1 \section{\protect\PolyLib/ interface of the
\protect\ai[\tt]{barvinok
} library
4 Although
\barvinok/ currently still uses
\PolyLib/ internally,
5 this is likely to change in the not too distant future.
6 Consider using
\isl/ based alternatives for the functions in this section
7 as the latter are likely to be removed in future releases.
9 Our
\barvinok/ library is built on top of
\PolyLib/
10 \shortcite{Wilde1993,Loechner1999
}.
11 In particular, it reuses the implementations
13 \shortciteN{Loechner97parameterized
}
14 for computing parametric vertices
16 \shortciteN{Clauss1998parametric
}
17 for computing chamber decompositions.
18 Initially, our library was meant to be a replacement
19 for the algorithm of
\shortciteN{Clauss1998parametric
},
20 also implemented in
\PolyLib/, for computing quasi-polynomials.
21 To ease the transition of application programs we
22 tried to reuse the existing data structures as much as possible.
24 \subsection{Existing Data Structures
}
27 Inside
\PolyLib/ integer values are represented by the
28 \ai[\tt]{Value
} data type.
29 Depending on a configure option, the data type may
30 either by a
32-bit integer, a
64-bit integer
31 or an arbitrary precision integer using
\ai[\tt]{GMP
}.
32 The
\barvinok/ library requires that
\PolyLib/ is compiled
33 with support for arbitrary precision integers.
35 The basic structure for representing (unions of) polyhedra is a
38 typedef struct polyhedron
{
39 unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
44 struct polyhedron *next;
47 The attribute
\ai[\tt]{Dimension
} is the dimension
48 of the ambient space, i.e., the number of variables.
49 The attributes
\ai[\tt]{Constraint
}
50 and
\ai[\tt]{Ray
} point to two-dimensional arrays
51 of constraints and generators, respectively.
52 The number of rows is stored in
53 \ai[\tt]{NbConstraints
} and
54 \ai[\tt]{NbRays
}, respectively.
55 The number of columns in both arrays is equal
56 to
\verb!
1+Dimension+
1!.
57 The first column of
\ai[\tt]{Constraint
} is either
58 $
0$ or $
1$ depending on whether the constraint
59 is an equality ($
0$) or an inequality ($
1$).
60 The number of equalities is stored in
\ai[\tt]{NbEq
}.
61 If the constraint is $
\sp a x + c
\ge 0$, then
62 the next columns contain the coefficients $a_i$
63 and the final column contains the constant $c$.
64 The first column of
\ai[\tt]{Ray
} is either
65 $
0$ or $
1$ depending on whether the generator
66 is a line ($
0$) or a vertex or ray ($
1$).
67 The number of lines is stored in
\ai[\tt]{NbBid
}.
68 Let $d$ be the
\ac{lcm
} of the denominators of the coordinates
69 of a vertex $
\vec v$, then the next columns contain
70 $d v_i$ and the final column contains $d$.
71 For a ray, the final column contains $
0$.
72 The field
\ai[\tt]{next
} points to the next polyhedron in
73 the union of polyhedra.
74 It is
\verb+
0+ if this is the last (or only) polyhedron in the union.
75 For more information on this structure, we refer to
\shortciteN{Wilde1993
}.
77 Quasi-polynomials are represented using the
78 \ai[\tt]{evalue
} and
\ai[\tt]{enode
} structures.
80 typedef enum
{ polynomial, periodic, evector
} enode_type;
82 typedef struct _evalue
{
83 Value d; /* denominator */
85 Value n; /* numerator (if denominator !=
0) */
86 struct _enode *p; /* pointer (if denominator ==
0) */
90 typedef struct _enode
{
91 enode_type type; /* polynomial or periodic or evector */
92 int size; /* number of attached pointers */
93 int pos; /* parameter position */
94 evalue arr
[1]; /* array of rational/pointer */
97 If the field
\ai[\tt]{d
} of an
\ai[\tt]{evalue
} is zero, then
98 the
\ai[\tt]{evalue
} is a placeholder for a pointer to
99 an
\ai[\tt]{enode
}, stored in
\ai[\tt]{x.p
}.
100 Otherwise, the
\ai[\tt]{evalue
} is a rational number with
101 numerator
\ai[\tt]{x.n
} and denominator
\ai[\tt]{d
}.
102 An
\ai[\tt]{enode
} is either a
\ai[\tt]{polynomial
}
103 or a
\ai[\tt]{periodic
}, depending on the value
105 The length of the array
\ai[\tt]{arr
} is stored in
\ai[\tt]{size
}.
106 For a
\ai[\tt]{polynomial
},
\ai[\tt]{arr
} contains the coefficients.
107 For a
\ai[\tt]{periodic
}, it contains the values for the different
108 residue classes modulo the parameter indicated by
\ai[\tt]{pos
}.
109 For a polynomial,
\ai[\tt]{pos
} refers to the variable
111 The value of
\ai[\tt]{pos
} is
\verb+
1+ for the first parameter.
112 That is, if the value of
\ai[\tt]{pos
} is
\verb+
1+ and the first
113 parameter is $p$, and if the length of the array is $l$,
114 then in case it is a polynomial, the
115 \ai[\tt]{enode
} represents
117 \verb+arr
[0]+ +
\verb+arr
[1]+ p +
\verb+arr
[2]+ p^
2 +
\cdots +
118 \verb+arr
[l-
1]+ p^
{l-
1}
121 If it is a periodic, then it represents
124 \verb+arr
[0]+,
\verb+arr
[1]+,
\verb+arr
[2]+,
\ldots,
129 Note that the elements of a
\ai[\tt]{periodic
} may themselves
130 be other
\ai[\tt]{periodic
}s or even
\ai[\tt]{polynomial
}s.
131 In our library, we only allow the elements of a
\ai[\tt]{periodic
}
132 to be other
\ai[\tt]{periodic
}s or rational numbers.
133 The chambers and their corresponding quasi-polynomial are
134 stored in
\ai[\tt]{Enumeration
} structures.
136 typedef struct _enumeration
{
137 Polyhedron *ValidityDomain; /* constraints on the parameters */
138 evalue EP; /* dimension = combined space */
139 struct _enumeration *next; /* Ehrhart Polynomial,
140 corresponding to parameter
141 values inside the domain
142 ValidityDomain above */
145 For more information on these structures, we refer to
\shortciteN{Loechner1999
}.
148 Figure~
\ref{f:Loechner
} is a skillful reconstruction
149 of Figure~
2 from
\shortciteN{Loechner1999
}.
150 It shows the contents of the
\ai[\tt]{enode
} structures
151 representing the quasi-polynomial
153 [1,
2]_p p^
2 +
3 p +
\frac 5 2
160 \begin{tabular
}{|c|c|c|
}
162 \multicolumn{2}{|c|
}{type
} & polynomial \\
164 \multicolumn{2}{|c|
}{size
} &
3 \\
166 \multicolumn{2}{|c|
}{pos
} &
1 \\
168 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
2 \\
172 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
176 \smash{\lower 6.25pt
\hbox{arr
[2]}} & d &
0 \\
183 +DR*!DR
\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial
}\hskip 1.5\tabcolsep}+C="a"
184 \POS(
60,-
15)*!UL
{\hbox{
186 \begin{tabular
}{|c|c|c|
}
188 \multicolumn{2}{|c|
}{type
} & periodic \\
190 \multicolumn{2}{|c|
}{size
} &
2 \\
192 \multicolumn{2}{|c|
}{pos
} &
1 \\
194 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
1 \\
198 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
205 +UL+<
0.5\tabcolsep,
0pt>*!UL
\hbox{\strut}+CL="b"
207 \POS"box1"+UC*++!D
\hbox{\tt enode
}
208 \POS"box2"+UC*++!D
\hbox{\tt enode
}
210 \caption{The quasi-polynomial $
[1,
2]_p p^
2 +
3 p +
\frac 5 2$.
}
218 The
\ai[\tt]{barvinok
\_options} structure contains various
219 options that influence the behavior of the library.
222 struct barvinok_options
{
223 struct barvinok_stats *stats;
225 /* PolyLib options */
229 /* LLL reduction parameter delta=LLL_a/LLL_b */
233 /* barvinok options */
234 #define BV_SPECIALIZATION_BF
2
235 #define BV_SPECIALIZATION_DF
1
236 #define BV_SPECIALIZATION_RANDOM
0
237 #define BV_SPECIALIZATION_TODD
3
238 int incremental_specialization;
240 unsigned long max_index;
243 int count_sample_infinite;
245 int try_Delaunay_triangulation;
247 #define BV_APPROX_SIGN_NONE
0
248 #define BV_APPROX_SIGN_APPROX
1
249 #define BV_APPROX_SIGN_LOWER
2
250 #define BV_APPROX_SIGN_UPPER
3
251 int polynomial_approximation;
252 #define BV_APPROX_NONE
0
253 #define BV_APPROX_DROP
1
254 #define BV_APPROX_SCALE
2
255 #define BV_APPROX_VOLUME
3
256 #define BV_APPROX_BERNOULLI
4
257 int approximation_method;
258 #define BV_APPROX_SCALE_FAST (
1 <<
0)
259 #define BV_APPROX_SCALE_NARROW (
1 <<
1)
260 #define BV_APPROX_SCALE_NARROW2 (
1 <<
2)
261 #define BV_APPROX_SCALE_CHAMBER (
1 <<
3)
263 #define BV_VOL_LIFT
0
264 #define BV_VOL_VERTEX
1
265 #define BV_VOL_BARYCENTER
2
266 int volume_triangulate;
268 /* basis reduction options */
269 #define BV_GBR_GLPK
1
273 #define BV_LP_POLYLIB
0
279 #define BV_HULL_GBR
0
280 #define BV_HULL_HILBERT
1
284 struct barvinok_options *barvinok_options_new_with_defaults();
287 The function
\ai[\tt]{barvinok
\_options\_new\_with\_defaults}
288 can be used to create a
\ai[\tt]{barvinok
\_options} structure
292 \item \PolyLib/ options
296 \item \ai[\tt]{MaxRays
}
298 The value of
\ai[\tt]{MaxRays
} is passed to various
\PolyLib/
299 functions and defines the
300 maximum size of a table used in the
\ai{double description
} computation
301 in the
\PolyLib/ function
\ai[\tt]{Chernikova
}.
302 In earlier versions of
\PolyLib/,
303 this parameter had to be conservatively set
304 to a high number to ensure successful operation,
305 resulting in significant memory overhead.
306 Our change to allow this table to grow
307 dynamically is available in recent versions of
\PolyLib/.
308 In these versions, the value no longer indicates the maximal
309 table size, but rather the size of the initial allocation.
310 This value may be set to
\verb+
0+ or left as set
311 by
\ai[\tt]{barvinok
\_options\_new\_with\_defaults}.
315 \item \ai[\tt]{NTL
} options
319 \item \ai[\tt]{LLL
\_a}
320 \item \ai[\tt]{LLL
\_b}
322 The values used for the
\ai{reduction parameter
}
323 in the call to
\ai[\tt]{NTL
}'s implementation of
\indac{LLL
}.
327 \item \ai[\tt]{barvinok
} specific options
331 \item \ai[\tt]{incremental
\_specialization}
333 Selects the
\ai{specialization
} algorithm to be used.
334 If set to
{\tt 0} then a direct specialization is performed
335 using a random vector.
336 Value
{\tt 1} selects a depth first incremental specialization,
337 while value
{\tt 2} selects a breadth first incremental specialization.
338 The default is selected by the
\ai[\tt]{--enable-incremental
}
339 \ai[\tt]{configure
} option.
340 For more information we refer to~
\citeN[Section~
4.4.3]{Verdoolaege2005PhD
}.
346 \subsection{Data Structures for Quasi-polynomials
}
349 Internally, we do not represent our
\ai{quasi-polynomial
}s
350 as step-polynomials, but instead as polynomials of
351 fractional parts of degree-$
1$ polynomials.
352 However, we also allow our quasi-polynomials to be represented
353 as polynomials with periodic numbers for coefficients,
354 similarly to
\shortciteN{Loechner1999
}.
355 By default, the current version of
\barvinok/ uses
356 \ai[\tt]{fractional
}s, but this can be changed through
357 the
\ai[\tt]{--disable-fractional
} configure option.
358 When this option is specified, the periodic numbers
360 an explicit enumeration using the
\ai[\tt]{periodic
} type.
361 A quasi-polynomial based on fractional
362 parts can also be converted to an actual step-polynomial
363 using
\ai[\tt]{evalue
\_frac2floor}, but this is not fully
366 For reasons of compatibility,
%
367 \footnote{Also known as laziness.
}
368 we shoehorned our representations for piecewise quasi-polynomials
369 into the existing data structures.
370 To this effect, we introduced four new types,
371 \ai[\tt]{fractional
},
\ai[\tt]{relation
},
372 \ai[\tt]{partition
} and
\ai[\tt]{flooring
}.
374 typedef enum
{ polynomial, periodic, evector, fractional,
375 relation, partition, flooring
} enode_type;
377 The field
\ai[\tt]{pos
} is not used in most of these
378 additional types and is therefore set to
\verb+-
1+.
380 The types
\ai[\tt]{fractional
} and
\ai[\tt]{flooring
}
381 represent polynomial expressions in a fractional part or a floor respectively.
382 The generator is stored in
\verb+arr
[0]+, while the
383 coefficients are stored in the remaining array elements.
384 That is, an
\ai[\tt]{enode
} of type
\ai[\tt]{fractional
}
387 \verb+arr
[1]+ +
\verb+arr
[2]+ \
{\verb+arr
[0]+\
} +
388 \verb+arr
[3]+ \
{\verb+arr
[0]+\
}^
2 +
\cdots +
389 \verb+arr
[l-
1]+ \
{\verb+arr
[0]+\
}^
{l-
2}
392 An
\ai[\tt]{enode
} of type
\ai[\tt]{flooring
}
395 \verb+arr
[1]+ +
\verb+arr
[2]+
\lfloor\verb+arr
[0]+
\rfloor +
396 \verb+arr
[3]+
\lfloor\verb+arr
[0]+
\rfloor^
2 +
\cdots +
397 \verb+arr
[l-
1]+
\lfloor\verb+arr
[0]+
\rfloor^
{l-
2}
402 The internal representation of the quasi-polynomial
403 $$
\left(
1+
2 \left\
{\frac p
2\right\
}\right) p^
2 +
3 p +
\frac 5 2$$
404 is shown in Figure~
\ref{f:fractional
}.
410 \begin{tabular
}{|c|c|c|
}
412 \multicolumn{2}{|c|
}{type
} & polynomial \\
414 \multicolumn{2}{|c|
}{size
} &
3 \\
416 \multicolumn{2}{|c|
}{pos
} &
1 \\
418 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
2 \\
422 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
426 \smash{\lower 6.25pt
\hbox{arr
[2]}} & d &
0 \\
433 +DR*!DR
\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial
}\hskip 1.5\tabcolsep}+C="a"
434 \POS(
60,
0)*!UL
{\hbox{
436 \begin{tabular
}{|c|c|c|
}
438 \multicolumn{2}{|c|
}{type
} & fractional \\
440 \multicolumn{2}{|c|
}{size
} &
3 \\
442 \multicolumn{2}{|c|
}{pos
} & -
1 \\
444 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
0 \\
448 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
1 \\
452 \smash{\lower 6.25pt
\hbox{arr
[2]}} & d &
1 \\
459 +UL+<
0.5\tabcolsep,
0pt>*!UL
\hbox{\strut}+CL="b"
461 \POS"box2"+UR*!UR
{\hbox{
475 }+CD*!U
{\strut}+C="c"
476 \POS(
60,-
50)*!UL
{\hbox{
478 \begin{tabular
}{|c|c|c|
}
480 \multicolumn{2}{|c|
}{type
} & polynomial \\
482 \multicolumn{2}{|c|
}{size
} &
2 \\
484 \multicolumn{2}{|c|
}{pos
} &
1 \\
486 \smash{\lower 6.25pt
\hbox{arr
[0]}} & d &
1 \\
490 \smash{\lower 6.25pt
\hbox{arr
[1]}} & d &
2 \\
497 +UR-<
0.8\tabcolsep,
0pt>*!UR
\hbox{\strut}+CR="d"
499 \POS"box1"+UC*++!D
\hbox{\tt enode
}
500 \POS"box2"+UC*++!D
\hbox{\tt enode
}
501 \POS"box3"+UC*++!D
\hbox{\tt enode
}
503 \caption{The quasi-polynomial
504 $
\left(
1+
2 \left\
{\frac p
2\right\
}\right) p^
2 +
3 p +
\frac 5 2$.
}
510 The
\ai[\tt]{relation
} type is used to represent
\ai{stride
}s.
511 In particular, if the value of
\ai[\tt]{size
} is
2, then
512 the value of a
\ai[\tt]{relation
} is (in pseudo-code):
514 (value(arr
[0]) ==
0) ? value(arr
[1]) :
0
516 If the size is
3, then the value is:
518 (value(arr
[0]) ==
0) ? value(arr
[1]) : value(arr
[2])
520 The type of
\verb+arr
[0]+ is typically
\ai[\tt]{fractional
}.
522 Finally, the
\ai[\tt]{partition
} type is used to
523 represent piecewise quasi-polynomials.
524 We prefer to encode this information inside
\ai[\tt]{evalue
}s
526 rather than using
\ai[\tt]{Enumeration
}s since we want
527 to perform the same kinds of operations on both quasi-polynomials
528 and piecewise quasi-polynomials.
529 An
\ai[\tt]{enode
} of type
\ai[\tt]{partition
} may not be nested
530 inside another
\ai[\tt]{enode
}.
531 The size of the array is twice the number of ``chambers''.
532 Pointers to chambers are stored in the even slots,
533 whereas pointer to the associated quasi-polynomials
534 are stored in the odd slots.
535 To be able to store pointers to chambers, the
536 definition of
\ai[\tt]{evalue
} was changed as follows.
538 typedef struct _evalue
{
539 Value d; /* denominator */
541 Value n; /* numerator (if denominator >
0) */
542 struct _enode *p; /* pointer (if denominator ==
0) */
543 Polyhedron *D; /* domain (if denominator == -
1) */
547 Note that we allow a ``chamber'' to be a union of polyhedra
548 as discussed in
\citeN[Section~
4.5.1]{Verdoolaege2005PhD
}.
549 Chambers with extra variables, i.e., those of
550 \citeN[Section~
4.6.5]{Verdoolaege2005PhD
},
551 are only partially supported.
552 The field
\ai[\tt]{pos
} is set to the actual dimension,
553 i.e., the number of parameters.
555 \subsection{Operations on Quasi-polynomials
}
558 In this section we discuss some of the more important
559 operations on
\ai[\tt]{evalue
}s provided by the
561 Some of these operations are extensions
562 of the functions from
\PolyLib/ with the same name.
564 Most of these operation are also provided by
\isl/ on
565 \ai[\tt]{isl
\_pw\_qpolynomial}s, which are set to replace
566 \ai[\tt]{evalue
}s. Use
\ai[\tt]{isl
\_pw\_qpolynomial\_from\_evalue} to convert
567 from
\ai[\tt]{evalue
}s to
\ai[\tt]{isl
\_pw\_qpolynomial}s.
569 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_evalue(
570 __isl_take isl_space *dim, const evalue *e);
574 void eadd(const evalue *e1,evalue *res);
575 void emul(const evalue *e1, evalue *res);
577 The functions
\ai[\tt]{eadd
} and
\ai[\tt]{emul
} takes
578 two (pointers to)
\ai[\tt]{evalue
}s
\verb+e1+ and
\verb+res+
579 and computes their sum and product respectively.
580 The result is stored in
\verb+res+, overwriting (and deallocating)
581 the original value of
\verb+res+.
582 It is an error if exactly one of
583 the arguments of
\ai[\tt]{eadd
} is of type
\ai[\tt]{partition
}
584 (unless the other argument is
\verb+
0+).
585 The addition and multiplication operations are described
586 in
\citeN[Section~
4.5.1]{Verdoolaege2005PhD
}
587 and~
\citeN[Section~
4.5.2]{Verdoolaege2005PhD
}
590 The function
\ai[\tt]{eadd
} is an extension of the function
591 \ai[\tt]{new
\_eadd} from
\shortciteN{Seghir2002
}.
592 Apart from supporting the additional types from Section~
\ref{a:data
},
593 the new version also additionally imposes an order on the nesting of
594 different
\ai[\tt]{enode
}s.
595 Without such an ordering,
\ai[\tt]{evalue
}s could be constructed
596 representing for example
598 (
0 y^
0 + (
0 x^
0 +
1 x^
1 ) y^
1 ) x^
0 + (
0 y^
0 -
1 y^
1) x^
1
601 which is just a funny way of saying $
0$.
604 void eor(evalue *e1, evalue *res);
606 The function
\ai[\tt]{eor
} implements the
\ai{union
}
607 operation from
\citeN[Section~
4.5.3]{Verdoolaege2005PhD
}. Both arguments
608 are assumed to correspond to indicator functions.
611 evalue *esum(evalue *E, int nvar);
612 evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);
614 The function
\ai[\tt]{esum
} has been superseded by
615 \ai[\tt]{evalue
\_sum}.
616 The function
\ai[\tt]{evalue
\_sum} performs the summation
617 operation from
\citeN[Section~
4.5.4]{Verdoolaege2005PhD
}.
618 The piecewise step-polynomial represented by
\verb+E+ is summated
619 over its first
\verb+nvar+ variables.
620 Note that
\verb+E+ must be zero or of type
\ai[\tt]{partition
}.
621 The function returns the result in a newly allocated
623 Note also that
\verb+E+ needs to have been converted
624 from
\ai[\tt]{fractional
}s to
\ai[\tt]{flooring
}s using
625 the function
\ai[\tt]{evalue
\_frac2floor}.
627 void evalue_frac2floor(evalue *e);
629 This function also ensures that the arguments of the
630 \ai[\tt]{flooring
}s are positive in the relevant chambers.
631 It currently assumes that the argument of each
632 \ai[\tt]{fractional
} in the original
\ai[\tt]{evalue
}
633 has a minimum in the corresponding chamber.
636 double compute_evalue(const evalue *e, Value *list_args);
637 Value *compute_poly(Enumeration *en,Value *list_args);
638 evalue *evalue_eval(const evalue *e, Value *values);
640 The functions
\ai[\tt]{compute
\_evalue},
641 \ai[\tt]{compute
\_poly} and
642 \ai[\tt]{evalue
\_eval}
643 evaluate a (piecewise) quasi-polynomial
644 at a certain point. The argument
\verb+list_args+
645 points to an array of
\ai[\tt]{Value
}s that is assumed
647 The
\verb+double+ return value of
\ai[\tt]{compute
\_evalue}
648 is inherited from
\PolyLib/.
651 void print_evalue(FILE *DST, const evalue *e, char **pname);
653 The function
\ai[\tt]{print
\_evalue} dumps a human-readable
654 representation to the stream pointed to by
\verb+DST+.
655 The argument
\verb+pname+ points
656 to an array of character strings representing the parameter names.
657 The array is assumed to be long enough.
660 int eequal(const evalue *e1, const evalue *e2);
662 The function
\ai[\tt]{eequal
} return true (
\verb+
1+) if its
663 two arguments are structurally identical.
664 I.e., it does
{\em not\/
} check whether the two
665 (piecewise) quasi-polynomial represent the same function.
668 void reduce_evalue (evalue *e);
670 The function
\ai[\tt]{reduce
\_evalue} performs some
671 simplifications on
\ai[\tt]{evalue
}s.
672 Here, we only describe the simplifications that are directly
673 related to the internal representation.
674 Some other simplifications are explained in
675 \citeN[Section~
4.7.2]{Verdoolaege2005PhD
}.
676 If the highest order coefficients of a
\ai[\tt]{polynomial
},
677 \ai[\tt]{fractional
} or
\ai[\tt]{flooring
} are zero (possibly
678 after some other simplifications), then the size of the array
679 is reduced. If only the constant term remains, i.e.,
680 the size is reduced to $
1$ for
\ai[\tt]{polynomial
} or to $
2$
681 for the other types, then the whole node is replaced by
683 Additionally, if the argument of a
\ai[\tt]{fractional
}
684 has been reduced to a constant, then the whole node
685 is replaced by its partial evaluation.
686 A
\ai[\tt]{relation
} is similarly reduced if its second
687 branch or both its branches are zero.
688 Chambers with zero associated quasi-polynomials are
689 discarded from a
\ai[\tt]{partition
}.
691 \subsection{Generating Functions
}
693 The representation of
\rgf/s uses
694 some basic types from the
\ai[\tt]{NTL
} library
\shortcite{NTL
}
695 for representing arbitrary precision integers
697 as well as vectors (
\ai[\tt]{vec
\_ZZ}) and matrices (
\ai[\tt]{mat
\_ZZ})
699 We further introduces a type
\ai[\tt]{QQ
} for representing a rational
700 number and use vectors (
\ai[\tt]{vec
\_QQ}) of such numbers.
