Version 5.4.3.2, tag libreoffice-5.4.3.2
[LibreOffice.git] / include / basegfx / range / b2dconnectedranges.hxx
blob01008bc55ab80794f8bd4c158cbb3074e159cbfe
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #ifndef INCLUDED_BASEGFX_RANGE_B2DCONNECTEDRANGES_HXX
21 #define INCLUDED_BASEGFX_RANGE_B2DCONNECTEDRANGES_HXX
23 #include <osl/diagnose.h>
24 #include <basegfx/range/b2drange.hxx>
25 #include <list>
26 #include <utility>
27 #include <algorithm>
30 namespace basegfx
32 /** Calculate connected ranges from input ranges.
34 This template constructs a list of connected ranges from the
35 given input ranges. That is, the output will contain a set of
36 ranges, itself containing a number of input ranges, which will
37 be mutually non-intersecting.
39 Example:
40 <code>
41 -------------------
42 | -------|
43 | | ||
44 | --- | ||
45 | | | -------| --------
46 | | +--------- | | |
47 | --+ | | | |
48 | | | | --------
49 | ---------- |
50 -------------------
51 </code
53 Here, the outer rectangles represent the output
54 ranges. Contained are the input rectangles that comprise these
55 output ranges.
57 @tpl UserData
58 User data to be stored along with the range, to later identify
59 which range went into which connected component. Must be
60 assignable, default- and copy-constructible.
62 template< typename UserData > class B2DConnectedRanges
64 public:
65 /// Type of the basic entity (rect + user data)
66 typedef ::std::pair< B2DRange, UserData > ComponentType;
67 typedef ::std::list< ComponentType > ComponentListType;
69 /// List of (intersecting) components, plus overall bounds
70 struct ConnectedComponents
72 ComponentListType maComponentList;
73 B2DRange maTotalBounds;
76 typedef ::std::list< ConnectedComponents > ConnectedComponentsType;
79 /// Create the range calculator
80 B2DConnectedRanges() :
81 maDisjunctAggregatesList(),
82 maTotalBounds()
86 /** Add an additional range.
88 This method integrates a new range into the connected
89 ranges lists. The method has a worst-case time complexity
90 of O(n^2), with n denoting the number of already added
91 ranges (typically, for well-behaved input, it is O(n)
92 though).
94 void addRange( const B2DRange& rRange,
95 const UserData& rUserData )
97 // check whether fast path is possible: if new range is
98 // outside accumulated total range, can add it as a
99 // separate component right away.
100 const bool bNotOutsideEverything(
101 maTotalBounds.overlaps( rRange ) );
103 // update own global bounds range
104 maTotalBounds.expand( rRange );
106 // assemble anything intersecting with rRange into
107 // this new connected component
108 ConnectedComponents aNewConnectedComponent;
110 // as at least rRange will be a member of
111 // aNewConnectedComponent (will be added below), can
112 // preset the overall bounds here.
113 aNewConnectedComponent.maTotalBounds = rRange;
116 // STAGE 1: Search for intersecting maDisjunctAggregatesList entries
119 // if rRange is empty, it will intersect with no
120 // maDisjunctAggregatesList member. Thus, we can safe us
121 // the check.
122 // if rRange is outside all other rectangle, skip here,
123 // too
124 if( bNotOutsideEverything &&
125 !rRange.isEmpty() )
127 typename ConnectedComponentsType::iterator aCurrAggregate;
128 typename ConnectedComponentsType::iterator aLastAggregate;
130 // flag, determining whether we touched one or more of
131 // the maDisjunctAggregatesList entries. _If_ we did,
132 // we have to repeat the intersection process, because
133 // these changes might have generated new
134 // intersections.
135 bool bSomeAggregatesChanged;
137 // loop, until bSomeAggregatesChanged stays false
140 // only continue loop if 'intersects' branch below was hit
141 bSomeAggregatesChanged = false;
143 // iterate over all current members of maDisjunctAggregatesList
144 for( aCurrAggregate=maDisjunctAggregatesList.begin(),
145 aLastAggregate=maDisjunctAggregatesList.end();
146 aCurrAggregate != aLastAggregate; )
148 // first check if current component's bounds
149 // are empty. This ensures that distinct empty
150 // components are not merged into one
151 // aggregate. As a matter of fact, they have
152 // no position and size.
154 if( !aCurrAggregate->maTotalBounds.isEmpty() &&
155 aCurrAggregate->maTotalBounds.overlaps(
156 aNewConnectedComponent.maTotalBounds ) )
158 // union the intersecting
159 // maDisjunctAggregatesList element into
160 // aNewConnectedComponent
162 // calc union bounding box
163 aNewConnectedComponent.maTotalBounds.expand( aCurrAggregate->maTotalBounds );
165 // extract all aCurrAggregate components
166 // to aNewConnectedComponent
167 aNewConnectedComponent.maComponentList.splice(
168 aNewConnectedComponent.maComponentList.end(),
169 aCurrAggregate->maComponentList );
171 // remove and delete aCurrAggregate entry
172 // from list (we've gutted it's content
173 // above). list::erase() will update our
174 // iterator with the predecessor here.
175 aCurrAggregate = maDisjunctAggregatesList.erase( aCurrAggregate );
177 // at least one aggregate changed, need to rescan everything
178 bSomeAggregatesChanged = true;
180 else
182 ++aCurrAggregate;
186 while( bSomeAggregatesChanged );
190 // STAGE 2: Add newly generated connected component list element
193 // add new component to the end of the component list
194 aNewConnectedComponent.maComponentList.push_back(
195 ComponentType( rRange, rUserData ) );
197 // do some consistency checks (aka post conditions)
198 OSL_ENSURE( !aNewConnectedComponent.maComponentList.empty(),
199 "B2DConnectedRanges::addRange(): empty aggregate list" );
200 OSL_ENSURE( !aNewConnectedComponent.maTotalBounds.isEmpty() ||
201 aNewConnectedComponent.maComponentList.size() == 1,
202 "B2DConnectedRanges::addRange(): empty ranges must be solitary");
204 // add aNewConnectedComponent as a new entry to
205 // maDisjunctAggregatesList
206 maDisjunctAggregatesList.push_back( aNewConnectedComponent );
209 /** Apply a functor to each of the disjunct component
210 aggregates.
212 @param aFunctor
213 Functor to apply. Must provide an operator( const ConnectedComponents& ).
215 @return a copy of the functor, as applied to all aggregates.
217 template< typename UnaryFunctor > UnaryFunctor forEachAggregate( UnaryFunctor aFunctor ) const
219 return ::std::for_each( maDisjunctAggregatesList.begin(),
220 maDisjunctAggregatesList.end(),
221 aFunctor );
224 private:
225 B2DConnectedRanges(const B2DConnectedRanges&) = delete;
226 B2DConnectedRanges& operator=( const B2DConnectedRanges& ) = delete;
228 /** Current list of disjunct sets of connected components
230 Each entry corresponds to one of the top-level rectangles
231 in the drawing above.
233 ConnectedComponentsType maDisjunctAggregatesList;
235 /** Global bound rect over all added ranges.
237 B2DRange maTotalBounds;
241 #endif // INCLUDED_BASEGFX_RANGE_B2DCONNECTEDRANGES_HXX
243 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */