3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
22 #include "bucketsort.h"
27 #if !defined LOWMEM && defined __GNUC__
28 static uint8_t filterlut
[1 << 20];
29 static void __attribute__((constructor
)) fill_lut(void) {
31 for (i
= 0; i
< 1 << 20; ++i
)
32 filterlut
[i
] = filter(i
);
34 #define filter(x) (filterlut[(x) & 0xfffff])
37 /** update_contribution
38 * helper, calculates the partial linear feedback contributions and puts in MSB
40 static inline void update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
) {
41 uint32_t p
= *item
>> 25;
43 p
= p
<< 1 | (evenparity32(*item
& mask1
));
44 p
= p
<< 1 | (evenparity32(*item
& mask2
));
45 *item
= p
<< 24 | (*item
& 0xffffff);
49 * using a bit of the keystream extend the table of possible lfsr states
51 static inline void extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
) {
53 for (*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
54 if (filter(*tbl
) ^ filter(*tbl
| 1)) {
55 *tbl
|= filter(*tbl
) ^ bit
;
56 update_contribution(tbl
, m1
, m2
);
58 } else if (filter(*tbl
) == bit
) {
61 update_contribution(tbl
, m1
, m2
);
63 update_contribution(tbl
, m1
, m2
);
68 /** extend_table_simple
69 * using a bit of the keystream extend the table of possible lfsr states
71 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
) {
72 for (*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1) {
73 if (filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
74 *tbl
|= filter(*tbl
) ^ bit
;
75 } else if (filter(*tbl
) == bit
) { // insert
84 * recursively narrow down the search space, 4 bits of keystream at a time
86 static struct Crypto1State
*
87 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
88 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
89 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
) {
90 bucket_info_t bucket_info
;
93 for (uint32_t *e
= e_head
; e
<= e_tail
; ++e
) {
94 *e
= *e
<< 1 ^ (evenparity32(*e
& LF_POLY_EVEN
)) ^ (!!(in
& 4));
95 for (uint32_t *o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
97 sl
->odd
= *e
^ (evenparity32(*o
& LF_POLY_ODD
));
98 sl
[1].odd
= sl
[1].even
= 0;
104 for (uint32_t i
= 0; i
< 4 && rem
--; i
++) {
108 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
112 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, in
& 3);
117 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
119 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
120 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
121 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
122 rem
, sl
, in
, bucket
);
129 #if !defined(__arm__) || defined(__linux__) || defined(_WIN32) || defined(__APPLE__) // bare metal ARM Proxmark lacks malloc()/free()
131 * recover the state of the lfsr given 32 bits of the keystream
132 * additionally you can use the in parameter to specify the value
133 * that was fed into the lfsr at the time the keystream was generated
135 struct Crypto1State
*lfsr_recovery32(uint32_t ks2
, uint32_t in
) {
136 struct Crypto1State
*statelist
;
137 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
138 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
141 // split the keystream into an odd and even part
142 for (i
= 31; i
>= 0; i
-= 2)
143 oks
= oks
<< 1 | BEBIT(ks2
, i
);
144 for (i
= 30; i
>= 0; i
-= 2)
145 eks
= eks
<< 1 | BEBIT(ks2
, i
);
147 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
148 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
149 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
150 if (!odd_tail
-- || !even_tail
-- || !statelist
) {
156 statelist
->odd
= statelist
->even
= 0;
158 // allocate memory for out of place bucket_sort
159 bucket_array_t bucket
;
161 for (i
= 0; i
< 2; i
++) {
162 for (uint32_t j
= 0; j
<= 0xff; j
++) {
163 bucket
[i
][j
].head
= malloc(sizeof(uint32_t) << 14);
164 if (!bucket
[i
][j
].head
) {
170 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
171 for (i
= 1 << 20; i
>= 0; --i
) {
172 if (filter(i
) == (oks
& 1))
174 if (filter(i
) == (eks
& 1))
178 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
179 for (i
= 0; i
< 4; i
++) {
180 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
181 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
184 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
185 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
186 // parameter into account.
187 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
188 recover(odd_head
, odd_tail
, oks
, even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
191 for (i
= 0; i
< 2; i
++)
192 for (uint32_t j
= 0; j
<= 0xff; j
++)
193 free(bucket
[i
][j
].head
);
199 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
200 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
201 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA
203 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
204 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
205 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
206 0x7EC7EE90, 0x7F63F748, 0x79117020
208 static const uint32_t T1
[] = {
209 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
210 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
211 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
212 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C
214 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
215 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
216 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
217 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
218 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
219 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0
221 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
222 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
223 /** Reverse 64 bits of keystream into possible cipher states
224 * Variation mentioned in the paper. Somewhat optimized version
226 struct Crypto1State
*lfsr_recovery64(uint32_t ks2
, uint32_t ks3
) {
227 struct Crypto1State
*statelist
, *sl
;
228 uint8_t oks
[32], eks
[32], hi
[32];
229 uint32_t low
= 0, win
= 0;
230 uint32_t *tail
, table
[1 << 16];
233 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
236 sl
->odd
= sl
->even
= 0;
238 for (i
= 30; i
>= 0; i
-= 2) {
239 oks
[i
>> 1] = BEBIT(ks2
, i
);
240 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
242 for (i
= 31; i
>= 0; i
-= 2) {
243 eks
[i
>> 1] = BEBIT(ks2
, i
);
244 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
247 for (i
= 0xfffff; i
>= 0; --i
) {
248 if (filter(i
) != oks
[0])
252 for (j
= 1; tail
>= table
&& j
< 29; ++j
)
253 extend_table_simple(table
, &tail
, oks
[j
]);
258 for (j
= 0; j
< 19; ++j
)
259 low
= low
<< 1 | (evenparity32(i
& S1
[j
]));
260 for (j
= 0; j
< 32; ++j
)
261 hi
[j
] = evenparity32(i
& T1
[j
]);
263 for (; tail
>= table
; --tail
) {
264 for (j
= 0; j
< 3; ++j
) {
266 *tail
|= evenparity32((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
267 if (filter(*tail
) != oks
[29 + j
])
271 for (j
= 0; j
< 19; ++j
)
272 win
= win
<< 1 | (evenparity32(*tail
& S2
[j
]));
275 for (j
= 0; j
< 32; ++j
) {
276 win
= win
<< 1 ^ hi
[j
] ^ (evenparity32(*tail
& T2
[j
]));
277 if (filter(win
) != eks
[j
])
281 *tail
= *tail
<< 1 | (evenparity32(LF_POLY_EVEN
& *tail
));
282 sl
->odd
= *tail
^ (evenparity32(LF_POLY_ODD
& win
));
285 sl
->odd
= sl
->even
= 0;
294 /** lfsr_rollback_bit
295 * Rollback the shift register in order to get previous states
297 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
) {
303 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
306 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
307 out
^= LF_POLY_ODD
& s
->odd
;
309 out
^= (ret
= filter(s
->odd
)) & (!!fb
);
311 s
->even
|= (evenparity32(out
)) << 23;
314 /** lfsr_rollback_byte
315 * Rollback the shift register in order to get previous states
317 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
) {
319 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
320 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
321 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
322 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
323 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
324 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
325 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
326 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
329 /** lfsr_rollback_word
330 * Rollback the shift register in order to get previous states
332 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
) {
335 // note: xor args have been swapped because some compilers emit a warning
336 // for 10^x and 2^x as possible misuses for exponentiation. No comment.
337 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (24 ^ 31);
338 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (24 ^ 30);
339 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (24 ^ 29);
340 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (24 ^ 28);
341 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (24 ^ 27);
342 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (24 ^ 26);
343 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (24 ^ 25);
344 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
346 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (24 ^ 23);
347 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (24 ^ 22);
348 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (24 ^ 21);
349 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (24 ^ 20);
350 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (24 ^ 19);
351 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (24 ^ 18);
352 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (24 ^ 17);
353 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (24 ^ 16);
355 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (24 ^ 15);
356 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (24 ^ 14);
357 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (24 ^ 13);
358 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (24 ^ 12);
359 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (24 ^ 11);
360 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (24 ^ 10);
361 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (24 ^ 9);
362 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (24 ^ 8);
364 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (24 ^ 7);
365 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (24 ^ 6);
366 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (24 ^ 5);
367 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (24 ^ 4);
368 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (24 ^ 3);
369 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (24 ^ 2);
370 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (24 ^ 1);
371 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (24 ^ 0);
376 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
378 static uint16_t *dist
= 0;
379 int nonce_distance(uint32_t from
, uint32_t to
) {
381 // allocation 2bytes * 0xFFFF times.
382 dist
= calloc(2 << 16, sizeof(uint8_t));
386 for (uint16_t i
= 1; i
; ++i
) {
387 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
388 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
391 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
394 /** validate_prng_nonce
395 * Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
398 * false = hardend prng
400 bool validate_prng_nonce(uint32_t nonce
) {
402 if (nonce_distance(nonce
, nonce
) == -1)
404 return ((65535 - dist
[nonce
>> 16] + dist
[nonce
& 0xffff]) % 65535) == 16;
407 static uint32_t fastfwd
[2][8] = {
408 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
409 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}
414 * Is an exported helper function from the common prefix attack
415 * Described in the "dark side" paper. It returns an -1 terminated array
416 * of possible partial(21 bit) secret state.
417 * The required keystream(ks) needs to contain the keystream that was used to
418 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
419 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
421 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
) {
422 uint32_t *candidates
= calloc(4 << 10, sizeof(uint8_t));
423 if (!candidates
) return 0;
427 for (int i
= 0; i
< 1 << 21; ++i
) {
429 for (uint32_t c
= 0; good
&& c
< 8; ++c
) {
430 uint32_t entry
= i
^ fastfwd
[isodd
][c
];
431 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
432 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
435 candidates
[size
++] = i
;
438 candidates
[size
] = -1;
444 * helper function which eliminates possible secret states using parity bits
446 static struct Crypto1State
*check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
*sl
, uint32_t no_par
) {
449 for (uint32_t c
= 0; good
&& c
< 8; ++c
) {
450 sl
->odd
= odd
^ fastfwd
[1][c
];
451 sl
->even
= even
^ fastfwd
[0][c
];
453 lfsr_rollback_bit(sl
, 0, 0);
454 lfsr_rollback_bit(sl
, 0, 0);
456 uint32_t ks3
= lfsr_rollback_bit(sl
, 0, 0);
457 uint32_t ks2
= lfsr_rollback_word(sl
, 0, 0);
458 uint32_t ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
463 uint32_t nr
= ks1
^ (prefix
| c
<< 5);
464 uint32_t rr
= ks2
^ rresp
;
466 good
&= evenparity32(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
467 good
&= evenparity32(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
468 good
&= evenparity32(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
469 good
&= evenparity32(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
470 good
&= evenparity32(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
476 #if !defined(__arm__) || defined(__linux__) || defined(_WIN32) || defined(__APPLE__) // bare metal ARM Proxmark lacks malloc()/free()
477 /** lfsr_common_prefix
478 * Implentation of the common prefix attack.
479 * Requires the 28 bit constant prefix used as reader nonce (pfx)
480 * The reader response used (rr)
481 * The keystream used to encrypt the observed NACK's (ks)
482 * The parity bits (par)
483 * It returns a zero terminated list of possible cipher states after the
484 * tag nonce was fed in
487 struct Crypto1State
*lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8], uint32_t no_par
) {
488 struct Crypto1State
*statelist
, *s
;
489 uint32_t *odd
, *even
, *o
, *e
, top
;
491 odd
= lfsr_prefix_ks(ks
, 1);
492 even
= lfsr_prefix_ks(ks
, 0);
494 s
= statelist
= malloc((sizeof * statelist
) << 24); // was << 20. Need more for no_par special attack. Enough???
495 if (!s
|| !odd
|| !even
) {
501 for (o
= odd
; *o
+ 1; ++o
)
502 for (e
= even
; *e
+ 1; ++e
)
503 for (top
= 0; top
< 64; ++top
) {
505 *e
+= (!(top
& 7) + 1) << 21;
506 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
, no_par
);
509 s
->odd
= s
->even
= 0;