bump product version to 6.3.0.0.beta1
[LibreOffice.git] / i18npool / source / calendar / calendar_hijri.cxx
blobce48dac0f127ed10c030316339438c085b897d10
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <sal/config.h>
22 #include <cmath>
23 #include <stdlib.h>
25 #include <calendar_hijri.hxx>
27 using namespace ::com::sun::star::uno;
28 using namespace ::com::sun::star::lang;
29 using namespace ::com::sun::star::i18n;
31 #define GREGORIAN_CROSSOVER 2299161
33 namespace i18npool {
35 // not used
36 //static UErrorCode status; // status is shared in all calls to Calendar, it has to be reset for each call.
38 // radians per degree (pi/180)
39 const double Calendar_hijri::RadPerDeg = 0.01745329251994329577;
41 // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
42 const double Calendar_hijri::SynPeriod = 29.53058868;
43 const double Calendar_hijri::SynMonth = 365.25/29.53058868; // Solar days in a year/SynPeriod
45 // Julian day on Jan 1, 1900
46 const double Calendar_hijri::jd1900 = 2415020.75933;
48 // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
49 const sal_Int32 Calendar_hijri::SynRef = 1252;
50 const sal_Int32 Calendar_hijri::GregRef = 1422;
52 // Local time specific to Saudi Arabia
53 const double Calendar_hijri::SA_TimeZone = 3.0;
55 const double Calendar_hijri::EveningPeriod = 6.0;
57 const sal_Int32 Calendar_hijri::LeapYear[] = {
58 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29
61 Calendar_hijri::Calendar_hijri()
63 cCalendar = "com.sun.star.i18n.Calendar_hijri";
66 #define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
68 // map field value from hijri calendar to gregorian calendar
69 void Calendar_hijri::mapToGregorian()
71 if (fieldSet & FIELDS) {
72 sal_Int32 day = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH]);
73 sal_Int32 month = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::MONTH]) + 1;
74 sal_Int32 year = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::YEAR]);
75 if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
76 year *= -1;
78 ToGregorian(&day, &month, &year);
80 fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
81 fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
82 fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast<sal_Int16>(day);
83 fieldSetValue[CalendarFieldIndex::YEAR] = static_cast<sal_Int16>(abs(year));
84 fieldSet |= FIELDS;
88 // map field value from gregorian calendar to hijri calendar
89 void Calendar_hijri::mapFromGregorian()
91 sal_Int32 month, day, year;
93 day = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::DAY_OF_MONTH]);
94 month = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::MONTH]) + 1;
95 year = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::YEAR]);
96 if (fieldValue[CalendarFieldIndex::ERA] == 0)
97 year *= -1;
99 // Get Hijri date
100 getHijri(&day, &month, &year);
102 fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast<sal_Int16>(day);
103 fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
104 fieldValue[CalendarFieldIndex::YEAR] = static_cast<sal_Int16>(abs(year));
105 fieldValue[CalendarFieldIndex::ERA] = static_cast<sal_Int16>(year) < 1 ? 0 : 1;
109 // This function returns the Julian date/time of the Nth new moon since
110 // January 1900. The synodic month is passed as parameter.
112 // Adapted from "Astronomical Formulae for Calculators" by
113 // Jean Meeus, Third Edition, Willmann-Bell, 1985.
115 double
116 Calendar_hijri::NewMoon(sal_Int32 n)
118 double jd, t, t2, t3, k, ma, sa, tf, xtra;
119 k = n;
120 t = k/1236.85; // Time in Julian centuries from 1900 January 0.5
121 t2 = t * t;
122 t3 = t2 * t;
124 // Mean time of phase
125 jd = jd1900
126 + SynPeriod * k
127 - 0.0001178 * t2
128 - 0.000000155 * t3
129 + 0.00033 * sin(RadPerDeg * (166.56 + 132.87 * t - 0.009173 * t2));
131 // Sun's mean anomaly in radian
132 sa = RadPerDeg * (359.2242
133 + 29.10535608 * k
134 - 0.0000333 * t2
135 - 0.00000347 * t3);
137 // Moon's mean anomaly
138 ma = RadPerDeg * (306.0253
139 + 385.81691806 * k
140 + 0.0107306 * t2
141 + 0.00001236 * t3);
143 // Moon's argument of latitude
144 tf = RadPerDeg * 2.0 * (21.2964
145 + 390.67050646 * k
146 - 0.0016528 * t2
147 - 0.00000239 * t3);
149 // should reduce to interval between 0 to 1.0 before calculating further
150 // Corrections for New Moon
151 xtra = (0.1734 - 0.000393 * t) * sin(sa)
152 + 0.0021 * sin(sa * 2)
153 - 0.4068 * sin(ma)
154 + 0.0161 * sin(2 * ma)
155 - 0.0004 * sin(3 * ma)
156 + 0.0104 * sin(tf)
157 - 0.0051 * sin(sa + ma)
158 - 0.0074 * sin(sa - ma)
159 + 0.0004 * sin(tf + sa)
160 - 0.0004 * sin(tf - sa)
161 - 0.0006 * sin(tf + ma)
162 + 0.0010 * sin(tf - ma)
163 + 0.0005 * sin(sa + 2 * ma);
165 // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
166 jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
168 return jd;
171 // Get Hijri Date
172 void
173 Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
175 double prevday;
176 // double dayfraction;
177 sal_Int32 syndiff;
178 sal_Int32 newsyn;
179 double newjd;
180 sal_Int32 synmonth;
182 // Get Julian Day from Gregorian
183 sal_Int32 const julday = getJulianDay(*day, *month, *year);
185 // obtain approx. of how many Synodic months since the beginning of the year 1900
186 synmonth = static_cast<sal_Int32>(0.5 + (julday - jd1900)/SynPeriod);
188 newsyn = synmonth;
189 prevday = julday - 0.5;
191 do {
192 newjd = NewMoon(newsyn);
194 // Decrement syntonic months
195 newsyn--;
196 } while (newjd > prevday);
197 newsyn++;
199 // difference from reference point
200 syndiff = newsyn - SynRef;
202 // Round up the day
203 *day = static_cast<sal_Int32>(julday - newjd + 0.5);
204 *month = (syndiff % 12) + 1;
206 // currently not supported
207 //dayOfYear = (sal_Int32)(month * SynPeriod + day);
208 *year = GregRef + static_cast<sal_Int32>(syndiff / 12);
210 // If month negative, consider it previous year
211 if (syndiff != 0 && *month <= 0) {
212 *month += 12;
213 (*year)--;
216 // If Before Hijri subtract 1
217 if (*year <= 0) (*year)--;
220 void
221 Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
223 sal_Int32 nmonth;
224 // double dayfraction;
225 double jday;
226 // sal_Int32 dayint;
228 if ( *year < 0 ) (*year)++;
230 // Number of month from reference point
231 nmonth = *month + *year * 12 - (GregRef * 12 + 1);
233 // Add Synodic Reference point
234 nmonth += SynRef;
236 // Get Julian days add time too
237 jday = NewMoon(nmonth) + *day;
239 // Round-up
240 jday = std::trunc(jday + 0.5);
242 // Use algorithm from "Numerical Recipes in C"
243 getGregorianDay(static_cast<sal_Int32>(jday), day, month, year);
245 // Julian -> Gregorian only works for non-negative year
246 if ( *year <= 0 ) {
247 *day = -1;
248 *month = -1;
249 *year = -1;
253 /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
254 /* this algorithm only valid for non-negative gregorian year */
255 void
256 Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
258 /* working variables */
259 long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
261 /* test whether to adjust for the Gregorian calendar crossover */
262 if (lJulianDay >= GREGORIAN_CROSSOVER) {
263 /* calculate a small adjustment */
264 long lAdjust = static_cast<long>((static_cast<float>(lJulianDay - 1867216) - 0.25) / 36524.25);
266 lFactorA = lJulianDay + 1 + lAdjust - static_cast<long>(0.25 * lAdjust);
268 } else {
269 /* no adjustment needed */
270 lFactorA = lJulianDay;
273 lFactorB = lFactorA + 1524;
274 lFactorC = static_cast<long>(6680.0 + (static_cast<float>(lFactorB - 2439870) - 122.1) / 365.25);
275 lFactorD = static_cast<long>(365 * lFactorC + (0.25 * lFactorC));
276 lFactorE = static_cast<long>((lFactorB - lFactorD) / 30.6001);
278 /* now, pull out the day number */
279 *pnDay = lFactorB - lFactorD - static_cast<long>(30.6001 * lFactorE);
281 /* ...and the month, adjusting it if necessary */
282 *pnMonth = lFactorE - 1;
283 if (*pnMonth > 12)
284 (*pnMonth) -= 12;
286 /* ...and similarly for the year */
287 *pnYear = lFactorC - 4715;
288 if (*pnMonth > 2)
289 (*pnYear)--;
291 // Negative year adjustments
292 if (*pnYear <= 0)
293 (*pnYear)--;
296 sal_Int32
297 Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
299 double jy, jm;
301 if( year == 0 ) {
302 return -1;
305 if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
306 return -1;
309 if( month > 2 ) {
310 jy = year;
311 jm = month + 1;
312 } else {
313 jy = year - 1;
314 jm = month + 13;
317 sal_Int32 intgr = static_cast<sal_Int32>(static_cast<sal_Int32>(365.25 * jy) + static_cast<sal_Int32>(30.6001 * jm) + day + 1720995 );
319 //check for switch to Gregorian calendar
320 double const gregcal = 15 + 31 * ( 10 + 12 * 1582 );
322 if( day + 31 * (month + 12 * year) >= gregcal ) {
323 double ja;
324 ja = std::trunc(0.01 * jy);
325 intgr += static_cast<sal_Int32>(2 - ja + std::trunc(0.25 * ja));
328 return intgr;
333 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */