isl_basic_map_new_from_polylib: add memory management annotations
[barvinok.git] / decomposer.cc
blobd9aca16ec1136e85406d49df18d53a5e414f86c6
1 #include <iostream>
2 #include <ostream>
3 #include <vector>
4 #include <assert.h>
5 #include <NTL/ZZ.h>
6 #include <NTL/vec_ZZ.h>
7 #include <NTL/mat_ZZ.h>
8 #include <NTL/LLL.h>
9 #include <barvinok/barvinok.h>
10 #include <barvinok/util.h>
11 #include "conversion.h"
12 #include "decomposer.h"
13 #include "param_util.h"
14 #include "reduce_domain.h"
16 using namespace NTL;
17 using std::vector;
18 using std::cerr;
19 using std::endl;
22 * Returns the largest absolute value in the vector
24 static ZZ max(vec_ZZ& v)
26 ZZ max = abs(v[0]);
27 for (int i = 1; i < v.length(); ++i)
28 if (abs(v[i]) > max)
29 max = abs(v[i]);
30 return max;
33 /* Remove common divisor of elements of cols of B */
34 static void normalize_cols(mat_ZZ& B)
36 ZZ gcd;
37 for (int i = 0; i < B.NumCols(); ++i) {
38 gcd = B[0][i];
39 for (int j = 1 ; gcd != 1 && j < B.NumRows(); ++j)
40 GCD(gcd, gcd, B[j][i]);
41 if (gcd != 1)
42 for (int j = 0; j < B.NumRows(); ++j)
43 B[j][i] /= gcd;
47 /* Remove common divisor of elements of B */
48 static void normalize_matrix(mat_ZZ& B)
50 ZZ gcd;
51 for (int i = 0; i < B.NumCols(); ++i)
52 for (int j = 0 ; j < B.NumRows(); ++j) {
53 GCD(gcd, gcd, B[i][j]);
54 if (IsOne(gcd))
55 return;
57 for (int i = 0; i < B.NumCols(); ++i)
58 for (int j = 0; j < B.NumRows(); ++j)
59 B[i][j] /= gcd;
62 class cone {
63 public:
64 cone(const mat_ZZ& r, int row, const vec_ZZ& w, int s) {
65 sgn = s;
66 rays = r;
67 rays[row] = w;
68 set_det();
70 cone(const signed_cone& sc) {
71 rays = sc.rays;
72 sgn = sc.sign;
73 set_det();
75 void set_det() {
76 det = determinant(rays);
77 assert(!IsZero(det));
79 bool needs_split(barvinok_options *options) {
80 index = abs(det);
81 if (IsOne(index))
82 return false;
83 if (options->primal && index <= options->max_index)
84 return false;
86 inv(det, B, rays);
87 normalize_matrix(B);
88 if (sign(det) < 0)
89 negate(B, B);
91 if (!options->primal && options->max_index > 1) {
92 mat_ZZ B2 = B;
93 normalize_cols(B2);
94 index = abs(determinant(B2));
95 if (index <= options->max_index)
96 return false;
99 return true;
102 void short_vector(vec_ZZ& v, vec_ZZ& lambda, barvinok_options *options) {
103 ZZ det2;
104 mat_ZZ U;
106 LLL(det2, B, U, options->LLL_a, options->LLL_b);
108 ZZ min = max(B[0]);
109 int index = 0;
110 for (int i = 1; i < B.NumRows(); ++i) {
111 ZZ tmp = max(B[i]);
112 if (tmp < min) {
113 min = tmp;
114 index = i;
118 lambda = B[index];
120 v = U[index];
122 int i;
123 for (i = 0; i < lambda.length(); ++i)
124 if (lambda[i] > 0)
125 break;
126 if (i == lambda.length()) {
127 v = -v;
128 lambda = -lambda;
132 ZZ det;
133 ZZ index;
134 mat_ZZ rays;
135 mat_ZZ B;
136 int sgn;
139 std::ostream & operator<<(std::ostream & os, const cone& c)
141 os << c.rays << endl;
142 os << "det: " << c.det << endl;
143 os << "sign: " << c.sgn << endl;
144 return os;
147 static void decompose(const signed_cone& sc, signed_cone_consumer& scc,
148 bool primal, barvinok_options *options)
150 vector<cone *> nonuni;
151 cone *c = new cone(sc);
152 if (c->needs_split(options)) {
153 nonuni.push_back(c);
154 } else {
155 try {
156 options->stats->base_cones++;
157 scc.handle(signed_cone(sc.C, sc.rays, sc.sign, to_ulong(c->index)),
158 options);
159 delete c;
160 } catch (...) {
161 delete c;
162 throw;
164 return;
166 vec_ZZ lambda;
167 vec_ZZ v;
168 while (!nonuni.empty()) {
169 c = nonuni.back();
170 nonuni.pop_back();
171 c->short_vector(v, lambda, options);
172 for (int i = 0; i < c->rays.NumRows(); ++i) {
173 if (lambda[i] == 0)
174 continue;
175 cone *pc = new cone(c->rays, i, v, sign(lambda[i]) * c->sgn);
176 if (primal) {
177 for (int j = 0; j <= i; ++j) {
178 if ((j == i && sign(lambda[i]) < 0) ||
179 (j < i && sign(lambda[i]) == sign(lambda[j]))) {
180 pc->rays[j] = -pc->rays[j];
181 pc->sgn = -pc->sgn;
185 if (pc->needs_split(options)) {
186 assert(abs(pc->det) < abs(c->det));
187 nonuni.push_back(pc);
188 } else {
189 try {
190 options->stats->base_cones++;
191 scc.handle(signed_cone(pc->rays, pc->sgn,
192 to_ulong(pc->index)),
193 options);
194 delete pc;
195 } catch (...) {
196 delete c;
197 delete pc;
198 while (!nonuni.empty()) {
199 c = nonuni.back();
200 nonuni.pop_back();
201 delete c;
203 throw;
207 delete c;
211 struct polar_signed_cone_consumer : public signed_cone_consumer {
212 signed_cone_consumer& scc;
213 mat_ZZ r;
214 polar_signed_cone_consumer(signed_cone_consumer& scc) : scc(scc) {}
215 virtual void handle(const signed_cone& sc, barvinok_options *options) {
216 Polyhedron *C = sc.C;
217 if (!sc.C) {
218 Matrix *M = Matrix_Alloc(sc.rays.NumRows()+1, sc.rays.NumCols()+2);
219 for (int i = 0; i < sc.rays.NumRows(); ++i) {
220 zz2values(sc.rays[i], M->p[i]+1);
221 value_set_si(M->p[i][0], 1);
223 value_set_si(M->p[sc.rays.NumRows()][0], 1);
224 value_set_si(M->p[sc.rays.NumRows()][1+sc.rays.NumCols()], 1);
225 C = Rays2Polyhedron(M, M->NbRows+1);
226 assert(C->NbConstraints == C->NbRays);
227 Matrix_Free(M);
229 Polyhedron_Polarize(C);
230 rays(C, r);
231 try {
232 scc.handle(signed_cone(C, r, sc.sign, sc.det), options);
233 } catch (...) {
234 if (!sc.C)
235 Polyhedron_Free(C);
236 throw;
238 if (!sc.C)
239 Polyhedron_Free(C);
243 /* Remove common divisor of elements of rows of B */
244 static void normalize_rows(mat_ZZ& B)
246 ZZ gcd;
247 for (int i = 0; i < B.NumRows(); ++i) {
248 gcd = B[i][0];
249 for (int j = 1 ; gcd != 1 && j < B.NumCols(); ++j)
250 GCD(gcd, gcd, B[i][j]);
251 if (gcd != 1)
252 for (int j = 0; j < B.NumCols(); ++j)
253 B[i][j] /= gcd;
257 static void polar_decompose(Polyhedron *cone, signed_cone_consumer& scc,
258 barvinok_options *options)
260 POL_ENSURE_VERTICES(cone);
261 Polyhedron_Polarize(cone);
262 if (cone->NbRays - 1 != cone->Dimension) {
263 Polyhedron *tmp = cone;
264 cone = triangulate_cone_with_options(cone, options);
265 Polyhedron_Free(tmp);
267 polar_signed_cone_consumer pssc(scc);
268 mat_ZZ r;
269 try {
270 for (Polyhedron *Polar = cone; Polar; Polar = Polar->next) {
271 rays(Polar, r);
272 normalize_rows(r);
273 decompose(signed_cone(Polar, r, 1), pssc, false, options);
275 Domain_Free(cone);
276 } catch (...) {
277 Domain_Free(cone);
278 throw;
282 static void primal_decompose(Polyhedron *cone, signed_cone_consumer& scc,
283 barvinok_options *options)
285 POL_ENSURE_VERTICES(cone);
286 Polyhedron *parts;
287 if (cone->NbRays - 1 == cone->Dimension)
288 parts = cone;
289 else
290 parts = triangulate_cone_with_options(cone, options);
291 Vector *average = NULL;
292 Value tmp;
293 if (parts != cone) {
294 value_init(tmp);
295 average = inner_point(cone);
297 mat_ZZ ray;
298 try {
299 for (Polyhedron *simple = parts; simple; simple = simple->next) {
300 int sign = 1;
301 Matrix *Rays = rays2(simple);
302 for (int i = 0; i < Rays->NbRows; ++i) {
303 if (simple == cone) {
304 continue;
305 } else {
306 int f;
307 for (f = 0; f < simple->NbConstraints; ++f) {
308 Inner_Product(Rays->p[i], simple->Constraint[f]+1,
309 simple->Dimension, &tmp);
310 if (value_notzero_p(tmp))
311 break;
313 assert(f < simple->NbConstraints);
314 if (!is_internal(average, simple->Constraint[f])) {
315 Vector_Oppose(Rays->p[i], Rays->p[i], Rays->NbColumns);
316 sign = -sign;
320 matrix2zz(Rays, ray, Rays->NbRows, Rays->NbColumns);
321 Matrix_Free(Rays);
322 decompose(signed_cone(simple, ray, sign), scc, true, options);
324 Domain_Free(parts);
325 if (parts != cone) {
326 Domain_Free(cone);
327 value_clear(tmp);
328 Vector_Free(average);
330 } catch (...) {
331 Domain_Free(parts);
332 if (parts != cone) {
333 Domain_Free(cone);
334 value_clear(tmp);
335 Vector_Free(average);
337 throw;
341 void barvinok_decompose(Polyhedron *C, signed_cone_consumer& scc,
342 barvinok_options *options)
344 POL_ENSURE_VERTICES(C);
345 if (options->primal)
346 primal_decompose(C, scc, options);
347 else
348 polar_decompose(C, scc, options);
351 void vertex_decomposer::decompose_at_vertex(Param_Vertices *V, int _i,
352 barvinok_options *options)
354 Polyhedron *C = Param_Vertex_Cone(PP, V, options);
355 vert = _i;
356 this->V = V;
358 barvinok_decompose(C, scc, options);
361 struct posneg_collector : public signed_cone_consumer {
362 posneg_collector(Polyhedron *pos, Polyhedron *neg) : pos(pos), neg(neg) {}
363 virtual void handle(const signed_cone& sc, barvinok_options *options) {
364 Polyhedron *p = Polyhedron_Copy(sc.C);
365 if (sc.sign > 0) {
366 p->next = pos;
367 pos = p;
368 } else {
369 p->next = neg;
370 neg = p;
373 Polyhedron *pos;
374 Polyhedron *neg;
378 * Barvinok's Decomposition of a simplicial cone
380 * Returns two lists of polyhedra
382 void barvinok_decompose(Polyhedron *C, Polyhedron **ppos, Polyhedron **pneg)
384 barvinok_options *options = barvinok_options_new_with_defaults();
385 posneg_collector pc(*ppos, *pneg);
386 POL_ENSURE_VERTICES(C);
387 mat_ZZ r;
388 rays(C, r);
389 decompose(signed_cone(C, r, 1), pc, false, options);
390 *ppos = pc.pos;
391 *pneg = pc.neg;
392 barvinok_options_free(options);