1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 /** Those are the starmath codes for ElementsDockingWindow.hxx.
12 * Those codes will be displayed as formulas on the ElementsDockingWindow.
13 * The user can then graphically insert them.
18 #include <rtl/ustring.hxx>
20 inline constexpr OUString RID_UNDOFORMATNAME
= u
"Format"_ustr
;
23 #define RID_PLUSX u"+<?> "
24 #define RID_MINUSX u"-<?> "
25 #define RID_PLUSMINUSX u"+-<?> "
26 #define RID_MINUSPLUSX u"-+<?> "
27 #define RID_NEGX u"neg <?> "
28 #define RID_XPLUSY u"<?> + <?> "
29 #define RID_XMINUSY u"<?> - <?> "
30 #define RID_XCDOTY u"<?> cdot <?> "
31 #define RID_XTIMESY u"<?> times <?> "
32 #define RID_XSYMTIMESY u"<?> * <?> "
33 #define RID_XSYMDIVIDEY u"<?> / <?> "
34 #define RID_XDIVY u"<?> div <?> "
35 #define RID_XOVERY u"{<?>} over {<?>} "
36 #define RID_FRACXY u"frac {<?>} {<?>} "
37 #define RID_XODIVIDEY u"<?> odivide <?> "
38 #define RID_XODOTY u"<?> odot <?> "
39 #define RID_XOMINUSY u"<?> ominus <?> "
40 #define RID_XOPLUSY u"<?> oplus <?> "
41 #define RID_XOTIMESY u"<?> otimes <?> "
42 #define RID_XANDY u"<?> and <?> "
43 #define RID_XORY u"<?> or <?> "
44 #define RID_XEQY u"<?> = <?> "
45 #define RID_XNEQY u"<?> <> <?> "
46 #define RID_XLTY u"<?> < <?> "
47 #define RID_XGTY u"<?> > <?> "
48 #define RID_XLEY u"<?> <= <?> "
49 #define RID_XGEY u"<?> >= <?> "
50 #define RID_XLESLANTY u"<?> leslant <?> "
51 #define RID_XGESLANTY u"<?> geslant <?> "
52 #define RID_XLLY u"<?> << <?> "
53 #define RID_XGGY u"<?> >> <?> "
54 #define RID_XDEFY u"<?> def <?> "
55 #define RID_XEQUIVY u"<?> equiv <?> "
56 #define RID_XAPPROXY u"<?> approx <?> "
57 #define RID_XSIMY u"<?> sim <?> "
58 #define RID_XSIMEQY u"<?> simeq <?> "
59 #define RID_XPROPY u"<?> prop <?> "
60 #define RID_XORTHOY u"<?> ortho <?> "
61 #define RID_XPARALLELY u"<?> parallel <?> "
62 #define RID_XTOWARDY u"<?> toward <?> "
63 #define RID_XTRANSLY u"<?> transl <?> "
64 #define RID_XTRANSRY u"<?> transr <?> "
65 #define RID_XINY u"<?> in <?> "
66 #define RID_XNOTINY u"<?> notin <?> "
67 #define RID_XOWNSY u"<?> owns <?> "
68 #define RID_XUNIONY u"<?> union <?> "
69 #define RID_XINTERSECTIONY u"<?> intersection <?> "
70 #define RID_XSETMINUSY u"<?> setminus <?> "
71 #define RID_XSETQUOTIENTY u"<?> setquotient <?> "
72 #define RID_XSUBSETY u"<?> subset <?> "
73 #define RID_XSUBSETEQY u"<?> subseteq <?> "
74 #define RID_XSUPSETY u"<?> supset <?> "
75 #define RID_XSUPSETEQY u"<?> supseteq <?> "
76 #define RID_XNSUBSETY u"<?> nsubset <?> "
77 #define RID_XNSUBSETEQY u"<?> nsubseteq <?> "
78 #define RID_XNSUPSETY u"<?> nsupset <?> "
79 #define RID_XNSUPSETEQY u"<?> nsupseteq <?> "
80 #define RID_FUNCX u"func <?>(<?>) "
81 #define RID_ABSX u"abs{<?>} "
82 #define RID_FACTX u"fact{<?>} "
83 #define RID_SQRTX u"sqrt{<?>} "
84 #define RID_NROOTXY u"nroot{<?>}{<?>} "
85 #define RID_EX u"func e^{<?>} "
86 #define RID_EXPX u"exp(<?>) "
87 #define RID_LNX u"ln(<?>) "
88 #define RID_LOGX u"log(<?>) "
89 #define RID_SINX u"sin(<?>) "
90 #define RID_COSX u"cos(<?>) "
91 #define RID_TANX u"tan(<?>) "
92 #define RID_COTX u"cot(<?>) "
93 #define RID_ARCSINX u"arcsin(<?>) "
94 #define RID_ARCCOSX u"arccos(<?>) "
95 #define RID_ARCTANX u"arctan(<?>) "
96 #define RID_ARCCOTX u"arccot(<?>) "
97 #define RID_SINHX u"sinh(<?>) "
98 #define RID_COSHX u"cosh(<?>) "
99 #define RID_TANHX u"tanh(<?>) "
100 #define RID_COTHX u"coth(<?>) "
101 #define RID_ARSINHX u"arsinh(<?>) "
102 #define RID_ARCOSHX u"arcosh(<?>) "
103 #define RID_ARTANHX u"artanh(<?>) "
104 #define RID_ARCOTHX u"arcoth(<?>) "
105 #define RID_OPERX u"oper oper <?> "
106 #define RID_OPER_FROMX u"oper oper from{<?>} <?> "
107 #define RID_OPER_TOX u"oper oper to{<?>} <?> "
108 #define RID_OPER_FROMTOX u"oper oper from{<?>} to{<?>} <?> "
109 #define RID_SUMX u"sum <?> "
110 #define RID_SUM_FROMX u"sum from{<?>} <?> "
111 #define RID_SUM_TOX u"sum to{<?>} <?> "
112 #define RID_SUM_FROMTOX u"sum from{<?>} to{<?>} <?> "
113 #define RID_MAJX u"maj <?> "
114 #define RID_MAJ_FROMX u"maj from{<?>} <?> "
115 #define RID_MAJ_TOX u"maj to{<?>} <?> "
116 #define RID_MAJ_FROMTOX u"maj from{<?>} to{<?>} <?> "
117 #define RID_PRODX u"prod <?> "
118 #define RID_PROD_FROMX u"prod from{<?>} <?> "
119 #define RID_PROD_TOX u"prod to{<?>} <?> "
120 #define RID_PROD_FROMTOX u"prod from{<?>} to{<?>} <?> "
121 #define RID_COPRODX u"coprod <?> "
122 #define RID_COPROD_FROMX u"coprod from{<?>} <?> "
123 #define RID_COPROD_TOX u"coprod to{<?>} <?> "
124 #define RID_COPROD_FROMTOX u"coprod from{<?>} to{<?>} <?> "
125 #define RID_LIMX u"lim <?> "
126 #define RID_LIM_FROMX u"lim from{<?>} <?> "
127 #define RID_LIM_TOX u"lim to{<?>} <?> "
128 #define RID_LIM_FROMTOX u"lim from{<?>} to{<?>} <?> "
129 #define RID_LIMINFX u"liminf <?> "
130 #define RID_LIMINF_FROMX u"liminf from{<?>} <?> "
131 #define RID_LIMINF_TOX u"liminf to{<?>} <?> "
132 #define RID_LIMINF_FROMTOX u"liminf from{<?>} to{<?>} <?> "
133 #define RID_LIMSUPX u"limsup <?> "
134 #define RID_LIMSUP_FROMX u"limsup from{<?>} <?> "
135 #define RID_LIMSUP_TOX u"limsup to{<?>} <?> "
136 #define RID_LIMSUP_FROMTOX u"limsup from{<?>} to{<?>} <?> "
137 #define RID_HADDX u"hadd <?> "
138 #define RID_HADD_FROMX u"hadd from{<?>} <?> "
139 #define RID_HADD_TOX u"hadd to{<?>} <?> "
140 #define RID_HADD_FROMTOX u"hadd from{<?>} to{<?>} <?> "
141 #define RID_EXISTS u"exists "
142 #define RID_NOTEXISTS u"notexists "
143 #define RID_FORALL u"forall "
144 #define RID_INTX u"int <?> "
145 #define RID_INT_FROMX u"int from{<?>} <?> "
146 #define RID_INT_TOX u"int to{<?>} <?> "
147 #define RID_INT_FROMTOX u"int from{<?>} to{<?>} <?> "
148 #define RID_IINTX u"iint <?> "
149 #define RID_IINT_FROMX u"iint from{<?>} <?> "
150 #define RID_IINT_TOX u"iint to{<?>} <?> "
151 #define RID_IINT_FROMTOX u"iint from{<?>} to{<?>} <?> "
152 #define RID_IIINTX u"iiint <?> "
153 #define RID_IIINT_FROMX u"iiint from{<?>} <?> "
154 #define RID_IIINT_TOX u"iiint to{<?>} <?> "
155 #define RID_IIINT_FROMTOX u"iiint from{<?>} to{<?>} <?> "
156 #define RID_LINTX u"lint <?> "
157 #define RID_LINT_FROMX u"lint from{<?>} <?> "
158 #define RID_LINT_TOX u"lint to{<?>} <?> "
159 #define RID_LINT_FROMTOX u"lint from{<?>} to{<?>} <?> "
160 #define RID_LLINTX u"llint <?> "
161 #define RID_LLINT_FROMX u"llint from{<?>} <?> "
162 #define RID_LLINT_TOX u"llint to{<?>} <?> "
163 #define RID_LLINT_FROMTOX u"llint from{<?>} to{<?>} <?> "
164 #define RID_LLLINTX u"lllint <?> "
165 #define RID_LLLINT_FROMX u"lllint from{<?>} <?> "
166 #define RID_LLLINT_TOX u"lllint to{<?>} <?> "
167 #define RID_LLLINT_FROMTOX u"lllint from{<?>} to{<?>} <?> "
168 #define RID_FROMX u"from{<?>} <?> "
169 #define RID_TOX u"to{<?>} <?> "
170 #define RID_FROMXTOY u"from{<?>} to{<?>} <?> "
171 #define RID_ACUTEX u"acute <?> "
172 #define RID_BARX u"bar <?> "
173 #define RID_BREVEX u"breve <?> "
174 #define RID_CHECKX u"check <?> "
175 #define RID_CIRCLEX u"circle <?> "
176 #define RID_DOTX u"dot <?> "
177 #define RID_DDOTX u"ddot <?> "
178 #define RID_DDDOTX u"dddot <?> "
179 #define RID_GRAVEX u"grave <?> "
180 #define RID_HATX u"hat <?> "
181 #define RID_TILDEX u"tilde <?> "
182 #define RID_VECX u"vec <?> "
183 #define RID_HARPOONX u"harpoon <?> "
184 #define RID_UNDERLINEX u"underline {<?>} "
185 #define RID_OVERLINEX u"overline {<?>} "
186 #define RID_OVERSTRIKEX u"overstrike {<?>} "
187 #define RID_PHANTOMX u"phantom {<?>} "
188 #define RID_BOLDX u"bold <?> "
189 #define RID_ITALX u"ital <?> "
190 #define RID_SIZEXY u"size <?> {<?>} "
191 #define RID_FONTXY u"font <?> {<?>} "
192 #define RID_COLORX_BLACK u"color black {<?>} "
193 #define RID_COLORX_BLUE u"color blue {<?>} "
194 #define RID_COLORX_GREEN u"color green {<?>} "
195 #define RID_COLORX_RED u"color red {<?>} "
196 #define RID_COLORX_AQUA u"color aqua {<?>} "
197 #define RID_COLORX_FUCHSIA u"color fuchsia {<?>} "
198 #define RID_COLORX_GRAY u"color gray {<?>} "
199 #define RID_COLORX_LIME u"color lime {<?>} "
200 #define RID_COLORX_MAROON u"color maroon {<?>} "
201 #define RID_COLORX_NAVY u"color navy {<?>} "
202 #define RID_COLORX_OLIVE u"color olive {<?>} "
203 #define RID_COLORX_PURPLE u"color purple {<?>} "
204 #define RID_COLORX_SILVER u"color silver {<?>} "
205 #define RID_COLORX_TEAL u"color teal {<?>} "
206 #define RID_COLORX_YELLOW u"color yellow {<?>} "
207 #define RID_COLORX_RGB u"color rgb 0 0 0 {<?>} "
208 #define RID_COLORX_RGBA u"color rgba 0 0 0 0 {<?>} "
209 #define RID_COLORX_HEX u"color hex 000000 {<?>} "
210 #define RID_COLORX_CORAL u"color coral {<?>} "
211 #define RID_COLORX_CRIMSON u"color crimson {<?>} "
212 #define RID_COLORX_MIDNIGHT u"color midnightblue {<?>} "
213 #define RID_COLORX_VIOLET u"color violet {<?>} "
214 #define RID_COLORX_ORANGE u"color orange {<?>} "
215 #define RID_COLORX_ORANGERED u"color orangered {<?>} "
216 #define RID_COLORX_SEAGREEN u"color seagreen {<?>} "
217 #define RID_COLORX_INDIGO u"color indigo {<?>} "
218 #define RID_COLORX_HOTPINK u"color hotpink {<?>} "
219 #define RID_COLORX_LAVENDER u"color lavender {<?>} "
220 #define RID_COLORX_SNOW u"color snow {<?>} "
221 #define RID_LRGROUPX u"{<?>} "
222 #define RID_LRPARENTX u"(<?>) "
223 #define RID_LRBRACKETX u"[<?>] "
224 #define RID_LRDBRACKETX u"ldbracket <?> rdbracket "
225 #define RID_LRBRACEX u"lbrace <?> rbrace "
226 #define RID_LRANGLEX u"langle <?> rangle "
227 #define RID_LRCEILX u"lceil <?> rceil "
228 #define RID_LRFLOORX u"lfloor <?> rfloor "
229 #define RID_LRLINEX u"lline <?> rline "
230 #define RID_LRDLINEX u"ldline <?> rdline "
231 #define RID_LMRANGLEXY u"langle <?> mline <?> rangle "
232 #define RID_SLRPARENTX u"left ( <?> right ) "
233 #define RID_SLRBRACKETX u"left [ <?> right ] "
234 #define RID_SLRDBRACKETX u"left ldbracket <?> right rdbracket "
235 #define RID_SLRBRACEX u"left lbrace <?> right rbrace "
236 #define RID_SLRANGLEX u"left langle <?> right rangle "
237 #define RID_SLRCEILX u"left lceil <?> right rceil "
238 #define RID_SLRFLOORX u"left lfloor <?> right rfloor "
239 #define RID_SLRLINEX u"left lline <?> right rline "
240 #define RID_SLRDLINEX u"left ldline <?> right rdline "
241 #define RID_SLMRANGLEXY u"left langle <?> mline <?> right rangle "
242 #define RID_XOVERBRACEY u"{<?>} overbrace {<?>} "
243 #define RID_XUNDERBRACEY u"{<?>} underbrace {<?>} "
244 #define RID_EVALX u"evaluate <?> "
245 #define RID_EVAL_FROMX u"evaluate {<?>} from{<?>} "
246 #define RID_EVAL_TOX u"evaluate {<?>} to{<?>} "
247 #define RID_EVAL_FROMTOX u"evaluate {<?>} from{<?>} to{<?>} "
248 #define RID_RSUBX u"<?>_{<?>} "
249 #define RID_RSUPX u"<?>^{<?>} "
250 #define RID_LSUBX u"<?> lsub{<?>} "
251 #define RID_LSUPX u"<?> lsup{<?>} "
252 #define RID_CSUBX u"<?> csub{<?>} "
253 #define RID_CSUPX u"<?> csup{<?>} "
254 #define RID_SBLANK u"` "
255 #define RID_BLANK u"~ "
256 #define RID_NEWLINE u"newline "
257 #define RID_BINOMXY u"binom{<?>}{<?>} "
258 #define RID_STACK u"stack{<?> # <?> # <?>} "
259 #define RID_MATRIX u"matrix{<?> # <?> ## <?> # <?>} "
260 #define RID_ALIGNLX u"alignl <?> "
261 #define RID_ALIGNCX u"alignc <?> "
262 #define RID_ALIGNRX u"alignr <?> "
263 #define RID_ALEPH u"aleph "
264 #define RID_EMPTYSET u"emptyset "
265 #define RID_RE u"Re "
266 #define RID_IM u"Im "
267 #define RID_INFINITY u"infinity "
268 #define RID_PARTIAL u"partial "
269 #define RID_NABLA u"nabla "
270 #define RID_WP u"wp "
271 #define RID_LAPLACE u"laplace "
272 #define RID_BACKEPSILON u"backepsilon "
273 #define RID_FOURIER u"fourier "
274 #define RID_DOTSAXIS u"dotsaxis "
275 #define RID_DOTSUP u"dotsup "
276 #define RID_DOTSDOWN u"dotsdown "
277 #define RID_DOTSLOW u"dotslow "
278 #define RID_DOTSVERT u"dotsvert "
279 #define RID_XCIRCY u"<?> circ <?> "
280 #define RID_XWIDESLASHY u"{<?>} wideslash {<?>} "
281 #define RID_XWIDEBSLASHY u"{<?>} widebslash {<?>} "
282 #define RID_XDIVIDESY u"<?> divides <?> "
283 #define RID_XNDIVIDESY u"<?> ndivides <?> "
284 #define RID_DLARROW u"<?> dlarrow <?> "
285 #define RID_DLRARROW u"<?> dlrarrow <?> "
286 #define RID_DRARROW u"<?> drarrow <?> "
287 #define RID_SETN u"setN "
288 #define RID_SETZ u"setZ "
289 #define RID_SETQ u"setQ "
290 #define RID_SETR u"setR "
291 #define RID_SETC u"setC "
292 #define RID_WIDEHATX u"widehat {<?>} "
293 #define RID_WIDETILDEX u"widetilde {<?>} "
294 #define RID_WIDEVECX u"widevec {<?>} "
295 #define RID_WIDEHARPOONX u"wideharpoon {<?>} "
296 #define RID_HBAR u"hbar "
297 #define RID_LAMBDABAR u"lambdabar "
298 #define RID_LEFTARROW u"leftarrow "
299 #define RID_RIGHTARROW u"rightarrow "
300 #define RID_UPARROW u"uparrow "
301 #define RID_DOWNARROW u"downarrow "
302 #define RID_NOSPACE u"nospace {<?>} "
303 #define RID_XPRECEDESY u"<?> prec <?> "
304 #define RID_XPRECEDESEQUALY u"<?> preccurlyeq <?> "
305 #define RID_XPRECEDESEQUIVY u"<?> precsim <?> "
306 #define RID_XSUCCEEDSY u"<?> succ <?> "
307 #define RID_XSUCCEEDSEQUALY u"<?> succcurlyeq <?> "
308 #define RID_XSUCCEEDSEQUIVY u"<?> succsim <?> "
309 #define RID_XNOTPRECEDESY u"<?> nprec <?> "
310 #define RID_XNOTSUCCEEDSY u"<?> nsucc <?> "
311 #define RID_ARALOGX u"لو(<?>) "
312 #define RID_ARASINX u"حا(<?>) "
313 #define RID_ARACOSX u"حتا(<?>) "
314 #define RID_ARATANX u"طا(<?>) "
315 #define RID_ARACOTX u"طتا(<?>) "
316 #define RID_ARASECX u"ٯا(<?>) "
317 #define RID_ARACSCX u"ٯتا(<?>) "
318 #define RID_ARASINHX u"حاز(<?>) "
319 #define RID_ARACOSHX u"حتاز(<?>) "
320 #define RID_ARATANHX u"طاز(<?>) "
321 #define RID_ARACOTHX u"طتاز(<?>) "
322 #define RID_ARASECHX u"ٯاز(<?>) "
323 #define RID_ARACSCHX u"ٯتاز(<?>) "
324 #define RID_ARASIN2X u"جا(<?>) "
325 #define RID_ARACOS2X u"جتا(<?>) "
326 #define RID_ARATAN2X u"ظا(<?>) "
327 #define RID_ARACOT2X u"ظتا(<?>) "
328 #define RID_ARASEC2X u"قا(<?>) "
329 #define RID_ARACSC2X u"قتا(<?>) "
330 #define RID_ARASINH2X u"جاز(<?>) "
331 #define RID_ARACOSH2X u"جتاز(<?>) "
332 #define RID_ARATANH2X u"ظاز(<?>) "
333 #define RID_ARACOTH2X u"ظتاز(<?>) "
334 #define RID_ARASECH2X u"قاز(<?>) "
335 #define RID_ARACSCH2X u"قتاز(<?>) "
338 /* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */