b */
63 #define CMUL(pre, pim, are, aim, bre, bim) \
65 float _are = (are);\
66 float _aim = (aim);\
67 float _bre = (bre);\
68 float _bim = (bim);\
69 (pre) = _are * _bre - _aim * _bim;\
70 (pim) = _are * _bim + _aim * _bre;\
73 /**
74 * Compute inverse MDCT of size N = 2^nbits
75 * @param output N samples
76 * @param input N/2 samples
77 * @param tmp N/2 samples
79 void ff_imdct_calc(MDCTContext *s, FFTSample *output,
80 const FFTSample *input, FFTSample *tmp)
82 int k, n8, n4, n2, n, j;
83 const uint16_t *revtab = s->fft.revtab;
84 const FFTSample *tcos = s->tcos;
85 const FFTSample *tsin = s->tsin;
86 const FFTSample *in1, *in2;
87 FFTComplex *z = (FFTComplex *)tmp;
89 n = 1 << s->nbits;
90 n2 = n >> 1;
91 n4 = n >> 2;
92 n8 = n >> 3;
94 /* pre rotation */
95 in1 = input;
96 in2 = input + n2 - 1;
97 for(k = 0; k < n4; k++) {
98 j=revtab[k];
99 CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
100 in1 += 2;
101 in2 -= 2;
103 ff_fft_calc(&s->fft, z);
105 /* post rotation + reordering */
106 /* XXX: optimize */
107 for(k = 0; k < n4; k++) {
108 CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
110 for(k = 0; k < n8; k++) {
111 output[2*k] = -z[n8 + k].im;
112 output[n2-1-2*k] = z[n8 + k].im;
114 output[2*k+1] = z[n8-1-k].re;
115 output[n2-1-2*k-1] = -z[n8-1-k].re;
117 output[n2 + 2*k]=-z[k+n8].re;
118 output[n-1- 2*k]=-z[k+n8].re;
120 output[n2 + 2*k+1]=z[n8-k-1].im;
121 output[n-2 - 2 * k] = z[n8-k-1].im;
126 * Compute MDCT of size N = 2^nbits
127 * @param input N samples
128 * @param out N/2 samples
129 * @param tmp temporary storage of N/2 samples
131 void ff_mdct_calc(MDCTContext *s, FFTSample *out,
132 const FFTSample *input, FFTSample *tmp)
134 int i, j, n, n8, n4, n2, n3;
135 FFTSample re, im, re1, im1;
136 const uint16_t *revtab = s->fft.revtab;
137 const FFTSample *tcos = s->tcos;
138 const FFTSample *tsin = s->tsin;
139 FFTComplex *x = (FFTComplex *)tmp;
141 n = 1 << s->nbits;
142 n2 = n >> 1;
143 n4 = n >> 2;
144 n8 = n >> 3;
145 n3 = 3 * n4;
147 /* pre rotation */
148 for(i=0;i<n8;i++) {
149 re = -input[2*i+3*n4] - input[n3-1-2*i];
150 im = -input[n4+2*i] + input[n4-1-2*i];
151 j = revtab[i];
152 CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
154 re = input[2*i] - input[n2-1-2*i];
155 im = -(input[n2+2*i] + input[n-1-2*i]);
156 j = revtab[n8 + i];
157 CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
160 ff_fft_calc(&s->fft, x);
162 /* post rotation */
163 for(i=0;i<n4;i++) {
164 re = x[i].re;
165 im = x[i].im;
166 CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
167 out[2*i] = im1;
168 out[n2-1-2*i] = re1;
172 void ff_mdct_end(MDCTContext *s)
174 av_freep(&s->tcos);
175 av_freep(&s->tsin);
176 ff_fft_end(&s->fft);