Use FFABS instead of abs.
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / vp3.c
blob7975a21076a4a39ac646c8237e1e8e146210313f
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file vp3.c
24 * On2 VP3 Video Decoder
26 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
27 * For more information about the VP3 coding process, visit:
28 * http://multimedia.cx/
30 * Theora decoder by Alex Beregszaszi
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <unistd.h>
38 #include "avcodec.h"
39 #include "dsputil.h"
40 #include "mpegvideo.h"
42 #include "vp3data.h"
43 #include "xiph.h"
45 #define FRAGMENT_PIXELS 8
48 * Debugging Variables
50 * Define one or more of the following compile-time variables to 1 to obtain
51 * elaborate information about certain aspects of the decoding process.
53 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
54 * DEBUG_VP3: high-level decoding flow
55 * DEBUG_INIT: initialization parameters
56 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
57 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
58 * DEBUG_MODES: unpacking the coding modes for individual fragments
59 * DEBUG_VECTORS: display the motion vectors
60 * DEBUG_TOKEN: display exhaustive information about each DCT token
61 * DEBUG_VLC: display the VLCs as they are extracted from the stream
62 * DEBUG_DC_PRED: display the process of reversing DC prediction
63 * DEBUG_IDCT: show every detail of the IDCT process
66 #define KEYFRAMES_ONLY 0
68 #define DEBUG_VP3 0
69 #define DEBUG_INIT 0
70 #define DEBUG_DEQUANTIZERS 0
71 #define DEBUG_BLOCK_CODING 0
72 #define DEBUG_MODES 0
73 #define DEBUG_VECTORS 0
74 #define DEBUG_TOKEN 0
75 #define DEBUG_VLC 0
76 #define DEBUG_DC_PRED 0
77 #define DEBUG_IDCT 0
79 #if DEBUG_VP3
80 #define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
81 #else
82 static inline void debug_vp3(const char *format, ...) { }
83 #endif
85 #if DEBUG_INIT
86 #define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
87 #else
88 static inline void debug_init(const char *format, ...) { }
89 #endif
91 #if DEBUG_DEQUANTIZERS
92 #define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
93 #else
94 static inline void debug_dequantizers(const char *format, ...) { }
95 #endif
97 #if DEBUG_BLOCK_CODING
98 #define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
99 #else
100 static inline void debug_block_coding(const char *format, ...) { }
101 #endif
103 #if DEBUG_MODES
104 #define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
105 #else
106 static inline void debug_modes(const char *format, ...) { }
107 #endif
109 #if DEBUG_VECTORS
110 #define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
111 #else
112 static inline void debug_vectors(const char *format, ...) { }
113 #endif
115 #if DEBUG_TOKEN
116 #define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
117 #else
118 static inline void debug_token(const char *format, ...) { }
119 #endif
121 #if DEBUG_VLC
122 #define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
123 #else
124 static inline void debug_vlc(const char *format, ...) { }
125 #endif
127 #if DEBUG_DC_PRED
128 #define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
129 #else
130 static inline void debug_dc_pred(const char *format, ...) { }
131 #endif
133 #if DEBUG_IDCT
134 #define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
135 #else
136 static inline void debug_idct(const char *format, ...) { }
137 #endif
139 typedef struct Coeff {
140 struct Coeff *next;
141 DCTELEM coeff;
142 uint8_t index;
143 } Coeff;
145 //FIXME split things out into their own arrays
146 typedef struct Vp3Fragment {
147 Coeff *next_coeff;
148 /* address of first pixel taking into account which plane the fragment
149 * lives on as well as the plane stride */
150 int first_pixel;
151 /* this is the macroblock that the fragment belongs to */
152 uint16_t macroblock;
153 uint8_t coding_method;
154 uint8_t coeff_count;
155 int8_t motion_x;
156 int8_t motion_y;
157 } Vp3Fragment;
159 #define SB_NOT_CODED 0
160 #define SB_PARTIALLY_CODED 1
161 #define SB_FULLY_CODED 2
163 #define MODE_INTER_NO_MV 0
164 #define MODE_INTRA 1
165 #define MODE_INTER_PLUS_MV 2
166 #define MODE_INTER_LAST_MV 3
167 #define MODE_INTER_PRIOR_LAST 4
168 #define MODE_USING_GOLDEN 5
169 #define MODE_GOLDEN_MV 6
170 #define MODE_INTER_FOURMV 7
171 #define CODING_MODE_COUNT 8
173 /* special internal mode */
174 #define MODE_COPY 8
176 /* There are 6 preset schemes, plus a free-form scheme */
177 static int ModeAlphabet[7][CODING_MODE_COUNT] =
179 /* this is the custom scheme */
180 { 0, 0, 0, 0, 0, 0, 0, 0 },
182 /* scheme 1: Last motion vector dominates */
183 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
184 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
185 MODE_INTRA, MODE_USING_GOLDEN,
186 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
188 /* scheme 2 */
189 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
190 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
191 MODE_INTRA, MODE_USING_GOLDEN,
192 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
194 /* scheme 3 */
195 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
196 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
197 MODE_INTRA, MODE_USING_GOLDEN,
198 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
200 /* scheme 4 */
201 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
202 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
203 MODE_INTRA, MODE_USING_GOLDEN,
204 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
206 /* scheme 5: No motion vector dominates */
207 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
208 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
209 MODE_INTRA, MODE_USING_GOLDEN,
210 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
212 /* scheme 6 */
213 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
214 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
215 MODE_INTER_PLUS_MV, MODE_INTRA,
216 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
220 #define MIN_DEQUANT_VAL 2
222 typedef struct Vp3DecodeContext {
223 AVCodecContext *avctx;
224 int theora, theora_tables;
225 int version;
226 int width, height;
227 AVFrame golden_frame;
228 AVFrame last_frame;
229 AVFrame current_frame;
230 int keyframe;
231 DSPContext dsp;
232 int flipped_image;
234 int qis[3];
235 int nqis;
236 int quality_index;
237 int last_quality_index;
239 int superblock_count;
240 int superblock_width;
241 int superblock_height;
242 int y_superblock_width;
243 int y_superblock_height;
244 int c_superblock_width;
245 int c_superblock_height;
246 int u_superblock_start;
247 int v_superblock_start;
248 unsigned char *superblock_coding;
250 int macroblock_count;
251 int macroblock_width;
252 int macroblock_height;
254 int fragment_count;
255 int fragment_width;
256 int fragment_height;
258 Vp3Fragment *all_fragments;
259 Coeff *coeffs;
260 Coeff *next_coeff;
261 int fragment_start[3];
263 ScanTable scantable;
265 /* tables */
266 uint16_t coded_dc_scale_factor[64];
267 uint32_t coded_ac_scale_factor[64];
268 uint8_t base_matrix[384][64];
269 uint8_t qr_count[2][3];
270 uint8_t qr_size [2][3][64];
271 uint16_t qr_base[2][3][64];
273 /* this is a list of indices into the all_fragments array indicating
274 * which of the fragments are coded */
275 int *coded_fragment_list;
276 int coded_fragment_list_index;
277 int pixel_addresses_inited;
279 VLC dc_vlc[16];
280 VLC ac_vlc_1[16];
281 VLC ac_vlc_2[16];
282 VLC ac_vlc_3[16];
283 VLC ac_vlc_4[16];
285 VLC superblock_run_length_vlc;
286 VLC fragment_run_length_vlc;
287 VLC mode_code_vlc;
288 VLC motion_vector_vlc;
290 /* these arrays need to be on 16-byte boundaries since SSE2 operations
291 * index into them */
292 DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane]
294 /* This table contains superblock_count * 16 entries. Each set of 16
295 * numbers corresponds to the fragment indices 0..15 of the superblock.
296 * An entry will be -1 to indicate that no entry corresponds to that
297 * index. */
298 int *superblock_fragments;
300 /* This table contains superblock_count * 4 entries. Each set of 4
301 * numbers corresponds to the macroblock indices 0..3 of the superblock.
302 * An entry will be -1 to indicate that no entry corresponds to that
303 * index. */
304 int *superblock_macroblocks;
306 /* This table contains macroblock_count * 6 entries. Each set of 6
307 * numbers corresponds to the fragment indices 0..5 which comprise
308 * the macroblock (4 Y fragments and 2 C fragments). */
309 int *macroblock_fragments;
310 /* This is an array that indicates how a particular macroblock
311 * is coded. */
312 unsigned char *macroblock_coding;
314 int first_coded_y_fragment;
315 int first_coded_c_fragment;
316 int last_coded_y_fragment;
317 int last_coded_c_fragment;
319 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
320 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
322 /* Huffman decode */
323 int hti;
324 unsigned int hbits;
325 int entries;
326 int huff_code_size;
327 uint16_t huffman_table[80][32][2];
329 uint32_t filter_limit_values[64];
330 int bounding_values_array[256];
331 } Vp3DecodeContext;
333 /************************************************************************
334 * VP3 specific functions
335 ************************************************************************/
338 * This function sets up all of the various blocks mappings:
339 * superblocks <-> fragments, macroblocks <-> fragments,
340 * superblocks <-> macroblocks
342 * Returns 0 is successful; returns 1 if *anything* went wrong.
