Version 6.4.0.0.beta1, tag libreoffice-6.4.0.0.beta1
[LibreOffice.git] / sccomp / source / solver / DifferentialEvolution.hxx
bloba71af6d82fe74163848315285e00f145a81f20c4
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 */
11 #ifndef INCLUDED_SCCOMP_SOURCE_DIFFERENTIALEVOLUTION_HXX
12 #define INCLUDED_SCCOMP_SOURCE_DIFFERENTIALEVOLUTION_HXX
14 #include <vector>
15 #include <random>
16 #include <limits>
18 struct Individual
20 std::vector<double> mVariables;
23 template <typename DataProvider> class DifferentialEvolutionAlgorithm
25 static constexpr double mnDifferentialWeight = 0.5; // [0, 2]
26 static constexpr double mnCrossoverProbability = 0.9; // [0, 1]
28 static constexpr double constAcceptedPrecision = 0.000000001;
30 DataProvider& mrDataProvider;
32 size_t const mnPopulationSize;
33 std::vector<Individual> maPopulation;
35 std::random_device maRandomDevice;
36 std::mt19937 maGenerator;
37 size_t const mnDimensionality;
39 std::uniform_int_distribution<> maRandomPopulation;
40 std::uniform_int_distribution<> maRandomDimensionality;
41 std::uniform_real_distribution<> maRandom01;
43 Individual maBestCandidate;
44 double mfBestFitness;
45 int mnGeneration;
46 int mnLastChange;
48 public:
49 DifferentialEvolutionAlgorithm(DataProvider& rDataProvider, size_t nPopulationSize)
50 : mrDataProvider(rDataProvider)
51 , mnPopulationSize(nPopulationSize)
52 , maGenerator(maRandomDevice())
53 , mnDimensionality(mrDataProvider.getDimensionality())
54 , maRandomPopulation(0, mnPopulationSize - 1)
55 , maRandomDimensionality(0, mnDimensionality - 1)
56 , maRandom01(0.0, 1.0)
57 , mfBestFitness(std::numeric_limits<double>::lowest())
58 , mnGeneration(0)
59 , mnLastChange(0)
63 std::vector<double> const& getResult() { return maBestCandidate.mVariables; }
65 int getGeneration() { return mnGeneration; }
67 int getLastChange() { return mnLastChange; }
69 void initialize()
71 mnGeneration = 0;
72 mnLastChange = 0;
73 maPopulation.clear();
74 maBestCandidate.mVariables.clear();
76 // Initialize population with individuals that have been initialized with uniform random
77 // noise
78 // uniform noise means random value inside your search space
79 maPopulation.reserve(mnPopulationSize);
80 for (size_t i = 0; i < mnPopulationSize; ++i)
82 maPopulation.emplace_back();
83 Individual& rIndividual = maPopulation.back();
84 mrDataProvider.initializeVariables(rIndividual.mVariables, maGenerator);
88 // Calculate one generation
89 bool next()
91 bool bBestChanged = false;
93 for (size_t agentIndex = 0; agentIndex < mnPopulationSize; ++agentIndex)
95 // calculate new candidate solution
97 // pick random point from population
98 size_t x = agentIndex; // randomPopulation(generator);
99 size_t a, b, c;
101 // create a copy of chosen random agent in population
102 Individual& rOriginal = maPopulation[x];
103 Individual aCandidate(rOriginal);
105 // pick three different random points from population
108 a = maRandomPopulation(maGenerator);
109 } while (a == x);
113 b = maRandomPopulation(maGenerator);
114 } while (b == x || b == a);
118 c = maRandomPopulation(maGenerator);
120 } while (c == x || c == a || c == b);
122 size_t randomIndex = maRandomDimensionality(maGenerator);
124 for (size_t index = 0; index < mnDimensionality; ++index)
126 double randomCrossoverProbability = maRandom01(maGenerator);
127 if (index == randomIndex || randomCrossoverProbability < mnCrossoverProbability)
129 double fVarA = maPopulation[a].mVariables[index];
130 double fVarB = maPopulation[b].mVariables[index];
131 double fVarC = maPopulation[c].mVariables[index];
133 double fNewValue = fVarA + mnDifferentialWeight * (fVarB - fVarC);
134 fNewValue = mrDataProvider.boundVariable(index, fNewValue);
135 aCandidate.mVariables[index] = fNewValue;
139 double fCandidateFitness = mrDataProvider.calculateFitness(aCandidate.mVariables);
141 // see if is better than original, if so replace
142 if (fCandidateFitness > mrDataProvider.calculateFitness(rOriginal.mVariables))
144 maPopulation[x] = aCandidate;
146 if (fCandidateFitness > mfBestFitness)
148 if (std::abs(fCandidateFitness - mfBestFitness) > constAcceptedPrecision)
150 bBestChanged = true;
151 mnLastChange = mnGeneration;
153 mfBestFitness = fCandidateFitness;
154 maBestCandidate = maPopulation[x];
158 mnGeneration++;
159 return bBestChanged;
163 #endif
165 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */