1
//-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Mifare Classic Card Simulation
11 //-----------------------------------------------------------------------------
20 // /!\ Printing Debug message is disrupting emulation,
21 // Only use with caution during debugging
23 #include "mifaresim.h"
27 #include "iso14443a.h"
30 #include "mifareutil.h"
31 #include "fpgaloader.h"
32 #include "proxmark3_arm.h"
34 #include "protocols.h"
37 #include "commonutil.h"
42 static bool IsTrailerAccessAllowed(uint8_t blockNo
, uint8_t keytype
, uint8_t action
) {
43 uint8_t sector_trailer
[16];
44 emlGetMem(sector_trailer
, blockNo
, 1);
45 uint8_t AC
= ((sector_trailer
[7] >> 5) & 0x04)
46 | ((sector_trailer
[8] >> 2) & 0x02)
47 | ((sector_trailer
[8] >> 7) & 0x01);
50 if (DBGLEVEL
>= DBG_EXTENDED
)
51 Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ");
55 if (DBGLEVEL
>= DBG_EXTENDED
)
56 Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE");
57 return ((keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x01))
58 || (keytype
== AUTHKEYB
&& (AC
== 0x04 || AC
== 0x03)));
61 if (DBGLEVEL
>= DBG_EXTENDED
)
62 Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ");
63 return (keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x02 || AC
== 0x01));
66 if (DBGLEVEL
>= DBG_EXTENDED
)
67 Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE");
68 return ((keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x01))
69 || (keytype
== AUTHKEYB
&& (AC
== 0x04 || AC
== 0x03)));
72 if (DBGLEVEL
>= DBG_EXTENDED
)
73 Dbprintf("IsTrailerAccessAllowed: AC_AC_READ");
74 return ((keytype
== AUTHKEYA
)
75 || (keytype
== AUTHKEYB
&& !(AC
== 0x00 || AC
== 0x02 || AC
== 0x01)));
78 if (DBGLEVEL
>= DBG_EXTENDED
)
79 Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE");
80 return ((keytype
== AUTHKEYA
&& (AC
== 0x01))
81 || (keytype
== AUTHKEYB
&& (AC
== 0x03 || AC
== 0x05)));
88 static bool IsDataAccessAllowed(uint8_t blockNo
, uint8_t keytype
, uint8_t action
) {
90 uint8_t sector_trailer
[16];
91 emlGetMem(sector_trailer
, SectorTrailer(blockNo
), 1);
94 if (blockNo
<= MIFARE_2K_MAXBLOCK
) {
95 sector_block
= blockNo
& 0x03;
97 sector_block
= (blockNo
& 0x0f) / 5;
101 switch (sector_block
) {
103 AC
= ((sector_trailer
[7] >> 2) & 0x04)
104 | ((sector_trailer
[8] << 1) & 0x02)
105 | ((sector_trailer
[8] >> 4) & 0x01);
106 if (DBGLEVEL
>= DBG_EXTENDED
)
107 Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC
);
111 AC
= ((sector_trailer
[7] >> 3) & 0x04)
112 | ((sector_trailer
[8] >> 0) & 0x02)
113 | ((sector_trailer
[8] >> 5) & 0x01);
114 if (DBGLEVEL
>= DBG_EXTENDED
)
115 Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC
);
119 AC
= ((sector_trailer
[7] >> 4) & 0x04)
120 | ((sector_trailer
[8] >> 1) & 0x02)
121 | ((sector_trailer
[8] >> 6) & 0x01);
122 if (DBGLEVEL
>= DBG_EXTENDED
)
123 Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC
);
127 if (DBGLEVEL
>= DBG_EXTENDED
)
128 Dbprintf("IsDataAccessAllowed: Error");
134 if (DBGLEVEL
>= DBG_EXTENDED
)
135 Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK");
136 return ((keytype
== AUTHKEYA
&& !(AC
== 0x03 || AC
== 0x05 || AC
== 0x07))
137 || (keytype
== AUTHKEYB
&& !(AC
== 0x07)));
139 case AC_DATA_WRITE
: {
140 if (DBGLEVEL
>= DBG_EXTENDED
)
141 Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK");
142 return ((keytype
== AUTHKEYA
&& (AC
== 0x00))
143 || (keytype
== AUTHKEYB
&& (AC
== 0x00 || AC
== 0x04 || AC
== 0x06 || AC
== 0x03)));
146 if (DBGLEVEL
>= DBG_EXTENDED
)
147 Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK");
148 return ((keytype
== AUTHKEYA
&& (AC
== 0x00))
149 || (keytype
== AUTHKEYB
&& (AC
== 0x00 || AC
== 0x06)));
151 case AC_DATA_DEC_TRANS_REST
: {
152 if (DBGLEVEL
>= DBG_EXTENDED
)
153 Dbprintf("AC_DATA_DEC_TRANS_REST: OK");
154 return ((keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x06 || AC
== 0x01))
155 || (keytype
== AUTHKEYB
&& (AC
== 0x00 || AC
== 0x06 || AC
== 0x01)));
162 static bool IsAccessAllowed(uint8_t blockNo
, uint8_t keytype
, uint8_t action
) {
163 if (IsSectorTrailer(blockNo
)) {
164 return IsTrailerAccessAllowed(blockNo
, keytype
, action
);
166 return IsDataAccessAllowed(blockNo
, keytype
, action
);
170 static bool MifareSimInit(uint16_t flags
, uint8_t *datain
, uint16_t atqa
, uint8_t sak
, tag_response_info_t
**responses
, uint32_t *cuid
, uint8_t *uid_len
, uint8_t **rats
, uint8_t *rats_len
) {
172 // SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf
174 static uint8_t rATQA_Mini
[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID
175 static uint8_t rATQA_1k
[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
176 static uint8_t rATQA_2k
[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID
177 static uint8_t rATQA_4k
[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID
180 static uint8_t rSAK_Mini
= 0x09; // mifare Mini
181 static uint8_t rSAK_1k
= 0x08; // mifare 1k
182 static uint8_t rSAK_2k
= 0x08; // mifare 2k with RATS support
183 static uint8_t rSAK_4k
= 0x18; // mifare 4k
185 static uint8_t rUIDBCC1
[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
186 static uint8_t rUIDBCC1b4
[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes
187 static uint8_t rUIDBCC1b3
[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes
188 static uint8_t rUIDBCC1b2
[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes
189 static uint8_t rUIDBCC1b1
[] = {0x00}; // UID 1st cascade level, last byte
190 static uint8_t rUIDBCC2
[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
191 static uint8_t rUIDBCC2b4
[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes
192 static uint8_t rUIDBCC2b3
[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes
193 static uint8_t rUIDBCC2b2
[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes
194 static uint8_t rUIDBCC2b1
[] = {0x00}; // UID 2st cascade level, last byte
195 static uint8_t rUIDBCC3
[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level
196 static uint8_t rUIDBCC3b4
[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes
197 static uint8_t rUIDBCC3b3
[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes
198 static uint8_t rUIDBCC3b2
[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes
199 static uint8_t rUIDBCC3b1
[] = {0x00}; // UID 3st cascade level, last byte
201 static uint8_t rATQA
[] = {0x00, 0x00}; // Current ATQA
202 static uint8_t rSAK
[] = {0x00, 0x00, 0x00}; // Current SAK, CRC
203 static uint8_t rSAKuid
[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC
205 // RATS answer for 2K NXP mifare classic (with CRC)
206 static uint8_t rRATS
[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3};
210 // By default use 1K tag
211 memcpy(rATQA
, rATQA_1k
, sizeof(rATQA
));
214 //by default RATS not supported
218 // -- Determine the UID
219 // Can be set from emulator memory or incoming data
220 // Length: 4,7,or 10 bytes
222 // Get UID, SAK, ATQA from EMUL
223 if ((flags
& FLAG_UID_IN_EMUL
) == FLAG_UID_IN_EMUL
) {
225 emlGetMemBt(block0
, 0, 16);
227 // If uid size defined, copy only uid from EMUL to use, backward compatibility for 'hf_colin.c', 'hf_mattyrun.c'
228 if ((flags
& (FLAG_4B_UID_IN_DATA
| FLAG_7B_UID_IN_DATA
| FLAG_10B_UID_IN_DATA
)) != 0) {
229 memcpy(datain
, block0
, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
231 // Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA
232 if ((block0
[0] ^ block0
[1] ^ block0
[2] ^ block0
[3]) == block0
[4] && (block0
[6] & 0xc0) == 0) {
233 flags
|= FLAG_4B_UID_IN_DATA
;
234 memcpy(datain
, block0
, 4);
236 memcpy(rATQA
, &block0
[6], sizeof(rATQA
));
238 // Check for 7 bytes UID: double size uid bits in ATQA
239 else if ((block0
[8] & 0xc0) == 0x40) {
240 flags
|= FLAG_7B_UID_IN_DATA
;
241 memcpy(datain
, block0
, 7);
243 memcpy(rATQA
, &block0
[8], sizeof(rATQA
));
245 Dbprintf("ERROR: " _RED_("Invalid dump. UID/SAK/ATQA not found"));
252 // Tune tag type, if defined directly
253 // Otherwise use defined by default or extracted from EMUL
254 if ((flags
& FLAG_MF_MINI
) == FLAG_MF_MINI
) {
255 memcpy(rATQA
, rATQA_Mini
, sizeof(rATQA
));
257 if (DBGLEVEL
> DBG_NONE
) Dbprintf("Enforcing Mifare Mini ATQA/SAK");
258 } else if ((flags
& FLAG_MF_1K
) == FLAG_MF_1K
) {
259 memcpy(rATQA
, rATQA_1k
, sizeof(rATQA
));
261 if (DBGLEVEL
> DBG_NONE
) Dbprintf("Enforcing Mifare 1K ATQA/SAK");
262 } else if ((flags
& FLAG_MF_2K
) == FLAG_MF_2K
) {
263 memcpy(rATQA
, rATQA_2k
, sizeof(rATQA
));
266 *rats_len
= sizeof(rRATS
);
267 if (DBGLEVEL
> DBG_NONE
) Dbprintf("Enforcing Mifare 2K ATQA/SAK with RATS support");
268 } else if ((flags
& FLAG_MF_4K
) == FLAG_MF_4K
) {
269 memcpy(rATQA
, rATQA_4k
, sizeof(rATQA
));
271 if (DBGLEVEL
> DBG_NONE
) Dbprintf("Enforcing Mifare 4K ATQA/SAK");
274 // Prepare UID arrays
275 if ((flags
& FLAG_4B_UID_IN_DATA
) == FLAG_4B_UID_IN_DATA
) { // get UID from datain
276 memcpy(rUIDBCC1
, datain
, 4);
278 if (DBGLEVEL
>= DBG_EXTENDED
)
279 Dbprintf("MifareSimInit - FLAG_4B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_4B_UID_IN_DATA
, flags
, rUIDBCC1
);
283 *cuid
= bytes_to_num(rUIDBCC1
, 4);
285 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
286 if (DBGLEVEL
> DBG_NONE
) {
287 Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
290 // Correct uid size bits in ATQA
291 rATQA
[0] = (rATQA
[0] & 0x3f) | 0x00; // single size uid
293 } else if ((flags
& FLAG_7B_UID_IN_DATA
) == FLAG_7B_UID_IN_DATA
) {
294 memcpy(&rUIDBCC1
[1], datain
, 3);
295 memcpy(rUIDBCC2
, datain
+ 3, 4);
297 if (DBGLEVEL
>= DBG_EXTENDED
)
298 Dbprintf("MifareSimInit - FLAG_7B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_7B_UID_IN_DATA
, flags
, rUIDBCC1
);
301 *cuid
= bytes_to_num(rUIDBCC2
, 4);
303 rUIDBCC1
[0] = MIFARE_SELECT_CT
;
305 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
306 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
307 if (DBGLEVEL
> DBG_NONE
) {
308 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
309 rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3], rUIDBCC2
[0], rUIDBCC2
[1], rUIDBCC2
[2], rUIDBCC2
[3]);
312 // Correct uid size bits in ATQA
313 rATQA
[0] = (rATQA
[0] & 0x3f) | 0x40; // double size uid
315 } else if ((flags
& FLAG_10B_UID_IN_DATA
) == FLAG_10B_UID_IN_DATA
) {
316 memcpy(&rUIDBCC1
[1], datain
, 3);
317 memcpy(&rUIDBCC2
[1], datain
+ 3, 3);
318 memcpy(rUIDBCC3
, datain
+ 6, 4);
320 if (DBGLEVEL
>= DBG_EXTENDED
)
321 Dbprintf("MifareSimInit - FLAG_10B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_10B_UID_IN_DATA
, flags
, rUIDBCC1
);
324 *cuid
= bytes_to_num(rUIDBCC3
, 4);
326 rUIDBCC1
[0] = MIFARE_SELECT_CT
;
327 rUIDBCC2
[0] = MIFARE_SELECT_CT
;
329 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
330 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
331 rUIDBCC3
[4] = rUIDBCC3
[0] ^ rUIDBCC3
[1] ^ rUIDBCC3
[2] ^ rUIDBCC3
[3];
333 if (DBGLEVEL
> DBG_NONE
) {
334 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
335 rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
336 rUIDBCC2
[1], rUIDBCC2
[2], rUIDBCC2
[3],
337 rUIDBCC3
[0], rUIDBCC3
[1], rUIDBCC3
[2], rUIDBCC3
[3]
341 // Correct uid size bits in ATQA
342 rATQA
[0] = (rATQA
[0] & 0x3f) | 0x80; // triple size uid
344 Dbprintf("ERROR: " _RED_("UID size not defined"));
347 if (flags
& FLAG_FORCED_ATQA
) {
348 rATQA
[0] = atqa
>> 8;
349 rATQA
[1] = atqa
& 0xff;
351 if (flags
& FLAG_FORCED_SAK
) {
354 if (DBGLEVEL
> DBG_NONE
) {
355 Dbprintf("ATQA : %02X %02X", rATQA
[1], rATQA
[0]);
356 Dbprintf("SAK : %02X", rSAK
[0]);
359 // clone UIDs for byte-frame anti-collision multiple tag selection procedure
360 memcpy(rUIDBCC1b4
, &rUIDBCC1
[1], 4);
361 memcpy(rUIDBCC1b3
, &rUIDBCC1
[2], 3);
362 memcpy(rUIDBCC1b2
, &rUIDBCC1
[3], 2);
363 memcpy(rUIDBCC1b1
, &rUIDBCC1
[4], 1);
365 memcpy(rUIDBCC2b4
, &rUIDBCC2
[1], 4);
366 memcpy(rUIDBCC2b3
, &rUIDBCC2
[2], 3);
367 memcpy(rUIDBCC2b2
, &rUIDBCC2
[3], 2);
368 memcpy(rUIDBCC2b1
, &rUIDBCC2
[4], 1);
370 if (*uid_len
== 10) {
371 memcpy(rUIDBCC3b4
, &rUIDBCC3
[1], 4);
372 memcpy(rUIDBCC3b3
, &rUIDBCC3
[2], 3);
373 memcpy(rUIDBCC3b2
, &rUIDBCC3
[3], 2);
374 memcpy(rUIDBCC3b1
, &rUIDBCC3
[4], 1);
377 // Calculate actual CRC
378 AddCrc14A(rSAK
, sizeof(rSAK
) - 2);
380 #define TAG_RESPONSE_COUNT 18
381 static tag_response_info_t responses_init
[TAG_RESPONSE_COUNT
] = {
382 { .response
= rATQA
, .response_n
= sizeof(rATQA
) }, // Answer to request - respond with card type
383 { .response
= rSAK
, .response_n
= sizeof(rSAK
) }, //
384 { .response
= rSAKuid
, .response_n
= sizeof(rSAKuid
) }, //
385 // Do not reorder. Block used via relative index of rUIDBCC1
386 { .response
= rUIDBCC1
, .response_n
= sizeof(rUIDBCC1
) }, // Anticollision cascade1 - respond with first part of uid
387 { .response
= rUIDBCC1b4
, .response_n
= sizeof(rUIDBCC1b4
)},
388 { .response
= rUIDBCC1b3
, .response_n
= sizeof(rUIDBCC1b3
)},
389 { .response
= rUIDBCC1b2
, .response_n
= sizeof(rUIDBCC1b2
)},
390 { .response
= rUIDBCC1b1
, .response_n
= sizeof(rUIDBCC1b1
)},
391 // Do not reorder. Block used via relative index of rUIDBCC2
392 { .response
= rUIDBCC2
, .response_n
= sizeof(rUIDBCC2
) }, // Anticollision cascade2 - respond with 2nd part of uid
393 { .response
= rUIDBCC2b4
, .response_n
= sizeof(rUIDBCC2b4
)},
394 { .response
= rUIDBCC2b3
, .response_n
= sizeof(rUIDBCC2b3
)},
395 { .response
= rUIDBCC2b2
, .response_n
= sizeof(rUIDBCC2b2
)},
396 { .response
= rUIDBCC2b1
, .response_n
= sizeof(rUIDBCC2b1
)},
397 // Do not reorder. Block used via relative index of rUIDBCC3
398 { .response
= rUIDBCC3
, .response_n
= sizeof(rUIDBCC3
) }, // Anticollision cascade3 - respond with 3th part of uid
399 { .response
= rUIDBCC3b4
, .response_n
= sizeof(rUIDBCC3b4
)},
400 { .response
= rUIDBCC3b3
, .response_n
= sizeof(rUIDBCC3b3
)},
401 { .response
= rUIDBCC3b2
, .response_n
= sizeof(rUIDBCC3b2
)},
402 { .response
= rUIDBCC3b1
, .response_n
= sizeof(rUIDBCC3b1
)}
405 // Prepare ("precompile") the responses of the anticollision phase.
406 // There will be not enough time to do this at the moment the reader sends its REQA or SELECT
407 // There are 18 predefined responses with a total of 53 bytes data to transmit.
408 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
409 // 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer
410 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571
412 uint8_t *free_buffer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
413 // modulation buffer pointer and current buffer free space size
414 uint8_t *free_buffer_pointer
= free_buffer
;
415 size_t free_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
417 for (size_t i
= 0; i
< TAG_RESPONSE_COUNT
; i
++) {
418 if (prepare_allocated_tag_modulation(&responses_init
[i
], &free_buffer_pointer
, &free_buffer_size
) == false) {
419 Dbprintf("Not enough modulation buffer size, exit after %d elements", i
);
424 *responses
= responses_init
;
426 // indices into responses array:
441 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
442 * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
443 * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
444 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
445 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
446 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
447 * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
449 void Mifare1ksim(uint16_t flags
, uint8_t exitAfterNReads
, uint8_t *datain
, uint16_t atqa
, uint8_t sak
) {
450 tag_response_info_t
*responses
;
451 uint8_t cardSTATE
= MFEMUL_NOFIELD
;
452 uint8_t uid_len
= 0; // 4, 7, 10
453 uint32_t cuid
= 0, selTimer
= 0, authTimer
= 0;
458 uint8_t cardWRBL
= 0;
459 uint8_t cardAUTHSC
= 0;
460 uint8_t cardAUTHKEY
= AUTHKEYNONE
; // no authentication
463 uint32_t cardINTREG
= 0;
464 uint8_t cardINTBLOCK
= 0;
466 struct Crypto1State mpcs
= {0, 0};
467 struct Crypto1State
*pcs
;
470 uint32_t numReads
= 0; //Counts numer of times reader reads a block
471 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
472 uint8_t receivedCmd_dec
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
473 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
474 uint16_t receivedCmd_len
;
476 uint8_t response
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
477 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
479 uint8_t *rats
= NULL
;
480 uint8_t rats_len
= 0;
482 //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
483 // This will be used in the reader-only attack.
485 //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
486 #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
487 nonces_t ar_nr_resp
[ATTACK_KEY_COUNT
* 2]; // *2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
488 memset(ar_nr_resp
, 0x00, sizeof(ar_nr_resp
));
490 uint8_t ar_nr_collected
[ATTACK_KEY_COUNT
* 2]; // *2 for 2nd attack type (moebius)
491 memset(ar_nr_collected
, 0x00, sizeof(ar_nr_collected
));
492 uint8_t nonce1_count
= 0;
493 uint8_t nonce2_count
= 0;
494 uint8_t moebius_n_count
= 0;
495 bool gettingMoebius
= false;
496 uint8_t mM
= 0; //moebius_modifier for collection storage
498 // Authenticate response - nonce
500 uint8_t rAUTH_NT_keystream
[4];
503 tUart14a
*uart
= GetUart14a();
505 // free eventually allocated BigBuf memory but keep Emulator Memory
506 BigBuf_free_keep_EM();
508 if (MifareSimInit(flags
, datain
, atqa
, sak
, &responses
, &cuid
, &uid_len
, &rats
, &rats_len
) == false) {
509 BigBuf_free_keep_EM();
513 // We need to listen to the high-frequency, peak-detected path.
514 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
522 uint8_t *p_em
= BigBuf_get_EM_addr();
523 uint8_t cve_flipper
= 0;
526 bool finished
= false;
527 bool button_pushed
= BUTTON_PRESS();
528 while (!button_pushed
&& !finished
) {
532 if (counter
== 3000) {
533 if (data_available()) {
534 Dbprintf("----------- " _GREEN_("BREAKING") " ----------");
544 if (cardSTATE == MFEMUL_NOFIELD) {
547 vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * SumAdc(ADC_CHAN_HF_RDV40, 32)) >> 15;
549 vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
552 if (vHf > MF_MINFIELDV) {
556 button_pushed = BUTTON_PRESS();
563 int res
= EmGetCmd(receivedCmd
, &receivedCmd_len
, receivedCmd_par
);
565 if (res
== 2) { //Field is off!
566 //FpgaDisableTracing();
567 if ((flags
& FLAG_CVE21_0430
) == FLAG_CVE21_0430
) {
572 cardSTATE
= MFEMUL_NOFIELD
;
573 if (DBGLEVEL
>= DBG_EXTENDED
)
574 Dbprintf("cardSTATE = MFEMUL_NOFIELD");
576 } else if (res
== 1) { // button pressed
577 FpgaDisableTracing();
578 button_pushed
= true;
579 if (DBGLEVEL
>= DBG_EXTENDED
)
580 Dbprintf("Button pressed");
584 // WUPA in HALTED state or REQA or WUPA in any other state
585 if (receivedCmd_len
== 1 && ((receivedCmd
[0] == ISO14443A_CMD_REQA
&& cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == ISO14443A_CMD_WUPA
)) {
586 selTimer
= GetTickCount();
587 if (DBGLEVEL
>= DBG_EXTENDED
)
588 Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);");
589 EmSendPrecompiledCmd(&responses
[ATQA
]);
591 FpgaDisableTracing();
595 cardAUTHKEY
= AUTHKEYNONE
;
596 nonce
= prng_successor(selTimer
, 32);
597 // prepare NT for nested authentication
598 num_to_bytes(nonce
, 4, rAUTH_NT
);
599 num_to_bytes(cuid
^ nonce
, 4, rAUTH_NT_keystream
);
603 cardSTATE
= MFEMUL_SELECT
;
605 if ((flags
& FLAG_CVE21_0430
) == FLAG_CVE21_0430
) {
613 case MFEMUL_NOFIELD
: {
614 if (DBGLEVEL
>= DBG_EXTENDED
)
615 Dbprintf("MFEMUL_NOFIELD");
618 case MFEMUL_HALTED
: {
619 if (DBGLEVEL
>= DBG_EXTENDED
)
620 Dbprintf("MFEMUL_HALTED");
624 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
625 if (DBGLEVEL
>= DBG_EXTENDED
)
626 Dbprintf("MFEMUL_IDLE");
630 // The anti-collision sequence, which is a mandatory part of the card activation sequence.
631 // It auto with 4-byte UID (= Single Size UID),
632 // 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID).
633 // For details see chapter 2 of AN10927.pdf
635 // This case is used for all Cascade Levels, because:
636 // 1) Any devices (under Android for example) after full select procedure completed,
637 // when UID is known, uses "fast-selection" method. In this case reader ignores
638 // first cascades and tries to select tag by last bytes of UID of last cascade
639 // 2) Any readers (like ACR122U) uses bit oriented anti-collision frames during selectin,
640 // same as multiple tags. For details see chapter 6.1.5.3 of ISO/IEC 14443-3
641 case MFEMUL_SELECT
: {
643 // Extract cascade level
644 if (receivedCmd_len
>= 2) {
645 switch (receivedCmd
[0]) {
646 case ISO14443A_CMD_ANTICOLL_OR_SELECT
:
649 case ISO14443A_CMD_ANTICOLL_OR_SELECT_2
:
652 case ISO14443A_CMD_ANTICOLL_OR_SELECT_3
:
658 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
660 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] Incorrect cascade level received");
664 // Incoming SELECT ALL for any cascade level
665 if (receivedCmd_len
== 2 && receivedCmd
[1] == 0x20) {
666 EmSendPrecompiledCmd(&responses
[uid_index
]);
667 FpgaDisableTracing();
669 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("SELECT ALL - EmSendPrecompiledCmd(%02x)", &responses
[uid_index
]);
673 // Incoming SELECT CLx for any cascade level
674 if (receivedCmd_len
== 9 && receivedCmd
[1] == 0x70) {
675 if (memcmp(&receivedCmd
[2], responses
[uid_index
].response
, 4) == 0) {
676 bool cl_finished
= (uid_len
== 4 && uid_index
== UIDBCC1
) ||
677 (uid_len
== 7 && uid_index
== UIDBCC2
) ||
678 (uid_len
== 10 && uid_index
== UIDBCC3
);
679 EmSendPrecompiledCmd(&responses
[cl_finished
? SAK
: SAKuid
]);
680 FpgaDisableTracing();
682 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("SELECT CLx %02x%02x%02x%02x received", receivedCmd
[2], receivedCmd
[3], receivedCmd
[4], receivedCmd
[5]);
685 cardSTATE
= MFEMUL_WORK
;
686 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_WORK");
690 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
692 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
697 // Incoming anti-collision frame
698 // receivedCmd[1] indicates number of byte and bit collision, supports only for bit collision is zero
699 if (receivedCmd_len
>= 3 && receivedCmd_len
<= 6 && (receivedCmd
[1] & 0x0f) == 0) {
700 // we can process only full-byte frame anti-collision procedure
701 if (memcmp(&receivedCmd
[2], responses
[uid_index
].response
, receivedCmd_len
- 2) == 0) {
702 // response missing part of UID via relative array index
703 EmSendPrecompiledCmd(&responses
[uid_index
+ receivedCmd_len
- 2]);
704 FpgaDisableTracing();
706 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("SELECT ANTICOLLISION - EmSendPrecompiledCmd(%02x)", &responses
[uid_index
]);
708 // IDLE, not our UID or split-byte frame anti-collision (not supports)
709 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
711 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
716 // Unknown selection procedure
717 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
719 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] Unknown selection procedure");
726 if (DBGLEVEL
>= DBG_EXTENDED
) {
727 Dbprintf("[MFEMUL_WORK] Enter in case");
730 if (receivedCmd_len
== 0) {
731 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] NO CMD received");
735 encrypted_data
= (cardAUTHKEY
!= AUTHKEYNONE
);
736 if (encrypted_data
) {
738 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, receivedCmd_dec
);
739 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] Decrypt sequence");
742 memcpy(receivedCmd_dec
, receivedCmd
, receivedCmd_len
);
745 // all commands must have a valid CRC
746 if (!CheckCrc14A(receivedCmd_dec
, receivedCmd_len
)) {
747 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
748 FpgaDisableTracing();
750 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec
, receivedCmd_len
);
754 if (receivedCmd_len
== 4 && (receivedCmd_dec
[0] == MIFARE_AUTH_KEYA
|| receivedCmd_dec
[0] == MIFARE_AUTH_KEYB
)) {
756 // Reader asks for AUTH: 6X XX
757 // RCV: 60 XX => Using KEY A
758 // RCV: 61 XX => Using KEY B
761 authTimer
= GetTickCount();
763 // received block num -> sector
765 // 4K tags have 16 blocks per sector 32..39
766 cardAUTHSC
= MifareBlockToSector(receivedCmd_dec
[1]);
768 // cardAUTHKEY: 60 => Auth use Key A
769 // cardAUTHKEY: 61 => Auth use Key B
770 cardAUTHKEY
= receivedCmd_dec
[0] & 0x01;
772 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] KEY %c: %012" PRIx64
, (cardAUTHKEY
== 0) ? 'A' : 'B', emlGetKey(cardAUTHSC
, cardAUTHKEY
));
774 // first authentication
777 // Load key into crypto
778 crypto1_init(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
780 if (!encrypted_data
) {
781 // Receive Cmd in clear txt
782 // Update crypto state (UID ^ NONCE)
783 crypto1_word(pcs
, cuid
^ nonce
, 0);
784 // rAUTH_NT contains prepared nonce for authenticate
785 EmSendCmd(rAUTH_NT
, sizeof(rAUTH_NT
));
786 FpgaDisableTracing();
788 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] Reader authenticating for block %d (0x%02x) with key %c - nonce: %02X - ciud: %02X", receivedCmd_dec
[1], receivedCmd_dec
[1], (cardAUTHKEY
== 0) ? 'A' : 'B', rAUTH_NT
, cuid
);
790 // nested authentication
792 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
793 num_to_bytes(ans, 4, rAUTH_AT);
795 // rAUTH_NT, rAUTH_NT_keystream contains prepared nonce and keystream for nested authentication
796 // we need calculate parity bits for non-encrypted sequence
797 mf_crypto1_encryptEx(pcs
, rAUTH_NT
, rAUTH_NT_keystream
, response
, 4, response_par
);
798 EmSendCmdPar(response
, 4, response_par
);
799 FpgaDisableTracing();
801 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] Reader doing nested authentication for block %d (0x%02x) with key %c", receivedCmd_dec
[1], receivedCmd_dec
[1], (cardAUTHKEY
== 0) ? 'A' : 'B');
804 cardSTATE
= MFEMUL_AUTH1
;
805 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_AUTH1 - rAUTH_NT: %02X", rAUTH_NT
);
809 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
810 // BUT... ACK --> NACK
811 if (receivedCmd_len
== 1 && receivedCmd_dec
[0] == CARD_ACK
) {
812 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
813 FpgaDisableTracing();
817 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
818 if (receivedCmd_len
== 1 && receivedCmd_dec
[0] == CARD_NACK_NA
) {
819 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_ACK
) : CARD_ACK
);
820 FpgaDisableTracing();
824 // case MFEMUL_WORK => if Cmd is Read, Write, Inc, Dec, Restore, Transfert
825 if (receivedCmd_len
== 4 && (receivedCmd_dec
[0] == ISO14443A_CMD_READBLOCK
826 || receivedCmd_dec
[0] == ISO14443A_CMD_WRITEBLOCK
827 || receivedCmd_dec
[0] == MIFARE_CMD_INC
828 || receivedCmd_dec
[0] == MIFARE_CMD_DEC
829 || receivedCmd_dec
[0] == MIFARE_CMD_RESTORE
830 || receivedCmd_dec
[0] == MIFARE_CMD_TRANSFER
)) {
831 // all other commands must be encrypted (authenticated)
832 if (!encrypted_data
) {
833 EmSend4bit(CARD_NACK_NA
);
834 FpgaDisableTracing();
836 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] Commands must be encrypted (authenticated)");
840 // iceman, u8 can never be larger the MIFARE_4K_MAXBLOCK (256)
841 // Check if Block num is not too far
843 if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) {
844 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
845 FpgaDisableTracing();
846 if (DBGLEVEL >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
851 if (MifareBlockToSector(receivedCmd_dec
[1]) != cardAUTHSC
) {
852 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
853 FpgaDisableTracing();
855 if (DBGLEVEL
>= DBG_ERROR
)
856 Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec
[0], receivedCmd_dec
[1], cardAUTHSC
);
861 // case MFEMUL_WORK => CMD READ block
862 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == ISO14443A_CMD_READBLOCK
) {
863 blockNo
= receivedCmd_dec
[1];
864 if (DBGLEVEL
>= DBG_EXTENDED
)
865 Dbprintf("[MFEMUL_WORK] Reader reading block %d (0x%02x)", blockNo
, blockNo
);
867 // android CVE 2021_0430
868 // Simulate a MFC 1K, with a NDEF message.
869 // these values uses the standard LIBNFC NDEF message
871 // In short, first a value read of block 4,
872 // update the length byte before second read of block 4.
873 // on iphone etc there might even be 3 reads of block 4.
874 // fiddling with when to flip the byte or not, has different effects
875 if ((flags
& FLAG_CVE21_0430
) == FLAG_CVE21_0430
) {
880 p_em
+= blockNo
* 16;
881 // TLV in NDEF, flip length between
882 // 4 | 03 21 D1 02 1C 53 70 91 01 09 54 02 65 6E 4C 69
883 // 0xFF means long length
884 // 0xFE mean max short length
886 // We could also have a go at message len byte at p_em[4]...
887 if (p_em
[1] == 0x21 && cve_flipper
== 1) {
895 emlGetMem(response
, blockNo
, 1);
897 if (DBGLEVEL
>= DBG_EXTENDED
) {
898 Dbprintf("[MFEMUL_WORK - ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo
,
899 response
[0], response
[1], response
[2], response
[3], response
[4], response
[5], response
[6],
900 response
[7], response
[8], response
[9], response
[10], response
[11], response
[12], response
[13],
901 response
[14], response
[15]);
904 // Access permission managment:
914 // If permission is not allowed, data is cleared (00) in emulator memeory.
915 // ex: a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5
918 // Check if selected Block is a Sector Trailer
919 if (IsSectorTrailer(blockNo
)) {
921 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_KEYA_READ
) == false) {
922 memset(response
, 0x00, 6); // keyA can never be read
923 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyA can never be read - block %d (0x%02x)", blockNo
, blockNo
);
925 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_KEYB_READ
) == false) {
926 memset(response
+ 10, 0x00, 6); // keyB cannot be read
927 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyB cannot be read - block %d (0x%02x)", blockNo
, blockNo
);
929 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_AC_READ
) == false) {
930 memset(response
+ 6, 0x00, 4); // AC bits cannot be read
931 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] AC bits cannot be read - block %d (0x%02x)", blockNo
, blockNo
);
934 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_DATA_READ
) == false) {
935 memset(response
, 0x00, 16); // datablock cannot be read
936 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] Data block %d (0x%02x) cannot be read", blockNo
, blockNo
);
939 AddCrc14A(response
, 16);
940 mf_crypto1_encrypt(pcs
, response
, MAX_MIFARE_FRAME_SIZE
, response_par
);
941 EmSendCmdPar(response
, MAX_MIFARE_FRAME_SIZE
, response_par
);
942 FpgaDisableTracing();
944 if (DBGLEVEL
>= DBG_EXTENDED
) {
945 Dbprintf("[MFEMUL_WORK - EmSendCmdPar] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo
,
946 response
[0], response
[1], response
[2], response
[3], response
[4], response
[5], response
[6],
947 response
[7], response
[8], response
[9], response
[10], response
[11], response
[12], response
[13],
948 response
[14], response
[15]);
952 if (exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
953 Dbprintf("[MFEMUL_WORK] %d reads done, exiting", numReads
);
958 } // End receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
960 // case MFEMUL_WORK => CMD WRITEBLOCK
961 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == ISO14443A_CMD_WRITEBLOCK
) {
962 blockNo
= receivedCmd_dec
[1];
963 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] RECV 0xA0 write block %d (%02x)", blockNo
, blockNo
);
964 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
965 FpgaDisableTracing();
968 cardSTATE
= MFEMUL_WRITEBL2
;
969 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_WRITEBL2");
973 // case MFEMUL_WORK => CMD INC/DEC/REST
974 if (receivedCmd_len
== 4 && (receivedCmd_dec
[0] == MIFARE_CMD_INC
|| receivedCmd_dec
[0] == MIFARE_CMD_DEC
|| receivedCmd_dec
[0] == MIFARE_CMD_RESTORE
)) {
975 blockNo
= receivedCmd_dec
[1];
976 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)", receivedCmd_dec
[0], blockNo
, blockNo
);
977 if (emlCheckValBl(blockNo
)) {
978 if (DBGLEVEL
>= DBG_ERROR
) Dbprintf("[MFEMUL_WORK] Reader tried to operate on block, but emlCheckValBl failed, nacking");
979 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
980 FpgaDisableTracing();
983 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
984 FpgaDisableTracing();
988 if (receivedCmd_dec
[0] == MIFARE_CMD_INC
) {
989 cardSTATE
= MFEMUL_INTREG_INC
;
990 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_INC");
994 if (receivedCmd_dec
[0] == MIFARE_CMD_DEC
) {
995 cardSTATE
= MFEMUL_INTREG_DEC
;
996 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_DEC");
1000 if (receivedCmd_dec
[0] == MIFARE_CMD_RESTORE
) {
1001 cardSTATE
= MFEMUL_INTREG_REST
;
1002 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_REST");
1006 } // End case MFEMUL_WORK => CMD INC/DEC/REST
1009 // case MFEMUL_WORK => CMD TRANSFER
1010 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == MIFARE_CMD_TRANSFER
) {
1011 blockNo
= receivedCmd_dec
[1];
1012 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] RECV 0x%02x transfer block %d (%02x)", receivedCmd_dec
[0], blockNo
, blockNo
);
1013 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd_dec
[1]))
1014 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1016 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
1018 FpgaDisableTracing();
1022 // case MFEMUL_WORK => CMD HALT
1023 if (receivedCmd_len
> 1 && receivedCmd_dec
[0] == ISO14443A_CMD_HALT
&& receivedCmd_dec
[1] == 0x00) {
1024 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1027 cardSTATE
= MFEMUL_HALTED
;
1028 cardAUTHKEY
= AUTHKEYNONE
;
1029 if (DBGLEVEL
>= DBG_EXTENDED
)
1030 Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_HALTED");
1034 // case MFEMUL_WORK => CMD RATS
1035 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == ISO14443A_CMD_RATS
&& receivedCmd_dec
[1] == 0x80) {
1036 if (rats
&& rats_len
) {
1037 if (encrypted_data
) {
1038 memcpy(response
, rats
, rats_len
);
1039 mf_crypto1_encrypt(pcs
, response
, rats_len
, response_par
);
1040 EmSendCmdPar(response
, rats_len
, response_par
);
1042 EmSendCmd(rats
, rats_len
);
1044 FpgaDisableTracing();
1045 if (DBGLEVEL
>= DBG_EXTENDED
)
1046 Dbprintf("[MFEMUL_WORK] RCV RATS => ACK");
1048 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
1049 FpgaDisableTracing();
1050 if (DBGLEVEL
>= DBG_EXTENDED
)
1051 Dbprintf("[MFEMUL_WORK] RCV RATS => NACK");
1056 // case MFEMUL_WORK => ISO14443A_CMD_NXP_DESELECT
1057 if (receivedCmd_len
== 3 && receivedCmd_dec
[0] == ISO14443A_CMD_NXP_DESELECT
) {
1058 if (rats
&& rats_len
) {
1059 // response back NXP_DESELECT
1060 if (encrypted_data
) {
1061 memcpy(response
, receivedCmd_dec
, receivedCmd_len
);
1062 mf_crypto1_encrypt(pcs
, response
, receivedCmd_len
, response_par
);
1063 EmSendCmdPar(response
, receivedCmd_len
, response_par
);
1065 EmSendCmd(receivedCmd_dec
, receivedCmd_len
);
1067 FpgaDisableTracing();
1068 if (DBGLEVEL
>= DBG_EXTENDED
)
1069 Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => ACK");
1071 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
1072 FpgaDisableTracing();
1074 if (DBGLEVEL
>= DBG_EXTENDED
)
1075 Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => NACK");
1080 // case MFEMUL_WORK => command not allowed
1081 if (DBGLEVEL
>= DBG_EXTENDED
)
1082 Dbprintf("Received command not allowed, nacking");
1083 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
1084 FpgaDisableTracing();
1089 case MFEMUL_AUTH1
: {
1090 if (DBGLEVEL
>= DBG_EXTENDED
)
1091 Dbprintf("[MFEMUL_AUTH1] Enter case");
1093 if (receivedCmd_len
!= 8) {
1094 cardSTATE_TO_IDLE();
1095 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1096 if (DBGLEVEL
>= DBG_EXTENDED
)
1097 Dbprintf("MFEMUL_AUTH1: receivedCmd_len != 8 (%d) => cardSTATE_TO_IDLE())", receivedCmd_len
);
1101 nr
= bytes_to_num(receivedCmd
, 4);
1102 ar
= bytes_to_num(&receivedCmd
[4], 4);
1104 // Collect AR/NR per keytype & sector
1105 if ((flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) {
1107 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
1108 if (ar_nr_collected
[i
+ mM
] == 0 || ((cardAUTHSC
== ar_nr_resp
[i
+ mM
].sector
) && (cardAUTHKEY
== ar_nr_resp
[i
+ mM
].keytype
) && (ar_nr_collected
[i
+ mM
] > 0))) {
1109 // if first auth for sector, or matches sector and keytype of previous auth
1110 if (ar_nr_collected
[i
+ mM
] < 2) {
1111 // if we haven't already collected 2 nonces for this sector
1112 if (ar_nr_resp
[ar_nr_collected
[i
+ mM
]].ar
!= ar
) {
1113 // Avoid duplicates... probably not necessary, ar should vary.
1114 if (ar_nr_collected
[i
+ mM
] == 0) {
1115 // first nonce collect
1116 ar_nr_resp
[i
+ mM
].cuid
= cuid
;
1117 ar_nr_resp
[i
+ mM
].sector
= cardAUTHSC
;
1118 ar_nr_resp
[i
+ mM
].keytype
= cardAUTHKEY
;
1119 ar_nr_resp
[i
+ mM
].nonce
= nonce
;
1120 ar_nr_resp
[i
+ mM
].nr
= nr
;
1121 ar_nr_resp
[i
+ mM
].ar
= ar
;
1123 // add this nonce to first moebius nonce
1124 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].cuid
= cuid
;
1125 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].sector
= cardAUTHSC
;
1126 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].keytype
= cardAUTHKEY
;
1127 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].nonce
= nonce
;
1128 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].nr
= nr
;
1129 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].ar
= ar
;
1130 ar_nr_collected
[i
+ ATTACK_KEY_COUNT
]++;
1131 } else { // second nonce collect (std and moebius)
1132 ar_nr_resp
[i
+ mM
].nonce2
= nonce
;
1133 ar_nr_resp
[i
+ mM
].nr2
= nr
;
1134 ar_nr_resp
[i
+ mM
].ar2
= ar
;
1136 if (!gettingMoebius
) {
1138 // check if this was the last second nonce we need for std attack
1139 if (nonce2_count
== nonce1_count
) {
1140 // done collecting std test switch to moebius
1141 // first finish incrementing last sample
1142 ar_nr_collected
[i
+ mM
]++;
1143 // switch to moebius collection
1144 gettingMoebius
= true;
1145 mM
= ATTACK_KEY_COUNT
;
1151 // if we've collected all the nonces we need - finish.
1152 if (nonce1_count
== moebius_n_count
)
1156 ar_nr_collected
[i
+ mM
]++;
1159 // we found right spot for this nonce stop looking
1166 crypto1_word(pcs
, nr
, 1);
1167 cardRr
= ar
^ crypto1_word(pcs
, 0, 0);
1170 if (cardRr
!= prng_successor(nonce
, 64)) {
1171 if (DBGLEVEL
>= DBG_EXTENDED
) {
1172 Dbprintf("[MFEMUL_AUTH1] AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]"
1174 , (cardAUTHKEY
== 0) ? 'A' : 'B'
1178 , prng_successor(nonce
, 64)
1181 cardAUTHKEY
= AUTHKEYNONE
; // not authenticated
1182 cardSTATE_TO_IDLE();
1183 // Really tags not respond NACK on invalid authentication
1184 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1188 ans
= prng_successor(nonce
, 96);
1189 num_to_bytes(ans
, 4, response
);
1190 mf_crypto1_encrypt(pcs
, response
, 4, response_par
);
1191 EmSendCmdPar(response
, 4, response_par
);
1192 FpgaDisableTracing();
1194 if (DBGLEVEL
>= DBG_EXTENDED
) {
1195 Dbprintf("[MFEMUL_AUTH1] AUTH COMPLETED for sector %d with key %c. time=%d",
1197 cardAUTHKEY
== 0 ? 'A' : 'B',
1198 GetTickCountDelta(authTimer
)
1202 cardSTATE
= MFEMUL_WORK
;
1203 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_AUTH1] cardSTATE = MFEMUL_WORK");
1208 case MFEMUL_WRITEBL2
: {
1209 if (receivedCmd_len
== MAX_MIFARE_FRAME_SIZE
) {
1210 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, receivedCmd_dec
);
1211 if (CheckCrc14A(receivedCmd_dec
, receivedCmd_len
)) {
1212 if (IsSectorTrailer(cardWRBL
)) {
1213 emlGetMem(response
, cardWRBL
, 1);
1214 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_KEYA_WRITE
)) {
1215 memcpy(receivedCmd_dec
, response
, 6); // don't change KeyA
1217 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_KEYB_WRITE
)) {
1218 memcpy(receivedCmd_dec
+ 10, response
+ 10, 6); // don't change KeyA
1220 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_AC_WRITE
)) {
1221 memcpy(receivedCmd_dec
+ 6, response
+ 6, 4); // don't change AC bits
1224 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_DATA_WRITE
)) {
1225 memcpy(receivedCmd_dec
, response
, 16); // don't change anything
1228 emlSetMem(receivedCmd_dec
, cardWRBL
, 1);
1229 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
)); // always ACK?
1230 FpgaDisableTracing();
1232 cardSTATE
= MFEMUL_WORK
;
1233 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_WORK");
1237 cardSTATE_TO_IDLE();
1238 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_IDLE");
1239 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1244 case MFEMUL_INTREG_INC
: {
1245 if (receivedCmd_len
== 6) {
1246 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, (uint8_t *)&ans
);
1247 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
1248 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1249 FpgaDisableTracing();
1251 cardSTATE_TO_IDLE();
1254 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1255 cardINTREG
= cardINTREG
+ ans
;
1257 cardSTATE
= MFEMUL_WORK
;
1258 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_INTREG_INC] cardSTATE = MFEMUL_WORK");
1264 case MFEMUL_INTREG_DEC
: {
1265 if (receivedCmd_len
== 6) { // Data is encrypted
1267 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, (uint8_t *)&ans
);
1268 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
1269 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1270 FpgaDisableTracing();
1272 cardSTATE_TO_IDLE();
1276 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1277 cardINTREG
= cardINTREG
- ans
;
1278 cardSTATE
= MFEMUL_WORK
;
1279 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_INTREG_DEC] cardSTATE = MFEMUL_WORK");
1284 case MFEMUL_INTREG_REST
: {
1285 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, (uint8_t *)&ans
);
1286 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
1287 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1288 FpgaDisableTracing();
1290 cardSTATE_TO_IDLE();
1293 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1294 cardSTATE
= MFEMUL_WORK
;
1295 if (DBGLEVEL
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_INTREG_REST] cardSTATE = MFEMUL_WORK");
1299 } // End Switch Loop
1301 button_pushed
= BUTTON_PRESS();
1305 FpgaDisableTracing();
1309 if (((flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) && (DBGLEVEL
>= DBG_INFO
)) {
1310 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
1311 if (ar_nr_collected
[i
] == 2) {
1312 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i
< ATTACK_KEY_COUNT
/ 2) ? "keyA" : "keyB", ar_nr_resp
[i
].sector
);
1313 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
1314 ar_nr_resp
[i
].cuid
, //UID
1315 ar_nr_resp
[i
].nonce
, //NT
1316 ar_nr_resp
[i
].nr
, //NR1
1317 ar_nr_resp
[i
].ar
, //AR1
1318 ar_nr_resp
[i
].nr2
, //NR2
1319 ar_nr_resp
[i
].ar2
//AR2
1326 for (uint8_t i
= ATTACK_KEY_COUNT
; i
< ATTACK_KEY_COUNT
* 2; i
++) {
1327 if (ar_nr_collected
[i
] == 2) {
1328 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i
< ATTACK_KEY_COUNT
/ 2) ? "keyA" : "keyB", ar_nr_resp
[i
].sector
);
1329 Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
1330 ar_nr_resp
[i
].cuid
, //UID
1331 ar_nr_resp
[i
].nonce
, //NT
1332 ar_nr_resp
[i
].nr
, //NR1
1333 ar_nr_resp
[i
].ar
, //AR1
1334 ar_nr_resp
[i
].nonce2
,//NT2
1335 ar_nr_resp
[i
].nr2
, //NR2
1336 ar_nr_resp
[i
].ar2
//AR2
1341 if (DBGLEVEL
>= DBG_ERROR
) {
1342 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
1345 if ((flags
& FLAG_INTERACTIVE
) == FLAG_INTERACTIVE
) { // Interactive mode flag, means we need to send ACK
1346 //Send the collected ar_nr in the response
1347 reply_mix(CMD_ACK
, CMD_HF_MIFARE_SIMULATE
, button_pushed
, 0, &ar_nr_resp
, sizeof(ar_nr_resp
));
1350 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1353 BigBuf_free_keep_EM();