344 static int init_block_mapping(Vp3DecodeContext *s)
346 int i, j;
347 signed int hilbert_walk_mb[4];
349 int current_fragment = 0;
350 int current_width = 0;
351 int current_height = 0;
352 int right_edge = 0;
353 int bottom_edge = 0;
354 int superblock_row_inc = 0;
355 int *hilbert = NULL;
356 int mapping_index = 0;
358 int current_macroblock;
359 int c_fragment;
361 signed char travel_width[16] = {
362 1, 1, 0, -1,
363 0, 0, 1, 0,
364 1, 0, 1, 0,
365 0, -1, 0, 1
368 signed char travel_height[16] = {
369 0, 0, 1, 0,
370 1, 1, 0, -1,
371 0, 1, 0, -1,
372 -1, 0, -1, 0
375 signed char travel_width_mb[4] = {
376 1, 0, 1, 0
379 signed char travel_height_mb[4] = {
380 0, 1, 0, -1
383 debug_vp3(" vp3: initialize block mapping tables\n");
385 hilbert_walk_mb[0] = 1;
386 hilbert_walk_mb[1] = s->macroblock_width;
387 hilbert_walk_mb[2] = 1;
388 hilbert_walk_mb[3] = -s->macroblock_width;
390 /* iterate through each superblock (all planes) and map the fragments */
391 for (i = 0; i < s->superblock_count; i++) {
392 debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n",
393 i, s->u_superblock_start, s->v_superblock_start);
395 /* time to re-assign the limits? */
396 if (i == 0) {
398 /* start of Y superblocks */
399 right_edge = s->fragment_width;
400 bottom_edge = s->fragment_height;
401 current_width = -1;
402 current_height = 0;
403 superblock_row_inc = 3 * s->fragment_width -
404 (s->y_superblock_width * 4 - s->fragment_width);
406 /* the first operation for this variable is to advance by 1 */
407 current_fragment = -1;
409 } else if (i == s->u_superblock_start) {
411 /* start of U superblocks */
412 right_edge = s->fragment_width / 2;
413 bottom_edge = s->fragment_height / 2;
414 current_width = -1;
415 current_height = 0;
416 superblock_row_inc = 3 * (s->fragment_width / 2) -
417 (s->c_superblock_width * 4 - s->fragment_width / 2);
419 /* the first operation for this variable is to advance by 1 */
420 current_fragment = s->fragment_start[1] - 1;
422 } else if (i == s->v_superblock_start) {
424 /* start of V superblocks */
425 right_edge = s->fragment_width / 2;
426 bottom_edge = s->fragment_height / 2;
427 current_width = -1;
428 current_height = 0;
429 superblock_row_inc = 3 * (s->fragment_width / 2) -
430 (s->c_superblock_width * 4 - s->fragment_width / 2);
432 /* the first operation for this variable is to advance by 1 */
433 current_fragment = s->fragment_start[2] - 1;
437 if (current_width >= right_edge - 1) {
438 /* reset width and move to next superblock row */
439 current_width = -1;
440 current_height += 4;
442 /* fragment is now at the start of a new superblock row */
443 current_fragment += superblock_row_inc;
446 /* iterate through all 16 fragments in a superblock */
447 for (j = 0; j < 16; j++) {
448 current_fragment += travel_width[j] + right_edge * travel_height[j];
449 current_width += travel_width[j];
450 current_height += travel_height[j];
452 /* check if the fragment is in bounds */
453 if ((current_width < right_edge) &&
454 (current_height < bottom_edge)) {
455 s->superblock_fragments[mapping_index] = current_fragment;
456 debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
457 s->superblock_fragments[mapping_index], i, j,
458 current_width, right_edge, current_height, bottom_edge);
459 } else {
460 s->superblock_fragments[mapping_index] = -1;
461 debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
462 i, j,
463 current_width, right_edge, current_height, bottom_edge);
466 mapping_index++;
470 /* initialize the superblock <-> macroblock mapping; iterate through
471 * all of the Y plane superblocks to build this mapping */
472 right_edge = s->macroblock_width;
473 bottom_edge = s->macroblock_height;
474 current_width = -1;
475 current_height = 0;
476 superblock_row_inc = s->macroblock_width -
477 (s->y_superblock_width * 2 - s->macroblock_width);;
478 hilbert = hilbert_walk_mb;
479 mapping_index = 0;
480 current_macroblock = -1;
481 for (i = 0; i < s->u_superblock_start; i++) {
483 if (current_width >= right_edge - 1) {
484 /* reset width and move to next superblock row */
485 current_width = -1;
486 current_height += 2;
488 /* macroblock is now at the start of a new superblock row */
489 current_macroblock += superblock_row_inc;
492 /* iterate through each potential macroblock in the superblock */
493 for (j = 0; j < 4; j++) {
494 current_macroblock += hilbert_walk_mb[j];
495 current_width += travel_width_mb[j];
496 current_height += travel_height_mb[j];
498 /* check if the macroblock is in bounds */
499 if ((current_width < right_edge) &&
500 (current_height < bottom_edge)) {
501 s->superblock_macroblocks[mapping_index] = current_macroblock;
502 debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
503 s->superblock_macroblocks[mapping_index], i, j,
504 current_width, right_edge, current_height, bottom_edge);
505 } else {
506 s->superblock_macroblocks[mapping_index] = -1;
507 debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
508 i, j,
509 current_width, right_edge, current_height, bottom_edge);
512 mapping_index++;
516 /* initialize the macroblock <-> fragment mapping */
517 current_fragment = 0;
518 current_macroblock = 0;
519 mapping_index = 0;
520 for (i = 0; i < s->fragment_height; i += 2) {
522 for (j = 0; j < s->fragment_width; j += 2) {
524 debug_init(" macroblock %d contains fragments: ", current_macroblock);
525 s->all_fragments[current_fragment].macroblock = current_macroblock;
526 s->macroblock_fragments[mapping_index++] = current_fragment;
527 debug_init("%d ", current_fragment);
529 if (j + 1 < s->fragment_width) {
530 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
531 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
532 debug_init("%d ", current_fragment + 1);
533 } else
534 s->macroblock_fragments[mapping_index++] = -1;
536 if (i + 1 < s->fragment_height) {
537 s->all_fragments[current_fragment + s->fragment_width].macroblock =
538 current_macroblock;
539 s->macroblock_fragments[mapping_index++] =
540 current_fragment + s->fragment_width;
541 debug_init("%d ", current_fragment + s->fragment_width);
542 } else
543 s->macroblock_fragments[mapping_index++] = -1;
545 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
546 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
547 current_macroblock;
548 s->macroblock_fragments[mapping_index++] =
549 current_fragment + s->fragment_width + 1;
550 debug_init("%d ", current_fragment + s->fragment_width + 1);
551 } else
552 s->macroblock_fragments[mapping_index++] = -1;
554 /* C planes */
555 c_fragment = s->fragment_start[1] +
556 (i * s->fragment_width / 4) + (j / 2);
557 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
558 s->macroblock_fragments[mapping_index++] = c_fragment;
559 debug_init("%d ", c_fragment);
561 c_fragment = s->fragment_start[2] +
562 (i * s->fragment_width / 4) + (j / 2);
563 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
564 s->macroblock_fragments[mapping_index++] = c_fragment;
565 debug_init("%d ", c_fragment);
567 debug_init("\n");
569 if (j + 2 <= s->fragment_width)
570 current_fragment += 2;
571 else
572 current_fragment++;
573 current_macroblock++;
576 current_fragment += s->fragment_width;
579 return 0; /* successful path out */
583 * This function wipes out all of the fragment data.
585 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
587 int i;
589 /* zero out all of the fragment information */
590 s->coded_fragment_list_index = 0;
591 for (i = 0; i < s->fragment_count; i++) {
592 s->all_fragments[i].coeff_count = 0;
593 s->all_fragments[i].motion_x = 127;
594 s->all_fragments[i].motion_y = 127;
595 s->all_fragments[i].next_coeff= NULL;
596 s->coeffs[i].index=
597 s->coeffs[i].coeff=0;
598 s->coeffs[i].next= NULL;
603 * This function sets up the dequantization tables used for a particular
604 * frame.
606 static void init_dequantizer(Vp3DecodeContext *s)
608 int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
609 int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
610 int i, plane, inter, qri, bmi, bmj, qistart;
612 debug_vp3(" vp3: initializing dequantization tables\n");
614 for(inter=0; inter<2; inter++){
615 for(plane=0; plane<3; plane++){
616 int sum=0;
617 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
618 sum+= s->qr_size[inter][plane][qri];
619 if(s->quality_index <= sum)
620 break;
622 qistart= sum - s->qr_size[inter][plane][qri];
623 bmi= s->qr_base[inter][plane][qri ];
624 bmj= s->qr_base[inter][plane][qri+1];
625 for(i=0; i<64; i++){
626 int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i]
627 - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
628 + s->qr_size[inter][plane][qri])
629 / (2*s->qr_size[inter][plane][qri]);
631 int qmin= 8<<(inter + !i);
632 int qscale= i ? ac_scale_factor : dc_scale_factor;
634 s->qmat[inter][plane][i]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
639 memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
643 * This function initializes the loop filter boundary limits if the frame's
644 * quality index is different from the previous frame's.
646 static void init_loop_filter(Vp3DecodeContext *s)
648 int *bounding_values= s->bounding_values_array+127;
649 int filter_limit;
650 int x;
652 filter_limit = s->filter_limit_values[s->quality_index];
654 /* set up the bounding values */
655 memset(s->bounding_values_array, 0, 256 * sizeof(int));
656 for (x = 0; x < filter_limit; x++) {
657 bounding_values[-x - filter_limit] = -filter_limit + x;
658 bounding_values[-x] = -x;
659 bounding_values[x] = x;
660 bounding_values[x + filter_limit] = filter_limit - x;
665 * This function unpacks all of the superblock/macroblock/fragment coding
666 * information from the bitstream.
