1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <basegfx/polygon/b2dpolygonclipper.hxx>
21 #include <osl/diagnose.h>
22 #include <basegfx/polygon/b2dpolygontools.hxx>
23 #include <basegfx/numeric/ftools.hxx>
24 #include <basegfx/matrix/b2dhommatrix.hxx>
25 #include <basegfx/polygon/b2dpolypolygoncutter.hxx>
26 #include <basegfx/polygon/b2dpolygoncutandtouch.hxx>
27 #include <basegfx/polygon/b2dpolypolygontools.hxx>
28 #include <basegfx/curve/b2dcubicbezier.hxx>
29 #include <basegfx/tools/rectcliptools.hxx>
30 #include <basegfx/matrix/b2dhommatrixtools.hxx>
32 //////////////////////////////////////////////////////////////////////////////
38 B2DPolyPolygon
clipPolygonOnParallelAxis(const B2DPolygon
& rCandidate
, bool bParallelToXAxis
, bool bAboveAxis
, double fValueOnOtherAxis
, bool bStroke
)
40 B2DPolyPolygon aRetval
;
42 if(rCandidate
.count())
44 const B2DRange
aCandidateRange(getRange(rCandidate
));
46 if(bParallelToXAxis
&& fTools::moreOrEqual(aCandidateRange
.getMinY(), fValueOnOtherAxis
))
48 // completely above and on the clip line. also true for curves.
52 aRetval
.append(rCandidate
);
55 else if(bParallelToXAxis
&& fTools::lessOrEqual(aCandidateRange
.getMaxY(), fValueOnOtherAxis
))
57 // completely below and on the clip line. also true for curves.
61 aRetval
.append(rCandidate
);
64 else if(!bParallelToXAxis
&& fTools::moreOrEqual(aCandidateRange
.getMinX(), fValueOnOtherAxis
))
66 // completely right of and on the clip line. also true for curves.
70 aRetval
.append(rCandidate
);
73 else if(!bParallelToXAxis
&& fTools::lessOrEqual(aCandidateRange
.getMaxX(), fValueOnOtherAxis
))
75 // completely left of and on the clip line. also true for curves.
79 aRetval
.append(rCandidate
);
84 // add cuts with axis to polygon, including bezier segments
85 // Build edge to cut with. Make it a little big longer than needed for
86 // numerical stability. We want to cut against the edge seen as endless
87 // ray here, but addPointsAtCuts() will limit itself to the
88 // edge's range ]0.0 .. 1.0[.
89 const double fSmallExtension((aCandidateRange
.getWidth() + aCandidateRange
.getHeight()) * (0.5 * 0.1));
90 const B2DPoint
aStart(
91 bParallelToXAxis
? aCandidateRange
.getMinX() - fSmallExtension
: fValueOnOtherAxis
,
92 bParallelToXAxis
? fValueOnOtherAxis
: aCandidateRange
.getMinY() - fSmallExtension
);
94 bParallelToXAxis
? aCandidateRange
.getMaxX() + fSmallExtension
: fValueOnOtherAxis
,
95 bParallelToXAxis
? fValueOnOtherAxis
: aCandidateRange
.getMaxY() + fSmallExtension
);
96 const B2DPolygon
aCandidate(addPointsAtCuts(rCandidate
, aStart
, aEnd
));
97 const sal_uInt32
nPointCount(aCandidate
.count());
98 const sal_uInt32
nEdgeCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1L);
102 for(sal_uInt32
a(0L); a
< nEdgeCount
; a
++)
104 aCandidate
.getBezierSegment(a
, aEdge
);
105 const B2DPoint
aTestPoint(aEdge
.interpolatePoint(0.5));
106 const bool bInside(bParallelToXAxis
?
107 fTools::moreOrEqual(aTestPoint
.getY(), fValueOnOtherAxis
) == bAboveAxis
:
108 fTools::moreOrEqual(aTestPoint
.getX(), fValueOnOtherAxis
) == bAboveAxis
);
112 if(!aRun
.count() || !aRun
.getB2DPoint(aRun
.count() - 1).equal(aEdge
.getStartPoint()))
114 aRun
.append(aEdge
.getStartPoint());
119 aRun
.appendBezierSegment(aEdge
.getControlPointA(), aEdge
.getControlPointB(), aEdge
.getEndPoint());
123 aRun
.append(aEdge
.getEndPoint());
128 if(bStroke
&& aRun
.count())
130 aRetval
.append(aRun
);
140 // try to merge this last and first polygon; they may have been
141 // the former polygon's start/end point
144 const B2DPolygon
aStartPolygon(aRetval
.getB2DPolygon(0));
146 if(aStartPolygon
.count() && aStartPolygon
.getB2DPoint(0).equal(aRun
.getB2DPoint(aRun
.count() - 1)))
148 // append start polygon to aRun, remove from result set
149 aRun
.append(aStartPolygon
); aRun
.removeDoublePoints();
154 aRetval
.append(aRun
);
158 // set closed flag and correct last point (which is added double now).
159 closeWithGeometryChange(aRun
);
160 aRetval
.append(aRun
);
169 B2DPolyPolygon
clipPolyPolygonOnParallelAxis(const B2DPolyPolygon
& rCandidate
, bool bParallelToXAxis
, bool bAboveAxis
, double fValueOnOtherAxis
, bool bStroke
)
171 const sal_uInt32
nPolygonCount(rCandidate
.count());
172 B2DPolyPolygon aRetval
;
174 for(sal_uInt32
a(0L); a
< nPolygonCount
; a
++)
176 const B2DPolyPolygon
aClippedPolyPolygon(clipPolygonOnParallelAxis(rCandidate
.getB2DPolygon(a
), bParallelToXAxis
, bAboveAxis
, fValueOnOtherAxis
, bStroke
));
178 if(aClippedPolyPolygon
.count())
180 aRetval
.append(aClippedPolyPolygon
);
187 B2DPolyPolygon
clipPolygonOnRange(const B2DPolygon
& rCandidate
, const B2DRange
& rRange
, bool bInside
, bool bStroke
)
189 const sal_uInt32
nCount(rCandidate
.count());
190 B2DPolyPolygon aRetval
;
202 // nothing is inside an empty range
207 // everything is outside an empty range
208 return B2DPolyPolygon(rCandidate
);
212 const B2DRange
aCandidateRange(getRange(rCandidate
));
214 if(rRange
.isInside(aCandidateRange
))
216 // candidate is completely inside given range
220 return B2DPolyPolygon(rCandidate
);
224 // nothing is outside, then
231 // cutting off the outer parts of filled polygons at parallell
232 // lines to the axes is only possible for the inner part, not for
233 // the outer part which means cutting a hole into the original polygon.
234 // This is because the inner part is a logical AND-operation of
235 // the four implied half-planes, but the outer part is not.
236 // It is possible for strokes, but with creating unnecessary extra
237 // cuts, so using clipPolygonOnPolyPolygon is better there, too.
238 // This needs to be done with the topology knowlegde and is unfurtunately
239 // more expensive, too.
240 const B2DPolygon
aClip(createPolygonFromRect(rRange
));
242 return clipPolygonOnPolyPolygon(rCandidate
, B2DPolyPolygon(aClip
), bInside
, bStroke
);
245 // clip against the four axes of the range
246 // against X-Axis, lower value
247 aRetval
= clipPolygonOnParallelAxis(rCandidate
, true, bInside
, rRange
.getMinY(), bStroke
);
251 // against Y-Axis, lower value
252 if(1L == aRetval
.count())
254 aRetval
= clipPolygonOnParallelAxis(aRetval
.getB2DPolygon(0L), false, bInside
, rRange
.getMinX(), bStroke
);
258 aRetval
= clipPolyPolygonOnParallelAxis(aRetval
, false, bInside
, rRange
.getMinX(), bStroke
);
263 // against X-Axis, higher value
264 if(1L == aRetval
.count())
266 aRetval
= clipPolygonOnParallelAxis(aRetval
.getB2DPolygon(0L), true, !bInside
, rRange
.getMaxY(), bStroke
);
270 aRetval
= clipPolyPolygonOnParallelAxis(aRetval
, true, !bInside
, rRange
.getMaxY(), bStroke
);
275 // against Y-Axis, higher value
276 if(1L == aRetval
.count())
278 aRetval
= clipPolygonOnParallelAxis(aRetval
.getB2DPolygon(0L), false, !bInside
, rRange
.getMaxX(), bStroke
);
282 aRetval
= clipPolyPolygonOnParallelAxis(aRetval
, false, !bInside
, rRange
.getMaxX(), bStroke
);
291 B2DPolyPolygon
clipPolyPolygonOnRange(const B2DPolyPolygon
& rCandidate
, const B2DRange
& rRange
, bool bInside
, bool bStroke
)
293 const sal_uInt32
nPolygonCount(rCandidate
.count());
294 B2DPolyPolygon aRetval
;
306 // nothing is inside an empty range
311 // everything is outside an empty range
318 for(sal_uInt32
a(0L); a
< nPolygonCount
; a
++)
320 const B2DPolyPolygon
aClippedPolyPolygon(clipPolygonOnRange(rCandidate
.getB2DPolygon(a
), rRange
, bInside
, bStroke
));
322 if(aClippedPolyPolygon
.count())
324 aRetval
.append(aClippedPolyPolygon
);
330 // for details, see comment in clipPolygonOnRange for the "cutting off
331 // the outer parts of filled polygons at parallell lines" explanations
332 const B2DPolygon
aClip(createPolygonFromRect(rRange
));
334 return clipPolyPolygonOnPolyPolygon(rCandidate
, B2DPolyPolygon(aClip
), bInside
, bStroke
);
340 //////////////////////////////////////////////////////////////////////////////
342 B2DPolyPolygon
clipPolyPolygonOnPolyPolygon(const B2DPolyPolygon
& rCandidate
, const B2DPolyPolygon
& rClip
, bool bInside
, bool bStroke
)
344 B2DPolyPolygon aRetval
;
346 if(rCandidate
.count() && rClip
.count())
350 // line clipping, create line snippets by first adding all cut points and
351 // then marching along the edges and detecting if they are inside or outside
353 for(sal_uInt32
a(0); a
< rCandidate
.count(); a
++)
355 // add cuts with clip to polygon, including bezier segments
356 const B2DPolygon
aCandidate(addPointsAtCuts(rCandidate
.getB2DPolygon(a
), rClip
));
357 const sal_uInt32
nPointCount(aCandidate
.count());
358 const sal_uInt32
nEdgeCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1L);
359 B2DCubicBezier aEdge
;
362 for(sal_uInt32
b(0); b
< nEdgeCount
; b
++)
364 aCandidate
.getBezierSegment(b
, aEdge
);
365 const B2DPoint
aTestPoint(aEdge
.interpolatePoint(0.5));
366 const bool bIsInside(tools::isInside(rClip
, aTestPoint
) == bInside
);
372 aRun
.append(aEdge
.getStartPoint());
377 aRun
.appendBezierSegment(aEdge
.getControlPointA(), aEdge
.getControlPointB(), aEdge
.getEndPoint());
381 aRun
.append(aEdge
.getEndPoint());
388 aRetval
.append(aRun
);
396 // try to merge this last and first polygon; they may have been
397 // the former polygon's start/end point
400 const B2DPolygon
aStartPolygon(aRetval
.getB2DPolygon(0));
402 if(aStartPolygon
.count() && aStartPolygon
.getB2DPoint(0).equal(aRun
.getB2DPoint(aRun
.count() - 1)))
404 // append start polygon to aRun, remove from result set
405 aRun
.append(aStartPolygon
); aRun
.removeDoublePoints();
410 aRetval
.append(aRun
);
417 B2DPolyPolygon
aMergePolyPolygonA(rClip
);
419 // First solve all polygon-self and polygon-polygon intersections.
420 // Also get rid of some not-needed polygons (neutral, no area -> when
421 // no intersections, these are tubes).
422 // Now it is possible to correct the orientations in the cut-free
423 // polygons to values corresponding to painting the PolyPolygon with
424 // a XOR-WindingRule.
425 aMergePolyPolygonA
= solveCrossovers(aMergePolyPolygonA
);
426 aMergePolyPolygonA
= stripNeutralPolygons(aMergePolyPolygonA
);
427 aMergePolyPolygonA
= correctOrientations(aMergePolyPolygonA
);
431 // if we want to get the outside of the clip polygon, make
432 // it a 'Hole' in topological sense
433 aMergePolyPolygonA
.flip();
436 B2DPolyPolygon
aMergePolyPolygonB(rCandidate
);
438 // prepare 2nd source polygon in same way
439 aMergePolyPolygonB
= solveCrossovers(aMergePolyPolygonB
);
440 aMergePolyPolygonB
= stripNeutralPolygons(aMergePolyPolygonB
);
441 aMergePolyPolygonB
= correctOrientations(aMergePolyPolygonB
);
443 // to clip against each other, concatenate and solve all
444 // polygon-polygon crossovers. polygon-self do not need to
445 // be solved again, they were solved in the preparation.
446 aRetval
.append(aMergePolyPolygonA
);
447 aRetval
.append(aMergePolyPolygonB
);
448 aRetval
= solveCrossovers(aRetval
);
450 // now remove neutral polygons (closed, but no area). In a last
451 // step throw away all polygons which have a depth of less than 1
452 // which means there was no logical AND at their position. For the
453 // not-inside solution, the clip was flipped to define it as 'Hole',
454 // so the removal rule is different here; remove all with a depth
455 // of less than 0 (aka holes).
456 aRetval
= stripNeutralPolygons(aRetval
);
457 aRetval
= stripDispensablePolygons(aRetval
, bInside
);
464 //////////////////////////////////////////////////////////////////////////////
466 B2DPolyPolygon
clipPolygonOnPolyPolygon(const B2DPolygon
& rCandidate
, const B2DPolyPolygon
& rClip
, bool bInside
, bool bStroke
)
468 B2DPolyPolygon aRetval
;
470 if(rCandidate
.count() && rClip
.count())
472 aRetval
= clipPolyPolygonOnPolyPolygon(B2DPolyPolygon(rCandidate
), rClip
, bInside
, bStroke
);
478 //////////////////////////////////////////////////////////////////////////////
481 * let a plane be defined as
485 * and a ray be defined as
489 * substitute and rearranging yields
491 * t = -(a.n+d)/(n.(b-a))
493 * if the denominator is zero, the line is either
494 * contained in the plane or parallel to the plane.
495 * in either case, there is no intersection.
496 * if numerator and denominator are both zero, the
497 * ray is contained in the plane.
500 struct scissor_plane
{
501 double nx
,ny
; // plane normal
502 double d
; // [-] minimum distance from origin
503 sal_uInt32 clipmask
; // clipping mask, e.g. 1000 1000
508 * polygon clipping rules (straight out of Foley and Van Dam)
509 * ===========================================================
510 * current |next |emit
511 * ____________________________________
512 * inside |inside |next
513 * inside |outside |intersect with clip plane
514 * outside |outside |nothing
515 * outside |inside |intersect with clip plane follwed by next
518 sal_uInt32
scissorLineSegment( ::basegfx::B2DPoint
*in_vertex
, // input buffer
519 sal_uInt32 in_count
, // number of verts in input buffer
520 ::basegfx::B2DPoint
*out_vertex
, // output buffer
521 scissor_plane
*pPlane
, // scissoring plane
522 const ::basegfx::B2DRectangle
&rR
) // clipping rectangle
524 ::basegfx::B2DPoint
*curr
;
525 ::basegfx::B2DPoint
*next
;
527 sal_uInt32 out_count
=0;
529 // process all the verts
530 for(sal_uInt32 i
=0; i
<in_count
; i
++) {
532 // vertices are relative to the coordinate
533 // system defined by the rectangle.
534 curr
= &in_vertex
[i
];
535 next
= &in_vertex
[(i
+1)%in_count
];
537 // perform clipping judgement & mask against current plane.
538 sal_uInt32 clip
= pPlane
->clipmask
& ((getCohenSutherlandClipFlags(*curr
,rR
)<<4)|getCohenSutherlandClipFlags(*next
,rR
));
540 if(clip
==0) { // both verts are inside
541 out_vertex
[out_count
++] = *next
;
543 else if((clip
&0x0f) && (clip
&0xf0)) { // both verts are outside
545 else if((clip
&0x0f) && (clip
&0xf0)==0) { // curr is inside, next is outside
547 // direction vector from 'current' to 'next', *not* normalized
548 // to bring 't' into the [0<=x<=1] intervall.
549 ::basegfx::B2DPoint
dir((*next
)-(*curr
));
551 double denominator
= ( pPlane
->nx
*dir
.getX() +
552 pPlane
->ny
*dir
.getY() );
553 double numerator
= ( pPlane
->nx
*curr
->getX() +
554 pPlane
->ny
*curr
->getY() +
556 double t
= -numerator
/denominator
;
558 // calculate the actual point of intersection
559 ::basegfx::B2DPoint
intersection( curr
->getX()+t
*dir
.getX(),
560 curr
->getY()+t
*dir
.getY() );
562 out_vertex
[out_count
++] = intersection
;
564 else if((clip
&0x0f)==0 && (clip
&0xf0)) { // curr is outside, next is inside
566 // direction vector from 'current' to 'next', *not* normalized
567 // to bring 't' into the [0<=x<=1] intervall.
568 ::basegfx::B2DPoint
dir((*next
)-(*curr
));
570 double denominator
= ( pPlane
->nx
*dir
.getX() +
571 pPlane
->ny
*dir
.getY() );
572 double numerator
= ( pPlane
->nx
*curr
->getX() +
573 pPlane
->ny
*curr
->getY() +
575 double t
= -numerator
/denominator
;
577 // calculate the actual point of intersection
578 ::basegfx::B2DPoint
intersection( curr
->getX()+t
*dir
.getX(),
579 curr
->getY()+t
*dir
.getY() );
581 out_vertex
[out_count
++] = intersection
;
582 out_vertex
[out_count
++] = *next
;
589 B2DPolygon
clipTriangleListOnRange( const B2DPolygon
& rCandidate
,
590 const B2DRange
& rRange
)
594 if( !(rCandidate
.count()%3) )
596 const int scissor_plane_count
= 4;
598 scissor_plane sp
[scissor_plane_count
];
602 sp
[0].d
= -(rRange
.getMinX());
603 sp
[0].clipmask
= (RectClipFlags::LEFT
<< 4) | RectClipFlags::LEFT
; // 0001 0001
606 sp
[1].d
= +(rRange
.getMaxX());
607 sp
[1].clipmask
= (RectClipFlags::RIGHT
<< 4) | RectClipFlags::RIGHT
; // 0010 0010
610 sp
[2].d
= -(rRange
.getMinY());
611 sp
[2].clipmask
= (RectClipFlags::TOP
<< 4) | RectClipFlags::TOP
; // 0100 0100
614 sp
[3].d
= +(rRange
.getMaxY());
615 sp
[3].clipmask
= (RectClipFlags::BOTTOM
<< 4) | RectClipFlags::BOTTOM
; // 1000 1000
617 // retrieve the number of vertices of the triangulated polygon
618 const sal_uInt32 nVertexCount
= rCandidate
.count();
622 ////////////////////////////////////////////////////////////////////////
623 ////////////////////////////////////////////////////////////////////////
624 ////////////////////////////////////////////////////////////////////////
626 // Upper bound for the maximal number of vertices when intersecting an
627 // axis-aligned rectangle with a triangle in E2
629 // The rectangle and the triangle are in general position, and have 4 and 3
630 // vertices, respectively.
632 // Lemma: Since the rectangle is a convex polygon ( see
633 // http://mathworld.wolfram.com/ConvexPolygon.html for a definition), and
634 // has no holes, it follows that any straight line will intersect the
635 // rectangle's border line at utmost two times (with the usual
636 // tie-breaking rule, if the intersection exactly hits an already existing
637 // rectangle vertex, that this intersection is only attributed to one of
638 // the adjoining edges). Thus, having a rectangle intersected with
639 // a half-plane (one side of a straight line denotes 'inside', the
640 // other 'outside') will at utmost add _one_ vertex to the resulting
641 // intersection polygon (adding two intersection vertices, and removing at
642 // least one rectangle vertex):
645 // +--+-----------------+
651 // +--------------------+
653 // Proof: If the straight line intersects the rectangle two
654 // times, it does so for distinct edges, i.e. the intersection has
655 // minimally one of the rectangle's vertices on either side of the straight
656 // line (but maybe more). Thus, the intersection with a half-plane has
657 // minimally _one_ rectangle vertex removed from the resulting clip
658 // polygon, and therefore, a clip against a half-plane has the net effect
659 // of adding at utmost _one_ vertex to the resulting clip polygon.
661 // Theorem: The intersection of a rectangle and a triangle results in a
662 // polygon with at utmost 7 vertices.
664 // Proof: The inside of the triangle can be described as the consecutive
665 // intersection with three half-planes. Together with the lemma above, this
666 // results in at utmost 3 additional vertices added to the already existing 4
667 // rectangle vertices.
669 // This upper bound is attained with the following example configuration:
693 // As we need to scissor all triangles against the
694 // output rectangle we employ an output buffer for the
695 // resulting vertices. the question is how large this
696 // buffer needs to be compared to the number of
697 // incoming vertices. this buffer needs to hold at
698 // most the number of original vertices times '7'. see
699 // figure above for an example. scissoring triangles
700 // with the cohen-sutherland line clipping algorithm
701 // as implemented here will result in a triangle fan
702 // which will be rendered as separate triangles to
703 // avoid pipeline stalls for each scissored
704 // triangle. creating separate triangles from a
705 // triangle fan produces (n-2)*3 vertices where n is
706 // the number of vertices of the original triangle
707 // fan. for the maximum number of 7 vertices of
708 // resulting triangle fans we therefore need 15 times
709 // the number of original vertices.
711 ////////////////////////////////////////////////////////////////////////
712 ////////////////////////////////////////////////////////////////////////
713 ////////////////////////////////////////////////////////////////////////
715 //const size_t nBufferSize = sizeof(vertex)*(nVertexCount*16);
716 //vertex *pVertices = (vertex*)alloca(nBufferSize);
717 //sal_uInt32 nNumOutput = 0;
719 // we need to clip this triangle against the output rectangle
720 // to ensure that the resulting texture coordinates are in
721 // the valid range from [0<=st<=1]. under normal circustances
722 // we could use the BORDERCOLOR renderstate but some cards
723 // seem to ignore this feature.
724 ::basegfx::B2DPoint stack
[3];
725 unsigned int clipflag
= 0;
727 for(sal_uInt32 nIndex
=0; nIndex
<nVertexCount
; ++nIndex
)
732 stack
[2] = rCandidate
.getB2DPoint(nIndex
);
734 // clipping judgement
735 clipflag
|= !(rRange
.isInside(stack
[2]));
739 // consume vertices until a single separate triangle has been visited.
742 // if any of the last three vertices was outside
743 // we need to scissor against the destination rectangle
746 ::basegfx::B2DPoint buf0
[16];
747 ::basegfx::B2DPoint buf1
[16];
749 sal_uInt32 vertex_count
= 3;
751 // clip against all 4 planes passing the result of
752 // each plane as the input to the next using a double buffer
753 vertex_count
= scissorLineSegment(stack
,vertex_count
,buf1
,&sp
[0],rRange
);
754 vertex_count
= scissorLineSegment(buf1
,vertex_count
,buf0
,&sp
[1],rRange
);
755 vertex_count
= scissorLineSegment(buf0
,vertex_count
,buf1
,&sp
[2],rRange
);
756 vertex_count
= scissorLineSegment(buf1
,vertex_count
,buf0
,&sp
[3],rRange
);
758 if(vertex_count
>= 3)
760 // convert triangle fan back to triangle list.
761 ::basegfx::B2DPoint
v0(buf0
[0]);
762 ::basegfx::B2DPoint
v1(buf0
[1]);
763 for(sal_uInt32 i
=2; i
<vertex_count
; ++i
)
765 ::basegfx::B2DPoint
v2(buf0
[i
]);
775 // the last triangle has not been altered, simply copy to result
776 for(sal_uInt32 i
=0; i
<3; ++i
)
777 aResult
.append(stack
[i
]);
790 //////////////////////////////////////////////////////////////////////////////
792 } // end of namespace tools
793 } // end of namespace basegfx
795 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */