merged tag ooo/OOO330_m14
[LibreOffice.git] / basegfx / source / curve / b2dcubicbezier.cxx
blob80bd8922160b7b98e5515af41c56f0ea0cdfb00e
1 /*************************************************************************
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 * Copyright 2000, 2010 Oracle and/or its affiliates.
7 * OpenOffice.org - a multi-platform office productivity suite
9 * This file is part of OpenOffice.org.
11 * OpenOffice.org is free software: you can redistribute it and/or modify
12 * it under the terms of the GNU Lesser General Public License version 3
13 * only, as published by the Free Software Foundation.
15 * OpenOffice.org is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License version 3 for more details
19 * (a copy is included in the LICENSE file that accompanied this code).
21 * You should have received a copy of the GNU Lesser General Public License
22 * version 3 along with OpenOffice.org. If not, see
23 * <http://www.openoffice.org/license.html>
24 * for a copy of the LGPLv3 License.
26 ************************************************************************/
28 // MARKER(update_precomp.py): autogen include statement, do not remove
29 #include "precompiled_basegfx.hxx"
30 #include <basegfx/curve/b2dcubicbezier.hxx>
31 #include <basegfx/vector/b2dvector.hxx>
32 #include <basegfx/polygon/b2dpolygon.hxx>
33 #include <basegfx/numeric/ftools.hxx>
35 #include <limits>
37 // #i37443#
38 #define FACTOR_FOR_UNSHARPEN (1.6)
39 #ifdef DBG_UTIL
40 static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
41 #endif
43 //////////////////////////////////////////////////////////////////////////////
45 namespace basegfx
47 namespace
49 void ImpSubDivAngle(
50 const B2DPoint& rfPA, // start point
51 const B2DPoint& rfEA, // edge on A
52 const B2DPoint& rfEB, // edge on B
53 const B2DPoint& rfPB, // end point
54 B2DPolygon& rTarget, // target polygon
55 double fAngleBound, // angle bound in [0.0 .. 2PI]
56 bool bAllowUnsharpen, // #i37443# allow the criteria to get unsharp in recursions
57 sal_uInt16 nMaxRecursionDepth) // endless loop protection
59 if(nMaxRecursionDepth)
61 // do angle test
62 B2DVector aLeft(rfEA - rfPA);
63 B2DVector aRight(rfEB - rfPB);
65 // #i72104#
66 if(aLeft.equalZero())
68 aLeft = rfEB - rfPA;
71 if(aRight.equalZero())
73 aRight = rfEA - rfPB;
76 const double fCurrentAngle(aLeft.angle(aRight));
78 if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
80 // end recursion
81 nMaxRecursionDepth = 0;
83 else
85 if(bAllowUnsharpen)
87 // #i37443# unsharpen criteria
88 #ifdef DBG_UTIL
89 fAngleBound *= fMultFactUnsharpen;
90 #else
91 fAngleBound *= FACTOR_FOR_UNSHARPEN;
92 #endif
97 if(nMaxRecursionDepth)
99 // divide at 0.5
100 const B2DPoint aS1L(average(rfPA, rfEA));
101 const B2DPoint aS1C(average(rfEA, rfEB));
102 const B2DPoint aS1R(average(rfEB, rfPB));
103 const B2DPoint aS2L(average(aS1L, aS1C));
104 const B2DPoint aS2R(average(aS1C, aS1R));
105 const B2DPoint aS3C(average(aS2L, aS2R));
107 // left recursion
108 ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
110 // right recursion
111 ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
113 else
115 rTarget.append(rfPB);
119 void ImpSubDivAngleStart(
120 const B2DPoint& rfPA, // start point
121 const B2DPoint& rfEA, // edge on A
122 const B2DPoint& rfEB, // edge on B
123 const B2DPoint& rfPB, // end point
124 B2DPolygon& rTarget, // target polygon
125 const double& rfAngleBound, // angle bound in [0.0 .. 2PI]
126 bool bAllowUnsharpen) // #i37443# allow the criteria to get unsharp in recursions
128 sal_uInt16 nMaxRecursionDepth(8);
129 const B2DVector aLeft(rfEA - rfPA);
130 const B2DVector aRight(rfEB - rfPB);
131 bool bLeftEqualZero(aLeft.equalZero());
132 bool bRightEqualZero(aRight.equalZero());
133 bool bAllParallel(false);
135 if(bLeftEqualZero && bRightEqualZero)
137 nMaxRecursionDepth = 0;
139 else
141 const B2DVector aBase(rfPB - rfPA);
142 const bool bBaseEqualZero(aBase.equalZero()); // #i72104#
144 if(!bBaseEqualZero)
146 const bool bLeftParallel(bLeftEqualZero ? true : areParallel(aLeft, aBase));
147 const bool bRightParallel(bRightEqualZero ? true : areParallel(aRight, aBase));
149 if(bLeftParallel && bRightParallel)
151 bAllParallel = true;
153 if(!bLeftEqualZero)
155 double fFactor;
157 if(fabs(aBase.getX()) > fabs(aBase.getY()))
159 fFactor = aLeft.getX() / aBase.getX();
161 else
163 fFactor = aLeft.getY() / aBase.getY();
166 if(fFactor >= 0.0 && fFactor <= 1.0)
168 bLeftEqualZero = true;
172 if(!bRightEqualZero)
174 double fFactor;
176 if(fabs(aBase.getX()) > fabs(aBase.getY()))
178 fFactor = aRight.getX() / -aBase.getX();
180 else
182 fFactor = aRight.getY() / -aBase.getY();
185 if(fFactor >= 0.0 && fFactor <= 1.0)
187 bRightEqualZero = true;
191 if(bLeftEqualZero && bRightEqualZero)
193 nMaxRecursionDepth = 0;
199 if(nMaxRecursionDepth)
201 // divide at 0.5 ad test both edges for angle criteria
202 const B2DPoint aS1L(average(rfPA, rfEA));
203 const B2DPoint aS1C(average(rfEA, rfEB));
204 const B2DPoint aS1R(average(rfEB, rfPB));
205 const B2DPoint aS2L(average(aS1L, aS1C));
206 const B2DPoint aS2R(average(aS1C, aS1R));
207 const B2DPoint aS3C(average(aS2L, aS2R));
209 // test left
210 bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
211 if(!bAngleIsSmallerLeft)
213 const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104#
214 const B2DVector aRightLeft(aS2L - aS3C);
215 const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
216 bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
219 // test right
220 bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
221 if(!bAngleIsSmallerRight)
223 const B2DVector aLeftRight(aS2R - aS3C);
224 const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104#
225 const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
226 bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
229 if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
231 // no recursion necessary at all
232 nMaxRecursionDepth = 0;
234 else
236 // left
237 if(bAngleIsSmallerLeft)
239 rTarget.append(aS3C);
241 else
243 ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
246 // right
247 if(bAngleIsSmallerRight)
249 rTarget.append(rfPB);
251 else
253 ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
258 if(!nMaxRecursionDepth)
260 rTarget.append(rfPB);
264 void ImpSubDivDistance(
265 const B2DPoint& rfPA, // start point
266 const B2DPoint& rfEA, // edge on A
267 const B2DPoint& rfEB, // edge on B
268 const B2DPoint& rfPB, // end point
269 B2DPolygon& rTarget, // target polygon
270 double fDistanceBound2, // quadratic distance criteria
271 double fLastDistanceError2, // the last quadratic distance error
272 sal_uInt16 nMaxRecursionDepth) // endless loop protection
274 if(nMaxRecursionDepth)
276 // decide if another recursion is needed. If not, set
277 // nMaxRecursionDepth to zero
279 // Perform bezier flatness test (lecture notes from R. Schaback,
280 // Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
282 // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
283 // 0<=j<=n
285 // What is calculated here is an upper bound to the distance from
286 // a line through b_0 and b_3 (rfPA and P4 in our notation) and the
287 // curve. We can drop 0 and n from the running indices, since the
288 // argument of max becomes zero for those cases.
289 const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX()));
290 const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY()));
291 const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX()));
292 const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY()));
293 const double fDistanceError2(::std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y));
295 // stop if error measure does not improve anymore. This is a
296 // safety guard against floating point inaccuracies.
297 // stop if distance from line is guaranteed to be bounded by d
298 const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2);
300 if(bFurtherDivision)
302 // remember last error value
303 fLastDistanceError2 = fDistanceError2;
305 else
307 // stop recustion
308 nMaxRecursionDepth = 0;
312 if(nMaxRecursionDepth)
314 // divide at 0.5
315 const B2DPoint aS1L(average(rfPA, rfEA));
316 const B2DPoint aS1C(average(rfEA, rfEB));
317 const B2DPoint aS1R(average(rfEB, rfPB));
318 const B2DPoint aS2L(average(aS1L, aS1C));
319 const B2DPoint aS2R(average(aS1C, aS1R));
320 const B2DPoint aS3C(average(aS2L, aS2R));
322 // left recursion
323 ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
325 // right recursion
326 ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
328 else
330 rTarget.append(rfPB);
333 } // end of anonymous namespace
334 } // end of namespace basegfx
336 //////////////////////////////////////////////////////////////////////////////
338 namespace basegfx
340 B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier)
341 : maStartPoint(rBezier.maStartPoint),
342 maEndPoint(rBezier.maEndPoint),
343 maControlPointA(rBezier.maControlPointA),
344 maControlPointB(rBezier.maControlPointB)
348 B2DCubicBezier::B2DCubicBezier()
352 B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rEnd)
353 : maStartPoint(rStart),
354 maEndPoint(rEnd),
355 maControlPointA(rStart),
356 maControlPointB(rEnd)
360 B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd)
361 : maStartPoint(rStart),
362 maEndPoint(rEnd),
363 maControlPointA(rControlPointA),
364 maControlPointB(rControlPointB)
368 B2DCubicBezier::~B2DCubicBezier()
372 // assignment operator
373 B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier)
375 maStartPoint = rBezier.maStartPoint;
376 maEndPoint = rBezier.maEndPoint;
377 maControlPointA = rBezier.maControlPointA;
378 maControlPointB = rBezier.maControlPointB;
380 return *this;
383 // compare operators
384 bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
386 return (
387 maStartPoint == rBezier.maStartPoint
388 && maEndPoint == rBezier.maEndPoint
389 && maControlPointA == rBezier.maControlPointA
390 && maControlPointB == rBezier.maControlPointB
394 bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
396 return (
397 maStartPoint != rBezier.maStartPoint
398 || maEndPoint != rBezier.maEndPoint
399 || maControlPointA != rBezier.maControlPointA
400 || maControlPointB != rBezier.maControlPointB
404 bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
406 return (
407 maStartPoint.equal(rBezier.maStartPoint)
408 && maEndPoint.equal(rBezier.maEndPoint)
409 && maControlPointA.equal(rBezier.maControlPointA)
410 && maControlPointB.equal(rBezier.maControlPointB)
414 // test if vectors are used
415 bool B2DCubicBezier::isBezier() const
417 if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
419 return true;
422 return false;
425 void B2DCubicBezier::testAndSolveTrivialBezier()
427 if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
429 const B2DVector aEdge(maEndPoint - maStartPoint);
431 // controls parallel to edge can be trivial. No edge -> not parallel -> control can
432 // still not be trivial (e.g. ballon loop)
433 if(!aEdge.equalZero())
435 // get control vectors
436 const B2DVector aVecA(maControlPointA - maStartPoint);
437 const B2DVector aVecB(maControlPointB - maEndPoint);
439 // check if trivial per se
440 bool bAIsTrivial(aVecA.equalZero());
441 bool bBIsTrivial(aVecB.equalZero());
443 // #i102241# prepare inverse edge length to normalize cross values;
444 // else the small compare value used in fTools::equalZero
445 // will be length dependent and this detection will work as less
446 // precise as longer the edge is. In principle, the length of the control
447 // vector would need to be used too, but to be trivial it is assumed to
448 // be of roughly equal length to the edge, so edge length can be used
449 // for both. Only needed when one of both is not trivial per se.
450 const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial
451 ? 1.0
452 : 1.0 / aEdge.getLength());
454 // if A is not zero, check if it could be
455 if(!bAIsTrivial)
457 // #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what
458 // we need here with the precision we need
459 const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength);
461 if(fTools::equalZero(fCross))
463 // get scale to edge. Use bigger distance for numeric quality
464 const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
465 ? aVecA.getX() / aEdge.getX()
466 : aVecA.getY() / aEdge.getY());
468 // relative end point of vector in edge range?
469 if(fTools::moreOrEqual(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
471 bAIsTrivial = true;
476 // if B is not zero, check if it could be, but only if A is already trivial;
477 // else solve to trivial will not be possible for whole edge
478 if(bAIsTrivial && !bBIsTrivial)
480 // parallel to edge? Check aVecB, aEdge
481 const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength);
483 if(fTools::equalZero(fCross))
485 // get scale to edge. Use bigger distance for numeric quality
486 const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
487 ? aVecB.getX() / aEdge.getX()
488 : aVecB.getY() / aEdge.getY());
490 // end point of vector in edge range? Caution: controlB is directed AGAINST edge
491 if(fTools::lessOrEqual(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
493 bBIsTrivial = true;
498 // if both are/can be reduced, do it.
499 // Not possible if only one is/can be reduced (!)
500 if(bAIsTrivial && bBIsTrivial)
502 maControlPointA = maStartPoint;
503 maControlPointB = maEndPoint;
509 namespace {
510 double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
512 const double fEdgeLength(rEdge.getEdgeLength());
513 const double fControlPolygonLength(rEdge.getControlPolygonLength());
514 const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
516 if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
518 return (fEdgeLength + fControlPolygonLength) * 0.5;
520 else
522 B2DCubicBezier aLeft, aRight;
523 const double fNewDeviation(fDeviation * 0.5);
524 const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
526 rEdge.split(0.5, &aLeft, &aRight);
528 return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
529 + impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
534 double B2DCubicBezier::getLength(double fDeviation) const
536 if(isBezier())
538 if(fDeviation < 0.00000001)
540 fDeviation = 0.00000001;
543 return impGetLength(*this, fDeviation, 6);
545 else
547 return B2DVector(getEndPoint() - getStartPoint()).getLength();
551 double B2DCubicBezier::getEdgeLength() const
553 const B2DVector aEdge(maEndPoint - maStartPoint);
554 return aEdge.getLength();
557 double B2DCubicBezier::getControlPolygonLength() const
559 const B2DVector aVectorA(maControlPointA - maStartPoint);
560 const B2DVector aVectorB(maEndPoint - maControlPointB);
562 if(!aVectorA.equalZero() || !aVectorB.equalZero())
564 const B2DVector aTop(maControlPointB - maControlPointA);
565 return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
567 else
569 return getEdgeLength();
573 void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound, bool bAllowUnsharpen) const
575 if(isBezier())
577 // use support method #i37443# and allow unsharpen the criteria
578 ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fAngleBound * F_PI180, bAllowUnsharpen);
580 else
582 rTarget.append(getEndPoint());
586 B2DVector B2DCubicBezier::getTangent(double t) const
588 if(fTools::lessOrEqual(t, 0.0))
590 // tangent in start point
591 B2DVector aTangent(getControlPointA() - getStartPoint());
593 if(!aTangent.equalZero())
595 return aTangent;
598 // start point and control vector are the same, fallback
599 // to implicit start vector to control point B
600 aTangent = (getControlPointB() - getStartPoint()) * 0.3;
602 if(!aTangent.equalZero())
604 return aTangent;
607 // not a bezier at all, return edge vector
608 return (getEndPoint() - getStartPoint()) * 0.3;
610 else if(fTools::moreOrEqual(t, 1.0))
612 // tangent in end point
613 B2DVector aTangent(getEndPoint() - getControlPointB());
615 if(!aTangent.equalZero())
617 return aTangent;
620 // end point and control vector are the same, fallback
621 // to implicit start vector from control point A
622 aTangent = (getEndPoint() - getControlPointA()) * 0.3;
624 if(!aTangent.equalZero())
626 return aTangent;
629 // not a bezier at all, return edge vector
630 return (getEndPoint() - getStartPoint()) * 0.3;
632 else
634 // t is in ]0.0 .. 1.0[. Split and extract
635 B2DCubicBezier aRight;
636 split(t, 0, &aRight);
638 return aRight.getControlPointA() - aRight.getStartPoint();
642 // #i37443# adaptive subdivide by nCount subdivisions
643 void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
645 const double fLenFact(1.0 / static_cast< double >(nCount + 1));
647 for(sal_uInt32 a(1); a <= nCount; a++)
649 const double fPos(static_cast< double >(a) * fLenFact);
650 rTarget.append(interpolatePoint(fPos));
653 rTarget.append(getEndPoint());
656 // adaptive subdivide by distance
657 void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const
659 if(isBezier())
661 ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
662 fDistanceBound * fDistanceBound, ::std::numeric_limits<double>::max(), 30);
664 else
666 rTarget.append(getEndPoint());
670 B2DPoint B2DCubicBezier::interpolatePoint(double t) const
672 OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)");
674 if(isBezier())
676 const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
677 const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
678 const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
679 const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
680 const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
682 return interpolate(aS2L, aS2R, t);
684 else
686 return interpolate(maStartPoint, maEndPoint, t);
690 double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const
692 const sal_uInt32 nInitialDivisions(3L);
693 B2DPolygon aInitialPolygon;
695 // as start make a fix division, creates nInitialDivisions + 2L points
696 aInitialPolygon.append(getStartPoint());
697 adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions);
699 // now look for the closest point
700 const sal_uInt32 nPointCount(aInitialPolygon.count());
701 B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0L));
702 double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY());
703 double fNewQuadDist;
704 sal_uInt32 nSmallestIndex(0L);
706 for(sal_uInt32 a(1L); a < nPointCount; a++)
708 aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a));
709 fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
711 if(fNewQuadDist < fQuadDist)
713 fQuadDist = fNewQuadDist;
714 nSmallestIndex = a;
718 // look right and left for even smaller distances
719 double fStepValue(1.0 / (double)((nPointCount - 1L) * 2L)); // half the edge step width
720 double fPosition((double)nSmallestIndex / (double)(nPointCount - 1L));
721 bool bDone(false);
723 while(!bDone)
725 if(!bDone)
727 // test left
728 double fPosLeft(fPosition - fStepValue);
730 if(fPosLeft < 0.0)
732 fPosLeft = 0.0;
733 aVector = B2DVector(rTestPoint - maStartPoint);
735 else
737 aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft));
740 fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
742 if(fTools::less(fNewQuadDist, fQuadDist))
744 fQuadDist = fNewQuadDist;
745 fPosition = fPosLeft;
747 else
749 // test right
750 double fPosRight(fPosition + fStepValue);
752 if(fPosRight > 1.0)
754 fPosRight = 1.0;
755 aVector = B2DVector(rTestPoint - maEndPoint);
757 else
759 aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight));
762 fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
764 if(fTools::less(fNewQuadDist, fQuadDist))
766 fQuadDist = fNewQuadDist;
767 fPosition = fPosRight;
769 else
771 // not less left or right, done
772 bDone = true;
777 if(0.0 == fPosition || 1.0 == fPosition)
779 // if we are completely left or right, we are done
780 bDone = true;
783 if(!bDone)
785 // prepare next step value
786 fStepValue /= 2.0;
790 rCut = fPosition;
791 return sqrt(fQuadDist);
794 void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
796 OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
798 if(!pBezierA && !pBezierB)
800 return;
803 if(isBezier())
805 const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
806 const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
807 const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
808 const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
809 const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
810 const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
812 if(pBezierA)
814 pBezierA->setStartPoint(maStartPoint);
815 pBezierA->setEndPoint(aS3C);
816 pBezierA->setControlPointA(aS1L);
817 pBezierA->setControlPointB(aS2L);
820 if(pBezierB)
822 pBezierB->setStartPoint(aS3C);
823 pBezierB->setEndPoint(maEndPoint);
824 pBezierB->setControlPointA(aS2R);
825 pBezierB->setControlPointB(aS1R);
828 else
830 const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
832 if(pBezierA)
834 pBezierA->setStartPoint(maStartPoint);
835 pBezierA->setEndPoint(aSplit);
836 pBezierA->setControlPointA(maStartPoint);
837 pBezierA->setControlPointB(aSplit);
840 if(pBezierB)
842 pBezierB->setStartPoint(aSplit);
843 pBezierB->setEndPoint(maEndPoint);
844 pBezierB->setControlPointA(aSplit);
845 pBezierB->setControlPointB(maEndPoint);
850 B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
852 B2DCubicBezier aRetval;
854 if(fTools::more(fStart, 1.0))
856 fStart = 1.0;
858 else if(fTools::less(fStart, 0.0))
860 fStart = 0.0;
863 if(fTools::more(fEnd, 1.0))
865 fEnd = 1.0;
867 else if(fTools::less(fEnd, 0.0))
869 fEnd = 0.0;
872 if(fEnd <= fStart)
874 // empty or NULL, create single point at center
875 const double fSplit((fEnd + fStart) * 0.5);
876 const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
877 aRetval.setStartPoint(aPoint);
878 aRetval.setEndPoint(aPoint);
879 aRetval.setControlPointA(aPoint);
880 aRetval.setControlPointB(aPoint);
882 else
884 if(isBezier())
886 // copy bezier; cut off right, then cut off left. Do not forget to
887 // adapt cut value when both cuts happen
888 const bool bEndIsOne(fTools::equal(fEnd, 1.0));
889 const bool bStartIsZero(fTools::equalZero(fStart));
890 aRetval = *this;
892 if(!bEndIsOne)
894 aRetval.split(fEnd, &aRetval, 0);
896 if(!bStartIsZero)
898 fStart /= fEnd;
902 if(!bStartIsZero)
904 aRetval.split(fStart, 0, &aRetval);
907 else
909 // no bezier, create simple edge
910 const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
911 const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
912 aRetval.setStartPoint(aPointA);
913 aRetval.setEndPoint(aPointB);
914 aRetval.setControlPointA(aPointA);
915 aRetval.setControlPointB(aPointB);
919 return aRetval;
922 B2DRange B2DCubicBezier::getRange() const
924 B2DRange aRetval(maStartPoint, maEndPoint);
926 aRetval.expand(maControlPointA);
927 aRetval.expand(maControlPointB);
929 return aRetval;
932 bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
934 ::std::vector< double > aAllResults;
936 aAllResults.reserve(4);
937 getAllExtremumPositions(aAllResults);
939 const sal_uInt32 nCount(aAllResults.size());
941 if(!nCount)
943 return false;
945 else if(1 == nCount)
947 rfResult = aAllResults[0];
948 return true;
950 else
952 rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end()));
953 return true;
957 namespace
959 inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult)
961 // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
962 // by using the equalZero test, NOT ::more or ::less which will use the
963 // ApproxEqual() which is too exact here
964 if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
966 if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
968 rResult.push_back(fCandidate);
974 void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const
976 rResults.clear();
978 // calculate the x-extrema parameters by zeroing first x-derivative
979 // of the cubic bezier's parametric formula, which results in a
980 // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
981 const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
982 const double fAX = 3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX();
983 const double fBX = 2 * maControlPointA.getX() - maControlPointB.getX() - maStartPoint.getX();
984 double fCX(maControlPointA.getX() - maStartPoint.getX());
986 if(fTools::equalZero(fCX))
988 // detect fCX equal zero and truncate to real zero value in that case
989 fCX = 0.0;
992 if( !fTools::equalZero(fAX) )
994 // derivative is polynomial of order 2 => use binomial formula
995 const double fD = fBX*fBX - fAX*fCX;
996 if( fD >= 0.0 )
998 const double fS = sqrt(fD);
999 // same as above but for very small fAX and/or fCX
1000 // this has much better numerical stability
1001 // see NRC chapter 5-6 (thanks THB!)
1002 const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
1003 impCheckExtremumResult(fQ / fAX, rResults);
1004 impCheckExtremumResult(fCX / fQ, rResults);
1007 else if( !fTools::equalZero(fBX) )
1009 // derivative is polynomial of order 1 => one extrema
1010 impCheckExtremumResult(fCX / (2 * fBX), rResults);
1013 // calculate the y-extrema parameters by zeroing first y-derivative
1014 const double fAY = 3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY();
1015 const double fBY = 2 * maControlPointA.getY() - maControlPointB.getY() - maStartPoint.getY();
1016 double fCY(maControlPointA.getY() - maStartPoint.getY());
1018 if(fTools::equalZero(fCY))
1020 // detect fCY equal zero and truncate to real zero value in that case
1021 fCY = 0.0;
1024 if( !fTools::equalZero(fAY) )
1026 // derivative is polynomial of order 2 => use binomial formula
1027 const double fD = fBY*fBY - fAY*fCY;
1028 if( fD >= 0 )
1030 const double fS = sqrt(fD);
1031 // same as above but for very small fAX and/or fCX
1032 // this has much better numerical stability
1033 // see NRC chapter 5-6 (thanks THB!)
1034 const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
1035 impCheckExtremumResult(fQ / fAY, rResults);
1036 impCheckExtremumResult(fCY / fQ, rResults);
1039 else if( !fTools::equalZero(fBY) )
1041 // derivative is polynomial of order 1 => one extrema
1042 impCheckExtremumResult(fCY / (2 * fBY), rResults);
1046 int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const
1048 // the distance from the bezier to a line through start and end
1049 // is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t),-BEZIERx(t))
1050 // this distance becomes zero for at least t==0 and t==1
1051 // its extrema that are between 0..1 are interesting as split candidates
1052 // its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC
1053 const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
1054 const double fA = 3 * (maEndPoint.getX() - maControlPointB.getX()) * aRelativeEndPoint.getY()
1055 - 3 * (maEndPoint.getY() - maControlPointB.getY()) * aRelativeEndPoint.getX();
1056 const double fB = (maControlPointB.getX() - maControlPointA.getX()) * aRelativeEndPoint.getY()
1057 - (maControlPointB.getY() - maControlPointA.getY()) * aRelativeEndPoint.getX();
1058 const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
1059 - (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
1061 // test for degenerated case: non-cubic curve
1062 if( fTools::equalZero(fA) )
1064 // test for degenerated case: straight line
1065 if( fTools::equalZero(fB) )
1066 return 0;
1068 // degenerated case: quadratic bezier
1069 pResult[0] = -fC / (2*fB);
1071 // test root: ignore it when it is outside the curve
1072 int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
1073 return nCount;
1076 // derivative is polynomial of order 2
1077 // check if the polynomial has non-imaginary roots
1078 const double fD = fB*fB - fA*fC;
1079 if( fD >= 0.0 ) // TODO: is this test needed? geometrically not IMHO
1081 // calculate the first root
1082 const double fS = sqrt(fD);
1083 const double fQ = fB + ((fB >= 0) ? +fS : -fS);
1084 pResult[0] = fQ / fA;
1085 // test root: ignore it when it is outside the curve
1086 int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
1088 // ignore multiplicit roots
1089 if( !fTools::equalZero(fD) )
1091 // calculate the second root
1092 const double fRoot = fC / fQ;
1093 pResult[ nCount ] = fC / fQ;
1094 // test root: ignore it when it is outside the curve
1095 nCount += ((fRoot > 0) && (fRoot < 1));
1098 return nCount;
1101 return 0;
1104 } // end of namespace basegfx
1106 // eof