668 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
670 int bit = 0;
671 int current_superblock = 0;
672 int current_run = 0;
673 int decode_fully_flags = 0;
674 int decode_partial_blocks = 0;
675 int first_c_fragment_seen;
677 int i, j;
678 int current_fragment;
680 debug_vp3(" vp3: unpacking superblock coding\n");
682 if (s->keyframe) {
684 debug_vp3(" keyframe-- all superblocks are fully coded\n");
685 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
687 } else {
689 /* unpack the list of partially-coded superblocks */
690 bit = get_bits(gb, 1);
691 /* toggle the bit because as soon as the first run length is
692 * fetched the bit will be toggled again */
693 bit ^= 1;
694 while (current_superblock < s->superblock_count) {
695 if (current_run-- == 0) {
696 bit ^= 1;
697 current_run = get_vlc2(gb,
698 s->superblock_run_length_vlc.table, 6, 2);
699 if (current_run == 33)
700 current_run += get_bits(gb, 12);
701 debug_block_coding(" setting superblocks %d..%d to %s\n",
702 current_superblock,
703 current_superblock + current_run - 1,
704 (bit) ? "partially coded" : "not coded");
706 /* if any of the superblocks are not partially coded, flag
707 * a boolean to decode the list of fully-coded superblocks */
708 if (bit == 0) {
709 decode_fully_flags = 1;
710 } else {
712 /* make a note of the fact that there are partially coded
713 * superblocks */
714 decode_partial_blocks = 1;
717 s->superblock_coding[current_superblock++] = bit;
720 /* unpack the list of fully coded superblocks if any of the blocks were
721 * not marked as partially coded in the previous step */
722 if (decode_fully_flags) {
724 current_superblock = 0;
725 current_run = 0;
726 bit = get_bits(gb, 1);
727 /* toggle the bit because as soon as the first run length is
728 * fetched the bit will be toggled again */
729 bit ^= 1;
730 while (current_superblock < s->superblock_count) {
732 /* skip any superblocks already marked as partially coded */
733 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
735 if (current_run-- == 0) {
736 bit ^= 1;
737 current_run = get_vlc2(gb,
738 s->superblock_run_length_vlc.table, 6, 2);
739 if (current_run == 33)
740 current_run += get_bits(gb, 12);
743 debug_block_coding(" setting superblock %d to %s\n",
744 current_superblock,
745 (bit) ? "fully coded" : "not coded");
746 s->superblock_coding[current_superblock] = 2*bit;
748 current_superblock++;
752 /* if there were partial blocks, initialize bitstream for
753 * unpacking fragment codings */
754 if (decode_partial_blocks) {
756 current_run = 0;
757 bit = get_bits(gb, 1);
758 /* toggle the bit because as soon as the first run length is
759 * fetched the bit will be toggled again */
760 bit ^= 1;
764 /* figure out which fragments are coded; iterate through each
765 * superblock (all planes) */
766 s->coded_fragment_list_index = 0;
767 s->next_coeff= s->coeffs + s->fragment_count;
768 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
769 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
770 first_c_fragment_seen = 0;
771 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
772 for (i = 0; i < s->superblock_count; i++) {
774 /* iterate through all 16 fragments in a superblock */
775 for (j = 0; j < 16; j++) {
777 /* if the fragment is in bounds, check its coding status */
778 current_fragment = s->superblock_fragments[i * 16 + j];
779 if (current_fragment >= s->fragment_count) {
780 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
781 current_fragment, s->fragment_count);
782 return 1;
784 if (current_fragment != -1) {
785 if (s->superblock_coding[i] == SB_NOT_CODED) {
787 /* copy all the fragments from the prior frame */
788 s->all_fragments[current_fragment].coding_method =
789 MODE_COPY;
791 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
793 /* fragment may or may not be coded; this is the case
794 * that cares about the fragment coding runs */
795 if (current_run-- == 0) {
796 bit ^= 1;
797 current_run = get_vlc2(gb,
798 s->fragment_run_length_vlc.table, 5, 2);
801 if (bit) {
802 /* default mode; actual mode will be decoded in
803 * the next phase */
804 s->all_fragments[current_fragment].coding_method =
805 MODE_INTER_NO_MV;
806 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
807 s->coded_fragment_list[s->coded_fragment_list_index] =
808 current_fragment;
809 if ((current_fragment >= s->fragment_start[1]) &&
810 (s->last_coded_y_fragment == -1) &&
811 (!first_c_fragment_seen)) {
812 s->first_coded_c_fragment = s->coded_fragment_list_index;
813 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
814 first_c_fragment_seen = 1;
816 s->coded_fragment_list_index++;
817 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
818 debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n",
819 i, current_fragment);
820 } else {
821 /* not coded; copy this fragment from the prior frame */
822 s->all_fragments[current_fragment].coding_method =
823 MODE_COPY;
824 debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n",
825 i, current_fragment);
828 } else {
830 /* fragments are fully coded in this superblock; actual
831 * coding will be determined in next step */
832 s->all_fragments[current_fragment].coding_method =
833 MODE_INTER_NO_MV;
834 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
835 s->coded_fragment_list[s->coded_fragment_list_index] =
836 current_fragment;
837 if ((current_fragment >= s->fragment_start[1]) &&
838 (s->last_coded_y_fragment == -1) &&
839 (!first_c_fragment_seen)) {
840 s->first_coded_c_fragment = s->coded_fragment_list_index;
841 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
842 first_c_fragment_seen = 1;
844 s->coded_fragment_list_index++;
845 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
846 debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n",
847 i, current_fragment);
853 if (!first_c_fragment_seen)
854 /* only Y fragments coded in this frame */
855 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
856 else
857 /* end the list of coded C fragments */
858 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
860 debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
861 s->coded_fragment_list_index,
862 s->first_coded_y_fragment,
863 s->last_coded_y_fragment,
864 s->first_coded_c_fragment,
865 s->last_coded_c_fragment);
867 return 0;
871 * This function unpacks all the coding mode data for individual macroblocks
872 * from the bitstream.
874 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
876 int i, j, k;
877 int scheme;
878 int current_macroblock;
879 int current_fragment;
880 int coding_mode;
882 debug_vp3(" vp3: unpacking encoding modes\n");
884 if (s->keyframe) {
885 debug_vp3(" keyframe-- all blocks are coded as INTRA\n");
887 for (i = 0; i < s->fragment_count; i++)
888 s->all_fragments[i].coding_method = MODE_INTRA;
890 } else {
892 /* fetch the mode coding scheme for this frame */
893 scheme = get_bits(gb, 3);
894 debug_modes(" using mode alphabet %d\n", scheme);
896 /* is it a custom coding scheme? */
897 if (scheme == 0) {
898 debug_modes(" custom mode alphabet ahead:\n");
899 for (i = 0; i < 8; i++)
900 ModeAlphabet[scheme][get_bits(gb, 3)] = i;
903 for (i = 0; i < 8; i++)
904 debug_modes(" mode[%d][%d] = %d\n", scheme, i,
905 ModeAlphabet[scheme][i]);
907 /* iterate through all of the macroblocks that contain 1 or more
908 * coded fragments */
909 for (i = 0; i < s->u_superblock_start; i++) {
911 for (j = 0; j < 4; j++) {
912 current_macroblock = s->superblock_macroblocks[i * 4 + j];
913 if ((current_macroblock == -1) ||
914 (s->macroblock_coding[current_macroblock] == MODE_COPY))
915 continue;
916 if (current_macroblock >= s->macroblock_count) {
917 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
918 current_macroblock, s->macroblock_count);
919 return 1;
922 /* mode 7 means get 3 bits for each coding mode */
923 if (scheme == 7)
924 coding_mode = get_bits(gb, 3);
925 else
926 coding_mode = ModeAlphabet[scheme]
927 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
929 s->macroblock_coding[current_macroblock] = coding_mode;
930 for (k = 0; k < 6; k++) {
931 current_fragment =
932 s->macroblock_fragments[current_macroblock * 6 + k];
933 if (current_fragment == -1)
934 continue;
935 if (current_fragment >= s->fragment_count) {
936 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
937 current_fragment, s->fragment_count);
938 return 1;
940 if (s->all_fragments[current_fragment].coding_method !=
941 MODE_COPY)
942 s->all_fragments[current_fragment].coding_method =
943 coding_mode;
946 debug_modes(" coding method for macroblock starting @ fragment %d = %d\n",
947 s->macroblock_fragments[current_macroblock * 6], coding_mode);
952 return 0;
956 * This function unpacks all the motion vectors for the individual
957 * macroblocks from the bitstream.
959 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
961 int i, j, k;
962 int coding_mode;
963 int motion_x[6];
964 int motion_y[6];
965 int last_motion_x = 0;
966 int last_motion_y = 0;
967 int prior_last_motion_x = 0;
968 int prior_last_motion_y = 0;
969 int current_macroblock;
970 int current_fragment;
972 debug_vp3(" vp3: unpacking motion vectors\n");
973 if (s->keyframe) {
975 debug_vp3(" keyframe-- there are no motion vectors\n");
977 } else {
979 memset(motion_x, 0, 6 * sizeof(int));
980 memset(motion_y, 0, 6 * sizeof(int));
982 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
983 coding_mode = get_bits(gb, 1);
984 debug_vectors(" using %s scheme for unpacking motion vectors\n",
985 (coding_mode == 0) ? "VLC" : "fixed-length");
987 /* iterate through all of the macroblocks that contain 1 or more
988 * coded fragments */
989 for (i = 0; i < s->u_superblock_start; i++) {
991 for (j = 0; j < 4; j++) {
992 current_macroblock = s->superblock_macroblocks[i * 4 + j];
993 if ((current_macroblock == -1) ||
994 (s->macroblock_coding[current_macroblock] == MODE_COPY))
995 continue;
996 if (current_macroblock >= s->macroblock_count) {
997 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
998 current_macroblock, s->macroblock_count);
999 return 1;
1002 current_fragment = s->macroblock_fragments[current_macroblock * 6];
1003 if (current_fragment >= s->fragment_count) {
1004 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1005 current_fragment, s->fragment_count);
1006 return 1;
1008 switch (s->macroblock_coding[current_macroblock]) {
1010 case MODE_INTER_PLUS_MV:
1011 case MODE_GOLDEN_MV:
1012 /* all 6 fragments use the same motion vector */
1013 if (coding_mode == 0) {
1014 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1015 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1016 } else {
1017 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1018 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1021 for (k = 1; k < 6; k++) {
1022 motion_x[k] = motion_x[0];
1023 motion_y[k] = motion_y[0];
1026 /* vector maintenance, only on MODE_INTER_PLUS_MV */
1027 if (s->macroblock_coding[current_macroblock] ==
1028 MODE_INTER_PLUS_MV) {
1029 prior_last_motion_x = last_motion_x;
1030 prior_last_motion_y = last_motion_y;
1031 last_motion_x = motion_x[0];
1032 last_motion_y = motion_y[0];
1034 break;
1036 case MODE_INTER_FOURMV:
1037 /* fetch 4 vectors from the bitstream, one for each
1038 * Y fragment, then average for the C fragment vectors */
1039 motion_x[4] = motion_y[4] = 0;
1040 for (k = 0; k < 4; k++) {
1041 if (coding_mode == 0) {
1042 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1043 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1044 } else {
1045 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1046 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1048 motion_x[4] += motion_x[k];
1049 motion_y[4] += motion_y[k];
1052 motion_x[5]=
1053 motion_x[4]= RSHIFT(motion_x[4], 2);
1054 motion_y[5]=
1055 motion_y[4]= RSHIFT(motion_y[4], 2);
1057 /* vector maintenance; vector[3] is treated as the
1058 * last vector in this case */
1059 prior_last_motion_x = last_motion_x;
1060 prior_last_motion_y = last_motion_y;
1061 last_motion_x = motion_x[3];
1062 last_motion_y = motion_y[3];
1063 break;
1065 case MODE_INTER_LAST_MV:
1066 /* all 6 fragments use the last motion vector */
1067 motion_x[0] = last_motion_x;
1068 motion_y[0] = last_motion_y;
1069 for (k = 1; k < 6; k++) {
1070 motion_x[k] = motion_x[0];
1071 motion_y[k] = motion_y[0];
1074 /* no vector maintenance (last vector remains the
1075 * last vector) */
1076 break;
1078 case MODE_INTER_PRIOR_LAST:
1079 /* all 6 fragments use the motion vector prior to the
1080 * last motion vector */
1081 motion_x[0] = prior_last_motion_x;
1082 motion_y[0] = prior_last_motion_y;
1083 for (k = 1; k < 6; k++) {
1084 motion_x[k] = motion_x[0];
1085 motion_y[k] = motion_y[0];
1088 /* vector maintenance */
1089 prior_last_motion_x = last_motion_x;
1090 prior_last_motion_y = last_motion_y;
1091 last_motion_x = motion_x[0];
1092 last_motion_y = motion_y[0];
1093 break;
1095 default:
1096 /* covers intra, inter without MV, golden without MV */
1097 memset(motion_x, 0, 6 * sizeof(int));
1098 memset(motion_y, 0, 6 * sizeof(int));
1100 /* no vector maintenance */
1101 break;
1104 /* assign the motion vectors to the correct fragments */
1105 debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n",
1106 current_fragment,
1107 s->macroblock_coding[current_macroblock]);
1108 for (k = 0; k < 6; k++) {
1109 current_fragment =
1110 s->macroblock_fragments[current_macroblock * 6 + k];
1111 if (current_fragment == -1)
1112 continue;
1113 if (current_fragment >= s->fragment_count) {
1114 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1115 current_fragment, s->fragment_count);
1116 return 1;
1118 s->all_fragments[current_fragment].motion_x = motion_x[k];
1119 s->all_fragments[current_fragment].motion_y = motion_y[k];
1120 debug_vectors(" vector %d: fragment %d = (%d, %d)\n",
1121 k, current_fragment, motion_x[k], motion_y[k]);
1127 return 0;
1131 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1132 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1133 * data. This function unpacks all the VLCs for either the Y plane or both
1134 * C planes, and is called for DC coefficients or different AC coefficient
1135 * levels (since different coefficient types require different VLC tables.
1137 * This function returns a residual eob run. E.g, if a particular token gave
1138 * instructions to EOB the next 5 fragments and there were only 2 fragments
1139 * left in the current fragment range, 3 would be returned so that it could
1140 * be passed into the next call to this same function.
1142 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1143 VLC *table, int coeff_index,
1144 int first_fragment, int last_fragment,
1145 int eob_run)
1147 int i;
1148 int token;
1149 int zero_run = 0;
1150 DCTELEM coeff = 0;
1151 Vp3Fragment *fragment;
1152 uint8_t *perm= s->scantable.permutated;
1153 int bits_to_get;
1155 if ((first_fragment >= s->fragment_count) ||
1156 (last_fragment >= s->fragment_count)) {
1158 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1159 first_fragment, last_fragment);
1160 return 0;
1163 for (i = first_fragment; i <= last_fragment; i++) {
1165 fragment = &s->all_fragments[s->coded_fragment_list[i]];
1166 if (fragment->coeff_count > coeff_index)
1167 continue;
1169 if (!eob_run) {
1170 /* decode a VLC into a token */
1171 token = get_vlc2(gb, table->table, 5, 3);
1172 debug_vlc(" token = %2d, ", token);
1173 /* use the token to get a zero run, a coefficient, and an eob run */
1174 if (token <= 6) {
1175 eob_run = eob_run_base[token];
1176 if (eob_run_get_bits[token])
1177 eob_run += get_bits(gb, eob_run_get_bits[token]);
1178 coeff = zero_run = 0;
1179 } else {
1180 bits_to_get = coeff_get_bits[token];
1181 if (!bits_to_get)
1182 coeff = coeff_tables[token][0];
1183 else
1184 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1186 zero_run = zero_run_base[token];
1187 if (zero_run_get_bits[token])
1188 zero_run += get_bits(gb, zero_run_get_bits[token]);
1192 if (!eob_run) {
1193 fragment->coeff_count += zero_run;
1194 if (fragment->coeff_count < 64){
1195 fragment->next_coeff->coeff= coeff;
1196 fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
1197 fragment->next_coeff->next= s->next_coeff;
1198 s->next_coeff->next=NULL;
1199 fragment->next_coeff= s->next_coeff++;
1201 debug_vlc(" fragment %d coeff = %d\n",
1202 s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1203 } else {
1204 fragment->coeff_count |= 128;
1205 debug_vlc(" fragment %d eob with %d coefficients\n",
1206 s->coded_fragment_list[i], fragment->coeff_count&127);
1207 eob_run--;
1211 return eob_run;
1215 * This function unpacks all of the DCT coefficient data from the
1216 * bitstream.
1218 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1220 int i;
1221 int dc_y_table;
1222 int dc_c_table;
1223 int ac_y_table;
1224 int ac_c_table;
1225 int residual_eob_run = 0;
1227 /* fetch the DC table indices */
1228 dc_y_table = get_bits(gb, 4);
1229 dc_c_table = get_bits(gb, 4);
1231 /* unpack the Y plane DC coefficients */
1232 debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n",
1233 dc_y_table);
1234 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1235 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1237 /* unpack the C plane DC coefficients */
1238 debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n",
1239 dc_c_table);
1240 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1241 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1243 /* fetch the AC table indices */
1244 ac_y_table = get_bits(gb, 4);
1245 ac_c_table = get_bits(gb, 4);
1247 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1248 for (i = 1; i <= 5; i++) {
1250 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1251 i, ac_y_table);
1252 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1253 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1255 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1256 i, ac_c_table);
1257 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1258 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1261 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1262 for (i = 6; i <= 14; i++) {
1264 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1265 i, ac_y_table);
1266 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1267 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1269 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1270 i, ac_c_table);
1271 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1272 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1275 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1276 for (i = 15; i <= 27; i++) {
1278 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1279 i, ac_y_table);
1280 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1281 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1283 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1284 i, ac_c_table);
1285 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1286 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1289 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1290 for (i = 28; i <= 63; i++) {
1292 debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1293 i, ac_y_table);
1294 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1295 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1297 debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
1298 i, ac_c_table);
1299 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1300 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1303 return 0;
1307 * This function reverses the DC prediction for each coded fragment in
1308 * the frame. Much of this function is adapted directly from the original
1309 * VP3 source code.
1311 #define COMPATIBLE_FRAME(x) \
1312 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1313 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1314 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1316 static void reverse_dc_prediction(Vp3DecodeContext *s,
1317 int first_fragment,
1318 int fragment_width,
1319 int fragment_height)
1322 #define PUL 8
1323 #define PU 4
1324 #define PUR 2
1325 #define PL 1
1327 int x, y;
1328 int i = first_fragment;
1330 int predicted_dc;
1332 /* DC values for the left, up-left, up, and up-right fragments */
1333 int vl, vul, vu, vur;
1335 /* indices for the left, up-left, up, and up-right fragments */
1336 int l, ul, u, ur;
1339 * The 6 fields mean:
1340 * 0: up-left multiplier
1341 * 1: up multiplier
1342 * 2: up-right multiplier
1343 * 3: left multiplier
1345 int predictor_transform[16][4] = {
1346 { 0, 0, 0, 0},
1347 { 0, 0, 0,128}, // PL
1348 { 0, 0,128, 0}, // PUR
1349 { 0, 0, 53, 75}, // PUR|PL
1350 { 0,128, 0, 0}, // PU
1351 { 0, 64, 0, 64}, // PU|PL
1352 { 0,128, 0, 0}, // PU|PUR
1353 { 0, 0, 53, 75}, // PU|PUR|PL
1354 {128, 0, 0, 0}, // PUL
1355 { 0, 0, 0,128}, // PUL|PL
1356 { 64, 0, 64, 0}, // PUL|PUR
1357 { 0, 0, 53, 75}, // PUL|PUR|PL
1358 { 0,128, 0, 0}, // PUL|PU
1359 {-104,116, 0,116}, // PUL|PU|PL
1360 { 24, 80, 24, 0}, // PUL|PU|PUR
1361 {-104,116, 0,116} // PUL|PU|PUR|PL
1364 /* This table shows which types of blocks can use other blocks for
1365 * prediction. For example, INTRA is the only mode in this table to
1366 * have a frame number of 0. That means INTRA blocks can only predict
1367 * from other INTRA blocks. There are 2 golden frame coding types;
1368 * blocks encoding in these modes can only predict from other blocks
1369 * that were encoded with these 1 of these 2 modes. */
1370 unsigned char compatible_frame[8] = {
1371 1, /* MODE_INTER_NO_MV */
1372 0, /* MODE_INTRA */
1373 1, /* MODE_INTER_PLUS_MV */
1374 1, /* MODE_INTER_LAST_MV */
1375 1, /* MODE_INTER_PRIOR_MV */
1376 2, /* MODE_USING_GOLDEN */
1377 2, /* MODE_GOLDEN_MV */
1378 1 /* MODE_INTER_FOUR_MV */
1380 int current_frame_type;
1382 /* there is a last DC predictor for each of the 3 frame types */
1383 short last_dc[3];
1385 int transform = 0;
1387 debug_vp3(" vp3: reversing DC prediction\n");
1389 vul = vu = vur = vl = 0;
1390 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1392 /* for each fragment row... */
1393 for (y = 0; y < fragment_height; y++) {
1395 /* for each fragment in a row... */
1396 for (x = 0; x < fragment_width; x++, i++) {
1398 /* reverse prediction if this block was coded */
1399 if (s->all_fragments[i].coding_method != MODE_COPY) {
1401 current_frame_type =
1402 compatible_frame[s->all_fragments[i].coding_method];
1403 debug_dc_pred(" frag %d: orig DC = %d, ",
1404 i, DC_COEFF(i));
1406 transform= 0;
1407 if(x){
1408 l= i-1;
1409 vl = DC_COEFF(l);
1410 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1411 transform |= PL;
1413 if(y){
1414 u= i-fragment_width;
1415 vu = DC_COEFF(u);
1416 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1417 transform |= PU;
1418 if(x){
1419 ul= i-fragment_width-1;
1420 vul = DC_COEFF(ul);
1421 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1422 transform |= PUL;
1424 if(x + 1 < fragment_width){
1425 ur= i-fragment_width+1;
1426 vur = DC_COEFF(ur);
1427 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1428 transform |= PUR;
1432 debug_dc_pred("transform = %d, ", transform);
1434 if (transform == 0) {
1436 /* if there were no fragments to predict from, use last
1437 * DC saved */
1438 predicted_dc = last_dc[current_frame_type];
1439 debug_dc_pred("from last DC (%d) = %d\n",
1440 current_frame_type, DC_COEFF(i));
1442 } else {
1444 /* apply the appropriate predictor transform */
1445 predicted_dc =
1446 (predictor_transform[transform][0] * vul) +
1447 (predictor_transform[transform][1] * vu) +
1448 (predictor_transform[transform][2] * vur) +
1449 (predictor_transform[transform][3] * vl);
1451 predicted_dc /= 128;
1453 /* check for outranging on the [ul u l] and
1454 * [ul u ur l] predictors */
1455 if ((transform == 13) || (transform == 15)) {
1456 if (FFABS(predicted_dc - vu) > 128)
1457 predicted_dc = vu;
1458 else if (FFABS(predicted_dc - vl) > 128)
1459 predicted_dc = vl;
1460 else if (FFABS(predicted_dc - vul) > 128)
1461 predicted_dc = vul;
1464 debug_dc_pred("from pred DC = %d\n",
1465 DC_COEFF(i));
1468 /* at long last, apply the predictor */
1469 if(s->coeffs[i].index){
1470 *s->next_coeff= s->coeffs[i];
1471 s->coeffs[i].index=0;
1472 s->coeffs[i].coeff=0;
1473 s->coeffs[i].next= s->next_coeff++;
1475 s->coeffs[i].coeff += predicted_dc;
1476 /* save the DC */
1477 last_dc[current_frame_type] = DC_COEFF(i);
1478 if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
1479 s->all_fragments[i].coeff_count= 129;
1480 // s->all_fragments[i].next_coeff= s->next_coeff;
1481 s->coeffs[i].next= s->next_coeff;
1482 (s->next_coeff++)->next=NULL;
1490 static void horizontal_filter(unsigned char *first_pixel, int stride,
1491 int *bounding_values);
1492 static void vertical_filter(unsigned char *first_pixel, int stride,
1493 int *bounding_values);
1496 * Perform the final rendering for a particular slice of data.
1497 * The slice number ranges from 0..(macroblock_height - 1).
1499 static void render_slice(Vp3DecodeContext *s, int slice)
1501 int x;
1502 int m, n;
1503 int16_t *dequantizer;
1504 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1505 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1506 int motion_halfpel_index;
1507 uint8_t *motion_source;
1508 int plane;
1509 int current_macroblock_entry = slice * s->macroblock_width * 6;
1511 if (slice >= s->macroblock_height)
1512 return;
1514 for (plane = 0; plane < 3; plane++) {
1515 uint8_t *output_plane = s->current_frame.data [plane];
1516 uint8_t * last_plane = s-> last_frame.data [plane];
1517 uint8_t *golden_plane = s-> golden_frame.data [plane];
1518 int stride = s->current_frame.linesize[plane];
1519 int plane_width = s->width >> !!plane;
1520 int plane_height = s->height >> !!plane;
1521 int y = slice * FRAGMENT_PIXELS << !plane ;
1522 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1523 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1525 if (!s->flipped_image) stride = -stride;
1528 if(FFABS(stride) > 2048)
1529 return; //various tables are fixed size
1531 /* for each fragment row in the slice (both of them)... */
1532 for (; y < slice_height; y += 8) {
1534 /* for each fragment in a row... */
1535 for (x = 0; x < plane_width; x += 8, i++) {
1537 if ((i < 0) || (i >= s->fragment_count)) {
1538 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1539 return;
1542 /* transform if this block was coded */
1543 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1544 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1546 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1547 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1548 motion_source= golden_plane;
1549 else
1550 motion_source= last_plane;
1552 motion_source += s->all_fragments[i].first_pixel;
1553 motion_halfpel_index = 0;
1555 /* sort out the motion vector if this fragment is coded
1556 * using a motion vector method */
1557 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1558 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1559 int src_x, src_y;
1560 motion_x = s->all_fragments[i].motion_x;
1561 motion_y = s->all_fragments[i].motion_y;
1562 if(plane){
1563 motion_x= (motion_x>>1) | (motion_x&1);
1564 motion_y= (motion_y>>1) | (motion_y&1);
1567 src_x= (motion_x>>1) + x;
1568 src_y= (motion_y>>1) + y;
1569 if ((motion_x == 127) || (motion_y == 127))
1570 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1572 motion_halfpel_index = motion_x & 0x01;
1573 motion_source += (motion_x >> 1);
1575 motion_halfpel_index |= (motion_y & 0x01) << 1;
1576 motion_source += ((motion_y >> 1) * stride);
1578 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1579 uint8_t *temp= s->edge_emu_buffer;
1580 if(stride<0) temp -= 9*stride;
1581 else temp += 9*stride;
1583 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1584 motion_source= temp;
1589 /* first, take care of copying a block from either the
1590 * previous or the golden frame */
1591 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1592 /* Note, it is possible to implement all MC cases with
1593 put_no_rnd_pixels_l2 which would look more like the
1594 VP3 source but this would be slower as
1595 put_no_rnd_pixels_tab is better optimzed */
1596 if(motion_halfpel_index != 3){
1597 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1598 output_plane + s->all_fragments[i].first_pixel,
1599 motion_source, stride, 8);
1600 }else{
1601 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1602 s->dsp.put_no_rnd_pixels_l2[1](
1603 output_plane + s->all_fragments[i].first_pixel,
1604 motion_source - d,
1605 motion_source + stride + 1 + d,
1606 stride, 8);
1608 dequantizer = s->qmat[1][plane];
1609 }else{
1610 dequantizer = s->qmat[0][plane];
1613 /* dequantize the DCT coefficients */
1614 debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
1615 i, s->all_fragments[i].coding_method,
1616 DC_COEFF(i), dequantizer[0]);
1618 if(s->avctx->idct_algo==FF_IDCT_VP3){
1619 Coeff *coeff= s->coeffs + i;
1620 memset(block, 0, sizeof(block));
1621 while(coeff->next){
1622 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1623 coeff= coeff->next;
1625 }else{
1626 Coeff *coeff= s->coeffs + i;
1627 memset(block, 0, sizeof(block));
1628 while(coeff->next){
1629 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1630 coeff= coeff->next;
1634 /* invert DCT and place (or add) in final output */
1636 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1637 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1638 block[0] += 128<<3;
1639 s->dsp.idct_put(
1640 output_plane + s->all_fragments[i].first_pixel,
1641 stride,
1642 block);
1643 } else {
1644 s->dsp.idct_add(
1645 output_plane + s->all_fragments[i].first_pixel,
1646 stride,
1647 block);
1650 debug_idct("block after idct_%s():\n",
1651 (s->all_fragments[i].coding_method == MODE_INTRA)?
1652 "put" : "add");
1653 for (m = 0; m < 8; m++) {
1654 for (n = 0; n < 8; n++) {
1655 debug_idct(" %3d", *(output_plane +
1656 s->all_fragments[i].first_pixel + (m * stride + n)));
1658 debug_idct("\n");
1660 debug_idct("\n");
1662 } else {
1664 /* copy directly from the previous frame */
1665 s->dsp.put_pixels_tab[1][0](
1666 output_plane + s->all_fragments[i].first_pixel,
1667 last_plane + s->all_fragments[i].first_pixel,
1668 stride, 8);
1671 #if 0
1672 /* perform the left edge filter if:
1673 * - the fragment is not on the left column
1674 * - the fragment is coded in this frame
1675 * - the fragment is not coded in this frame but the left
1676 * fragment is coded in this frame (this is done instead
1677 * of a right edge filter when rendering the left fragment
1678 * since this fragment is not available yet) */
1679 if ((x > 0) &&
1680 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1681 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1682 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1683 horizontal_filter(
1684 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1685 -stride, s->bounding_values_array + 127);
1688 /* perform the top edge filter if:
1689 * - the fragment is not on the top row
1690 * - the fragment is coded in this frame
1691 * - the fragment is not coded in this frame but the above
1692 * fragment is coded in this frame (this is done instead
1693 * of a bottom edge filter when rendering the above
1694 * fragment since this fragment is not available yet) */
1695 if ((y > 0) &&
1696 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1697 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1698 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1699 vertical_filter(
1700 output_plane + s->all_fragments[i].first_pixel - stride,
1701 -stride, s->bounding_values_array + 127);
1703 #endif
1708 /* this looks like a good place for slice dispatch... */
1709 /* algorithm:
1710 * if (slice == s->macroblock_height - 1)
1711 * dispatch (both last slice & 2nd-to-last slice);
1712 * else if (slice > 0)
1713 * dispatch (slice - 1);
1716 emms_c();
1719 static void horizontal_filter(unsigned char *first_pixel, int stride,
1720 int *bounding_values)
1722 unsigned char *end;
1723 int filter_value;
1725 for (end= first_pixel + 8*stride; first_pixel != end; first_pixel += stride) {
1726 filter_value =
1727 (first_pixel[-2] - first_pixel[ 1])
1728 +3*(first_pixel[ 0] - first_pixel[-1]);
1729 filter_value = bounding_values[(filter_value + 4) >> 3];
1730 first_pixel[-1] = av_clip_uint8(first_pixel[-1] + filter_value);
1731 first_pixel[ 0] = av_clip_uint8(first_pixel[ 0] - filter_value);
1735 static void vertical_filter(unsigned char *first_pixel, int stride,
1736 int *bounding_values)
1738 unsigned char *end;
1739 int filter_value;
1740 const int nstride= -stride;
1742 for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1743 filter_value =
1744 (first_pixel[2 * nstride] - first_pixel[ stride])
1745 +3*(first_pixel[0 ] - first_pixel[nstride]);
1746 filter_value = bounding_values[(filter_value + 4) >> 3];
1747 first_pixel[nstride] = av_clip_uint8(first_pixel[nstride] + filter_value);
1748 first_pixel[0] = av_clip_uint8(first_pixel[0] - filter_value);
1752 static void apply_loop_filter(Vp3DecodeContext *s)
1754 int plane;
1755 int x, y;
1756 int *bounding_values= s->bounding_values_array+127;
1758 #if 0
1759 int bounding_values_array[256];
1760 int filter_limit;
1762 /* find the right loop limit value */
1763 for (x = 63; x >= 0; x--) {
1764 if (vp31_ac_scale_factor[x] >= s->quality_index)
1765 break;
1767 filter_limit = vp31_filter_limit_values[s->quality_index];
1769 /* set up the bounding values */
1770 memset(bounding_values_array, 0, 256 * sizeof(int));
1771 for (x = 0; x < filter_limit; x++) {
1772 bounding_values[-x - filter_limit] = -filter_limit + x;
1773 bounding_values[-x] = -x;
1774 bounding_values[x] = x;
1775 bounding_values[x + filter_limit] = filter_limit - x;
1777 #endif
1779 for (plane = 0; plane < 3; plane++) {
1780 int width = s->fragment_width >> !!plane;
1781 int height = s->fragment_height >> !!plane;
1782 int fragment = s->fragment_start [plane];
1783 int stride = s->current_frame.linesize[plane];
1784 uint8_t *plane_data = s->current_frame.data [plane];
1785 if (!s->flipped_image) stride = -stride;
1787 for (y = 0; y < height; y++) {
1789 for (x = 0; x < width; x++) {
1790 START_TIMER
1791 /* do not perform left edge filter for left columns frags */
1792 if ((x > 0) &&
1793 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1794 horizontal_filter(
1795 plane_data + s->all_fragments[fragment].first_pixel,
1796 stride, bounding_values);
1799 /* do not perform top edge filter for top row fragments */
1800 if ((y > 0) &&
1801 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1802 vertical_filter(
1803 plane_data + s->all_fragments[fragment].first_pixel,
1804 stride, bounding_values);
1807 /* do not perform right edge filter for right column
1808 * fragments or if right fragment neighbor is also coded
1809 * in this frame (it will be filtered in next iteration) */
1810 if ((x < width - 1) &&
1811 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1812 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1813 horizontal_filter(
1814 plane_data + s->all_fragments[fragment + 1].first_pixel,
1815 stride, bounding_values);
1818 /* do not perform bottom edge filter for bottom row
1819 * fragments or if bottom fragment neighbor is also coded
1820 * in this frame (it will be filtered in the next row) */
1821 if ((y < height - 1) &&
1822 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1823 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1824 vertical_filter(
1825 plane_data + s->all_fragments[fragment + width].first_pixel,
1826 stride, bounding_values);
1829 fragment++;
1830 STOP_TIMER("loop filter")
1837 * This function computes the first pixel addresses for each fragment.
1838 * This function needs to be invoked after the first frame is allocated
1839 * so that it has access to the plane strides.
1841 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1844 int i, x, y;
1846 /* figure out the first pixel addresses for each of the fragments */
1847 /* Y plane */
1848 i = 0;
1849 for (y = s->fragment_height; y > 0; y--) {
1850 for (x = 0; x < s->fragment_width; x++) {
1851 s->all_fragments[i++].first_pixel =
1852 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1853 s->golden_frame.linesize[0] +
1854 x * FRAGMENT_PIXELS;
1855 debug_init(" fragment %d, first pixel @ %d\n",
1856 i-1, s->all_fragments[i-1].first_pixel);
1860 /* U plane */
1861 i = s->fragment_start[1];
1862 for (y = s->fragment_height / 2; y > 0; y--) {
1863 for (x = 0; x < s->fragment_width / 2; x++) {
1864 s->all_fragments[i++].first_pixel =
1865 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1866 s->golden_frame.linesize[1] +
1867 x * FRAGMENT_PIXELS;
1868 debug_init(" fragment %d, first pixel @ %d\n",
1869 i-1, s->all_fragments[i-1].first_pixel);
1873 /* V plane */
1874 i = s->fragment_start[2];
1875 for (y = s->fragment_height / 2; y > 0; y--) {
1876 for (x = 0; x < s->fragment_width / 2; x++) {
1877 s->all_fragments[i++].first_pixel =
1878 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1879 s->golden_frame.linesize[2] +
1880 x * FRAGMENT_PIXELS;
1881 debug_init(" fragment %d, first pixel @ %d\n",
1882 i-1, s->all_fragments[i-1].first_pixel);
1887 /* FIXME: this should be merged with the above! */
1888 static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
1891 int i, x, y;
1893 /* figure out the first pixel addresses for each of the fragments */
1894 /* Y plane */
1895 i = 0;
1896 for (y = 1; y <= s->fragment_height; y++) {
1897 for (x = 0; x < s->fragment_width; x++) {
1898 s->all_fragments[i++].first_pixel =
1899 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1900 s->golden_frame.linesize[0] +
1901 x * FRAGMENT_PIXELS;
1902 debug_init(" fragment %d, first pixel @ %d\n",
1903 i-1, s->all_fragments[i-1].first_pixel);
1907 /* U plane */
1908 i = s->fragment_start[1];
1909 for (y = 1; y <= s->fragment_height / 2; y++) {
1910 for (x = 0; x < s->fragment_width / 2; x++) {
1911 s->all_fragments[i++].first_pixel =
1912 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1913 s->golden_frame.linesize[1] +
1914 x * FRAGMENT_PIXELS;
1915 debug_init(" fragment %d, first pixel @ %d\n",
1916 i-1, s->all_fragments[i-1].first_pixel);
1920 /* V plane */
1921 i = s->fragment_start[2];
1922 for (y = 1; y <= s->fragment_height / 2; y++) {
1923 for (x = 0; x < s->fragment_width / 2; x++) {
1924 s->all_fragments[i++].first_pixel =
1925 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1926 s->golden_frame.linesize[2] +
1927 x * FRAGMENT_PIXELS;
1928 debug_init(" fragment %d, first pixel @ %d\n",
1929 i-1, s->all_fragments[i-1].first_pixel);
1935 * This is the ffmpeg/libavcodec API init function.
1937 static int vp3_decode_init(AVCodecContext *avctx)
1939 Vp3DecodeContext *s = avctx->priv_data;
1940 int i, inter, plane;
1941 int c_width;
1942 int c_height;
1943 int y_superblock_count;
1944 int c_superblock_count;
1946 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1947 s->version = 0;
1948 else
1949 s->version = 1;
1951 s->avctx = avctx;
1952 s->width = (avctx->width + 15) & 0xFFFFFFF0;
1953 s->height = (avctx->height + 15) & 0xFFFFFFF0;
1954 avctx->pix_fmt = PIX_FMT_YUV420P;
1955 if(avctx->idct_algo==FF_IDCT_AUTO)
1956 avctx->idct_algo=FF_IDCT_VP3;
1957 dsputil_init(&s->dsp, avctx);
1959 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1961 /* initialize to an impossible value which will force a recalculation
1962 * in the first frame decode */
1963 s->quality_index = -1;
1965 s->y_superblock_width = (s->width + 31) / 32;
1966 s->y_superblock_height = (s->height + 31) / 32;
1967 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1969 /* work out the dimensions for the C planes */
1970 c_width = s->width / 2;
1971 c_height = s->height / 2;
1972 s->c_superblock_width = (c_width + 31) / 32;
1973 s->c_superblock_height = (c_height + 31) / 32;
1974 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1976 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1977 s->u_superblock_start = y_superblock_count;
1978 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1979 s->superblock_coding = av_malloc(s->superblock_count);
1981 s->macroblock_width = (s->width + 15) / 16;
1982 s->macroblock_height = (s->height + 15) / 16;
1983 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1985 s->fragment_width = s->width / FRAGMENT_PIXELS;
1986 s->fragment_height = s->height / FRAGMENT_PIXELS;
1988 /* fragment count covers all 8x8 blocks for all 3 planes */
1989 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1990 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1991 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1993 debug_init(" Y plane: %d x %d\n", s->width, s->height);
1994 debug_init(" C plane: %d x %d\n", c_width, c_height);
1995 debug_init(" Y superblocks: %d x %d, %d total\n",
1996 s->y_superblock_width, s->y_superblock_height, y_superblock_count);
1997 debug_init(" C superblocks: %d x %d, %d total\n",
1998 s->c_superblock_width, s->c_superblock_height, c_superblock_count);
1999 debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n",
2000 s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2001 debug_init(" macroblocks: %d x %d, %d total\n",
2002 s->macroblock_width, s->macroblock_height, s->macroblock_count);
2003 debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
2004 s->fragment_count,
2005 s->fragment_width,
2006 s->fragment_height,
2007 s->fragment_start[1],
2008 s->fragment_start[2]);
2010 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2011 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2012 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
2013 s->pixel_addresses_inited = 0;
2015 if (!s->theora_tables)
2017 for (i = 0; i < 64; i++) {
2018 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
2019 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2020 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
2021 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
2022 s->base_matrix[2][i] = vp31_inter_dequant[i];
2023 s->filter_limit_values[i] = vp31_filter_limit_values[i];
2026 for(inter=0; inter<2; inter++){
2027 for(plane=0; plane<3; plane++){
2028 s->qr_count[inter][plane]= 1;
2029 s->qr_size [inter][plane][0]= 63;
2030 s->qr_base [inter][plane][0]=
2031 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
2035 /* init VLC tables */
2036 for (i = 0; i < 16; i++) {
2038 /* DC histograms */
2039 init_vlc(&s->dc_vlc[i], 5, 32,
2040 &dc_bias[i][0][1], 4, 2,
2041 &dc_bias[i][0][0], 4, 2, 0);
2043 /* group 1 AC histograms */
2044 init_vlc(&s->ac_vlc_1[i], 5, 32,
2045 &ac_bias_0[i][0][1], 4, 2,
2046 &ac_bias_0[i][0][0], 4, 2, 0);
2048 /* group 2 AC histograms */
2049 init_vlc(&s->ac_vlc_2[i], 5, 32,
2050 &ac_bias_1[i][0][1], 4, 2,
2051 &ac_bias_1[i][0][0], 4, 2, 0);
2053 /* group 3 AC histograms */
2054 init_vlc(&s->ac_vlc_3[i], 5, 32,
2055 &ac_bias_2[i][0][1], 4, 2,
2056 &ac_bias_2[i][0][0], 4, 2, 0);
2058 /* group 4 AC histograms */
2059 init_vlc(&s->ac_vlc_4[i], 5, 32,
2060 &ac_bias_3[i][0][1], 4, 2,
2061 &ac_bias_3[i][0][0], 4, 2, 0);
2063 } else {
2064 for (i = 0; i < 16; i++) {
2066 /* DC histograms */
2067 init_vlc(&s->dc_vlc[i], 5, 32,
2068 &s->huffman_table[i][0][1], 4, 2,
2069 &s->huffman_table[i][0][0], 4, 2, 0);
2071 /* group 1 AC histograms */
2072 init_vlc(&s->ac_vlc_1[i], 5, 32,
2073 &s->huffman_table[i+16][0][1], 4, 2,
2074 &s->huffman_table[i+16][0][0], 4, 2, 0);
2076 /* group 2 AC histograms */
2077 init_vlc(&s->ac_vlc_2[i], 5, 32,
2078 &s->huffman_table[i+16*2][0][1], 4, 2,
2079 &s->huffman_table[i+16*2][0][0], 4, 2, 0);
2081 /* group 3 AC histograms */
2082 init_vlc(&s->ac_vlc_3[i], 5, 32,
2083 &s->huffman_table[i+16*3][0][1], 4, 2,
2084 &s->huffman_table[i+16*3][0][0], 4, 2, 0);
2086 /* group 4 AC histograms */
2087 init_vlc(&s->ac_vlc_4[i], 5, 32,
2088 &s->huffman_table[i+16*4][0][1], 4, 2,
2089 &s->huffman_table[i+16*4][0][0], 4, 2, 0);
2093 init_vlc(&s->superblock_run_length_vlc, 6, 34,
2094 &superblock_run_length_vlc_table[0][1], 4, 2,
2095 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2097 init_vlc(&s->fragment_run_length_vlc, 5, 30,
2098 &fragment_run_length_vlc_table[0][1], 4, 2,
2099 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2101 init_vlc(&s->mode_code_vlc, 3, 8,
2102 &mode_code_vlc_table[0][1], 2, 1,
2103 &mode_code_vlc_table[0][0], 2, 1, 0);
2105 init_vlc(&s->motion_vector_vlc, 6, 63,
2106 &motion_vector_vlc_table[0][1], 2, 1,
2107 &motion_vector_vlc_table[0][0], 2, 1, 0);
2109 /* work out the block mapping tables */
2110 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
2111 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
2112 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2113 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2114 init_block_mapping(s);
2116 for (i = 0; i < 3; i++) {
2117 s->current_frame.data[i] = NULL;
2118 s->last_frame.data[i] = NULL;
2119 s->golden_frame.data[i] = NULL;
2122 return 0;
2126 * This is the ffmpeg/libavcodec API frame decode function.
2128 static int vp3_decode_frame(AVCodecContext *avctx,
2129 void *data, int *data_size,
2130 uint8_t *buf, int buf_size)
2132 Vp3DecodeContext *s = avctx->priv_data;
2133 GetBitContext gb;
2134 static int counter = 0;
2135 int i;
2137 init_get_bits(&gb, buf, buf_size * 8);
2139 if (s->theora && get_bits1(&gb))
2141 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
2142 return -1;
2145 s->keyframe = !get_bits1(&gb);
2146 if (!s->theora)
2147 skip_bits(&gb, 1);
2148 s->last_quality_index = s->quality_index;
2150 s->nqis=0;
2152 s->qis[s->nqis++]= get_bits(&gb, 6);
2153 } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
2155 s->quality_index= s->qis[0];
2157 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2158 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2159 s->keyframe?"key":"", counter, s->quality_index);
2160 counter++;
2162 if (s->quality_index != s->last_quality_index) {
2163 init_dequantizer(s);
2164 init_loop_filter(s);
2167 if (s->keyframe) {
2168 if (!s->theora)
2170 skip_bits(&gb, 4); /* width code */
2171 skip_bits(&gb, 4); /* height code */
2172 if (s->version)
2174 s->version = get_bits(&gb, 5);
2175 if (counter == 1)
2176 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
2179 if (s->version || s->theora)
2181 if (get_bits1(&gb))
2182 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
2183 skip_bits(&gb, 2); /* reserved? */
2186 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
2187 if (s->golden_frame.data[0])
2188 avctx->release_buffer(avctx, &s->golden_frame);
2189 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2190 } else {
2191 if (s->golden_frame.data[0])
2192 avctx->release_buffer(avctx, &s->golden_frame);
2193 if (s->last_frame.data[0])
2194 avctx->release_buffer(avctx, &s->last_frame);
2197 s->golden_frame.reference = 3;
2198 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2199 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2200 return -1;
2203 /* golden frame is also the current frame */
2204 s->current_frame= s->golden_frame;
2206 /* time to figure out pixel addresses? */
2207 if (!s->pixel_addresses_inited)
2209 if (!s->flipped_image)
2210 vp3_calculate_pixel_addresses(s);
2211 else
2212 theora_calculate_pixel_addresses(s);
2213 s->pixel_addresses_inited = 1;
2215 } else {
2216 /* allocate a new current frame */
2217 s->current_frame.reference = 3;
2218 if (!s->pixel_addresses_inited) {
2219 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
2220 return -1;
2222 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2223 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2224 return -1;
2228 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
2229 s->current_frame.qstride= 0;
2231 {START_TIMER
2232 init_frame(s, &gb);
2233 STOP_TIMER("init_frame")}
2235 #if KEYFRAMES_ONLY
2236 if (!s->keyframe) {
2238 memcpy(s->current_frame.data[0], s->golden_frame.data[0],
2239 s->current_frame.linesize[0] * s->height);
2240 memcpy(s->current_frame.data[1], s->golden_frame.data[1],
2241 s->current_frame.linesize[1] * s->height / 2);
2242 memcpy(s->current_frame.data[2], s->golden_frame.data[2],
2243 s->current_frame.linesize[2] * s->height / 2);
2245 } else {
2246 #endif
2248 {START_TIMER
2249 if (unpack_superblocks(s, &gb)){
2250 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2251 return -1;
2253 STOP_TIMER("unpack_superblocks")}
2254 {START_TIMER
2255 if (unpack_modes(s, &gb)){
2256 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2257 return -1;
2259 STOP_TIMER("unpack_modes")}
2260 {START_TIMER
2261 if (unpack_vectors(s, &gb)){
2262 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2263 return -1;
2265 STOP_TIMER("unpack_vectors")}
2266 {START_TIMER
2267 if (unpack_dct_coeffs(s, &gb)){
2268 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2269 return -1;
2271 STOP_TIMER("unpack_dct_coeffs")}
2272 {START_TIMER
2274 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2275 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
2276 reverse_dc_prediction(s, s->fragment_start[1],
2277 s->fragment_width / 2, s->fragment_height / 2);
2278 reverse_dc_prediction(s, s->fragment_start[2],
2279 s->fragment_width / 2, s->fragment_height / 2);
2281 STOP_TIMER("reverse_dc_prediction")}
2282 {START_TIMER
2284 for (i = 0; i < s->macroblock_height; i++)
2285 render_slice(s, i);
2286 STOP_TIMER("render_fragments")}
2288 {START_TIMER
2289 apply_loop_filter(s);
2290 STOP_TIMER("apply_loop_filter")}
2291 #if KEYFRAMES_ONLY
2293 #endif
2295 *data_size=sizeof(AVFrame);
2296 *(AVFrame*)data= s->current_frame;
2298 /* release the last frame, if it is allocated and if it is not the
2299 * golden frame */
2300 if ((s->last_frame.data[0]) &&
2301 (s->last_frame.data[0] != s->golden_frame.data[0]))
2302 avctx->release_buffer(avctx, &s->last_frame);
2304 /* shuffle frames (last = current) */
2305 s->last_frame= s->current_frame;
2306 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2308 return buf_size;
2312 * This is the ffmpeg/libavcodec API module cleanup function.
2314 static int vp3_decode_end(AVCodecContext *avctx)
2316 Vp3DecodeContext *s = avctx->priv_data;
2318 av_free(s->all_fragments);
2319 av_free(s->coeffs);
2320 av_free(s->coded_fragment_list);
2321 av_free(s->superblock_fragments);
2322 av_free(s->superblock_macroblocks);
2323 av_free(s->macroblock_fragments);
2324 av_free(s->macroblock_coding);
2326 /* release all frames */
2327 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2328 avctx->release_buffer(avctx, &s->golden_frame);
2329 if (s->last_frame.data[0])
2330 avctx->release_buffer(avctx, &s->last_frame);
2331 /* no need to release the current_frame since it will always be pointing
2332 * to the same frame as either the golden or last frame */
2334 return 0;
2337 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2339 Vp3DecodeContext *s = avctx->priv_data;
2341 if (get_bits(gb, 1)) {
2342 int token;
2343 if (s->entries >= 32) { /* overflow */
2344 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2345 return -1;
2347 token = get_bits(gb, 5);
2348 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2349 s->huffman_table[s->hti][token][0] = s->hbits;
2350 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2351 s->entries++;
2353 else {
2354 if (s->huff_code_size >= 32) {/* overflow */
2355 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2356 return -1;
2358 s->huff_code_size++;
2359 s->hbits <<= 1;
2360 read_huffman_tree(avctx, gb);
2361 s->hbits |= 1;
2362 read_huffman_tree(avctx, gb);
2363 s->hbits >>= 1;
2364 s->huff_code_size--;
2366 return 0;
2369 #ifdef CONFIG_THEORA_DECODER
2370 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2372 Vp3DecodeContext *s = avctx->priv_data;
2373 int visible_width, visible_height;
2375 s->theora = get_bits_long(gb, 24);
2376 av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora);
2378 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2379 /* but previous versions have the image flipped relative to vp3 */
2380 if (s->theora < 0x030200)
2382 s->flipped_image = 1;
2383 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2386 s->width = get_bits(gb, 16) << 4;
2387 s->height = get_bits(gb, 16) << 4;
2389 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2390 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2391 s->width= s->height= 0;
2392 return -1;
2395 if (s->theora >= 0x030400)
2397 skip_bits(gb, 32); /* total number of superblocks in a frame */
2398 // fixme, the next field is 36bits long
2399 skip_bits(gb, 32); /* total number of blocks in a frame */
2400 skip_bits(gb, 4); /* total number of blocks in a frame */
2401 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2404 visible_width = get_bits_long(gb, 24);
2405 visible_height = get_bits_long(gb, 24);
2407 if (s->theora >= 0x030200) {
2408 skip_bits(gb, 8); /* offset x */
2409 skip_bits(gb, 8); /* offset y */
2412 skip_bits(gb, 32); /* fps numerator */
2413 skip_bits(gb, 32); /* fps denumerator */
2414 skip_bits(gb, 24); /* aspect numerator */
2415 skip_bits(gb, 24); /* aspect denumerator */
2417 if (s->theora < 0x030200)
2418 skip_bits(gb, 5); /* keyframe frequency force */
2419 skip_bits(gb, 8); /* colorspace */
2420 if (s->theora >= 0x030400)
2421 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2422 skip_bits(gb, 24); /* bitrate */
2424 skip_bits(gb, 6); /* quality hint */
2426 if (s->theora >= 0x030200)
2428 skip_bits(gb, 5); /* keyframe frequency force */
2430 if (s->theora < 0x030400)
2431 skip_bits(gb, 5); /* spare bits */
2434 // align_get_bits(gb);
2436 if ( visible_width <= s->width && visible_width > s->width-16
2437 && visible_height <= s->height && visible_height > s->height-16)
2438 avcodec_set_dimensions(avctx, visible_width, visible_height);
2439 else
2440 avcodec_set_dimensions(avctx, s->width, s->height);
2442 return 0;
2445 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2447 Vp3DecodeContext *s = avctx->priv_data;
2448 int i, n, matrices, inter, plane;
2450 if (s->theora >= 0x030200) {
2451 n = get_bits(gb, 3);
2452 /* loop filter limit values table */
2453 for (i = 0; i < 64; i++)
2454 s->filter_limit_values[i] = get_bits(gb, n);
2457 if (s->theora >= 0x030200)
2458 n = get_bits(gb, 4) + 1;
2459 else
2460 n = 16;
2461 /* quality threshold table */
2462 for (i = 0; i < 64; i++)
2463 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2465 if (s->theora >= 0x030200)
2466 n = get_bits(gb, 4) + 1;
2467 else
2468 n = 16;
2469 /* dc scale factor table */
2470 for (i = 0; i < 64; i++)
2471 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2473 if (s->theora >= 0x030200)
2474 matrices = get_bits(gb, 9) + 1;
2475 else
2476 matrices = 3;
2478 if(matrices > 384){
2479 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2480 return -1;
2483 for(n=0; n<matrices; n++){
2484 for (i = 0; i < 64; i++)
2485 s->base_matrix[n][i]= get_bits(gb, 8);
2488 for (inter = 0; inter <= 1; inter++) {
2489 for (plane = 0; plane <= 2; plane++) {
2490 int newqr= 1;
2491 if (inter || plane > 0)
2492 newqr = get_bits(gb, 1);
2493 if (!newqr) {
2494 int qtj, plj;
2495 if(inter && get_bits(gb, 1)){
2496 qtj = 0;
2497 plj = plane;
2498 }else{
2499 qtj= (3*inter + plane - 1) / 3;
2500 plj= (plane + 2) % 3;
2502 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2503 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2504 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2505 } else {
2506 int qri= 0;
2507 int qi = 0;
2509 for(;;){
2510 i= get_bits(gb, av_log2(matrices-1)+1);
2511 if(i>= matrices){
2512 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2513 return -1;
2515 s->qr_base[inter][plane][qri]= i;
2516 if(qi >= 63)
2517 break;
2518 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2519 s->qr_size[inter][plane][qri++]= i;
2520 qi += i;
2523 if (qi > 63) {
2524 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2525 return -1;
2527 s->qr_count[inter][plane]= qri;
2532 /* Huffman tables */
2533 for (s->hti = 0; s->hti < 80; s->hti++) {
2534 s->entries = 0;
2535 s->huff_code_size = 1;
2536 if (!get_bits(gb, 1)) {
2537 s->hbits = 0;
2538 read_huffman_tree(avctx, gb);
2539 s->hbits = 1;
2540 read_huffman_tree(avctx, gb);
2544 s->theora_tables = 1;
2546 return 0;
2549 static int theora_decode_init(AVCodecContext *avctx)
2551 Vp3DecodeContext *s = avctx->priv_data;
2552 GetBitContext gb;
2553 int ptype;
2554 uint8_t *header_start[3];
2555 int header_len[3];
2556 int i;
2558 s->theora = 1;
2560 if (!avctx->extradata_size)
2562 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2563 return -1;
2566 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2567 42, header_start, header_len) < 0) {
2568 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2569 return -1;
2572 for(i=0;i<3;i++) {
2573 init_get_bits(&gb, header_start[i], header_len[i]);
2575 ptype = get_bits(&gb, 8);
2576 debug_vp3("Theora headerpacket type: %x\n", ptype);
2578 if (!(ptype & 0x80))
2580 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2581 // return -1;
2584 // FIXME: Check for this as well.
2585 skip_bits(&gb, 6*8); /* "theora" */
2587 switch(ptype)
2589 case 0x80:
2590 theora_decode_header(avctx, &gb);
2591 break;
2592 case 0x81:
2593 // FIXME: is this needed? it breaks sometimes
2594 // theora_decode_comments(avctx, gb);
2595 break;
2596 case 0x82:
2597 theora_decode_tables(avctx, &gb);
2598 break;
2599 default:
2600 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2601 break;
2603 if(8*header_len[i] != get_bits_count(&gb))
2604 av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2605 if (s->theora < 0x030200)
2606 break;
2609 vp3_decode_init(avctx);
2610 return 0;
2613 AVCodec theora_decoder = {
2614 "theora",
2615 CODEC_TYPE_VIDEO,
2616 CODEC_ID_THEORA,
2617 sizeof(Vp3DecodeContext),
2618 theora_decode_init,
2619 NULL,
2620 vp3_decode_end,
2621 vp3_decode_frame,
2623 NULL
2625 #endif
2627 AVCodec vp3_decoder = {
2628 "vp3",
2629 CODEC_TYPE_VIDEO,
2630 CODEC_ID_VP3,
2631 sizeof(Vp3DecodeContext),
2632 vp3_decode_init,
2633 NULL,
2634 vp3_decode_end,
2635 vp3_decode_frame,
2637 NULL