Version 3.6.0.2, tag libreoffice-3.6.0.2
[LibreOffice.git] / scaddins / source / analysis / bessel.cxx
blob759008b77fd0646aad510af40ebd026a084ec0bc
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*************************************************************************
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * Copyright 2000, 2010 Oracle and/or its affiliates.
8 * OpenOffice.org - a multi-platform office productivity suite
10 * This file is part of OpenOffice.org.
12 * OpenOffice.org is free software: you can redistribute it and/or modify
13 * it under the terms of the GNU Lesser General Public License version 3
14 * only, as published by the Free Software Foundation.
16 * OpenOffice.org is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU Lesser General Public License version 3 for more details
20 * (a copy is included in the LICENSE file that accompanied this code).
22 * You should have received a copy of the GNU Lesser General Public License
23 * version 3 along with OpenOffice.org. If not, see
24 * <http://www.openoffice.org/license.html>
25 * for a copy of the LGPLv3 License.
27 ************************************************************************/
29 #include "bessel.hxx"
30 #include "analysishelper.hxx"
32 #include <rtl/math.hxx>
34 using ::com::sun::star::lang::IllegalArgumentException;
35 using ::com::sun::star::sheet::NoConvergenceException;
37 namespace sca {
38 namespace analysis {
40 // ============================================================================
42 const double f_PI = 3.1415926535897932385;
43 const double f_2_PI = 2.0 * f_PI;
44 const double f_PI_DIV_2 = f_PI / 2.0;
45 const double f_PI_DIV_4 = f_PI / 4.0;
46 const double f_2_DIV_PI = 2.0 / f_PI;
48 const double THRESHOLD = 30.0; // Threshold for usage of approximation formula.
49 const double MAXEPSILON = 1e-10; // Maximum epsilon for end of iteration.
50 const sal_Int32 MAXITER = 100; // Maximum number of iterations.
52 // ============================================================================
53 // BESSEL J
54 // ============================================================================
56 /* The BESSEL function, first kind, unmodified:
57 The algorithm follows
58 http://www.reference-global.com/isbn/978-3-11-020354-7
59 Numerical Mathematics 1 / Numerische Mathematik 1,
60 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
61 Deuflhard, Peter; Hohmann, Andreas
62 Berlin, New York (Walter de Gruyter) 2008
63 4. ueberarb. u. erw. Aufl. 2008
64 eBook ISBN: 978-3-11-020355-4
65 Chapter 6.3.2 , algorithm 6.24
66 The source is in German.
67 The BesselJ-function is a special case of the adjoint summation with
68 a_k = 2*(k-1)/x for k=1,...
69 b_k = -1, for all k, directly substituted
70 m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
71 alpha_k=1 for k=N and alpha_k=0 otherwise
74 // ----------------------------------------------------------------------------
76 double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConvergenceException)
79 if( N < 0 )
80 throw IllegalArgumentException();
81 if (x==0.0)
82 return (N==0) ? 1.0 : 0.0;
84 /* The algorithm works only for x>0, therefore remember sign. BesselJ
85 with integer order N is an even function for even N (means J(-x)=J(x))
86 and an odd function for odd N (means J(-x)=-J(x)).*/
87 double fSign = (N % 2 == 1 && x < 0) ? -1.0 : 1.0;
88 double fX = fabs(x);
90 const double fMaxIteration = 9000000.0; //experimental, for to return in < 3 seconds
91 double fEstimateIteration = fX * 1.5 + N;
92 bool bAsymptoticPossible = pow(fX,0.4) > N;
93 if (fEstimateIteration > fMaxIteration)
95 if (bAsymptoticPossible)
96 return fSign * sqrt(f_2_DIV_PI/fX)* cos(fX-N*f_PI_DIV_2-f_PI_DIV_4);
97 else
98 throw NoConvergenceException();
101 double epsilon = 1.0e-15; // relative error
102 bool bHasfound = false;
103 double k= 0.0;
104 // e_{-1} = 0; e_0 = alpha_0 / b_2
105 double u ; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
107 // first used with k=1
108 double m_bar; // m_bar_k = m_k * f_bar_{k-1}
109 double g_bar; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
110 double g_bar_delta_u; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
111 // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
112 // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
113 double g = 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
114 double delta_u = 0.0; // dummy initialize, first used with * 0
115 double f_bar = -1.0; // f_bar_k = 1/f_k, but only used for k=0
117 if (N==0)
119 //k=0; alpha_0 = 1.0
120 u = 1.0; // u_0 = alpha_0
121 // k = 1.0; at least one step is necessary
122 // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
123 g_bar_delta_u = 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
124 g_bar = - 2.0/fX; // k = 1.0, g = 0.0
125 delta_u = g_bar_delta_u / g_bar;
126 u = u + delta_u ; // u_k = u_{k-1} + delta_u_k
