1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
38 # define PARAMS(args) ()
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 /* We have to keep the namespace clean. */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
84 /* This is for other GNU distributions with internationalized messages. */
85 #if HAVE_LIBINTL_H || defined _LIBC
88 # define gettext(msgid) (msgid)
92 /* This define is so xgettext can find the internationalizable
94 # define gettext_noop(String) String
97 /* The `emacs' switch turns on certain matching commands
98 that make sense only in Emacs. */
105 #else /* not emacs */
107 /* If we are not linking with Emacs proper,
108 we can't use the relocating allocator
109 even if config.h says that we can. */
112 # if defined STDC_HEADERS || defined _LIBC
119 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
120 If nothing else has been done, use the method below. */
121 # ifdef INHIBIT_STRING_HEADER
122 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
123 # if !defined bzero && !defined bcopy
124 # undef INHIBIT_STRING_HEADER
129 /* This is the normal way of making sure we have a bcopy and a bzero.
130 This is used in most programs--a few other programs avoid this
131 by defining INHIBIT_STRING_HEADER. */
132 # ifndef INHIBIT_STRING_HEADER
133 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
137 # define bzero(s, n) (memset (s, '\0', n), (s))
139 # define bzero(s, n) __bzero (s, n)
143 # include <strings.h>
145 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
148 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
153 /* Define the syntax stuff for \<, \>, etc. */
155 /* This must be nonzero for the wordchar and notwordchar pattern
156 commands in re_match_2. */
161 # ifdef SWITCH_ENUM_BUG
162 # define SWITCH_ENUM_CAST(x) ((int)(x))
164 # define SWITCH_ENUM_CAST(x) (x)
167 /* How many characters in the character set. */
168 # define CHAR_SET_SIZE 256
172 extern char *re_syntax_table
;
174 # else /* not SYNTAX_TABLE */
176 static char re_syntax_table
[CHAR_SET_SIZE
];
187 bzero (re_syntax_table
, sizeof re_syntax_table
);
189 for (c
= 'a'; c
<= 'z'; c
++)
190 re_syntax_table
[c
] = Sword
;
192 for (c
= 'A'; c
<= 'Z'; c
++)
193 re_syntax_table
[c
] = Sword
;
195 for (c
= '0'; c
<= '9'; c
++)
196 re_syntax_table
[c
] = Sword
;
198 re_syntax_table
['_'] = Sword
;
203 # endif /* not SYNTAX_TABLE */
205 # define SYNTAX(c) re_syntax_table[c]
207 #endif /* not emacs */
209 /* Get the interface, including the syntax bits. */
212 /* isalpha etc. are used for the character classes. */
215 /* Jim Meyering writes:
217 "... Some ctype macros are valid only for character codes that
218 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
219 using /bin/cc or gcc but without giving an ansi option). So, all
220 ctype uses should be through macros like ISPRINT... If
221 STDC_HEADERS is defined, then autoconf has verified that the ctype
222 macros don't need to be guarded with references to isascii. ...
223 Defining isascii to 1 should let any compiler worth its salt
224 eliminate the && through constant folding."
225 Solaris defines some of these symbols so we must undefine them first. */
228 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
229 # define ISASCII(c) 1
231 # define ISASCII(c) isascii(c)
235 # define ISBLANK(c) (ISASCII (c) && isblank (c))
237 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
240 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
242 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
246 #define ISPRINT(c) (ISASCII (c) && isprint (c))
247 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
248 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
249 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
250 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
251 #define ISLOWER(c) (ISASCII (c) && islower (c))
252 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
253 #define ISSPACE(c) (ISASCII (c) && isspace (c))
254 #define ISUPPER(c) (ISASCII (c) && isupper (c))
255 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
258 # define TOLOWER(c) _tolower(c)
260 # define TOLOWER(c) tolower(c)
264 # define NULL (void *)0
267 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
268 since ours (we hope) works properly with all combinations of
269 machines, compilers, `char' and `unsigned char' argument types.
270 (Per Bothner suggested the basic approach.) */
271 #undef SIGN_EXTEND_CHAR
273 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
274 #else /* not __STDC__ */
275 /* As in Harbison and Steele. */
276 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
279 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
280 use `alloca' instead of `malloc'. This is because using malloc in
281 re_search* or re_match* could cause memory leaks when C-g is used in
282 Emacs; also, malloc is slower and causes storage fragmentation. On
283 the other hand, malloc is more portable, and easier to debug.
285 Because we sometimes use alloca, some routines have to be macros,
286 not functions -- `alloca'-allocated space disappears at the end of the
287 function it is called in. */
291 # define REGEX_ALLOCATE malloc
292 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
293 # define REGEX_FREE free
295 #else /* not REGEX_MALLOC */
297 /* Emacs already defines alloca, sometimes. */
300 /* Make alloca work the best possible way. */
302 # define alloca __builtin_alloca
303 # else /* not __GNUC__ */
305 # include <sal/alloca.h>
306 # endif /* HAVE_ALLOCA_H */
307 # endif /* not __GNUC__ */
309 # endif /* not alloca */
311 # define REGEX_ALLOCATE alloca
313 /* Assumes a `char *destination' variable. */
314 # define REGEX_REALLOCATE(source, osize, nsize) \
315 (destination = (char *) alloca (nsize), \
316 memcpy (destination, source, osize))
318 /* No need to do anything to free, after alloca. */
319 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
321 #endif /* not REGEX_MALLOC */
323 /* Define how to allocate the failure stack. */
325 #if defined REL_ALLOC && defined REGEX_MALLOC
327 # define REGEX_ALLOCATE_STACK(size) \
328 r_alloc (&failure_stack_ptr, (size))
329 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
330 r_re_alloc (&failure_stack_ptr, (nsize))
331 # define REGEX_FREE_STACK(ptr) \
332 r_alloc_free (&failure_stack_ptr)
334 #else /* not using relocating allocator */
338 # define REGEX_ALLOCATE_STACK malloc
339 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
340 # define REGEX_FREE_STACK free
342 # else /* not REGEX_MALLOC */
344 # define REGEX_ALLOCATE_STACK alloca
346 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
347 REGEX_REALLOCATE (source, osize, nsize)
348 /* No need to explicitly free anything. */
349 # define REGEX_FREE_STACK(arg)
351 # endif /* not REGEX_MALLOC */
352 #endif /* not using relocating allocator */
355 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
356 `string1' or just past its end. This works if PTR is NULL, which is
358 #define FIRST_STRING_P(ptr) \
359 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
361 /* (Re)Allocate N items of type T using malloc, or fail. */
362 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
363 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
364 #define RETALLOC_IF(addr, n, t) \
365 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
366 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
368 #define BYTEWIDTH 8 /* In bits. */
370 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
374 #define MAX(a, b) ((a) > (b) ? (a) : (b))
375 #define MIN(a, b) ((a) < (b) ? (a) : (b))
377 typedef char boolean
;
381 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
382 const char *string1
, int size1
,
383 const char *string2
, int size2
,
385 struct re_registers
*regs
,
388 /* These are the command codes that appear in compiled regular
389 expressions. Some opcodes are followed by argument bytes. A
390 command code can specify any interpretation whatsoever for its
391 arguments. Zero bytes may appear in the compiled regular expression. */
397 /* Succeed right away--no more backtracking. */
400 /* Followed by one byte giving n, then by n literal bytes. */
403 /* Matches any (more or less) character. */
406 /* Matches any one char belonging to specified set. First
407 following byte is number of bitmap bytes. Then come bytes
408 for a bitmap saying which chars are in. Bits in each byte
409 are ordered low-bit-first. A character is in the set if its
410 bit is 1. A character too large to have a bit in the map is
411 automatically not in the set. */
414 /* Same parameters as charset, but match any character that is
415 not one of those specified. */
418 /* Start remembering the text that is matched, for storing in a
419 register. Followed by one byte with the register number, in
420 the range 0 to one less than the pattern buffer's re_nsub
421 field. Then followed by one byte with the number of groups
422 inner to this one. (This last has to be part of the
423 start_memory only because we need it in the on_failure_jump
427 /* Stop remembering the text that is matched and store it in a
428 memory register. Followed by one byte with the register
429 number, in the range 0 to one less than `re_nsub' in the
430 pattern buffer, and one byte with the number of inner groups,
431 just like `start_memory'. (We need the number of inner
432 groups here because we don't have any easy way of finding the
433 corresponding start_memory when we're at a stop_memory.) */
436 /* Match a duplicate of something remembered. Followed by one
437 byte containing the register number. */
440 /* Fail unless at beginning of line. */
443 /* Fail unless at end of line. */
446 /* Succeeds if at beginning of buffer (if emacs) or at beginning
447 of string to be matched (if not). */
450 /* Analogously, for end of buffer/string. */
453 /* Followed by two byte relative address to which to jump. */
456 /* Same as jump, but marks the end of an alternative. */
459 /* Followed by two-byte relative address of place to resume at
460 in case of failure. */
463 /* Like on_failure_jump, but pushes a placeholder instead of the
464 current string position when executed. */
465 on_failure_keep_string_jump
,
467 /* Throw away latest failure point and then jump to following
468 two-byte relative address. */
471 /* Change to pop_failure_jump if know won't have to backtrack to
472 match; otherwise change to jump. This is used to jump
473 back to the beginning of a repeat. If what follows this jump
474 clearly won't match what the repeat does, such that we can be
475 sure that there is no use backtracking out of repetitions
476 already matched, then we change it to a pop_failure_jump.
477 Followed by two-byte address. */
480 /* Jump to following two-byte address, and push a dummy failure
481 point. This failure point will be thrown away if an attempt
482 is made to use it for a failure. A `+' construct makes this
483 before the first repeat. Also used as an intermediary kind
484 of jump when compiling an alternative. */
487 /* Push a dummy failure point and continue. Used at the end of
491 /* Followed by two-byte relative address and two-byte number n.
492 After matching N times, jump to the address upon failure. */
495 /* Followed by two-byte relative address, and two-byte number n.
496 Jump to the address N times, then fail. */
499 /* Set the following two-byte relative address to the
500 subsequent two-byte number. The address *includes* the two
504 wordchar
, /* Matches any word-constituent character. */
505 notwordchar
, /* Matches any char that is not a word-constituent. */
507 wordbeg
, /* Succeeds if at word beginning. */
508 wordend
, /* Succeeds if at word end. */
510 wordbound
, /* Succeeds if at a word boundary. */
511 notwordbound
/* Succeeds if not at a word boundary. */
514 ,before_dot
, /* Succeeds if before point. */
515 at_dot
, /* Succeeds if at point. */
516 after_dot
, /* Succeeds if after point. */
518 /* Matches any character whose syntax is specified. Followed by
519 a byte which contains a syntax code, e.g., Sword. */
522 /* Matches any character whose syntax is not that specified. */
527 /* Common operations on the compiled pattern. */
529 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
531 #define STORE_NUMBER(destination, number) \
533 (destination)[0] = (number) & 0377; \
534 (destination)[1] = (number) >> 8; \
537 /* Same as STORE_NUMBER, except increment DESTINATION to
538 the byte after where the number is stored. Therefore, DESTINATION
539 must be an lvalue. */
541 #define STORE_NUMBER_AND_INCR(destination, number) \
543 STORE_NUMBER (destination, number); \
544 (destination) += 2; \
547 /* Put into DESTINATION a number stored in two contiguous bytes starting
550 #define EXTRACT_NUMBER(destination, source) \
552 (destination) = *(source) & 0377; \
553 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
557 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
559 extract_number (dest
, source
)
561 unsigned char *source
;
563 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
564 *dest
= *source
& 0377;
568 # ifndef EXTRACT_MACROS /* To debug the macros. */
569 # undef EXTRACT_NUMBER
570 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
571 # endif /* not EXTRACT_MACROS */
575 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
576 SOURCE must be an lvalue. */
578 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
580 EXTRACT_NUMBER (destination, source); \
585 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
586 unsigned char **source
));
588 extract_number_and_incr (destination
, source
)
590 unsigned char **source
;
592 extract_number (destination
, *source
);
596 # ifndef EXTRACT_MACROS
597 # undef EXTRACT_NUMBER_AND_INCR
598 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
599 extract_number_and_incr (&dest, &src)
600 # endif /* not EXTRACT_MACROS */
604 /* If DEBUG is defined, Regex prints many voluminous messages about what
605 it is doing (if the variable `debug' is nonzero). If linked with the
606 main program in `iregex.c', you can enter patterns and strings
607 interactively. And if linked with the main program in `main.c' and
608 the other test files, you can run the already-written tests. */
612 /* We use standard I/O for debugging. */
615 /* It is useful to test things that ``must'' be true when debugging. */
620 # define DEBUG_STATEMENT(e) e
621 # define DEBUG_PRINT1(x) if (debug) printf (x)
622 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
623 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
624 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
625 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
626 if (debug) print_partial_compiled_pattern (s, e)
627 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
628 if (debug) print_double_string (w, s1, sz1, s2, sz2)
631 /* Print the fastmap in human-readable form. */
634 print_fastmap (fastmap
)
637 unsigned was_a_range
= 0;
640 while (i
< (1 << BYTEWIDTH
))
646 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
662 /* Print a compiled pattern string in human-readable form, starting at
663 the START pointer into it and ending just before the pointer END. */
666 print_partial_compiled_pattern (start
, end
)
667 unsigned char *start
;
672 unsigned char *p
= start
;
673 unsigned char *pend
= end
;
681 /* Loop over pattern commands. */
684 printf ("%d:\t", p
- start
);
686 switch ((re_opcode_t
) *p
++)
694 printf ("/exactn/%d", mcnt
);
705 printf ("/start_memory/%d/%d", mcnt
, *p
++);
710 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
714 printf ("/duplicate/%d", *p
++);
724 register int c
, last
= -100;
725 register int in_range
= 0;
727 printf ("/charset [%s",
728 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
730 assert (p
+ *p
< pend
);
732 for (c
= 0; c
< 256; c
++)
734 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
736 /* Are we starting a range? */
737 if (last
+ 1 == c
&& ! in_range
)
742 /* Have we broken a range? */
743 else if (last
+ 1 != c
&& in_range
)
772 case on_failure_jump
:
773 extract_number_and_incr (&mcnt
, &p
);
774 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
777 case on_failure_keep_string_jump
:
778 extract_number_and_incr (&mcnt
, &p
);
779 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
782 case dummy_failure_jump
:
783 extract_number_and_incr (&mcnt
, &p
);
784 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
787 case push_dummy_failure
:
788 printf ("/push_dummy_failure");
792 extract_number_and_incr (&mcnt
, &p
);
793 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
796 case pop_failure_jump
:
797 extract_number_and_incr (&mcnt
, &p
);
798 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
802 extract_number_and_incr (&mcnt
, &p
);
803 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
807 extract_number_and_incr (&mcnt
, &p
);
808 printf ("/jump to %d", p
+ mcnt
- start
);
812 extract_number_and_incr (&mcnt
, &p
);
814 extract_number_and_incr (&mcnt2
, &p
);
815 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
819 extract_number_and_incr (&mcnt
, &p
);
821 extract_number_and_incr (&mcnt2
, &p
);
822 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
826 extract_number_and_incr (&mcnt
, &p
);
828 extract_number_and_incr (&mcnt2
, &p
);
829 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
833 printf ("/wordbound");
837 printf ("/notwordbound");
849 printf ("/before_dot");
857 printf ("/after_dot");
861 printf ("/syntaxspec");
863 printf ("/%d", mcnt
);
867 printf ("/notsyntaxspec");
869 printf ("/%d", mcnt
);
874 printf ("/wordchar");
878 printf ("/notwordchar");
890 printf ("?%d", *(p
-1));
896 printf ("%d:\tend of pattern.\n", p
- start
);
901 print_compiled_pattern (bufp
)
902 struct re_pattern_buffer
*bufp
;
904 unsigned char *buffer
= bufp
->buffer
;
906 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
907 printf ("%ld bytes used/%ld bytes allocated.\n",
908 bufp
->used
, bufp
->allocated
);
910 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
912 printf ("fastmap: ");
913 print_fastmap (bufp
->fastmap
);
916 printf ("re_nsub: %d\t", bufp
->re_nsub
);
917 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
918 printf ("can_be_null: %d\t", bufp
->can_be_null
);
919 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
920 printf ("no_sub: %d\t", bufp
->no_sub
);
921 printf ("not_bol: %d\t", bufp
->not_bol
);
922 printf ("not_eol: %d\t", bufp
->not_eol
);
923 printf ("syntax: %lx\n", bufp
->syntax
);
924 /* Perhaps we should print the translate table? */
929 print_double_string (where
, string1
, size1
, string2
, size2
)
942 if (FIRST_STRING_P (where
))
944 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
945 putchar (string1
[this_char
]);
950 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
951 putchar (string2
[this_char
]);
962 #else /* not DEBUG */
967 # define DEBUG_STATEMENT(e)
968 # define DEBUG_PRINT1(x)
969 # define DEBUG_PRINT2(x1, x2)
970 # define DEBUG_PRINT3(x1, x2, x3)
971 # define DEBUG_PRINT4(x1, x2, x3, x4)
972 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
973 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
975 #endif /* not DEBUG */
977 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
978 also be assigned to arbitrarily: each pattern buffer stores its own
979 syntax, so it can be changed between regex compilations. */
980 /* This has no initializer because initialized variables in Emacs
981 become read-only after dumping. */
982 reg_syntax_t re_syntax_options
;
985 /* Specify the precise syntax of regexps for compilation. This provides
986 for compatibility for various utilities which historically have
987 different, incompatible syntaxes.
989 The argument SYNTAX is a bit mask comprised of the various bits
990 defined in regex.h. We return the old syntax. */
993 re_set_syntax (syntax
)
996 reg_syntax_t ret
= re_syntax_options
;
998 re_syntax_options
= syntax
;
1000 if (syntax
& RE_DEBUG
)
1002 else if (debug
) /* was on but now is not */
1008 weak_alias (__re_set_syntax
, re_set_syntax
)
1011 /* This table gives an error message for each of the error codes listed
1012 in regex.h. Obviously the order here has to be same as there.
1013 POSIX doesn't require that we do anything for REG_NOERROR,
1014 but why not be nice? */
1016 static const char re_error_msgid
[] =
1018 #define REG_NOERROR_IDX 0
1019 gettext_noop ("Success") /* REG_NOERROR */
1021 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1022 gettext_noop ("No match") /* REG_NOMATCH */
1024 #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1025 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1027 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1028 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1030 #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1031 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1033 #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1034 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1036 #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1037 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1039 #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1040 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1042 #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1043 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1045 #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1046 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1048 #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1049 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1051 #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1052 gettext_noop ("Invalid range end") /* REG_ERANGE */
1054 #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1055 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1057 #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1058 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1060 #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1061 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1063 #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1064 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1066 #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1067 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1070 static const size_t re_error_msgid_idx
[] =
1091 /* Avoiding alloca during matching, to placate r_alloc. */
1093 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1094 searching and matching functions should not call alloca. On some
1095 systems, alloca is implemented in terms of malloc, and if we're
1096 using the relocating allocator routines, then malloc could cause a
1097 relocation, which might (if the strings being searched are in the
1098 ralloc heap) shift the data out from underneath the regexp
1101 Here's another reason to avoid allocation: Emacs
1102 processes input from X in a signal handler; processing X input may
1103 call malloc; if input arrives while a matching routine is calling
1104 malloc, then we're scrod. But Emacs can't just block input while
1105 calling matching routines; then we don't notice interrupts when
1106 they come in. So, Emacs blocks input around all regexp calls
1107 except the matching calls, which it leaves unprotected, in the
1108 faith that they will not malloc. */
1110 /* Normally, this is fine. */
1111 #define MATCH_MAY_ALLOCATE
1113 /* When using GNU C, we are not REALLY using the C alloca, no matter
1114 what config.h may say. So don't take precautions for it. */
1119 /* The match routines may not allocate if (1) they would do it with malloc
1120 and (2) it's not safe for them to use malloc.
1121 Note that if REL_ALLOC is defined, matching would not use malloc for the
1122 failure stack, but we would still use it for the register vectors;
1123 so REL_ALLOC should not affect this. */
1124 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1125 # undef MATCH_MAY_ALLOCATE
1129 /* Failure stack declarations and macros; both re_compile_fastmap and
1130 re_match_2 use a failure stack. These have to be macros because of
1131 REGEX_ALLOCATE_STACK. */
1134 /* Number of failure points for which to initially allocate space
1135 when matching. If this number is exceeded, we allocate more
1136 space, so it is not a hard limit. */
1137 #ifndef INIT_FAILURE_ALLOC
1138 # define INIT_FAILURE_ALLOC 5
1141 /* Roughly the maximum number of failure points on the stack. Would be
1142 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1143 This is a variable only so users of regex can assign to it; we never
1144 change it ourselves. */
1148 # if defined MATCH_MAY_ALLOCATE
1149 /* 4400 was enough to cause a crash on Alpha OSF/1,
1150 whose default stack limit is 2mb. */
1151 long int re_max_failures
= 4000;
1153 long int re_max_failures
= 2000;
1156 union fail_stack_elt
1158 unsigned char *pointer
;
1162 typedef union fail_stack_elt fail_stack_elt_t
;
1166 fail_stack_elt_t
*stack
;
1167 unsigned long int size
;
1168 unsigned long int avail
; /* Offset of next open position. */
1171 #else /* not INT_IS_16BIT */
1173 # if defined MATCH_MAY_ALLOCATE
1174 /* 4400 was enough to cause a crash on Alpha OSF/1,
1175 whose default stack limit is 2mb. */
1176 int re_max_failures
= 20000;
1178 int re_max_failures
= 2000;
1181 union fail_stack_elt
1183 unsigned char *pointer
;
1187 typedef union fail_stack_elt fail_stack_elt_t
;
1191 fail_stack_elt_t
*stack
;
1193 unsigned avail
; /* Offset of next open position. */
1196 #endif /* INT_IS_16BIT */
1198 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1199 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1200 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1203 /* Define macros to initialize and free the failure stack.
1204 Do `return -2' if the alloc fails. */
1206 #ifdef MATCH_MAY_ALLOCATE
1207 # define INIT_FAIL_STACK() \
1209 fail_stack.stack = (fail_stack_elt_t *) \
1210 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1212 if (fail_stack.stack == NULL) \
1215 fail_stack.size = INIT_FAILURE_ALLOC; \
1216 fail_stack.avail = 0; \
1219 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1221 # define INIT_FAIL_STACK() \
1223 fail_stack.avail = 0; \
1226 # define RESET_FAIL_STACK()
1230 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1232 Return 1 if succeeds, and 0 if either ran out of memory
1233 allocating space for it or it was already too large.
1235 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1237 #define DOUBLE_FAIL_STACK(fail_stack) \
1238 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1240 : ((fail_stack).stack = (fail_stack_elt_t *) \
1241 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1242 (fail_stack).size * sizeof (fail_stack_elt_t), \
1243 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1245 (fail_stack).stack == NULL \
1247 : ((fail_stack).size <<= 1, \
1251 /* Push pointer POINTER on FAIL_STACK.
1252 Return 1 if was able to do so and 0 if ran out of memory allocating
1254 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1255 ((FAIL_STACK_FULL () \
1256 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1258 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1261 /* Push a pointer value onto the failure stack.
1262 Assumes the variable `fail_stack'. Probably should only
1263 be called from within `PUSH_FAILURE_POINT'. */
1264 #define PUSH_FAILURE_POINTER(item) \
1265 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1267 /* This pushes an integer-valued item onto the failure stack.
1268 Assumes the variable `fail_stack'. Probably should only
1269 be called from within `PUSH_FAILURE_POINT'. */
1270 #define PUSH_FAILURE_INT(item) \
1271 fail_stack.stack[fail_stack.avail++].integer = (item)
1273 /* Push a fail_stack_elt_t value onto the failure stack.
1274 Assumes the variable `fail_stack'. Probably should only
1275 be called from within `PUSH_FAILURE_POINT'. */
1276 #define PUSH_FAILURE_ELT(item) \
1277 fail_stack.stack[fail_stack.avail++] = (item)
1279 /* These three POP... operations complement the three PUSH... operations.
1280 All assume that `fail_stack' is nonempty. */
1281 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1282 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1283 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1285 /* Used to omit pushing failure point id's when we're not debugging. */
1287 # define DEBUG_PUSH PUSH_FAILURE_INT
1288 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1290 # define DEBUG_PUSH(item)
1291 # define DEBUG_POP(item_addr)
1295 /* Push the information about the state we will need
1296 if we ever fail back to it.
1298 Requires variables fail_stack, regstart, regend, reg_info, and
1299 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1302 Does `return FAILURE_CODE' if runs out of memory. */
1304 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1306 char *destination; \
1307 /* Must be int, so when we don't save any registers, the arithmetic \
1308 of 0 + -1 isn't done as unsigned. */ \
1309 /* Can't be int, since there is not a shred of a guarantee that int \
1310 is wide enough to hold a value of something to which pointer can \
1312 active_reg_t this_reg; \
1314 DEBUG_STATEMENT (failure_id++); \
1315 DEBUG_STATEMENT (nfailure_points_pushed++); \
1316 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1317 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1318 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1320 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1321 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1323 /* Ensure we have enough space allocated for what we will push. */ \
1324 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1326 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1327 return failure_code; \
1329 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1330 (fail_stack).size); \
1331 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1334 /* Push the info, starting with the registers. */ \
1335 DEBUG_PRINT1 ("\n"); \
1338 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1341 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1342 DEBUG_STATEMENT (num_regs_pushed++); \
1344 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1345 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1347 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1348 PUSH_FAILURE_POINTER (regend[this_reg]); \
1350 DEBUG_PRINT2 (" info: %p\n ", \
1351 reg_info[this_reg].word.pointer); \
1352 DEBUG_PRINT2 (" match_null=%d", \
1353 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1354 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1355 DEBUG_PRINT2 (" matched_something=%d", \
1356 MATCHED_SOMETHING (reg_info[this_reg])); \
1357 DEBUG_PRINT2 (" ever_matched=%d", \
1358 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1359 DEBUG_PRINT1 ("\n"); \
1360 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1363 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1364 PUSH_FAILURE_INT (lowest_active_reg); \
1366 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1367 PUSH_FAILURE_INT (highest_active_reg); \
1369 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1370 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1371 PUSH_FAILURE_POINTER (pattern_place); \
1373 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1374 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1376 DEBUG_PRINT1 ("'\n"); \
1377 PUSH_FAILURE_POINTER (string_place); \
1379 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1380 DEBUG_PUSH (failure_id); \
1383 /* This is the number of items that are pushed and popped on the stack
1384 for each register. */
1385 #define NUM_REG_ITEMS 3
1387 /* Individual items aside from the registers. */
1389 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1391 # define NUM_NONREG_ITEMS 4
1394 /* We push at most this many items on the stack. */
1395 /* We used to use (num_regs - 1), which is the number of registers
1396 this regexp will save; but that was changed to 5
1397 to avoid stack overflow for a regexp with lots of parens. */
1398 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1400 /* We actually push this many items. */
1401 #define NUM_FAILURE_ITEMS \
1403 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1407 /* How many items can still be added to the stack without overflowing it. */
1408 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1411 /* Pops what PUSH_FAIL_STACK pushes.
1413 We restore into the parameters, all of which should be lvalues:
1414 STR -- the saved data position.
1415 PAT -- the saved pattern position.
1416 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1417 REGSTART, REGEND -- arrays of string positions.
1418 REG_INFO -- array of information about each subexpression.
1420 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1421 `pend', `string1', `size1', `string2', and `size2'. */
1423 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1425 DEBUG_STATEMENT (unsigned failure_id;) \
1426 active_reg_t this_reg; \
1427 const unsigned char *string_temp; \
1429 assert (!FAIL_STACK_EMPTY ()); \
1431 /* Remove failure points and point to how many regs pushed. */ \
1432 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1433 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1434 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1436 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1438 DEBUG_POP (&failure_id); \
1439 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1441 /* If the saved string location is NULL, it came from an \
1442 on_failure_keep_string_jump opcode, and we want to throw away the \
1443 saved NULL, thus retaining our current position in the string. */ \
1444 string_temp = POP_FAILURE_POINTER (); \
1445 if (string_temp != NULL) \
1446 str = (const char *) string_temp; \
1448 DEBUG_PRINT2 (" Popping string %p: `", str); \
1449 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1450 DEBUG_PRINT1 ("'\n"); \
1452 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1453 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1454 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1456 /* Restore register info. */ \
1457 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1458 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1460 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1461 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1464 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1466 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1468 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1469 DEBUG_PRINT2 (" info: %p\n", \
1470 reg_info[this_reg].word.pointer); \
1472 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1473 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1475 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1476 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1480 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1482 reg_info[this_reg].word.integer = 0; \
1483 regend[this_reg] = 0; \
1484 regstart[this_reg] = 0; \
1486 highest_active_reg = high_reg; \
1489 set_regs_matched_done = 0; \
1490 DEBUG_STATEMENT (nfailure_points_popped++); \
1491 } /* POP_FAILURE_POINT */
1495 /* Structure for per-register (a.k.a. per-group) information.
1496 Other register information, such as the
1497 starting and ending positions (which are addresses), and the list of
1498 inner groups (which is a bits list) are maintained in separate
1501 We are making a (strictly speaking) nonportable assumption here: that
1502 the compiler will pack our bit fields into something that fits into
1503 the type of `word', i.e., is something that fits into one item on the
1507 /* Declarations and macros for re_match_2. */
1511 fail_stack_elt_t word
;
1514 /* This field is one if this group can match the empty string,
1515 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1516 #define MATCH_NULL_UNSET_VALUE 3
1517 unsigned match_null_string_p
: 2;
1518 unsigned is_active
: 1;
1519 unsigned matched_something
: 1;
1520 unsigned ever_matched_something
: 1;
1522 } register_info_type
;
1524 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1525 #define IS_ACTIVE(R) ((R).bits.is_active)
1526 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1527 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1530 /* Call this when have matched a real character; it sets `matched' flags
1531 for the subexpressions which we are currently inside. Also records
1532 that those subexprs have matched. */
1533 #define SET_REGS_MATCHED() \
1536 if (!set_regs_matched_done) \
1539 set_regs_matched_done = 1; \
1540 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1542 MATCHED_SOMETHING (reg_info[r]) \
1543 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1550 /* Registers are set to a sentinel when they haven't yet matched. */
1551 static char reg_unset_dummy
;
1552 #define REG_UNSET_VALUE (®_unset_dummy)
1553 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1555 /* Subroutine declarations and macros for regex_compile. */
1557 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1558 reg_syntax_t syntax
,
1559 struct re_pattern_buffer
*bufp
));
1560 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1561 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1562 int arg1
, int arg2
));
1563 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1564 int arg
, unsigned char *end
));
1565 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1566 int arg1
, int arg2
, unsigned char *end
));
1567 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1568 reg_syntax_t syntax
));
1569 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1570 reg_syntax_t syntax
));
1571 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1574 reg_syntax_t syntax
,
1577 /* Fetch the next character in the uncompiled pattern---translating it
1578 if necessary. Also cast from a signed character in the constant
1579 string passed to us by the user to an unsigned char that we can use
1580 as an array index (in, e.g., `translate'). */
1582 # define PATFETCH(c) \
1583 do {if (p == pend) return REG_EEND; \
1584 c = (unsigned char) *p++; \
1585 if (translate) c = (unsigned char) translate[c]; \
1589 /* Fetch the next character in the uncompiled pattern, with no
1591 #define PATFETCH_RAW(c) \
1592 do {if (p == pend) return REG_EEND; \
1593 c = (unsigned char) *p++; \
1596 /* Go backwards one character in the pattern. */
1597 #define PATUNFETCH p--
1600 /* If `translate' is non-null, return translate[D], else just D. We
1601 cast the subscript to translate because some data is declared as
1602 `char *', to avoid warnings when a string constant is passed. But
1603 when we use a character as a subscript we must make it unsigned. */
1605 # define TRANSLATE(d) \
1606 (translate ? (char) translate[(unsigned char) (d)] : (d))
1610 /* Macros for outputting the compiled pattern into `buffer'. */
1612 /* If the buffer isn't allocated when it comes in, use this. */
1613 #define INIT_BUF_SIZE 32
1615 /* Make sure we have at least N more bytes of space in buffer. */
1616 #define GET_BUFFER_SPACE(n) \
1617 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1620 /* Make sure we have one more byte of buffer space and then add C to it. */
1621 #define BUF_PUSH(c) \
1623 GET_BUFFER_SPACE (1); \
1624 *b++ = (unsigned char) (c); \
1628 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1629 #define BUF_PUSH_2(c1, c2) \
1631 GET_BUFFER_SPACE (2); \
1632 *b++ = (unsigned char) (c1); \
1633 *b++ = (unsigned char) (c2); \
1637 /* As with BUF_PUSH_2, except for three bytes. */
1638 #define BUF_PUSH_3(c1, c2, c3) \
1640 GET_BUFFER_SPACE (3); \
1641 *b++ = (unsigned char) (c1); \
1642 *b++ = (unsigned char) (c2); \
1643 *b++ = (unsigned char) (c3); \
1647 /* Store a jump with opcode OP at LOC to location TO. We store a
1648 relative address offset by the three bytes the jump itself occupies. */
1649 #define STORE_JUMP(op, loc, to) \
1650 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1652 /* Likewise, for a two-argument jump. */
1653 #define STORE_JUMP2(op, loc, to, arg) \
1654 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1656 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1657 #define INSERT_JUMP(op, loc, to) \
1658 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1660 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1661 #define INSERT_JUMP2(op, loc, to, arg) \
1662 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1665 /* This is not an arbitrary limit: the arguments which represent offsets
1666 into the pattern are two bytes long. So if 2^16 bytes turns out to
1667 be too small, many things would have to change. */
1668 /* Any other compiler which, like MSC, has allocation limit below 2^16
1669 bytes will have to use approach similar to what was done below for
1670 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1671 reallocating to 0 bytes. Such thing is not going to work too well.
1672 You have been warned!! */
1673 #if defined _MSC_VER && !defined WIN32
1674 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1675 The REALLOC define eliminates a flurry of conversion warnings,
1676 but is not required. */
1677 # define MAX_BUF_SIZE 65500L
1678 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1680 # define MAX_BUF_SIZE (1L << 16)
1681 # define REALLOC(p,s) realloc ((p), (s))
1684 /* Extend the buffer by twice its current size via realloc and
1685 reset the pointers that pointed into the old block to point to the
1686 correct places in the new one. If extending the buffer results in it
1687 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1688 #define EXTEND_BUFFER() \
1690 unsigned char *old_buffer = bufp->buffer; \
1691 if (bufp->allocated == MAX_BUF_SIZE) \
1693 bufp->allocated <<= 1; \
1694 if (bufp->allocated > MAX_BUF_SIZE) \
1695 bufp->allocated = MAX_BUF_SIZE; \
1696 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1697 if (bufp->buffer == NULL) \
1698 return REG_ESPACE; \
1699 /* If the buffer moved, move all the pointers into it. */ \
1700 if (old_buffer != bufp->buffer) \
1702 b = (b - old_buffer) + bufp->buffer; \
1703 begalt = (begalt - old_buffer) + bufp->buffer; \
1704 if (fixup_alt_jump) \
1705 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1707 laststart = (laststart - old_buffer) + bufp->buffer; \
1708 if (pending_exact) \
1709 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1714 /* Since we have one byte reserved for the register number argument to
1715 {start,stop}_memory, the maximum number of groups we can report
1716 things about is what fits in that byte. */
1717 #define MAX_REGNUM 255
1719 /* But patterns can have more than `MAX_REGNUM' registers. We just
1720 ignore the excess. */
1721 typedef unsigned regnum_t
;
1724 /* Macros for the compile stack. */
1726 /* Since offsets can go either forwards or backwards, this type needs to
1727 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1728 /* int may be not enough when sizeof(int) == 2. */
1729 typedef long pattern_offset_t
;
1733 pattern_offset_t begalt_offset
;
1734 pattern_offset_t fixup_alt_jump
;
1735 pattern_offset_t inner_group_offset
;
1736 pattern_offset_t laststart_offset
;
1738 } compile_stack_elt_t
;
1743 compile_stack_elt_t
*stack
;
1745 unsigned avail
; /* Offset of next open position. */
1746 } compile_stack_type
;
1749 #define INIT_COMPILE_STACK_SIZE 32
1751 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1752 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1754 /* The next available element. */
1755 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1758 /* Set the bit for character C in a list. */
1759 #define SET_LIST_BIT(c) \
1760 (b[((unsigned char) (c)) / BYTEWIDTH] \
1761 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1764 /* Get the next unsigned number in the uncompiled pattern. */
1765 #define GET_UNSIGNED_NUMBER(num) \
1769 while (ISDIGIT (c)) \
1773 num = num * 10 + c - '0'; \
1781 #if defined _LIBC || WIDE_CHAR_SUPPORT
1782 /* The GNU C library provides support for user-defined character classes
1783 and the functions from ISO C amendement 1. */
1784 # ifdef CHARCLASS_NAME_MAX
1785 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1787 /* This shouldn't happen but some implementation might still have this
1788 problem. Use a reasonable default value. */
1789 # define CHAR_CLASS_MAX_LENGTH 256
1793 # define IS_CHAR_CLASS(string) __wctype (string)
1795 # define IS_CHAR_CLASS(string) wctype (string)
1798 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1800 # define IS_CHAR_CLASS(string) \
1801 (STREQ (string, "alpha") || STREQ (string, "upper") \
1802 || STREQ (string, "lower") || STREQ (string, "digit") \
1803 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1804 || STREQ (string, "space") || STREQ (string, "print") \
1805 || STREQ (string, "punct") || STREQ (string, "graph") \
1806 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1809 #ifndef MATCH_MAY_ALLOCATE
1811 /* If we cannot allocate large objects within re_match_2_internal,
1812 we make the fail stack and register vectors global.
1813 The fail stack, we grow to the maximum size when a regexp
1815 The register vectors, we adjust in size each time we
1816 compile a regexp, according to the number of registers it needs. */
1818 static fail_stack_type fail_stack
;
1820 /* Size with which the following vectors are currently allocated.
1821 That is so we can make them bigger as needed,
1822 but never make them smaller. */
1823 static int regs_allocated_size
;
1825 static const char ** regstart
, ** regend
;
1826 static const char ** old_regstart
, ** old_regend
;
1827 static const char **best_regstart
, **best_regend
;
1828 static register_info_type
*reg_info
;
1829 static const char **reg_dummy
;
1830 static register_info_type
*reg_info_dummy
;
1832 /* Make the register vectors big enough for NUM_REGS registers,
1833 but don't make them smaller. */
1836 regex_grow_registers (num_regs
)
1839 if (num_regs
> regs_allocated_size
)
1841 RETALLOC_IF (regstart
, num_regs
, const char *);
1842 RETALLOC_IF (regend
, num_regs
, const char *);
1843 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1844 RETALLOC_IF (old_regend
, num_regs
, const char *);
1845 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1846 RETALLOC_IF (best_regend
, num_regs
, const char *);
1847 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1848 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1849 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1851 regs_allocated_size
= num_regs
;
1855 #endif /* not MATCH_MAY_ALLOCATE */
1857 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1861 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1862 Returns one of error codes defined in `regex.h', or zero for success.
1864 Assumes the `allocated' (and perhaps `buffer') and `translate'
1865 fields are set in BUFP on entry.
1867 If it succeeds, results are put in BUFP (if it returns an error, the
1868 contents of BUFP are undefined):
1869 `buffer' is the compiled pattern;
1870 `syntax' is set to SYNTAX;
1871 `used' is set to the length of the compiled pattern;
1872 `fastmap_accurate' is zero;
1873 `re_nsub' is the number of subexpressions in PATTERN;
1874 `not_bol' and `not_eol' are zero;
1876 The `fastmap' and `newline_anchor' fields are neither
1877 examined nor set. */
1879 /* Return, freeing storage we allocated. */
1880 #define FREE_STACK_RETURN(value) \
1881 return (free (compile_stack.stack), value)
1883 static reg_errcode_t
1884 regex_compile (pattern
, size
, syntax
, bufp
)
1885 const char *pattern
;
1887 reg_syntax_t syntax
;
1888 struct re_pattern_buffer
*bufp
;
1890 /* We fetch characters from PATTERN here. Even though PATTERN is
1891 `char *' (i.e., signed), we declare these variables as unsigned, so
1892 they can be reliably used as array indices. */
1893 register unsigned char c
, c1
;
1895 /* A random temporary spot in PATTERN. */
1898 /* Points to the end of the buffer, where we should append. */
1899 register unsigned char *b
;
1901 /* Keeps track of unclosed groups. */
1902 compile_stack_type compile_stack
;
1904 /* Points to the current (ending) position in the pattern. */
1905 const char *p
= pattern
;
1906 const char *pend
= pattern
+ size
;
1908 /* How to translate the characters in the pattern. */
1909 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1911 /* Address of the count-byte of the most recently inserted `exactn'
1912 command. This makes it possible to tell if a new exact-match
1913 character can be added to that command or if the character requires
1914 a new `exactn' command. */
1915 unsigned char *pending_exact
= 0;
1917 /* Address of start of the most recently finished expression.
1918 This tells, e.g., postfix * where to find the start of its
1919 operand. Reset at the beginning of groups and alternatives. */
1920 unsigned char *laststart
= 0;
1922 /* Address of beginning of regexp, or inside of last group. */
1923 unsigned char *begalt
;
1925 /* Place in the uncompiled pattern (i.e., the {) to
1926 which to go back if the interval is invalid. */
1927 const char *beg_interval
;
1929 /* Address of the place where a forward jump should go to the end of
1930 the containing expression. Each alternative of an `or' -- except the
1931 last -- ends with a forward jump of this sort. */
1932 unsigned char *fixup_alt_jump
= 0;
1934 /* Counts open-groups as they are encountered. Remembered for the
1935 matching close-group on the compile stack, so the same register
1936 number is put in the stop_memory as the start_memory. */
1937 regnum_t regnum
= 0;
1940 DEBUG_PRINT1 ("\nCompiling pattern: ");
1943 unsigned debug_count
;
1945 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1946 putchar (pattern
[debug_count
]);
1951 /* Initialize the compile stack. */
1952 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1953 if (compile_stack
.stack
== NULL
)
1956 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1957 compile_stack
.avail
= 0;
1959 /* Initialize the pattern buffer. */
1960 bufp
->syntax
= syntax
;
1961 bufp
->fastmap_accurate
= 0;
1962 bufp
->not_bol
= bufp
->not_eol
= 0;
1964 /* Set `used' to zero, so that if we return an error, the pattern
1965 printer (for debugging) will think there's no pattern. We reset it
1969 /* Always count groups, whether or not bufp->no_sub is set. */
1972 #if !defined emacs && !defined SYNTAX_TABLE
1973 /* Initialize the syntax table. */
1974 init_syntax_once ();
1977 if (bufp
->allocated
== 0)
1980 { /* If zero allocated, but buffer is non-null, try to realloc
1981 enough space. This loses if buffer's address is bogus, but
1982 that is the user's responsibility. */
1983 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1986 { /* Caller did not allocate a buffer. Do it for them. */
1987 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1989 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1991 bufp
->allocated
= INIT_BUF_SIZE
;
1994 begalt
= b
= bufp
->buffer
;
1996 /* Loop through the uncompiled pattern until we're at the end. */
2005 if ( /* If at start of pattern, it's an operator. */
2007 /* If context independent, it's an operator. */
2008 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2009 /* Otherwise, depends on what's come before. */
2010 || at_begline_loc_p (pattern
, p
, syntax
))
2020 if ( /* If at end of pattern, it's an operator. */
2022 /* If context independent, it's an operator. */
2023 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2024 /* Otherwise, depends on what's next. */
2025 || at_endline_loc_p (p
, pend
, syntax
))
2035 if ((syntax
& RE_BK_PLUS_QM
)
2036 || (syntax
& RE_LIMITED_OPS
))
2040 /* If there is no previous pattern... */
2043 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2044 FREE_STACK_RETURN (REG_BADRPT
);
2045 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2050 /* Are we optimizing this jump? */
2051 boolean keep_string_p
= false;
2053 /* 1 means zero (many) matches is allowed. */
2054 char zero_times_ok
= 0, many_times_ok
= 0;
2056 /* If there is a sequence of repetition chars, collapse it
2057 down to just one (the right one). We can't combine
2058 interval operators with these because of, e.g., `a{2}*',
2059 which should only match an even number of `a's. */
2063 zero_times_ok
|= c
!= '+';
2064 many_times_ok
|= c
!= '?';
2072 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2075 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2077 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2080 if (!(c1
== '+' || c1
== '?'))
2095 /* If we get here, we found another repeat character. */
2098 /* Star, etc. applied to an empty pattern is equivalent
2099 to an empty pattern. */
2103 /* Now we know whether or not zero matches is allowed
2104 and also whether or not two or more matches is allowed. */
2106 { /* More than one repetition is allowed, so put in at the
2107 end a backward relative jump from `b' to before the next
2108 jump we're going to put in below (which jumps from
2109 laststart to after this jump).
2111 But if we are at the `*' in the exact sequence `.*\n',
2112 insert an unconditional jump backwards to the .,
2113 instead of the beginning of the loop. This way we only
2114 push a failure point once, instead of every time
2115 through the loop. */
2116 assert (p
- 1 > pattern
);
2118 /* Allocate the space for the jump. */
2119 GET_BUFFER_SPACE (3);
2121 /* We know we are not at the first character of the pattern,
2122 because laststart was nonzero. And we've already
2123 incremented `p', by the way, to be the character after
2124 the `*'. Do we have to do something analogous here
2125 for null bytes, because of RE_DOT_NOT_NULL? */
2126 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2128 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2129 && !(syntax
& RE_DOT_NEWLINE
))
2130 { /* We have .*\n. */
2131 STORE_JUMP (jump
, b
, laststart
);
2132 keep_string_p
= true;
2135 /* Anything else. */
2136 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2138 /* We've added more stuff to the buffer. */
2142 /* On failure, jump from laststart to b + 3, which will be the
2143 end of the buffer after this jump is inserted. */
2144 GET_BUFFER_SPACE (3);
2145 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2153 /* At least one repetition is required, so insert a
2154 `dummy_failure_jump' before the initial
2155 `on_failure_jump' instruction of the loop. This
2156 effects a skip over that instruction the first time
2157 we hit that loop. */
2158 GET_BUFFER_SPACE (3);
2159 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2174 boolean had_char_class
= false;
2176 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2178 /* Ensure that we have enough space to push a charset: the
2179 opcode, the length count, and the bitset; 34 bytes in all. */
2180 GET_BUFFER_SPACE (34);
2184 /* We test `*p == '^' twice, instead of using an if
2185 statement, so we only need one BUF_PUSH. */
2186 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2190 /* Remember the first position in the bracket expression. */
2193 /* Push the number of bytes in the bitmap. */
2194 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2196 /* Clear the whole map. */
2197 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2199 /* charset_not matches newline according to a syntax bit. */
2200 if ((re_opcode_t
) b
[-2] == charset_not
2201 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2202 SET_LIST_BIT ('\n');
2204 /* Read in characters and ranges, setting map bits. */
2207 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2211 /* \ might escape characters inside [...] and [^...]. */
2212 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2214 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2221 /* Could be the end of the bracket expression. If it's
2222 not (i.e., when the bracket expression is `[]' so
2223 far), the ']' character bit gets set way below. */
2224 if (c
== ']' && p
!= p1
+ 1)
2227 /* Look ahead to see if it's a range when the last thing
2228 was a character class. */
2229 if (had_char_class
&& c
== '-' && *p
!= ']')
2230 FREE_STACK_RETURN (REG_ERANGE
);
2232 /* Look ahead to see if it's a range when the last thing
2233 was a character: if this is a hyphen not at the
2234 beginning or the end of a list, then it's the range
2237 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2238 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2242 = compile_range (&p
, pend
, translate
, syntax
, b
);
2243 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2246 else if (p
[0] == '-' && p
[1] != ']')
2247 { /* This handles ranges made up of characters only. */
2250 /* Move past the `-'. */
2253 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2254 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2257 /* See if we're at the beginning of a possible character
2260 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2261 { /* Leave room for the null. */
2262 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2267 /* If pattern is `[[:'. */
2268 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2273 if ((c
== ':' && *p
== ']') || p
== pend
)
2275 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2278 /* This is in any case an invalid class name. */
2283 /* If isn't a word bracketed by `[:' and `:]':
2284 undo the ending character, the letters, and leave
2285 the leading `:' and `[' (but set bits for them). */
2286 if (c
== ':' && *p
== ']')
2288 #if defined _LIBC || WIDE_CHAR_SUPPORT
2289 boolean is_lower
= STREQ (str
, "lower");
2290 boolean is_upper
= STREQ (str
, "upper");
2294 wt
= IS_CHAR_CLASS (str
);
2296 FREE_STACK_RETURN (REG_ECTYPE
);
2298 /* Throw away the ] at the end of the character
2302 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2304 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2307 if (__iswctype (__btowc (ch
), wt
))
2310 if (iswctype (btowc (ch
), wt
))
2314 if (translate
&& (is_upper
|| is_lower
)
2315 && (ISUPPER (ch
) || ISLOWER (ch
)))
2319 had_char_class
= true;
2322 boolean is_alnum
= STREQ (str
, "alnum");
2323 boolean is_alpha
= STREQ (str
, "alpha");
2324 boolean is_blank
= STREQ (str
, "blank");
2325 boolean is_cntrl
= STREQ (str
, "cntrl");
2326 boolean is_digit
= STREQ (str
, "digit");
2327 boolean is_graph
= STREQ (str
, "graph");
2328 boolean is_lower
= STREQ (str
, "lower");
2329 boolean is_print
= STREQ (str
, "print");
2330 boolean is_punct
= STREQ (str
, "punct");
2331 boolean is_space
= STREQ (str
, "space");
2332 boolean is_upper
= STREQ (str
, "upper");
2333 boolean is_xdigit
= STREQ (str
, "xdigit");
2335 if (!IS_CHAR_CLASS (str
))
2336 FREE_STACK_RETURN (REG_ECTYPE
);
2338 /* Throw away the ] at the end of the character
2342 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2344 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2346 /* This was split into 3 if's to
2347 avoid an arbitrary limit in some compiler. */
2348 if ( (is_alnum
&& ISALNUM (ch
))
2349 || (is_alpha
&& ISALPHA (ch
))
2350 || (is_blank
&& ISBLANK (ch
))
2351 || (is_cntrl
&& ISCNTRL (ch
)))
2353 if ( (is_digit
&& ISDIGIT (ch
))
2354 || (is_graph
&& ISGRAPH (ch
))
2355 || (is_lower
&& ISLOWER (ch
))
2356 || (is_print
&& ISPRINT (ch
)))
2358 if ( (is_punct
&& ISPUNCT (ch
))
2359 || (is_space
&& ISSPACE (ch
))
2360 || (is_upper
&& ISUPPER (ch
))
2361 || (is_xdigit
&& ISXDIGIT (ch
)))
2363 if ( translate
&& (is_upper
|| is_lower
)
2364 && (ISUPPER (ch
) || ISLOWER (ch
)))
2367 had_char_class
= true;
2368 #endif /* libc || wctype.h */
2377 had_char_class
= false;
2382 had_char_class
= false;
2387 /* Discard any (non)matching list bytes that are all 0 at the
2388 end of the map. Decrease the map-length byte too. */
2389 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2397 if (syntax
& RE_NO_BK_PARENS
)
2404 if (syntax
& RE_NO_BK_PARENS
)
2411 if (syntax
& RE_NEWLINE_ALT
)
2418 if (syntax
& RE_NO_BK_VBAR
)
2425 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2426 goto handle_interval
;
2432 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2434 /* Do not translate the character after the \, so that we can
2435 distinguish, e.g., \B from \b, even if we normally would
2436 translate, e.g., B to b. */
2442 if (syntax
& RE_NO_BK_PARENS
)
2443 goto normal_backslash
;
2449 if (COMPILE_STACK_FULL
)
2451 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2452 compile_stack_elt_t
);
2453 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2455 compile_stack
.size
<<= 1;
2458 /* These are the values to restore when we hit end of this
2459 group. They are all relative offsets, so that if the
2460 whole pattern moves because of realloc, they will still
2462 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2463 COMPILE_STACK_TOP
.fixup_alt_jump
2464 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2465 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2466 COMPILE_STACK_TOP
.regnum
= regnum
;
2468 /* We will eventually replace the 0 with the number of
2469 groups inner to this one. But do not push a
2470 start_memory for groups beyond the last one we can
2471 represent in the compiled pattern. */
2472 if (regnum
<= MAX_REGNUM
)
2474 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2475 BUF_PUSH_3 (start_memory
, regnum
, 0);
2478 compile_stack
.avail
++;
2483 /* If we've reached MAX_REGNUM groups, then this open
2484 won't actually generate any code, so we'll have to
2485 clear pending_exact explicitly. */
2491 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2493 if (COMPILE_STACK_EMPTY
)
2495 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2496 goto normal_backslash
;
2498 FREE_STACK_RETURN (REG_ERPAREN
);
2503 { /* Push a dummy failure point at the end of the
2504 alternative for a possible future
2505 `pop_failure_jump' to pop. See comments at
2506 `push_dummy_failure' in `re_match_2'. */
2507 BUF_PUSH (push_dummy_failure
);
2509 /* We allocated space for this jump when we assigned
2510 to `fixup_alt_jump', in the `handle_alt' case below. */
2511 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2514 /* See similar code for backslashed left paren above. */
2515 if (COMPILE_STACK_EMPTY
)
2517 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2520 FREE_STACK_RETURN (REG_ERPAREN
);
2523 /* Since we just checked for an empty stack above, this
2524 ``can't happen''. */
2525 assert (compile_stack
.avail
!= 0);
2527 /* We don't just want to restore into `regnum', because
2528 later groups should continue to be numbered higher,
2529 as in `(ab)c(de)' -- the second group is #2. */
2530 regnum_t this_group_regnum
;
2532 compile_stack
.avail
--;
2533 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2535 = COMPILE_STACK_TOP
.fixup_alt_jump
2536 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2538 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2539 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2540 /* If we've reached MAX_REGNUM groups, then this open
2541 won't actually generate any code, so we'll have to
2542 clear pending_exact explicitly. */
2545 /* We're at the end of the group, so now we know how many
2546 groups were inside this one. */
2547 if (this_group_regnum
<= MAX_REGNUM
)
2549 unsigned char *inner_group_loc
2550 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2552 *inner_group_loc
= regnum
- this_group_regnum
;
2553 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2554 regnum
- this_group_regnum
);
2560 case '|': /* `\|'. */
2561 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2562 goto normal_backslash
;
2564 if (syntax
& RE_LIMITED_OPS
)
2567 /* Insert before the previous alternative a jump which
2568 jumps to this alternative if the former fails. */
2569 GET_BUFFER_SPACE (3);
2570 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2574 /* The alternative before this one has a jump after it
2575 which gets executed if it gets matched. Adjust that
2576 jump so it will jump to this alternative's analogous
2577 jump (put in below, which in turn will jump to the next
2578 (if any) alternative's such jump, etc.). The last such
2579 jump jumps to the correct final destination. A picture:
2585 If we are at `b', then fixup_alt_jump right now points to a
2586 three-byte space after `a'. We'll put in the jump, set
2587 fixup_alt_jump to right after `b', and leave behind three
2588 bytes which we'll fill in when we get to after `c'. */
2591 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2593 /* Mark and leave space for a jump after this alternative,
2594 to be filled in later either by next alternative or
2595 when know we're at the end of a series of alternatives. */
2597 GET_BUFFER_SPACE (3);
2606 /* If \{ is a literal. */
2607 if (!(syntax
& RE_INTERVALS
)
2608 /* If we're at `\{' and it's not the open-interval
2610 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2611 || (p
- 2 == pattern
&& p
== pend
))
2612 goto normal_backslash
;
2616 /* If got here, then the syntax allows intervals. */
2618 /* At least (most) this many matches must be made. */
2619 int lower_bound
= -1, upper_bound
= -1;
2621 beg_interval
= p
- 1;
2625 if (syntax
& RE_NO_BK_BRACES
)
2626 goto unfetch_interval
;
2628 FREE_STACK_RETURN (REG_EBRACE
);
2631 GET_UNSIGNED_NUMBER (lower_bound
);
2635 GET_UNSIGNED_NUMBER (upper_bound
);
2636 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2639 /* Interval such as `{1}' => match exactly once. */
2640 upper_bound
= lower_bound
;
2642 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2643 || lower_bound
> upper_bound
)
2645 if (syntax
& RE_NO_BK_BRACES
)
2646 goto unfetch_interval
;
2648 FREE_STACK_RETURN (REG_BADBR
);
2651 if (!(syntax
& RE_NO_BK_BRACES
))
2653 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2660 if (syntax
& RE_NO_BK_BRACES
)
2661 goto unfetch_interval
;
2663 FREE_STACK_RETURN (REG_BADBR
);
2666 /* We just parsed a valid interval. */
2668 /* If it's invalid to have no preceding re. */
2671 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2672 FREE_STACK_RETURN (REG_BADRPT
);
2673 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2676 goto unfetch_interval
;
2679 /* If the upper bound is zero, don't want to succeed at
2680 all; jump from `laststart' to `b + 3', which will be
2681 the end of the buffer after we insert the jump. */
2682 if (upper_bound
== 0)
2684 GET_BUFFER_SPACE (3);
2685 INSERT_JUMP (jump
, laststart
, b
+ 3);
2689 /* Otherwise, we have a nontrivial interval. When
2690 we're all done, the pattern will look like:
2691 set_number_at <jump count> <upper bound>
2692 set_number_at <succeed_n count> <lower bound>
2693 succeed_n <after jump addr> <succeed_n count>
2695 jump_n <succeed_n addr> <jump count>
2696 (The upper bound and `jump_n' are omitted if
2697 `upper_bound' is 1, though.) */
2699 { /* If the upper bound is > 1, we need to insert
2700 more at the end of the loop. */
2701 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2703 GET_BUFFER_SPACE (nbytes
);
2705 /* Initialize lower bound of the `succeed_n', even
2706 though it will be set during matching by its
2707 attendant `set_number_at' (inserted next),
2708 because `re_compile_fastmap' needs to know.
2709 Jump to the `jump_n' we might insert below. */
2710 INSERT_JUMP2 (succeed_n
, laststart
,
2711 b
+ 5 + (upper_bound
> 1) * 5,
2715 /* Code to initialize the lower bound. Insert
2716 before the `succeed_n'. The `5' is the last two
2717 bytes of this `set_number_at', plus 3 bytes of
2718 the following `succeed_n'. */
2719 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2722 if (upper_bound
> 1)
2723 { /* More than one repetition is allowed, so
2724 append a backward jump to the `succeed_n'
2725 that starts this interval.
2727 When we've reached this during matching,
2728 we'll have matched the interval once, so
2729 jump back only `upper_bound - 1' times. */
2730 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2734 /* The location we want to set is the second
2735 parameter of the `jump_n'; that is `b-2' as
2736 an absolute address. `laststart' will be
2737 the `set_number_at' we're about to insert;
2738 `laststart+3' the number to set, the source
2739 for the relative address. But we are
2740 inserting into the middle of the pattern --
2741 so everything is getting moved up by 5.
2742 Conclusion: (b - 2) - (laststart + 3) + 5,
2743 i.e., b - laststart.
2745 We insert this at the beginning of the loop
2746 so that if we fail during matching, we'll
2747 reinitialize the bounds. */
2748 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2749 upper_bound
- 1, b
);
2754 beg_interval
= NULL
;
2759 /* If an invalid interval, match the characters as literals. */
2760 assert (beg_interval
);
2762 beg_interval
= NULL
;
2764 /* normal_char and normal_backslash need `c'. */
2767 if (!(syntax
& RE_NO_BK_BRACES
))
2769 if (p
> pattern
&& p
[-1] == '\\')
2770 goto normal_backslash
;
2775 /* There is no way to specify the before_dot and after_dot
2776 operators. rms says this is ok. --karl */
2784 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2790 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2796 if (syntax
& RE_NO_GNU_OPS
)
2799 BUF_PUSH (wordchar
);
2804 if (syntax
& RE_NO_GNU_OPS
)
2807 BUF_PUSH (notwordchar
);
2812 if (syntax
& RE_NO_GNU_OPS
)
2818 if (syntax
& RE_NO_GNU_OPS
)
2824 if (syntax
& RE_NO_GNU_OPS
)
2826 BUF_PUSH (wordbound
);
2830 if (syntax
& RE_NO_GNU_OPS
)
2832 BUF_PUSH (notwordbound
);
2836 if (syntax
& RE_NO_GNU_OPS
)
2842 if (syntax
& RE_NO_GNU_OPS
)
2847 case '1': case '2': case '3': case '4': case '5':
2848 case '6': case '7': case '8': case '9':
2849 if (syntax
& RE_NO_BK_REFS
)
2855 FREE_STACK_RETURN (REG_ESUBREG
);
2857 /* Can't back reference to a subexpression if inside of it. */
2858 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2862 BUF_PUSH_2 (duplicate
, c1
);
2868 if (syntax
& RE_BK_PLUS_QM
)
2871 goto normal_backslash
;
2875 /* You might think it would be useful for \ to mean
2876 not to translate; but if we don't translate it
2877 it will never match anything. */
2885 /* Expects the character in `c'. */
2887 /* If no exactn currently being built. */
2890 /* If last exactn not at current position. */
2891 || pending_exact
+ *pending_exact
+ 1 != b
2893 /* We have only one byte following the exactn for the count. */
2894 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2896 /* If followed by a repetition operator. */
2897 || *p
== '*' || *p
== '^'
2898 || ((syntax
& RE_BK_PLUS_QM
)
2899 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2900 : (*p
== '+' || *p
== '?'))
2901 || ((syntax
& RE_INTERVALS
)
2902 && ((syntax
& RE_NO_BK_BRACES
)
2904 : (p
[0] == '\\' && p
[1] == '{'))))
2906 /* Start building a new exactn. */
2910 BUF_PUSH_2 (exactn
, 0);
2911 pending_exact
= b
- 1;
2918 } /* while p != pend */
2921 /* Through the pattern now. */
2924 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2926 if (!COMPILE_STACK_EMPTY
)
2927 FREE_STACK_RETURN (REG_EPAREN
);
2929 /* If we don't want backtracking, force success
2930 the first time we reach the end of the compiled pattern. */
2931 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2934 free (compile_stack
.stack
);
2936 /* We have succeeded; set the length of the buffer. */
2937 bufp
->used
= b
- bufp
->buffer
;
2942 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2943 print_compiled_pattern (bufp
);
2947 #ifndef MATCH_MAY_ALLOCATE
2948 /* Initialize the failure stack to the largest possible stack. This
2949 isn't necessary unless we're trying to avoid calling alloca in
2950 the search and match routines. */
2952 int num_regs
= bufp
->re_nsub
+ 1;
2954 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2955 is strictly greater than re_max_failures, the largest possible stack
2956 is 2 * re_max_failures failure points. */
2957 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2959 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2962 if (! fail_stack
.stack
)
2964 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2965 * sizeof (fail_stack_elt_t
));
2968 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2970 * sizeof (fail_stack_elt_t
)));
2971 # else /* not emacs */
2972 if (! fail_stack
.stack
)
2974 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2975 * sizeof (fail_stack_elt_t
));
2978 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2980 * sizeof (fail_stack_elt_t
)));
2981 # endif /* not emacs */
2984 regex_grow_registers (num_regs
);
2986 #endif /* not MATCH_MAY_ALLOCATE */
2989 } /* regex_compile */
2991 /* Subroutines for `regex_compile'. */
2993 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2996 store_op1 (op
, loc
, arg
)
3001 *loc
= (unsigned char) op
;
3002 STORE_NUMBER (loc
+ 1, arg
);
3006 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3009 store_op2 (op
, loc
, arg1
, arg2
)
3014 *loc
= (unsigned char) op
;
3015 STORE_NUMBER (loc
+ 1, arg1
);
3016 STORE_NUMBER (loc
+ 3, arg2
);
3020 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3021 for OP followed by two-byte integer parameter ARG. */
3024 insert_op1 (op
, loc
, arg
, end
)
3030 register unsigned char *pfrom
= end
;
3031 register unsigned char *pto
= end
+ 3;
3033 while (pfrom
!= loc
)
3036 store_op1 (op
, loc
, arg
);
3040 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3043 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3049 register unsigned char *pfrom
= end
;
3050 register unsigned char *pto
= end
+ 5;
3052 while (pfrom
!= loc
)
3055 store_op2 (op
, loc
, arg1
, arg2
);
3059 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3060 after an alternative or a begin-subexpression. We assume there is at
3061 least one character before the ^. */
3064 at_begline_loc_p (pattern
, p
, syntax
)
3065 const char *pattern
, *p
;
3066 reg_syntax_t syntax
;
3068 const char *prev
= p
- 2;
3069 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3072 /* After a subexpression? */
3073 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3074 /* After an alternative? */
3075 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
3079 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3080 at least one character after the $, i.e., `P < PEND'. */
3083 at_endline_loc_p (p
, pend
, syntax
)
3084 const char *p
, *pend
;
3085 reg_syntax_t syntax
;
3087 const char *next
= p
;
3088 boolean next_backslash
= *next
== '\\';
3089 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3092 /* Before a subexpression? */
3093 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3094 : next_backslash
&& next_next
&& *next_next
== ')')
3095 /* Before an alternative? */
3096 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3097 : next_backslash
&& next_next
&& *next_next
== '|');
3101 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3102 false if it's not. */
3105 group_in_compile_stack (compile_stack
, regnum
)
3106 compile_stack_type compile_stack
;
3111 for (this_element
= compile_stack
.avail
- 1;
3114 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3121 /* Read the ending character of a range (in a bracket expression) from the
3122 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3123 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3124 Then we set the translation of all bits between the starting and
3125 ending characters (inclusive) in the compiled pattern B.
3127 Return an error code.
3129 We use these short variable names so we can use the same macros as
3130 `regex_compile' itself. */
3132 static reg_errcode_t
3133 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3134 const char **p_ptr
, *pend
;
3135 RE_TRANSLATE_TYPE translate
;
3136 reg_syntax_t syntax
;
3141 const char *p
= *p_ptr
;
3142 unsigned int range_start
, range_end
;
3147 /* Even though the pattern is a signed `char *', we need to fetch
3148 with unsigned char *'s; if the high bit of the pattern character
3149 is set, the range endpoints will be negative if we fetch using a
3152 We also want to fetch the endpoints without translating them; the
3153 appropriate translation is done in the bit-setting loop below. */
3154 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3155 range_start
= ((const unsigned char *) p
)[-2];
3156 range_end
= ((const unsigned char *) p
)[0];
3158 /* Have to increment the pointer into the pattern string, so the
3159 caller isn't still at the ending character. */
3162 /* If the start is after the end, the range is empty. */
3163 if (range_start
> range_end
)
3164 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3166 /* Here we see why `this_char' has to be larger than an `unsigned
3167 char' -- the range is inclusive, so if `range_end' == 0xff
3168 (assuming 8-bit characters), we would otherwise go into an infinite
3169 loop, since all characters <= 0xff. */
3170 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3172 SET_LIST_BIT (TRANSLATE (this_char
));
3178 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3179 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3180 characters can start a string that matches the pattern. This fastmap
3181 is used by re_search to skip quickly over impossible starting points.
3183 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3184 area as BUFP->fastmap.
3186 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3189 Returns 0 if we succeed, -2 if an internal error. */
3192 re_compile_fastmap (bufp
)
3193 struct re_pattern_buffer
*bufp
;
3196 #ifdef MATCH_MAY_ALLOCATE
3197 fail_stack_type fail_stack
;
3199 #ifndef REGEX_MALLOC
3203 register char *fastmap
= bufp
->fastmap
;
3204 unsigned char *pattern
= bufp
->buffer
;
3205 unsigned char *p
= pattern
;
3206 register unsigned char *pend
= pattern
+ bufp
->used
;
3209 /* This holds the pointer to the failure stack, when
3210 it is allocated relocatably. */
3211 fail_stack_elt_t
*failure_stack_ptr
;
3214 /* Assume that each path through the pattern can be null until
3215 proven otherwise. We set this false at the bottom of switch
3216 statement, to which we get only if a particular path doesn't
3217 match the empty string. */
3218 boolean path_can_be_null
= true;
3220 /* We aren't doing a `succeed_n' to begin with. */
3221 boolean succeed_n_p
= false;
3223 assert (fastmap
!= NULL
&& p
!= NULL
);
3226 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3227 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3228 bufp
->can_be_null
= 0;
3232 if (p
== pend
|| *p
== succeed
)
3234 /* We have reached the (effective) end of pattern. */
3235 if (!FAIL_STACK_EMPTY ())
3237 bufp
->can_be_null
|= path_can_be_null
;
3239 /* Reset for next path. */
3240 path_can_be_null
= true;
3242 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3250 /* We should never be about to go beyond the end of the pattern. */
3253 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3256 /* I guess the idea here is to simply not bother with a fastmap
3257 if a backreference is used, since it's too hard to figure out
3258 the fastmap for the corresponding group. Setting
3259 `can_be_null' stops `re_search_2' from using the fastmap, so
3260 that is all we do. */
3262 bufp
->can_be_null
= 1;
3266 /* Following are the cases which match a character. These end
3275 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3276 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3282 /* Chars beyond end of map must be allowed. */
3283 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3286 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3287 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3293 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3294 if (SYNTAX (j
) == Sword
)
3300 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3301 if (SYNTAX (j
) != Sword
)
3308 int fastmap_newline
= fastmap
['\n'];
3310 /* `.' matches anything ... */
3311 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3314 /* ... except perhaps newline. */
3315 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3316 fastmap
['\n'] = fastmap_newline
;
3318 /* Return if we have already set `can_be_null'; if we have,
3319 then the fastmap is irrelevant. Something's wrong here. */
3320 else if (bufp
->can_be_null
)
3323 /* Otherwise, have to check alternative paths. */
3330 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3331 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3338 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3339 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3344 /* All cases after this match the empty string. These end with
3364 case push_dummy_failure
:
3369 case pop_failure_jump
:
3370 case maybe_pop_jump
:
3373 case dummy_failure_jump
:
3374 EXTRACT_NUMBER_AND_INCR (j
, p
);
3379 /* Jump backward implies we just went through the body of a
3380 loop and matched nothing. Opcode jumped to should be
3381 `on_failure_jump' or `succeed_n'. Just treat it like an
3382 ordinary jump. For a * loop, it has pushed its failure
3383 point already; if so, discard that as redundant. */
3384 if ((re_opcode_t
) *p
!= on_failure_jump
3385 && (re_opcode_t
) *p
!= succeed_n
)
3389 EXTRACT_NUMBER_AND_INCR (j
, p
);
3392 /* If what's on the stack is where we are now, pop it. */
3393 if (!FAIL_STACK_EMPTY ()
3394 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3400 case on_failure_jump
:
3401 case on_failure_keep_string_jump
:
3402 handle_on_failure_jump
:
3403 EXTRACT_NUMBER_AND_INCR (j
, p
);
3405 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3406 end of the pattern. We don't want to push such a point,
3407 since when we restore it above, entering the switch will
3408 increment `p' past the end of the pattern. We don't need
3409 to push such a point since we obviously won't find any more
3410 fastmap entries beyond `pend'. Such a pattern can match
3411 the null string, though. */
3414 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3416 RESET_FAIL_STACK ();
3421 bufp
->can_be_null
= 1;
3425 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3426 succeed_n_p
= false;
3433 /* Get to the number of times to succeed. */
3436 /* Increment p past the n for when k != 0. */
3437 EXTRACT_NUMBER_AND_INCR (k
, p
);
3441 succeed_n_p
= true; /* Spaghetti code alert. */
3442 goto handle_on_failure_jump
;
3459 abort (); /* We have listed all the cases. */
3462 /* Getting here means we have found the possible starting
3463 characters for one path of the pattern -- and that the empty
3464 string does not match. We need not follow this path further.
3465 Instead, look at the next alternative (remembered on the
3466 stack), or quit if no more. The test at the top of the loop
3467 does these things. */
3468 path_can_be_null
= false;
3472 /* Set `can_be_null' for the last path (also the first path, if the
3473 pattern is empty). */
3474 bufp
->can_be_null
|= path_can_be_null
;
3477 RESET_FAIL_STACK ();
3479 } /* re_compile_fastmap */
3481 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
3484 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3485 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3486 this memory for recording register information. STARTS and ENDS
3487 must be allocated using the malloc library routine, and must each
3488 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3490 If NUM_REGS == 0, then subsequent matches should allocate their own
3493 Unless this function is called, the first search or match using
3494 PATTERN_BUFFER will allocate its own register data, without
3495 freeing the old data. */
3498 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3499 struct re_pattern_buffer
*bufp
;
3500 struct re_registers
*regs
;
3502 regoff_t
*starts
, *ends
;
3506 bufp
->regs_allocated
= REGS_REALLOCATE
;
3507 regs
->num_regs
= num_regs
;
3508 regs
->start
= starts
;
3513 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3515 regs
->start
= regs
->end
= (regoff_t
*) 0;
3519 weak_alias (__re_set_registers
, re_set_registers
)
3522 /* Searching routines. */
3524 /* Like re_search_2, below, but only one string is specified, and
3525 doesn't let you say where to stop matching. */
3528 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3529 struct re_pattern_buffer
*bufp
;
3531 int size
, startpos
, range
;
3532 struct re_registers
*regs
;
3534 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3538 weak_alias (__re_search
, re_search
)
3542 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3543 virtual concatenation of STRING1 and STRING2, starting first at index
3544 STARTPOS, then at STARTPOS + 1, and so on.
3546 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3548 RANGE is how far to scan while trying to match. RANGE = 0 means try
3549 only at STARTPOS; in general, the last start tried is STARTPOS +
3552 In REGS, return the indices of the virtual concatenation of STRING1
3553 and STRING2 that matched the entire BUFP->buffer and its contained
3556 Do not consider matching one past the index STOP in the virtual
3557 concatenation of STRING1 and STRING2.
3559 We return either the position in the strings at which the match was
3560 found, -1 if no match, or -2 if error (such as failure
3564 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3565 struct re_pattern_buffer
*bufp
;
3566 const char *string1
, *string2
;
3570 struct re_registers
*regs
;
3574 register char *fastmap
= bufp
->fastmap
;
3575 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3576 int total_size
= size1
+ size2
;
3577 int endpos
= startpos
+ range
;
3579 /* Check for out-of-range STARTPOS. */
3580 if (startpos
< 0 || startpos
> total_size
)
3583 /* Fix up RANGE if it might eventually take us outside
3584 the virtual concatenation of STRING1 and STRING2.
3585 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3587 range
= 0 - startpos
;
3588 else if (endpos
> total_size
)
3589 range
= total_size
- startpos
;
3591 /* If the search isn't to be a backwards one, don't waste time in a
3592 search for a pattern that must be anchored. */
3593 if (bufp
->used
> 0 && range
> 0
3594 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
3595 /* `begline' is like `begbuf' if it cannot match at newlines. */
3596 || ((re_opcode_t
) bufp
->buffer
[0] == begline
3597 && !bufp
->newline_anchor
)))
3606 /* In a forward search for something that starts with \=.
3607 don't keep searching past point. */
3608 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3610 range
= PT
- startpos
;
3616 /* Update the fastmap now if not correct already. */
3617 if (fastmap
&& !bufp
->fastmap_accurate
)
3618 if (re_compile_fastmap (bufp
) == -2)
3621 /* Loop through the string, looking for a place to start matching. */
3624 /* If a fastmap is supplied, skip quickly over characters that
3625 cannot be the start of a match. If the pattern can match the
3626 null string, however, we don't need to skip characters; we want
3627 the first null string. */
3628 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3630 if (range
> 0) /* Searching forwards. */
3632 register const char *d
;
3633 register int lim
= 0;
3636 if (startpos
< size1
&& startpos
+ range
>= size1
)
3637 lim
= range
- (size1
- startpos
);
3639 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3641 /* Written out as an if-else to avoid testing `translate'
3645 && !fastmap
[(unsigned char)
3646 translate
[(unsigned char) *d
++]])
3649 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3652 startpos
+= irange
- range
;
3654 else /* Searching backwards. */
3656 register char c
= (size1
== 0 || startpos
>= size1
3657 ? string2
[startpos
- size1
]
3658 : string1
[startpos
]);
3660 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3665 /* If can't match the null string, and that's all we have left, fail. */
3666 if (range
>= 0 && startpos
== total_size
&& fastmap
3667 && !bufp
->can_be_null
)
3670 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3671 startpos
, regs
, stop
);
3672 #ifndef REGEX_MALLOC
3701 weak_alias (__re_search_2
, re_search_2
)
3704 /* This converts PTR, a pointer into one of the search strings `string1'
3705 and `string2' into an offset from the beginning of that string. */
3706 #define POINTER_TO_OFFSET(ptr) \
3707 (FIRST_STRING_P (ptr) \
3708 ? ((regoff_t) ((ptr) - string1)) \
3709 : ((regoff_t) ((ptr) - string2 + size1)))
3711 /* Macros for dealing with the split strings in re_match_2. */
3713 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3715 /* Call before fetching a character with *d. This switches over to
3716 string2 if necessary. */
3717 #define PREFETCH() \
3720 /* End of string2 => fail. */ \
3721 if (dend == end_match_2) \
3723 /* End of string1 => advance to string2. */ \
3725 dend = end_match_2; \
3729 /* Test if at very beginning or at very end of the virtual concatenation
3730 of `string1' and `string2'. If only one string, it's `string2'. */
3731 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3732 #define AT_STRINGS_END(d) ((d) == end2)
3735 /* Test if D points to a character which is word-constituent. We have
3736 two special cases to check for: if past the end of string1, look at
3737 the first character in string2; and if before the beginning of
3738 string2, look at the last character in string1. */
3739 #define WORDCHAR_P(d) \
3740 (SYNTAX ((d) == end1 ? *string2 \
3741 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3744 /* Disabled due to a compiler bug -- see comment at case wordbound */
3746 /* Test if the character before D and the one at D differ with respect
3747 to being word-constituent. */
3748 #define AT_WORD_BOUNDARY(d) \
3749 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3750 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3753 /* Free everything we malloc. */
3754 #ifdef MATCH_MAY_ALLOCATE
3755 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3756 # define FREE_VARIABLES() \
3758 REGEX_FREE_STACK (fail_stack.stack); \
3759 FREE_VAR (regstart); \
3760 FREE_VAR (regend); \
3761 FREE_VAR (old_regstart); \
3762 FREE_VAR (old_regend); \
3763 FREE_VAR (best_regstart); \
3764 FREE_VAR (best_regend); \
3765 FREE_VAR (reg_info); \
3766 FREE_VAR (reg_dummy); \
3767 FREE_VAR (reg_info_dummy); \
3770 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3771 #endif /* not MATCH_MAY_ALLOCATE */
3773 /* These values must meet several constraints. They must not be valid
3774 register values; since we have a limit of 255 registers (because
3775 we use only one byte in the pattern for the register number), we can
3776 use numbers larger than 255. They must differ by 1, because of
3777 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3778 be larger than the value for the highest register, so we do not try
3779 to actually save any registers when none are active. */
3780 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3781 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3783 /* Matching routines. */
3785 #ifndef emacs /* Emacs never uses this. */
3786 /* re_match is like re_match_2 except it takes only a single string. */
3789 re_match (bufp
, string
, size
, pos
, regs
)
3790 struct re_pattern_buffer
*bufp
;
3793 struct re_registers
*regs
;
3795 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3797 # ifndef REGEX_MALLOC
3805 weak_alias (__re_match
, re_match
)
3807 #endif /* not emacs */
3809 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3811 register_info_type
*reg_info
));
3812 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3814 register_info_type
*reg_info
));
3815 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3817 register_info_type
*reg_info
));
3818 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3819 int len
, char *translate
));
3821 /* re_match_2 matches the compiled pattern in BUFP against the
3822 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3823 and SIZE2, respectively). We start matching at POS, and stop
3826 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3827 store offsets for the substring each group matched in REGS. See the
3828 documentation for exactly how many groups we fill.
3830 We return -1 if no match, -2 if an internal error (such as the
3831 failure stack overflowing). Otherwise, we return the length of the
3832 matched substring. */
3835 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3836 struct re_pattern_buffer
*bufp
;
3837 const char *string1
, *string2
;
3840 struct re_registers
*regs
;
3843 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3845 #ifndef REGEX_MALLOC
3853 weak_alias (__re_match_2
, re_match_2
)
3856 /* This is a separate function so that we can force an alloca cleanup
3859 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3860 struct re_pattern_buffer
*bufp
;
3861 const char *string1
, *string2
;
3864 struct re_registers
*regs
;
3867 /* General temporaries. */
3871 /* Just past the end of the corresponding string. */
3872 const char *end1
, *end2
;
3874 /* Pointers into string1 and string2, just past the last characters in
3875 each to consider matching. */
3876 const char *end_match_1
, *end_match_2
;
3878 /* Where we are in the data, and the end of the current string. */
3879 const char *d
, *dend
;
3881 /* Where we are in the pattern, and the end of the pattern. */
3882 unsigned char *p
= bufp
->buffer
;
3883 register unsigned char *pend
= p
+ bufp
->used
;
3885 /* Mark the opcode just after a start_memory, so we can test for an
3886 empty subpattern when we get to the stop_memory. */
3887 unsigned char *just_past_start_mem
= 0;
3889 /* We use this to map every character in the string. */
3890 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3892 /* Failure point stack. Each place that can handle a failure further
3893 down the line pushes a failure point on this stack. It consists of
3894 restart, regend, and reg_info for all registers corresponding to
3895 the subexpressions we're currently inside, plus the number of such
3896 registers, and, finally, two char *'s. The first char * is where
3897 to resume scanning the pattern; the second one is where to resume
3898 scanning the strings. If the latter is zero, the failure point is
3899 a ``dummy''; if a failure happens and the failure point is a dummy,
3900 it gets discarded and the next next one is tried. */
3901 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3902 fail_stack_type fail_stack
;
3905 static unsigned failure_id
;
3906 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3910 /* This holds the pointer to the failure stack, when
3911 it is allocated relocatably. */
3912 fail_stack_elt_t
*failure_stack_ptr
;
3915 /* We fill all the registers internally, independent of what we
3916 return, for use in backreferences. The number here includes
3917 an element for register zero. */
3918 size_t num_regs
= bufp
->re_nsub
+ 1;
3920 /* The currently active registers. */
3921 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3922 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3924 /* Information on the contents of registers. These are pointers into
3925 the input strings; they record just what was matched (on this
3926 attempt) by a subexpression part of the pattern, that is, the
3927 regnum-th regstart pointer points to where in the pattern we began
3928 matching and the regnum-th regend points to right after where we
3929 stopped matching the regnum-th subexpression. (The zeroth register
3930 keeps track of what the whole pattern matches.) */
3931 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3932 const char **regstart
, **regend
;
3935 /* If a group that's operated upon by a repetition operator fails to
3936 match anything, then the register for its start will need to be
3937 restored because it will have been set to wherever in the string we
3938 are when we last see its open-group operator. Similarly for a
3940 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3941 const char **old_regstart
, **old_regend
;
3944 /* The is_active field of reg_info helps us keep track of which (possibly
3945 nested) subexpressions we are currently in. The matched_something
3946 field of reg_info[reg_num] helps us tell whether or not we have
3947 matched any of the pattern so far this time through the reg_num-th
3948 subexpression. These two fields get reset each time through any
3949 loop their register is in. */
3950 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3951 register_info_type
*reg_info
;
3954 /* The following record the register info as found in the above
3955 variables when we find a match better than any we've seen before.
3956 This happens as we backtrack through the failure points, which in
3957 turn happens only if we have not yet matched the entire string. */
3958 unsigned best_regs_set
= false;
3959 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3960 const char **best_regstart
, **best_regend
;
3963 /* Logically, this is `best_regend[0]'. But we don't want to have to
3964 allocate space for that if we're not allocating space for anything
3965 else (see below). Also, we never need info about register 0 for
3966 any of the other register vectors, and it seems rather a kludge to
3967 treat `best_regend' differently than the rest. So we keep track of
3968 the end of the best match so far in a separate variable. We
3969 initialize this to NULL so that when we backtrack the first time
3970 and need to test it, it's not garbage. */
3971 const char *match_end
= NULL
;
3973 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3974 int set_regs_matched_done
= 0;
3976 /* Used when we pop values we don't care about. */
3977 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3978 const char **reg_dummy
;
3979 register_info_type
*reg_info_dummy
;
3983 /* Counts the total number of registers pushed. */
3984 unsigned num_regs_pushed
= 0;
3987 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3991 #ifdef MATCH_MAY_ALLOCATE
3992 /* Do not bother to initialize all the register variables if there are
3993 no groups in the pattern, as it takes a fair amount of time. If
3994 there are groups, we include space for register 0 (the whole
3995 pattern), even though we never use it, since it simplifies the
3996 array indexing. We should fix this. */
3999 regstart
= REGEX_TALLOC (num_regs
, const char *);
4000 regend
= REGEX_TALLOC (num_regs
, const char *);
4001 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
4002 old_regend
= REGEX_TALLOC (num_regs
, const char *);
4003 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
4004 best_regend
= REGEX_TALLOC (num_regs
, const char *);
4005 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
4006 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
4007 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
4009 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
4010 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
4018 /* We must initialize all our variables to NULL, so that
4019 `FREE_VARIABLES' doesn't try to free them. */
4020 regstart
= regend
= old_regstart
= old_regend
= best_regstart
4021 = best_regend
= reg_dummy
= NULL
;
4022 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
4024 #endif /* MATCH_MAY_ALLOCATE */
4026 /* The starting position is bogus. */
4027 if (pos
< 0 || pos
> size1
+ size2
)
4033 /* Initialize subexpression text positions to -1 to mark ones that no
4034 start_memory/stop_memory has been seen for. Also initialize the
4035 register information struct. */
4036 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4038 regstart
[mcnt
] = regend
[mcnt
]
4039 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
4041 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
4042 IS_ACTIVE (reg_info
[mcnt
]) = 0;
4043 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
4044 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
4047 /* We move `string1' into `string2' if the latter's empty -- but not if
4048 `string1' is null. */
4049 if (size2
== 0 && string1
!= NULL
)
4056 end1
= string1
+ size1
;
4057 end2
= string2
+ size2
;
4059 /* Compute where to stop matching, within the two strings. */
4062 end_match_1
= string1
+ stop
;
4063 end_match_2
= string2
;
4068 end_match_2
= string2
+ stop
- size1
;
4071 /* `p' scans through the pattern as `d' scans through the data.
4072 `dend' is the end of the input string that `d' points within. `d'
4073 is advanced into the following input string whenever necessary, but
4074 this happens before fetching; therefore, at the beginning of the
4075 loop, `d' can be pointing at the end of a string, but it cannot
4077 if (size1
> 0 && pos
<= size1
)
4084 d
= string2
+ pos
- size1
;
4088 DEBUG_PRINT1 ("The compiled pattern is:\n");
4089 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4090 DEBUG_PRINT1 ("The string to match is: `");
4091 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4092 DEBUG_PRINT1 ("'\n");
4094 /* This loops over pattern commands. It exits by returning from the
4095 function if the match is complete, or it drops through if the match
4096 fails at this starting point in the input data. */
4100 DEBUG_PRINT2 ("\n%p: ", p
);
4102 DEBUG_PRINT2 ("\n0x%x: ", p
);
4106 { /* End of pattern means we might have succeeded. */
4107 DEBUG_PRINT1 ("end of pattern ... ");
4109 /* If we haven't matched the entire string, and we want the
4110 longest match, try backtracking. */
4111 if (d
!= end_match_2
)
4113 /* 1 if this match ends in the same string (string1 or string2)
4114 as the best previous match. */
4115 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4116 == MATCHING_IN_FIRST_STRING
);
4117 /* 1 if this match is the best seen so far. */
4118 boolean best_match_p
;
4120 /* AIX compiler got confused when this was combined
4121 with the previous declaration. */
4123 best_match_p
= d
> match_end
;
4125 best_match_p
= !MATCHING_IN_FIRST_STRING
;
4127 DEBUG_PRINT1 ("backtracking.\n");
4129 if (!FAIL_STACK_EMPTY ())
4130 { /* More failure points to try. */
4132 /* If exceeds best match so far, save it. */
4133 if (!best_regs_set
|| best_match_p
)
4135 best_regs_set
= true;
4138 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4140 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4142 best_regstart
[mcnt
] = regstart
[mcnt
];
4143 best_regend
[mcnt
] = regend
[mcnt
];
4149 /* If no failure points, don't restore garbage. And if
4150 last match is real best match, don't restore second
4152 else if (best_regs_set
&& !best_match_p
)
4155 /* Restore best match. It may happen that `dend ==
4156 end_match_1' while the restored d is in string2.
4157 For example, the pattern `x.*y.*z' against the
4158 strings `x-' and `y-z-', if the two strings are
4159 not consecutive in memory. */
4160 DEBUG_PRINT1 ("Restoring best registers.\n");
4163 dend
= ((d
>= string1
&& d
<= end1
)
4164 ? end_match_1
: end_match_2
);
4166 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4168 regstart
[mcnt
] = best_regstart
[mcnt
];
4169 regend
[mcnt
] = best_regend
[mcnt
];
4172 } /* d != end_match_2 */
4175 DEBUG_PRINT1 ("Accepting match.\n");
4177 /* If caller wants register contents data back, do it. */
4178 if (regs
&& !bufp
->no_sub
)
4180 /* Have the register data arrays been allocated? */
4181 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4182 { /* No. So allocate them with malloc. We need one
4183 extra element beyond `num_regs' for the `-1' marker
4185 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4186 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4187 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4188 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4193 bufp
->regs_allocated
= REGS_REALLOCATE
;
4195 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4196 { /* Yes. If we need more elements than were already
4197 allocated, reallocate them. If we need fewer, just
4199 if (regs
->num_regs
< num_regs
+ 1)
4201 regs
->num_regs
= num_regs
+ 1;
4202 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4203 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4204 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4213 /* These braces fend off a "empty body in an else-statement"
4214 warning under GCC when assert expands to nothing. */
4215 assert (bufp
->regs_allocated
== REGS_FIXED
);
4218 /* Convert the pointer data in `regstart' and `regend' to
4219 indices. Register zero has to be set differently,
4220 since we haven't kept track of any info for it. */
4221 if (regs
->num_regs
> 0)
4223 regs
->start
[0] = pos
;
4224 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4225 ? ((regoff_t
) (d
- string1
))
4226 : ((regoff_t
) (d
- string2
+ size1
)));
4229 /* Go through the first `min (num_regs, regs->num_regs)'
4230 registers, since that is all we initialized. */
4231 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4234 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4235 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4239 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4241 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4245 /* If the regs structure we return has more elements than
4246 were in the pattern, set the extra elements to -1. If
4247 we (re)allocated the registers, this is the case,
4248 because we always allocate enough to have at least one
4250 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4251 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4252 } /* regs && !bufp->no_sub */
4254 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4255 nfailure_points_pushed
, nfailure_points_popped
,
4256 nfailure_points_pushed
- nfailure_points_popped
);
4257 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4259 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4263 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4269 /* Otherwise match next pattern command. */
4270 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4272 /* Ignore these. Used to ignore the n of succeed_n's which
4273 currently have n == 0. */
4275 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4279 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4282 /* Match the next n pattern characters exactly. The following
4283 byte in the pattern defines n, and the n bytes after that
4284 are the characters to match. */
4287 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4289 /* This is written out as an if-else so we don't waste time
4290 testing `translate' inside the loop. */
4296 if ((unsigned char) translate
[(unsigned char) *d
++]
4297 != (unsigned char) *p
++)
4307 if (*d
++ != (char) *p
++) goto fail
;
4311 SET_REGS_MATCHED ();
4315 /* Match any character except possibly a newline or a null. */
4317 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4321 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4322 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4325 SET_REGS_MATCHED ();
4326 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4334 register unsigned char c
;
4335 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4337 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4340 c
= TRANSLATE (*d
); /* The character to match. */
4342 /* Cast to `unsigned' instead of `unsigned char' in case the
4343 bit list is a full 32 bytes long. */
4344 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4345 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4350 if (!not) goto fail
;
4352 SET_REGS_MATCHED ();
4358 /* The beginning of a group is represented by start_memory.
4359 The arguments are the register number in the next byte, and the
4360 number of groups inner to this one in the next. The text
4361 matched within the group is recorded (in the internal
4362 registers data structure) under the register number. */
4364 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4366 /* Find out if this group can match the empty string. */
4367 p1
= p
; /* To send to group_match_null_string_p. */
4369 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4370 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4371 = group_match_null_string_p (&p1
, pend
, reg_info
);
4373 /* Save the position in the string where we were the last time
4374 we were at this open-group operator in case the group is
4375 operated upon by a repetition operator, e.g., with `(a*)*b'
4376 against `ab'; then we want to ignore where we are now in
4377 the string in case this attempt to match fails. */
4378 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4379 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4381 DEBUG_PRINT2 (" old_regstart: %d\n",
4382 POINTER_TO_OFFSET (old_regstart
[*p
]));
4385 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4387 IS_ACTIVE (reg_info
[*p
]) = 1;
4388 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4390 /* Clear this whenever we change the register activity status. */
4391 set_regs_matched_done
= 0;
4393 /* This is the new highest active register. */
4394 highest_active_reg
= *p
;
4396 /* If nothing was active before, this is the new lowest active
4398 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4399 lowest_active_reg
= *p
;
4401 /* Move past the register number and inner group count. */
4403 just_past_start_mem
= p
;
4408 /* The stop_memory opcode represents the end of a group. Its
4409 arguments are the same as start_memory's: the register
4410 number, and the number of inner groups. */
4412 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4414 /* We need to save the string position the last time we were at
4415 this close-group operator in case the group is operated
4416 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4417 against `aba'; then we want to ignore where we are now in
4418 the string in case this attempt to match fails. */
4419 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4420 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4422 DEBUG_PRINT2 (" old_regend: %d\n",
4423 POINTER_TO_OFFSET (old_regend
[*p
]));
4426 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4428 /* This register isn't active anymore. */
4429 IS_ACTIVE (reg_info
[*p
]) = 0;
4431 /* Clear this whenever we change the register activity status. */
4432 set_regs_matched_done
= 0;
4434 /* If this was the only register active, nothing is active
4436 if (lowest_active_reg
== highest_active_reg
)
4438 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4439 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4442 { /* We must scan for the new highest active register, since
4443 it isn't necessarily one less than now: consider
4444 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4445 new highest active register is 1. */
4446 unsigned char r
= *p
- 1;
4447 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4450 /* If we end up at register zero, that means that we saved
4451 the registers as the result of an `on_failure_jump', not
4452 a `start_memory', and we jumped to past the innermost
4453 `stop_memory'. For example, in ((.)*) we save
4454 registers 1 and 2 as a result of the *, but when we pop
4455 back to the second ), we are at the stop_memory 1.
4456 Thus, nothing is active. */
4459 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4460 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4463 highest_active_reg
= r
;
4466 /* If just failed to match something this time around with a
4467 group that's operated on by a repetition operator, try to
4468 force exit from the ``loop'', and restore the register
4469 information for this group that we had before trying this
4471 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4472 || just_past_start_mem
== p
- 1)
4475 boolean is_a_jump_n
= false;
4479 switch ((re_opcode_t
) *p1
++)
4483 case pop_failure_jump
:
4484 case maybe_pop_jump
:
4486 case dummy_failure_jump
:
4487 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4497 /* If the next operation is a jump backwards in the pattern
4498 to an on_failure_jump right before the start_memory
4499 corresponding to this stop_memory, exit from the loop
4500 by forcing a failure after pushing on the stack the
4501 on_failure_jump's jump in the pattern, and d. */
4502 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4503 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4505 /* If this group ever matched anything, then restore
4506 what its registers were before trying this last
4507 failed match, e.g., with `(a*)*b' against `ab' for
4508 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4509 against `aba' for regend[3].
4511 Also restore the registers for inner groups for,
4512 e.g., `((a*)(b*))*' against `aba' (register 3 would
4513 otherwise get trashed). */
4515 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4519 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4521 /* Restore this and inner groups' (if any) registers. */
4522 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4525 regstart
[r
] = old_regstart
[r
];
4527 /* xx why this test? */
4528 if (old_regend
[r
] >= regstart
[r
])
4529 regend
[r
] = old_regend
[r
];
4533 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4534 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4540 /* Move past the register number and the inner group count. */
4545 /* \<digit> has been turned into a `duplicate' command which is
4546 followed by the numeric value of <digit> as the register number. */
4549 register const char *d2
, *dend2
;
4550 int regno
= *p
++; /* Get which register to match against. */
4551 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4553 /* Can't back reference a group which we've never matched. */
4554 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4557 /* Where in input to try to start matching. */
4558 d2
= regstart
[regno
];
4560 /* Where to stop matching; if both the place to start and
4561 the place to stop matching are in the same string, then
4562 set to the place to stop, otherwise, for now have to use
4563 the end of the first string. */
4565 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4566 == FIRST_STRING_P (regend
[regno
]))
4567 ? regend
[regno
] : end_match_1
);
4570 /* If necessary, advance to next segment in register
4574 if (dend2
== end_match_2
) break;
4575 if (dend2
== regend
[regno
]) break;
4577 /* End of string1 => advance to string2. */
4579 dend2
= regend
[regno
];
4581 /* At end of register contents => success */
4582 if (d2
== dend2
) break;
4584 /* If necessary, advance to next segment in data. */
4587 /* How many characters left in this segment to match. */
4590 /* Want how many consecutive characters we can match in
4591 one shot, so, if necessary, adjust the count. */
4592 if (mcnt
> dend2
- d2
)
4595 /* Compare that many; failure if mismatch, else move
4598 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4599 : memcmp (d
, d2
, mcnt
))
4601 d
+= mcnt
, d2
+= mcnt
;
4603 /* Do this because we've match some characters. */
4604 SET_REGS_MATCHED ();
4610 /* begline matches the empty string at the beginning of the string
4611 (unless `not_bol' is set in `bufp'), and, if
4612 `newline_anchor' is set, after newlines. */
4614 DEBUG_PRINT1 ("EXECUTING begline.\n");
4616 if (AT_STRINGS_BEG (d
))
4618 if (!bufp
->not_bol
) break;
4620 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4624 /* In all other cases, we fail. */
4628 /* endline is the dual of begline. */
4630 DEBUG_PRINT1 ("EXECUTING endline.\n");
4632 if (AT_STRINGS_END (d
))
4634 if (!bufp
->not_eol
) break;
4637 /* We have to ``prefetch'' the next character. */
4638 else if ((d
== end1
? *string2
: *d
) == '\n'
4639 && bufp
->newline_anchor
)
4646 /* Match at the very beginning of the data. */
4648 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4649 if (AT_STRINGS_BEG (d
))
4654 /* Match at the very end of the data. */
4656 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4657 if (AT_STRINGS_END (d
))
4662 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4663 pushes NULL as the value for the string on the stack. Then
4664 `pop_failure_point' will keep the current value for the
4665 string, instead of restoring it. To see why, consider
4666 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4667 then the . fails against the \n. But the next thing we want
4668 to do is match the \n against the \n; if we restored the
4669 string value, we would be back at the foo.
4671 Because this is used only in specific cases, we don't need to
4672 check all the things that `on_failure_jump' does, to make
4673 sure the right things get saved on the stack. Hence we don't
4674 share its code. The only reason to push anything on the
4675 stack at all is that otherwise we would have to change
4676 `anychar's code to do something besides goto fail in this
4677 case; that seems worse than this. */
4678 case on_failure_keep_string_jump
:
4679 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4681 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4683 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4685 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4688 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4692 /* Uses of on_failure_jump:
4694 Each alternative starts with an on_failure_jump that points
4695 to the beginning of the next alternative. Each alternative
4696 except the last ends with a jump that in effect jumps past
4697 the rest of the alternatives. (They really jump to the
4698 ending jump of the following alternative, because tensioning
4699 these jumps is a hassle.)
4701 Repeats start with an on_failure_jump that points past both
4702 the repetition text and either the following jump or
4703 pop_failure_jump back to this on_failure_jump. */
4704 case on_failure_jump
:
4706 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4708 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4710 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4712 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4715 /* If this on_failure_jump comes right before a group (i.e.,
4716 the original * applied to a group), save the information
4717 for that group and all inner ones, so that if we fail back
4718 to this point, the group's information will be correct.
4719 For example, in \(a*\)*\1, we need the preceding group,
4720 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4722 /* We can't use `p' to check ahead because we push
4723 a failure point to `p + mcnt' after we do this. */
4726 /* We need to skip no_op's before we look for the
4727 start_memory in case this on_failure_jump is happening as
4728 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4730 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4733 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4735 /* We have a new highest active register now. This will
4736 get reset at the start_memory we are about to get to,
4737 but we will have saved all the registers relevant to
4738 this repetition op, as described above. */
4739 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4740 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4741 lowest_active_reg
= *(p1
+ 1);
4744 DEBUG_PRINT1 (":\n");
4745 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4749 /* A smart repeat ends with `maybe_pop_jump'.
4750 We change it to either `pop_failure_jump' or `jump'. */
4751 case maybe_pop_jump
:
4752 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4753 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4755 register unsigned char *p2
= p
;
4757 /* Compare the beginning of the repeat with what in the
4758 pattern follows its end. If we can establish that there
4759 is nothing that they would both match, i.e., that we
4760 would have to backtrack because of (as in, e.g., `a*a')
4761 then we can change to pop_failure_jump, because we'll
4762 never have to backtrack.
4764 This is not true in the case of alternatives: in
4765 `(a|ab)*' we do need to backtrack to the `ab' alternative
4766 (e.g., if the string was `ab'). But instead of trying to
4767 detect that here, the alternative has put on a dummy
4768 failure point which is what we will end up popping. */
4770 /* Skip over open/close-group commands.
4771 If what follows this loop is a ...+ construct,
4772 look at what begins its body, since we will have to
4773 match at least one of that. */
4777 && ((re_opcode_t
) *p2
== stop_memory
4778 || (re_opcode_t
) *p2
== start_memory
))
4780 else if (p2
+ 6 < pend
4781 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4788 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4789 to the `maybe_finalize_jump' of this case. Examine what
4792 /* If we're at the end of the pattern, we can change. */
4795 /* Consider what happens when matching ":\(.*\)"
4796 against ":/". I don't really understand this code
4798 p
[-3] = (unsigned char) pop_failure_jump
;
4800 (" End of pattern: change to `pop_failure_jump'.\n");
4803 else if ((re_opcode_t
) *p2
== exactn
4804 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4806 register unsigned char c
4807 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4809 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4811 p
[-3] = (unsigned char) pop_failure_jump
;
4812 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4816 else if ((re_opcode_t
) p1
[3] == charset
4817 || (re_opcode_t
) p1
[3] == charset_not
)
4819 int not = (re_opcode_t
) p1
[3] == charset_not
;
4821 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4822 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4825 /* `not' is equal to 1 if c would match, which means
4826 that we can't change to pop_failure_jump. */
4829 p
[-3] = (unsigned char) pop_failure_jump
;
4830 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4834 else if ((re_opcode_t
) *p2
== charset
)
4836 /* We win if the first character of the loop is not part
4838 if ((re_opcode_t
) p1
[3] == exactn
4839 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4840 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4841 & (1 << (p1
[5] % BYTEWIDTH
)))))
4843 p
[-3] = (unsigned char) pop_failure_jump
;
4844 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4847 else if ((re_opcode_t
) p1
[3] == charset_not
)
4850 /* We win if the charset_not inside the loop
4851 lists every character listed in the charset after. */
4852 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4853 if (! (p2
[2 + idx
] == 0
4854 || (idx
< (int) p1
[4]
4855 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4860 p
[-3] = (unsigned char) pop_failure_jump
;
4861 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4864 else if ((re_opcode_t
) p1
[3] == charset
)
4867 /* We win if the charset inside the loop
4868 has no overlap with the one after the loop. */
4870 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4872 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4875 if (idx
== p2
[1] || idx
== p1
[4])
4877 p
[-3] = (unsigned char) pop_failure_jump
;
4878 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4883 p
-= 2; /* Point at relative address again. */
4884 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4886 p
[-1] = (unsigned char) jump
;
4887 DEBUG_PRINT1 (" Match => jump.\n");
4888 goto unconditional_jump
;
4890 /* Note fall through. */
4893 /* The end of a simple repeat has a pop_failure_jump back to
4894 its matching on_failure_jump, where the latter will push a
4895 failure point. The pop_failure_jump takes off failure
4896 points put on by this pop_failure_jump's matching
4897 on_failure_jump; we got through the pattern to here from the
4898 matching on_failure_jump, so didn't fail. */
4899 case pop_failure_jump
:
4901 /* We need to pass separate storage for the lowest and
4902 highest registers, even though we don't care about the
4903 actual values. Otherwise, we will restore only one
4904 register from the stack, since lowest will == highest in
4905 `pop_failure_point'. */
4906 active_reg_t dummy_low_reg
, dummy_high_reg
;
4907 unsigned char *pdummy
;
4910 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4911 POP_FAILURE_POINT (sdummy
, pdummy
,
4912 dummy_low_reg
, dummy_high_reg
,
4913 reg_dummy
, reg_dummy
, reg_info_dummy
);
4915 /* Note fall through. */
4919 DEBUG_PRINT2 ("\n%p: ", p
);
4921 DEBUG_PRINT2 ("\n0x%x: ", p
);
4923 /* Note fall through. */
4925 /* Unconditionally jump (without popping any failure points). */
4927 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4928 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4929 p
+= mcnt
; /* Do the jump. */
4931 DEBUG_PRINT2 ("(to %p).\n", p
);
4933 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4938 /* We need this opcode so we can detect where alternatives end
4939 in `group_match_null_string_p' et al. */
4941 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4942 goto unconditional_jump
;
4945 /* Normally, the on_failure_jump pushes a failure point, which
4946 then gets popped at pop_failure_jump. We will end up at
4947 pop_failure_jump, also, and with a pattern of, say, `a+', we
4948 are skipping over the on_failure_jump, so we have to push
4949 something meaningless for pop_failure_jump to pop. */
4950 case dummy_failure_jump
:
4951 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4952 /* It doesn't matter what we push for the string here. What
4953 the code at `fail' tests is the value for the pattern. */
4954 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4955 goto unconditional_jump
;
4958 /* At the end of an alternative, we need to push a dummy failure
4959 point in case we are followed by a `pop_failure_jump', because
4960 we don't want the failure point for the alternative to be
4961 popped. For example, matching `(a|ab)*' against `aab'
4962 requires that we match the `ab' alternative. */
4963 case push_dummy_failure
:
4964 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4965 /* See comments just above at `dummy_failure_jump' about the
4967 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4970 /* Have to succeed matching what follows at least n times.
4971 After that, handle like `on_failure_jump'. */
4973 EXTRACT_NUMBER (mcnt
, p
+ 2);
4974 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4977 /* Originally, this is how many times we HAVE to succeed. */
4982 STORE_NUMBER_AND_INCR (p
, mcnt
);
4984 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4986 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4992 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4994 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4996 p
[2] = (unsigned char) no_op
;
4997 p
[3] = (unsigned char) no_op
;
5003 EXTRACT_NUMBER (mcnt
, p
+ 2);
5004 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5006 /* Originally, this is how many times we CAN jump. */
5010 STORE_NUMBER (p
+ 2, mcnt
);
5012 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
5014 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
5016 goto unconditional_jump
;
5018 /* If don't have to jump any more, skip over the rest of command. */
5025 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5027 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5029 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5031 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
5033 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
5035 STORE_NUMBER (p1
, mcnt
);
5040 /* The DEC Alpha C compiler 3.x generates incorrect code for the
5041 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
5042 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
5043 macro and introducing temporary variables works around the bug. */
5046 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5047 if (AT_WORD_BOUNDARY (d
))
5052 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5053 if (AT_WORD_BOUNDARY (d
))
5059 boolean prevchar
, thischar
;
5061 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5062 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5065 prevchar
= WORDCHAR_P (d
- 1);
5066 thischar
= WORDCHAR_P (d
);
5067 if (prevchar
!= thischar
)
5074 boolean prevchar
, thischar
;
5076 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5077 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5080 prevchar
= WORDCHAR_P (d
- 1);
5081 thischar
= WORDCHAR_P (d
);
5082 if (prevchar
!= thischar
)
5089 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5090 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
5095 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5096 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
5097 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
5103 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5104 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
5109 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5110 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
5115 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5116 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
5121 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5126 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5130 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5132 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5134 SET_REGS_MATCHED ();
5138 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5140 goto matchnotsyntax
;
5143 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5147 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5149 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5151 SET_REGS_MATCHED ();
5154 #else /* not emacs */
5156 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5158 if (!WORDCHAR_P (d
))
5160 SET_REGS_MATCHED ();
5165 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5169 SET_REGS_MATCHED ();
5172 #endif /* not emacs */
5177 continue; /* Successfully executed one pattern command; keep going. */
5180 /* We goto here if a matching operation fails. */
5182 if (!FAIL_STACK_EMPTY ())
5183 { /* A restart point is known. Restore to that state. */
5184 DEBUG_PRINT1 ("\nFAIL:\n");
5185 POP_FAILURE_POINT (d
, p
,
5186 lowest_active_reg
, highest_active_reg
,
5187 regstart
, regend
, reg_info
);
5189 /* If this failure point is a dummy, try the next one. */
5193 /* If we failed to the end of the pattern, don't examine *p. */
5197 boolean is_a_jump_n
= false;
5199 /* If failed to a backwards jump that's part of a repetition
5200 loop, need to pop this failure point and use the next one. */
5201 switch ((re_opcode_t
) *p
)
5205 case maybe_pop_jump
:
5206 case pop_failure_jump
:
5209 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5212 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5214 && (re_opcode_t
) *p1
== on_failure_jump
))
5222 if (d
>= string1
&& d
<= end1
)
5226 break; /* Matching at this starting point really fails. */
5230 goto restore_best_regs
;
5234 return -1; /* Failure to match. */
5237 /* Subroutine definitions for re_match_2. */
5240 /* We are passed P pointing to a register number after a start_memory.
5242 Return true if the pattern up to the corresponding stop_memory can
5243 match the empty string, and false otherwise.
5245 If we find the matching stop_memory, sets P to point to one past its number.
5246 Otherwise, sets P to an undefined byte less than or equal to END.
5248 We don't handle duplicates properly (yet). */
5251 group_match_null_string_p (p
, end
, reg_info
)
5252 unsigned char **p
, *end
;
5253 register_info_type
*reg_info
;
5256 /* Point to after the args to the start_memory. */
5257 unsigned char *p1
= *p
+ 2;
5261 /* Skip over opcodes that can match nothing, and return true or
5262 false, as appropriate, when we get to one that can't, or to the
5263 matching stop_memory. */
5265 switch ((re_opcode_t
) *p1
)
5267 /* Could be either a loop or a series of alternatives. */
5268 case on_failure_jump
:
5270 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5272 /* If the next operation is not a jump backwards in the
5277 /* Go through the on_failure_jumps of the alternatives,
5278 seeing if any of the alternatives cannot match nothing.
5279 The last alternative starts with only a jump,
5280 whereas the rest start with on_failure_jump and end
5281 with a jump, e.g., here is the pattern for `a|b|c':
5283 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5284 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5287 So, we have to first go through the first (n-1)
5288 alternatives and then deal with the last one separately. */
5291 /* Deal with the first (n-1) alternatives, which start
5292 with an on_failure_jump (see above) that jumps to right
5293 past a jump_past_alt. */
5295 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5297 /* `mcnt' holds how many bytes long the alternative
5298 is, including the ending `jump_past_alt' and
5301 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5305 /* Move to right after this alternative, including the
5309 /* Break if it's the beginning of an n-th alternative
5310 that doesn't begin with an on_failure_jump. */
5311 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5314 /* Still have to check that it's not an n-th
5315 alternative that starts with an on_failure_jump. */
5317 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5318 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5320 /* Get to the beginning of the n-th alternative. */
5326 /* Deal with the last alternative: go back and get number
5327 of the `jump_past_alt' just before it. `mcnt' contains
5328 the length of the alternative. */
5329 EXTRACT_NUMBER (mcnt
, p1
- 2);
5331 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5334 p1
+= mcnt
; /* Get past the n-th alternative. */
5340 assert (p1
[1] == **p
);
5346 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5349 } /* while p1 < end */
5352 } /* group_match_null_string_p */
5355 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5356 It expects P to be the first byte of a single alternative and END one
5357 byte past the last. The alternative can contain groups. */
5360 alt_match_null_string_p (p
, end
, reg_info
)
5361 unsigned char *p
, *end
;
5362 register_info_type
*reg_info
;
5365 unsigned char *p1
= p
;
5369 /* Skip over opcodes that can match nothing, and break when we get
5370 to one that can't. */
5372 switch ((re_opcode_t
) *p1
)
5375 case on_failure_jump
:
5377 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5382 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5385 } /* while p1 < end */
5388 } /* alt_match_null_string_p */
5391 /* Deals with the ops common to group_match_null_string_p and
5392 alt_match_null_string_p.
5394 Sets P to one after the op and its arguments, if any. */
5397 common_op_match_null_string_p (p
, end
, reg_info
)
5398 unsigned char **p
, *end
;
5399 register_info_type
*reg_info
;
5404 unsigned char *p1
= *p
;
5406 switch ((re_opcode_t
) *p1
++)
5426 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5427 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5429 /* Have to set this here in case we're checking a group which
5430 contains a group and a back reference to it. */
5432 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5433 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5439 /* If this is an optimized succeed_n for zero times, make the jump. */
5441 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5449 /* Get to the number of times to succeed. */
5451 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5456 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5464 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5472 /* All other opcodes mean we cannot match the empty string. */
5478 } /* common_op_match_null_string_p */
5481 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5482 bytes; nonzero otherwise. */
5485 bcmp_translate (s1
, s2
, len
, translate
)
5486 const char *s1
, *s2
;
5488 RE_TRANSLATE_TYPE translate
;
5490 register const unsigned char *p1
= (const unsigned char *) s1
;
5491 register const unsigned char *p2
= (const unsigned char *) s2
;
5494 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5500 /* Entry points for GNU code. */
5502 /* re_compile_pattern is the GNU regular expression compiler: it
5503 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5504 Returns 0 if the pattern was valid, otherwise an error string.
5506 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5507 are set in BUFP on entry.
5509 We call regex_compile to do the actual compilation. */
5512 re_compile_pattern (pattern
, length
, bufp
)
5513 const char *pattern
;
5515 struct re_pattern_buffer
*bufp
;
5519 /* GNU code is written to assume at least RE_NREGS registers will be set
5520 (and at least one extra will be -1). */
5521 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5523 /* And GNU code determines whether or not to get register information
5524 by passing null for the REGS argument to re_match, etc., not by
5528 /* Match anchors at newline. */
5529 bufp
->newline_anchor
= 1;
5531 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5535 return gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
5538 weak_alias (__re_compile_pattern
, re_compile_pattern
)
5541 /* Entry points compatible with 4.2 BSD regex library. We don't define
5542 them unless specifically requested. */
5544 #if defined _REGEX_RE_COMP || defined _LIBC
5546 /* BSD has one and only one pattern buffer. */
5547 static struct re_pattern_buffer re_comp_buf
;
5551 /* Make these definitions weak in libc, so POSIX programs can redefine
5552 these names if they don't use our functions, and still use
5553 regcomp/regexec below without link errors. */
5563 if (!re_comp_buf
.buffer
)
5564 return gettext ("No previous regular expression");
5568 if (!re_comp_buf
.buffer
)
5570 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5571 if (re_comp_buf
.buffer
== NULL
)
5572 return (char *) gettext (re_error_msgid
5573 + re_error_msgid_idx
[(int) REG_ESPACE
]);
5574 re_comp_buf
.allocated
= 200;
5576 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5577 if (re_comp_buf
.fastmap
== NULL
)
5578 return (char *) gettext (re_error_msgid
5579 + re_error_msgid_idx
[(int) REG_ESPACE
]);
5582 /* Since `re_exec' always passes NULL for the `regs' argument, we
5583 don't need to initialize the pattern buffer fields which affect it. */
5585 /* Match anchors at newlines. */
5586 re_comp_buf
.newline_anchor
= 1;
5588 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5593 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5594 return (char *) gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
5605 const int len
= strlen (s
);
5607 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5610 #endif /* _REGEX_RE_COMP */
5612 /* POSIX.2 functions. Don't define these for Emacs. */
5616 /* regcomp takes a regular expression as a string and compiles it.
5618 PREG is a regex_t *. We do not expect any fields to be initialized,
5619 since POSIX says we shouldn't. Thus, we set
5621 `buffer' to the compiled pattern;
5622 `used' to the length of the compiled pattern;
5623 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5624 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5625 RE_SYNTAX_POSIX_BASIC;
5626 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5627 `fastmap' to an allocated space for the fastmap;
5628 `fastmap_accurate' to zero;
5629 `re_nsub' to the number of subexpressions in PATTERN.
5631 PATTERN is the address of the pattern string.
5633 CFLAGS is a series of bits which affect compilation.
5635 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5636 use POSIX basic syntax.
5638 If REG_NEWLINE is set, then . and [^...] don't match newline.
5639 Also, regexec will try a match beginning after every newline.
5641 If REG_ICASE is set, then we considers upper- and lowercase
5642 versions of letters to be equivalent when matching.
5644 If REG_NOSUB is set, then when PREG is passed to regexec, that
5645 routine will report only success or failure, and nothing about the
5648 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5649 the return codes and their meanings.) */
5652 regcomp (preg
, pattern
, cflags
)
5654 const char *pattern
;
5659 = (cflags
& REG_EXTENDED
) ?
5660 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5662 /* regex_compile will allocate the space for the compiled pattern. */
5664 preg
->allocated
= 0;
5667 /* Try to allocate space for the fastmap. */
5668 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5670 if (cflags
& REG_ICASE
)
5675 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5676 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5677 if (preg
->translate
== NULL
)
5678 return (int) REG_ESPACE
;
5680 /* Map uppercase characters to corresponding lowercase ones. */
5681 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5682 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
5685 preg
->translate
= NULL
;
5687 /* If REG_NEWLINE is set, newlines are treated differently. */
5688 if (cflags
& REG_NEWLINE
)
5689 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5690 syntax
&= ~RE_DOT_NEWLINE
;
5691 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5692 /* It also changes the matching behavior. */
5693 preg
->newline_anchor
= 1;
5696 preg
->newline_anchor
= 0;
5698 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5700 /* POSIX says a null character in the pattern terminates it, so we
5701 can use strlen here in compiling the pattern. */
5702 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5704 /* POSIX doesn't distinguish between an unmatched open-group and an
5705 unmatched close-group: both are REG_EPAREN. */
5706 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5708 if (ret
== REG_NOERROR
&& preg
->fastmap
)
5710 /* Compute the fastmap now, since regexec cannot modify the pattern
5712 if (re_compile_fastmap (preg
) == -2)
5714 /* Some error occured while computing the fastmap, just forget
5716 free (preg
->fastmap
);
5717 preg
->fastmap
= NULL
;
5724 weak_alias (__regcomp
, regcomp
)
5728 /* regexec searches for a given pattern, specified by PREG, in the
5731 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5732 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5733 least NMATCH elements, and we set them to the offsets of the
5734 corresponding matched substrings.
5736 EFLAGS specifies `execution flags' which affect matching: if
5737 REG_NOTBOL is set, then ^ does not match at the beginning of the
5738 string; if REG_NOTEOL is set, then $ does not match at the end.
5740 We return 0 if we find a match and REG_NOMATCH if not. */
5743 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5744 const regex_t
*preg
;
5747 regmatch_t pmatch
[];
5751 struct re_registers regs
;
5752 regex_t private_preg
;
5753 int len
= strlen (string
);
5754 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5756 private_preg
= *preg
;
5758 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5759 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5761 /* The user has told us exactly how many registers to return
5762 information about, via `nmatch'. We have to pass that on to the
5763 matching routines. */
5764 private_preg
.regs_allocated
= REGS_FIXED
;
5768 regs
.num_regs
= nmatch
;
5769 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
5770 if (regs
.start
== NULL
)
5771 return (int) REG_NOMATCH
;
5772 regs
.end
= regs
.start
+ nmatch
;
5775 /* Perform the searching operation. */
5776 ret
= re_search (&private_preg
, string
, len
,
5777 /* start: */ 0, /* range: */ len
,
5778 want_reg_info
? ®s
: (struct re_registers
*) 0);
5780 /* Copy the register information to the POSIX structure. */
5787 for (r
= 0; r
< nmatch
; r
++)
5789 pmatch
[r
].rm_so
= regs
.start
[r
];
5790 pmatch
[r
].rm_eo
= regs
.end
[r
];
5794 /* If we needed the temporary register info, free the space now. */
5798 /* We want zero return to mean success, unlike `re_search'. */
5799 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5802 weak_alias (__regexec
, regexec
)
5806 /* Returns a message corresponding to an error code, ERRCODE, returned
5807 from either regcomp or regexec. We don't use PREG here. */
5810 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5812 const regex_t
*preg
;
5820 || errcode
>= (int) (sizeof (re_error_msgid_idx
)
5821 / sizeof (re_error_msgid_idx
[0])))
5822 /* Only error codes returned by the rest of the code should be passed
5823 to this routine. If we are given anything else, or if other regex
5824 code generates an invalid error code, then the program has a bug.
5825 Dump core so we can fix it. */
5828 msg
= gettext (re_error_msgid
+ re_error_msgid_idx
[errcode
]);
5830 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5832 if (errbuf_size
!= 0)
5834 if (msg_size
> errbuf_size
)
5836 #if defined HAVE_MEMPCPY || defined _LIBC
5837 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
5839 memcpy (errbuf
, msg
, errbuf_size
- 1);
5840 errbuf
[errbuf_size
- 1] = 0;
5844 memcpy (errbuf
, msg
, msg_size
);
5850 weak_alias (__regerror
, regerror
)
5854 /* Free dynamically allocated space used by PREG. */
5860 if (preg
->buffer
!= NULL
)
5861 free (preg
->buffer
);
5862 preg
->buffer
= NULL
;
5864 preg
->allocated
= 0;
5867 if (preg
->fastmap
!= NULL
)
5868 free (preg
->fastmap
);
5869 preg
->fastmap
= NULL
;
5870 preg
->fastmap_accurate
= 0;
5872 if (preg
->translate
!= NULL
)
5873 free (preg
->translate
);
5874 preg
->translate
= NULL
;
5877 weak_alias (__regfree
, regfree
)
5880 #endif /* not emacs */