1 /*****************************************************************************
4 * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
6 * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
7 * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
8 * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
10 * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
12 *****************************************************************************
14 * This file is part of loclass. It is a reconstructon of the cipher engine
15 * used in iClass, and RFID techology.
17 * The implementation is based on the work performed by
18 * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
19 * Milosch Meriac in the paper "Dismantling IClass".
21 * Copyright (C) 2014 Martin Holst Swende
23 * This is free software: you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License version 2 as published
25 * by the Free Software Foundation, or, at your option, any later version.
27 * This file is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
32 * You should have received a copy of the GNU General Public License
33 * along with loclass. If not, see <http://www.gnu.org/licenses/>.
36 ****************************************************************************/
40 #include "cipherutils.h"
46 #include "fileutils.h"
51 * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
52 * consisting of the following four components:
53 * 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
54 * 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
55 * 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
56 * 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
66 * Definition 2. The feedback function for the top register T : F 16/2 → F 2
68 * T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 .
70 static bool T(State state
) {
72 bool x0 = state.t & 0x8000;
73 bool x1 = state.t & 0x4000;
74 bool x5 = state.t & 0x0400;
75 bool x7 = state.t & 0x0100;
76 bool x10 = state.t & 0x0020;
77 bool x11 = state.t & 0x0010;
78 bool x14 = state.t & 0x0002;
79 bool x15 = state.t & 0x0001;
80 return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
82 #define _x0 ((state.t & 0x8000) >> 15 )
83 #define _x1 ((state.t & 0x4000) >> 14 )
84 #define _x5 ((state.t & 0x0400) >> 10 )
85 #define _x7 ((state.t & 0x0100) >> 8 )
86 #define _x10 ((state.t & 0x0020) >> 5 )
87 #define _x11 ((state.t & 0x0010) >> 4 )
88 #define _x14 ((state.t & 0x0002) >> 1 )
89 #define _x15 (state.t & 0x0001)
90 return (_x0
) ^ (_x1
) ^ (_x5
) ^ (_x7
) ^ (_x10
) ^ (_x11
) ^ (_x14
) ^ (_x15
);
93 * Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as
94 * B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 .
96 /*static bool B(State state) {
97 bool x1 = state.b & 0x40;
98 bool x2 = state.b & 0x20;
99 bool x3 = state.b & 0x10;
100 bool x7 = state.b & 0x01;
101 return x1 ^ x2 ^ x3 ^ x7;
104 #define B(x) (((x.b & 0x40) >> 6) ^ ((x.b & 0x20) >> 5) ^ ((x.b & 0x10) >> 4) ^ (x.b & 0x01))
110 * Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
111 * F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
112 * z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 )
113 * z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y
114 * z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x
116 static uint8_t _select(bool x
, bool y
, uint8_t r
) {
117 #define _r0 ((r >> 7) & 0x01)
118 #define _r1 ((r >> 6) & 0x01)
119 #define _r2 ((r >> 5) & 0x01)
120 #define _r3 ((r >> 4) & 0x01)
121 #define _r4 ((r >> 3) & 0x01)
122 #define _r5 ((r >> 2) & 0x01)
123 #define _r6 ((r >> 1) & 0x01)
124 #define _r7 (r & 0x01)
126 #define _z0 ( (_r0 & _r2) ^ ( _r1 & (!_r3)) ^ (_r2 | _r4) )
127 #define _z1 ( (_r0 | _r2) ^ ( _r5 | _r7) ^_r1 ^ _r6 ^ (x) ^ (y) )
128 #define _z2 ( (_r3 & (!_r5)) ^ (_r4 & _r6) ^ _r7 ^ (x) )
131 uint8_t r0 = r >> 7 & 0x1;
132 uint8_t r1 = r >> 6 & 0x1;
133 uint8_t r2 = r >> 5 & 0x1;
134 uint8_t r3 = r >> 4 & 0x1;
135 uint8_t r4 = r >> 3 & 0x1;
136 uint8_t r5 = r >> 2 & 0x1;
137 uint8_t r6 = r >> 1 & 0x1;
138 uint8_t r7 = r & 0x1;
140 bool z0 = (r0 & r2) ^ (r1 & (!r3)) ^ (r2 | r4);
141 bool z1 = (r0 | r2) ^ (r5 | r7) ^ r1 ^ r6 ^ x ^ y;
142 bool z2 = (r3 & (!r5)) ^ (r4 & r6) ^ r7 ^ x;
144 // The three bitz z0.. z1 are packed into a uint8_t:
146 //Return value is a uint8_t
147 return ((z0 << 2) & 4) | ((z1 << 1) & 2) | (z2 & 1);
149 return ((_z0
<< 2) & 4) | ((_z1
<< 1) & 2) | (_z2
& 1);
153 retval |= (z0 << 2) & 4;
154 retval |= (z1 << 1) & 2;
157 // Return value 0 <= retval <= 7
163 * Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8
164 * be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ =
165 * l ′ , r ′ , t ′ , b ′ is defined as
166 * t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r
167 * b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l
170 * @param k - array containing 8 bytes
172 static State
successor(uint8_t *k
, State s
, bool y
) {
173 bool r0
= s
.r
>> 7 & 0x1;
174 bool r4
= s
.r
>> 3 & 0x1;
177 State successor
= {0, 0, 0, 0};
179 successor
.t
= s
.t
>> 1;
180 successor
.t
|= ((T(s
)) ^ (r0
) ^ (r4
)) << 15;
182 successor
.b
= s
.b
>> 1;
183 successor
.b
|= ((B(s
)) ^ (r7
)) << 7;
187 successor
.l
= ((k
[_select(Tt
, y
, s
.r
)] ^ successor
.b
) + s
.l
+ s
.r
) & 0xFF;
188 successor
.r
= ((k
[_select(Tt
, y
, s
.r
)] ^ successor
.b
) + s
.l
) & 0xFF;
193 * We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and
194 * an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc
195 * to multiple bit input x ∈ F n 2 which we define as
196 * @param k - array containing 8 bytes
198 static State
suc(uint8_t *k
, State s
, BitstreamIn
*bitstream
) {
199 if (bitsLeft(bitstream
) == 0) {
202 bool lastbit
= tailBit(bitstream
);
203 return successor(k
, suc(k
, s
, bitstream
), lastbit
);
207 * Definition 5 (Output). Define the function output which takes an internal
208 * state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
209 * on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as
210 * output(k, s, ǫ) = ǫ
211 * output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n )
212 * where s ′ = suc(k, s, x 0 ).
214 static void output(uint8_t *k
, State s
, BitstreamIn
*in
, BitstreamOut
*out
) {
215 if (bitsLeft(in
) == 0) {
218 pushBit(out
, (s
.r
>> 2) & 1);
220 uint8_t x0
= headBit(in
);
221 State ss
= successor(k
, s
, x0
);
222 output(k
, ss
, in
, out
);
226 * Definition 6 (Initial state). Define the function init which takes as input a
227 * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
230 static State
init(uint8_t *k
) {
232 ((k
[0] ^ 0x4c) + 0xEC) & 0xFF,// l
233 ((k
[0] ^ 0x4c) + 0x21) & 0xFF,// r
240 static void MAC(uint8_t *k
, BitstreamIn input
, BitstreamOut out
) {
241 uint8_t zeroes_32
[] = {0, 0, 0, 0};
242 BitstreamIn input_32_zeroes
= {zeroes_32
, sizeof(zeroes_32
) * 8, 0};
243 State initState
= suc(k
, init(k
), &input
);
244 output(k
, initState
, &input_32_zeroes
, &out
);
247 void doMAC(uint8_t *cc_nr_p
, uint8_t *div_key_p
, uint8_t mac
[4]) {
248 uint8_t cc_nr
[13] = { 0 };
251 memcpy(cc_nr
, cc_nr_p
, 12);
252 memcpy(div_key
, div_key_p
, 8);
254 reverse_arraybytes(cc_nr
, 12);
255 BitstreamIn bitstream
= {cc_nr
, 12 * 8, 0};
256 uint8_t dest
[] = {0, 0, 0, 0, 0, 0, 0, 0};
257 BitstreamOut out
= { dest
, sizeof(dest
) * 8, 0 };
258 MAC(div_key
, bitstream
, out
);
259 //The output MAC must also be reversed
260 reverse_arraybytes(dest
, sizeof(dest
));
261 memcpy(mac
, dest
, 4);
264 void doMAC_N(uint8_t *address_data_p
, uint8_t address_data_size
, uint8_t *div_key_p
, uint8_t mac
[4]) {
265 uint8_t *address_data
;
267 address_data
= (uint8_t *) calloc(address_data_size
, sizeof(uint8_t));
269 memcpy(address_data
, address_data_p
, address_data_size
);
270 memcpy(div_key
, div_key_p
, 8);
272 reverse_arraybytes(address_data
, address_data_size
);
273 BitstreamIn bitstream
= {address_data
, address_data_size
* 8, 0};
274 uint8_t dest
[] = {0, 0, 0, 0, 0, 0, 0, 0};
275 BitstreamOut out
= { dest
, sizeof(dest
) * 8, 0 };
276 MAC(div_key
, bitstream
, out
);
277 //The output MAC must also be reversed
278 reverse_arraybytes(dest
, sizeof(dest
));
279 memcpy(mac
, dest
, 4);
285 PrintAndLogEx(SUCCESS
, "Testing MAC calculation...");
287 //From the "dismantling.IClass" paper:
288 uint8_t cc_nr
[] = {0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0};
290 uint8_t div_key
[8] = {0xE0, 0x33, 0xCA, 0x41, 0x9A, 0xEE, 0x43, 0xF9};
291 uint8_t correct_MAC
[4] = {0x1d, 0x49, 0xC9, 0xDA};
293 uint8_t calculated_mac
[4] = {0};
294 doMAC(cc_nr
, div_key
, calculated_mac
);
296 if (memcmp(calculated_mac
, correct_MAC
, 4) == 0) {
297 PrintAndLogEx(SUCCESS
, " MAC calculation (%s)", _GREEN_("ok"));
299 PrintAndLogEx(FAILED
, " MAC calculation (%s)", _RED_("failed"));
300 printarr(" Calculated_MAC", calculated_mac
, 4);
301 printarr(" Correct_MAC ", correct_MAC
, 4);