127 g = -1.0 / g_bar; // g_k=b_{k+2}/g_bar_k
128 f_bar = f_bar * g; // f_bar_k = f_bar_{k-1}* g_k
129 k = 2.0;
130 // From now on all alpha_k = 0.0 and k > N+1
132 else
133 { // N >= 1 and alpha_k = 0.0 for k<N
134 u=0.0; // u_0 = alpha_0
135 for (k =1.0; k<= N-1; k = k + 1.0)
137 m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
138 g_bar_delta_u = - g * delta_u - m_bar * u; // alpha_k = 0.0
139 g_bar = m_bar - 2.0*k/fX + g;
140 delta_u = g_bar_delta_u / g_bar;
141 u = u + delta_u;
142 g = -1.0/g_bar;
143 f_bar=f_bar * g;
145 // Step alpha_N = 1.0
146 m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
147 g_bar_delta_u = f_bar - g * delta_u - m_bar * u; // alpha_k = 1.0
148 g_bar = m_bar - 2.0*k/fX + g;
149 delta_u = g_bar_delta_u / g_bar;
150 u = u + delta_u;
151 g = -1.0/g_bar;
152 f_bar = f_bar * g;
153 k = k + 1.0;
155 // Loop until desired accuracy, always alpha_k = 0.0
158 m_bar = 2.0 * fmod(k-1.0, 2.0) * f_bar;
159 g_bar_delta_u = - g * delta_u - m_bar * u;
160 g_bar = m_bar - 2.0*k/fX + g;
161 delta_u = g_bar_delta_u / g_bar;
162 u = u + delta_u;
163 g = -1.0/g_bar;
164 f_bar = f_bar * g;
165 bHasfound = (fabs(delta_u)<=fabs(u)*epsilon);
166 k = k + 1.0;
168 while (!bHasfound && k <= fMaxIteration);
169 if (bHasfound)
170 return u * fSign;
171 else
172 throw NoConvergenceException(); // unlikely to happen
175 // ============================================================================
176 // BESSEL I
177 // ============================================================================
179 /* The BESSEL function, first kind, modified:
181 inf (x/2)^(n+2k)
182 I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
183 k=0 k! (n+k)!
185 No asymptotic approximation used, see issue 43040.
188 // ----------------------------------------------------------------------------
190 double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException )
192 const double fEpsilon = 1.0E-15;
193 const sal_Int32 nMaxIteration = 2000;
194 const double fXHalf = x / 2.0;
195 if( n < 0 )
196 throw IllegalArgumentException();
198 double fResult = 0.0;
200 /* Start the iteration without TERM(n,0), which is set here.
202 TERM(n,0) = (x/2)^n / n!
204 sal_Int32 nK = 0;
205 double fTerm = 1.0;
206 // avoid overflow in Fak(n)
207 for( nK = 1; nK <= n; ++nK )
209 fTerm = fTerm / static_cast< double >( nK ) * fXHalf;
211 fResult = fTerm; // Start result with TERM(n,0).
212 if( fTerm != 0.0 )
214 nK = 1;
217 /* Calculation of TERM(n,k) from TERM(n,k-1):
219 (x/2)^(n+2k)
220 TERM(n,k) = --------------
221 k! (n+k)!
223 (x/2)^2 (x/2)^(n+2(k-1))
224 = --------------------------
225 k (k-1)! (n+k) (n+k-1)!
227 (x/2)^2 (x/2)^(n+2(k-1))
228 = --------- * ------------------
229 k(n+k) (k-1)! (n+k-1)!
231 x^2/4
232 = -------- TERM(n,k-1)
233 k(n+k)
235 fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n);
236 fResult += fTerm;
237 nK++;
239 while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) );
242 return fResult;
246 // ============================================================================
248 double Besselk0( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
250 double fRet;
252 if( fNum <= 2.0 )
254 double fNum2 = fNum * 0.5;
255 double y = fNum2 * fNum2;
257 fRet = -log( fNum2 ) * BesselI( fNum, 0 ) +
258 ( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 +
259 y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) );
261 else
263 double y = 2.0 / fNum;
265 fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 +
266 y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 +
267 y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) );
270 return fRet;
274 double Besselk1( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
276 double fRet;
278 if( fNum <= 2.0 )
280 double fNum2 = fNum * 0.5;
281 double y = fNum2 * fNum2;
283 fRet = log( fNum2 ) * BesselI( fNum, 1 ) +
284 ( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 +
285 y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) )
286 / fNum;
288 else
290 double y = 2.0 / fNum;
292 fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 +
293 y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 +
294 y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) );
297 return fRet;
301 double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
303 switch( nOrder )
305 case 0: return Besselk0( fNum );
306 case 1: return Besselk1( fNum );
307 default:
309 double fBkp;
311 double fTox = 2.0 / fNum;
312 double fBkm = Besselk0( fNum );
313 double fBk = Besselk1( fNum );
315 for( sal_Int32 n = 1 ; n < nOrder ; n++ )
317 fBkp = fBkm + double( n ) * fTox * fBk;
318 fBkm = fBk;
319 fBk = fBkp;
322 return fBk;
327 // ============================================================================
328 // BESSEL Y
329 // ============================================================================
331 /* The BESSEL function, second kind, unmodified:
332 The algorithm for order 0 and for order 1 follows
333 http://www.reference-global.com/isbn/978-3-11-020354-7
334 Numerical Mathematics 1 / Numerische Mathematik 1,
335 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
336 Deuflhard, Peter; Hohmann, Andreas
337 Berlin, New York (Walter de Gruyter) 2008
338 4. ueberarb. u. erw. Aufl. 2008
339 eBook ISBN: 978-3-11-020355-4
340 Chapter 6.3.2 , algorithm 6.24
341 The source is in German.
342 See #i31656# for a commented version of the implementation, attachment #desc6
343 http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
346 double Bessely0( double fX ) throw( IllegalArgumentException, NoConvergenceException )
348 if (fX <= 0)
349 throw IllegalArgumentException();
350 const double fMaxIteration = 9000000.0; // should not be reached
351 if (fX > 5.0e+6) // iteration is not considerable better then approximation
352 return sqrt(1/f_PI/fX)
353 *(rtl::math::sin(fX)-rtl::math::cos(fX));
354 const double epsilon = 1.0e-15;
355 const double EulerGamma = 0.57721566490153286060;
356 double alpha = log(fX/2.0)+EulerGamma;
357 double u = alpha;
359 double k = 1.0;
360 double m_bar = 0.0;
361 double g_bar_delta_u = 0.0;
362 double g_bar = -2.0 / fX;
363 double delta_u = g_bar_delta_u / g_bar;
364 double g = -1.0/g_bar;
365 double f_bar = -1 * g;
367 double sign_alpha = 1.0;
368 double km1mod2;
369 bool bHasFound = false;
370 k = k + 1;
373 km1mod2 = fmod(k-1.0,2.0);
374 m_bar=(2.0*km1mod2) * f_bar;
375 if (km1mod2 == 0.0)
376 alpha = 0.0;
377 else
379 alpha = sign_alpha * (4.0/k);
380 sign_alpha = -sign_alpha;
382 g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
383 g_bar = m_bar - (2.0*k)/fX + g;
384 delta_u = g_bar_delta_u / g_bar;
385 u = u+delta_u;
386 g = -1.0 / g_bar;
387 f_bar = f_bar*g;
388 bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
389 k=k+1;
391 while (!bHasFound && k<fMaxIteration);
392 if (bHasFound)
393 return u*f_2_DIV_PI;
394 else
395 throw NoConvergenceException(); // not likely to happen
398 // See #i31656# for a commented version of this implementation, attachment #desc6
399 // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
400 double Bessely1( double fX ) throw( IllegalArgumentException, NoConvergenceException )
402 if (fX <= 0)
403 throw IllegalArgumentException();
404 const double fMaxIteration = 9000000.0; // should not be reached
405 if (fX > 5.0e+6) // iteration is not considerable better then approximation
406 return - sqrt(1/f_PI/fX)
407 *(rtl::math::sin(fX)+rtl::math::cos(fX));
408 const double epsilon = 1.0e-15;
409 const double EulerGamma = 0.57721566490153286060;
410 double alpha = 1.0/fX;
411 double f_bar = -1.0;
412 double g = 0.0;
413 double u = alpha;
414 double k = 1.0;
415 double m_bar = 0.0;
416 alpha = 1.0 - EulerGamma - log(fX/2.0);
417 double g_bar_delta_u = -alpha;
418 double g_bar = -2.0 / fX;
419 double delta_u = g_bar_delta_u / g_bar;
420 u = u + delta_u;
421 g = -1.0/g_bar;
422 f_bar = f_bar * g;
423 double sign_alpha = -1.0;
424 double km1mod2; //will be (k-1) mod 2
425 double q; // will be (k-1) div 2
426 bool bHasFound = false;
427 k = k + 1.0;
430 km1mod2 = fmod(k-1.0,2.0);
431 m_bar=(2.0*km1mod2) * f_bar;
432 q = (k-1.0)/2.0;
433 if (km1mod2 == 0.0) // k is odd
435 alpha = sign_alpha * (1.0/q + 1.0/(q+1.0));
436 sign_alpha = -sign_alpha;
438 else
439 alpha = 0.0;
440 g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
441 g_bar = m_bar - (2.0*k)/fX + g;
442 delta_u = g_bar_delta_u / g_bar;
443 u = u+delta_u;
444 g = -1.0 / g_bar;
445 f_bar = f_bar*g;
446 bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
447 k=k+1;
449 while (!bHasFound && k<fMaxIteration);
450 if (bHasFound)
451 return -u*2.0/f_PI;
452 else
453 throw NoConvergenceException();
456 double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
458 switch( nOrder )
460 case 0: return Bessely0( fNum );
461 case 1: return Bessely1( fNum );
462 default:
464 double fByp;
466 double fTox = 2.0 / fNum;
467 double fBym = Bessely0( fNum );
468 double fBy = Bessely1( fNum );
470 for( sal_Int32 n = 1 ; n < nOrder ; n++ )
472 fByp = double( n ) * fTox * fBy - fBym;
473 fBym = fBy;
474 fBy = fByp;
477 return fBy;
482 // ============================================================================
484 } // namespace analysis
485 } // namespace sca
487 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */