modified: src1/input.c
[GalaxyCodeBases.git] / c_cpp / lib / klib / kmath.c
blob9368b2c9dc7074ca8f4d9f753a547e758eef6551
1 #include <stdlib.h>
2 #include <string.h>
3 #include <math.h>
4 #include "kmath.h"
6 /******************************
7 *** Non-linear programming ***
8 ******************************/
10 /* Hooke-Jeeves algorithm for nonlinear minimization
12 Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and
13 the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the
14 papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM
15 6(6):313-314). The original algorithm was designed by Hooke and
16 Jeeves (ACM 8:212-229). This program is further revised according to
17 Johnson's implementation at Netlib (opt/hooke.c).
19 Hooke-Jeeves algorithm is very simple and it works quite well on a
20 few examples. However, it might fail to converge due to its heuristic
21 nature. A possible improvement, as is suggested by Johnson, may be to
22 choose a small r at the beginning to quickly approach to the minimum
23 and a large r at later step to hit the minimum.
26 static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls)
28 int k, j = *n_calls;
29 double ftmp;
30 for (k = 0; k != n; ++k) {
31 x1[k] += dx[k];
32 ftmp = func(n, x1, data); ++j;
33 if (ftmp < fx1) fx1 = ftmp;
34 else { /* search the opposite direction */
35 dx[k] = 0.0 - dx[k];
36 x1[k] += dx[k] + dx[k];
37 ftmp = func(n, x1, data); ++j;
38 if (ftmp < fx1) fx1 = ftmp;
39 else x1[k] -= dx[k]; /* back to the original x[k] */
42 *n_calls = j;
43 return fx1; /* here: fx1=f(n,x1) */
46 double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls)
48 double fx, fx1, *x1, *dx, radius;
49 int k, n_calls = 0;
50 x1 = (double*)calloc(n, sizeof(double));
51 dx = (double*)calloc(n, sizeof(double));
52 for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */
53 dx[k] = fabs(x[k]) * r;
54 if (dx[k] == 0) dx[k] = r;
56 radius = r;
57 fx1 = fx = func(n, x, data); ++n_calls;
58 for (;;) {
59 memcpy(x1, x, n * sizeof(double)); /* x1 = x */
60 fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls);
61 while (fx1 < fx) {
62 for (k = 0; k != n; ++k) {
63 double t = x[k];
64 dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]);
65 x[k] = x1[k];
66 x1[k] = x1[k] + x1[k] - t;
68 fx = fx1;
69 if (n_calls >= max_calls) break;
70 fx1 = func(n, x1, data); ++n_calls;
71 fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls);
72 if (fx1 >= fx) break;
73 for (k = 0; k != n; ++k)
74 if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break;
75 if (k == n) break;
77 if (radius >= eps) {
78 if (n_calls >= max_calls) break;
79 radius *= r;
80 for (k = 0; k != n; ++k) dx[k] *= r;
81 } else break; /* converge */
83 free(x1); free(dx);
84 return fx1;
87 // I copied this function somewhere several years ago with some of my modifications, but I forgot the source.
88 double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin)
90 double bound, u, r, q, fu, tmp, fa, fb, fc, c;
91 const double gold1 = 1.6180339887;
92 const double gold2 = 0.3819660113;
93 const double tiny = 1e-20;
94 const int max_iter = 100;
96 double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw;
97 int iter;
99 fa = func(a, data); fb = func(b, data);
100 if (fb > fa) { // swap, such that f(a) > f(b)
101 tmp = a; a = b; b = tmp;
102 tmp = fa; fa = fb; fb = tmp;
104 c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation
105 while (fb > fc) {
106 bound = b + 100.0 * (c - b); // the farthest point where we want to go
107 r = (b - a) * (fb - fc);
108 q = (b - c) * (fb - fa);
109 if (fabs(q - r) < tiny) { // avoid 0 denominator
110 tmp = q > r? tiny : 0.0 - tiny;
111 } else tmp = q - r;
112 u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point
113 if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c
114 fu = func(u, data);
115 if (fu < fc) { // (b,u,c) bracket the minimum
116 a = b; b = u; fa = fb; fb = fu;
117 break;
118 } else if (fu > fb) { // (a,b,u) bracket the minimum
119 c = u; fc = fu;
120 break;
122 u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation
123 } else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound
124 fu = func(u, data);
125 if (fu < fc) { // fb > fc > fu
126 b = c; c = u; u = c + gold1 * (c - b);
127 fb = fc; fc = fu; fu = func(u, data);
128 } else { // (b,c,u) bracket the minimum
129 a = b; b = c; c = u;
130 fa = fb; fb = fc; fc = fu;
131 break;
133 } else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound
134 u = bound; fu = func(u, data);
135 } else { // u goes the other way around, use golden section extrapolation
136 u = c + gold1 * (c - b); fu = func(u, data);
138 a = b; b = c; c = u;
139 fa = fb; fb = fc; fc = fu;
141 if (a > c) u = a, a = c, c = u; // swap
143 // now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm
144 e = d = 0.0;
145 w = v = b; fv = fw = fb;
146 for (iter = 0; iter != max_iter; ++iter) {
147 mid = 0.5 * (a + c);
148 tol2 = 2.0 * (tol1 = tol * fabs(b) + tiny);
149 if (fabs(b - mid) <= (tol2 - 0.5 * (c - a))) {
150 *xmin = b; return fb; // found
152 if (fabs(e) > tol1) {
153 // related to parabolic interpolation
154 r = (b - w) * (fb - fv);
155 q = (b - v) * (fb - fw);
156 p = (b - v) * q - (b - w) * r;
157 q = 2.0 * (q - r);
158 if (q > 0.0) p = 0.0 - p;
159 else q = 0.0 - q;
160 eold = e; e = d;
161 if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) {
162 d = gold2 * (e = (b >= mid ? a - b : c - b));
163 } else {
164 d = p / q; u = b + d; // actual parabolic interpolation happens here
165 if (u - a < tol2 || c - u < tol2)
166 d = (mid > b)? tol1 : 0.0 - tol1;
168 } else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation
169 u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1);
170 fu = func(u, data);
171 if (fu <= fb) { // u is the minimum point so far
172 if (u >= b) a = b;
173 else c = b;
174 v = w; w = b; b = u; fv = fw; fw = fb; fb = fu;
175 } else { // adjust (a,c) and (u,v,w)
176 if (u < b) a = u;
177 else c = u;
178 if (fu <= fw || w == b) {
179 v = w; w = u;
180 fv = fw; fw = fu;
181 } else if (fu <= fv || v == b || v == w) {
182 v = u; fv = fu;
186 *xmin = b;
187 return fb;
190 static inline float SIGN(float a, float b)
192 return b >= 0 ? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);
195 double krf_brent(double x1, double x2, double tol, double (*func)(double, void*), void *data, int *err)
197 const int max_iter = 100;
198 const double eps = 3e-8f;
199 int i;
200 double a = x1, b = x2, c = x2, d, e, min1, min2;
201 double fa, fb, fc, p, q, r, s, tol1, xm;
203 *err = 0;
204 fa = func(a, data), fb = func(b, data);
205 if ((fa > 0.0f && fb > 0.0f) || (fa < 0.0f && fb < 0.0f)) {
206 *err = -1;
207 return 0.0f;
209 fc = fb;
210 for (i = 0; i < max_iter; ++i) {
211 if ((fb > 0.0f && fc > 0.0f) || (fb < 0.0f && fc < 0.0f)) {
212 c = a;
213 fc = fa;
214 e = d = b - a;
216 if (fabs(fc) < fabs(fb)) {
217 a = b, b = c, c = a;
218 fa = fb, fb = fc, fc = fa;
220 tol1 = 2.0f * eps * fabs(b) + 0.5f * tol;
221 xm = 0.5f * (c - b);
222 if (fabs(xm) <= tol1 || fb == 0.0f)
223 return b;
224 if (fabs(e) >= tol1 && fabs(fa) > fabs(fb)) {
225 s = fb / fa;
226 if (a == c) {
227 p = 2.0f * xm * s;
228 q = 1.0f - s;
229 } else {
230 q = fa / fc;
231 r = fb / fc;
232 p = s * (2.0f * xm * q * (q - r) - (b - a) * (r - 1.0f));
233 q = (q - 1.0f) * (r - 1.0f) * (s - 1.0f);
235 if (p > 0.0f) q = -q;
236 p = fabs(p);
237 min1 = 3.0f * xm * q - fabs(tol1 * q);
238 min2 = fabs(e * q);
239 if (2.0f * p < (min1 < min2 ? min1 : min2)) {
240 e = d;
241 d = p / q;
242 } else {
243 d = xm;
244 e = d;
246 } else {
247 d = xm;
248 e = d;
250 a = b;
251 fa = fb;
252 if (fabs(d) > tol1) b += d;
253 else b += SIGN(tol1, xm);
254 fb = func(b, data);
256 *err = -2;
257 return 0.0;
260 /*************************
261 *** Special functions ***
262 *************************/
264 /* Log gamma function
265 * \log{\Gamma(z)}
266 * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
268 double kf_lgamma(double z)
270 double x = 0;
271 x += 0.1659470187408462e-06 / (z+7);
272 x += 0.9934937113930748e-05 / (z+6);
273 x -= 0.1385710331296526 / (z+5);
274 x += 12.50734324009056 / (z+4);
275 x -= 176.6150291498386 / (z+3);
276 x += 771.3234287757674 / (z+2);
277 x -= 1259.139216722289 / (z+1);
278 x += 676.5203681218835 / z;
279 x += 0.9999999999995183;
280 return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5);
283 /* complementary error function
284 * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt
285 * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66
287 double kf_erfc(double x)
289 const double p0 = 220.2068679123761;
290 const double p1 = 221.2135961699311;
291 const double p2 = 112.0792914978709;
292 const double p3 = 33.912866078383;
293 const double p4 = 6.37396220353165;
294 const double p5 = .7003830644436881;
295 const double p6 = .03526249659989109;
296 const double q0 = 440.4137358247522;
297 const double q1 = 793.8265125199484;
298 const double q2 = 637.3336333788311;
299 const double q3 = 296.5642487796737;
300 const double q4 = 86.78073220294608;
301 const double q5 = 16.06417757920695;
302 const double q6 = 1.755667163182642;
303 const double q7 = .08838834764831844;
304 double expntl, z, p;
305 z = fabs(x) * M_SQRT2;
306 if (z > 37.) return x > 0.? 0. : 2.;
307 expntl = exp(z * z * - .5);
308 if (z < 10. / M_SQRT2) // for small z
309 p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0)
310 / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0);
311 else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65)))));
312 return x > 0.? 2. * p : 2. * (1. - p);
315 /* The following computes regularized incomplete gamma functions.
316 * Formulas are taken from Wiki, with additional input from Numerical
317 * Recipes in C (for modified Lentz's algorithm) and AS245
318 * (http://lib.stat.cmu.edu/apstat/245).
320 * A good online calculator is available at:
322 * http://www.danielsoper.com/statcalc/calc23.aspx
324 * It calculates upper incomplete gamma function, which equals
325 * kf_gammaq(s,z)*tgamma(s).
328 #define KF_GAMMA_EPS 1e-14
329 #define KF_TINY 1e-290
331 // regularized lower incomplete gamma function, by series expansion
332 static double _kf_gammap(double s, double z)
334 double sum, x;
335 int k;
336 for (k = 1, sum = x = 1.; k < 100; ++k) {
337 sum += (x *= z / (s + k));
338 if (x / sum < KF_GAMMA_EPS) break;
340 return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum));
342 // regularized upper incomplete gamma function, by continued fraction
343 static double _kf_gammaq(double s, double z)
345 int j;
346 double C, D, f;
347 f = 1. + z - s; C = f; D = 0.;
348 // Modified Lentz's algorithm for computing continued fraction
349 // See Numerical Recipes in C, 2nd edition, section 5.2
350 for (j = 1; j < 100; ++j) {
351 double a = j * (s - j), b = (j<<1) + 1 + z - s, d;
352 D = b + a * D;
353 if (D < KF_TINY) D = KF_TINY;
354 C = b + a / C;
355 if (C < KF_TINY) C = KF_TINY;
356 D = 1. / D;
357 d = C * D;
358 f *= d;
359 if (fabs(d - 1.) < KF_GAMMA_EPS) break;
361 return exp(s * log(z) - z - kf_lgamma(s) - log(f));
364 double kf_gammap(double s, double z)
366 return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z);
369 double kf_gammaq(double s, double z)
371 return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z);
374 /* Regularized incomplete beta function. The method is taken from
375 * Numerical Recipe in C, 2nd edition, section 6.4. The following web
376 * page calculates the incomplete beta function, which equals
377 * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b):
379 * http://www.danielsoper.com/statcalc/calc36.aspx
381 static double kf_betai_aux(double a, double b, double x)
383 double C, D, f;
384 int j;
385 if (x == 0.) return 0.;
386 if (x == 1.) return 1.;
387 f = 1.; C = f; D = 0.;
388 // Modified Lentz's algorithm for computing continued fraction
389 for (j = 1; j < 200; ++j) {
390 double aa, d;
391 int m = j>>1;
392 aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1))
393 : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m));
394 D = 1. + aa * D;
395 if (D < KF_TINY) D = KF_TINY;
396 C = 1. + aa / C;
397 if (C < KF_TINY) C = KF_TINY;
398 D = 1. / D;
399 d = C * D;
400 f *= d;
401 if (fabs(d - 1.) < KF_GAMMA_EPS) break;
403 return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f;
405 double kf_betai(double a, double b, double x)
407 return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x);
410 /******************
411 *** Statistics ***
412 ******************/
414 double km_ks_dist(int na, const double a[], int nb, const double b[]) // a[] and b[] MUST BE sorted
416 int ia = 0, ib = 0;
417 double fa = 0, fb = 0, sup = 0, na1 = 1. / na, nb1 = 1. / nb;
418 while (ia < na || ib < nb) {
419 if (ia == na) fb += nb1, ++ib;
420 else if (ib == nb) fa += na1, ++ia;
421 else if (a[ia] < b[ib]) fa += na1, ++ia;
422 else if (a[ia] > b[ib]) fb += nb1, ++ib;
423 else fa += na1, fb += nb1, ++ia, ++ib;
424 if (sup < fabs(fa - fb)) sup = fabs(fa - fb);
426 return sup;
429 #ifdef KF_MAIN
430 #include <stdio.h>
431 #include "ksort.h"
432 KSORT_INIT_GENERIC(double)
433 int main(int argc, char *argv[])
435 double x = 5.5, y = 3;
436 double a, b;
437 double xx[] = {0.22, -0.87, -2.39, -1.79, 0.37, -1.54, 1.28, -0.31, -0.74, 1.72, 0.38, -0.17, -0.62, -1.10, 0.30, 0.15, 2.30, 0.19, -0.50, -0.09};
438 double yy[] = {-5.13, -2.19, -2.43, -3.83, 0.50, -3.25, 4.32, 1.63, 5.18, -0.43, 7.11, 4.87, -3.10, -5.81, 3.76, 6.31, 2.58, 0.07, 5.76, 3.50};
439 ks_introsort(double, 20, xx); ks_introsort(double, 20, yy);
440 printf("K-S distance: %f\n", km_ks_dist(20, xx, 20, yy));
441 printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x));
442 printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y));
443 a = 2; b = 2; x = 0.5;
444 printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b)));
445 return 0;
447 #endif