707 NTL_vector_decl(QQ,vec_QQ);
710 Each term in a
\rgf/ is represented by a
\ai[\tt]{short
\_rat}
715 /* rows: terms in numerator */
720 /* rows: factors in denominator */
725 The fields
\ai[\tt]{n
} and
\ai[\tt]{d
} represent the
726 numerator and the denominator respectively.
727 Note that in our implementation we combine terms
728 with the same denominator.
729 In the numerator, each element of
\ai[\tt]{coeff
} and each row of
\ai[\tt]{power
}
730 represents a single such term.
731 The vector
\ai[\tt]{coeff
} contains the rational coefficients
732 $
\alpha_i$ of each term.
733 The columns of
\ai[\tt]{power
} correspond to the powers
735 In the denominator, each row of
\ai[\tt]{power
}
736 corresponds to the power $
\vec b_
{ij
}$ of a
737 factor in the denominator.
741 shows the internal representation of
743 \frac{\frac 3 2 \, x_0^
2 x_1^
3 +
2 \, x_0^
5 x_1^
{-
7}}
744 { (
1 - x_0 x_1^
{-
3}) (
1 - x_1^
2)
}
750 \begin{minipage
}{0cm
}
754 \begin{tabular
}{|c|c|c|
}
769 }+UC*++!D
\hbox{\tt short
\_rat}
773 \caption{Representation of
775 \left(
\frac 3 2 \, x_0^
2 x_1^
3 +
2 \, x_0^
5 x_1^
{-
7}\right)
776 /
\left( (
1 - x_0 x_1^
{-
3}) (
1 - x_1^
2)
\right)
783 The whole
\rgf/ is represented by a
\ai[\tt]{gen
\_fun}
786 typedef std::set<short_rat *,
787 short_rat_lex_smaller_denominator > short_rat_list;
793 void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
794 void add(short_rat *r);
795 void add(const QQ& c, const gen_fun *gf,
796 barvinok_options *options);
797 void substitute(Matrix *CP);
798 gen_fun *Hadamard_product(const gen_fun *gf,
799 barvinok_options *options);
800 void print(std::ostream& os,
801 unsigned int nparam, char **param_name) const;
802 operator evalue *() const;
803 ZZ coefficient(Value* params, barvinok_options *options) const;
804 void coefficient(Value* params, Value* c) const;
806 gen_fun(Polyhedron *C);
808 gen_fun(const gen_fun *gf);
812 A new
\ai[\tt]{gen
\_fun} can be constructed either as empty
\rgf/ (possibly
813 with a given context
\verb+C+), as a copy of an existing
\rgf/
\verb+gf+, or as
814 constant
\rgf/ with value for the constant term specified by
\verb+c+.
816 The first
\ai[\tt]{gen
\_fun::add
} method adds a new term to the
\rgf/,
817 described by the coefficient
\verb+c+, the numerator
\verb+num+ and the
818 denominator
\verb+den+.
819 It makes all powers in the denominator lexico-positive,
820 orders them in lexicographical order and inserts the new
821 term in
\ai[\tt]{term
} according to the lexicographical
822 order of the combined powers in the denominator.
823 The second
\ai[\tt]{gen
\_fun::add
} method adds
\verb+c+ times
\verb+gf+
826 The method
\ai[\tt]{gen
\_fun::operator evalue *
} performs
827 the conversion from
\rgf/ to
\psp/ explained in
828 \citeN[Section~
4.5.5]{Verdoolaege2005PhD
}.
829 The
\ai[\tt]{Polyhedron
} \ai[\tt]{context
} is the superset
830 of all points where the enumerator is non-zero used during this conversion,
831 i.e., it is the set $Q$ from
\citeN[Equation~
4.31]{Verdoolaege2005PhD
}.
832 If
\ai[\tt]{context
} is
\verb+NULL+ the maximal
833 allowed context is assumed, i.e., the maximal
834 region with lexico-positive rays.
836 The method
\ai[\tt]{gen
\_fun::coefficient
} computes the coefficient
837 of the term with power given by
\verb+params+ and stores the result
839 This method performs essentially the same computations as
840 \ai[\tt]{gen
\_fun::operator evalue *
}, except that it adds extra
841 equality constraints based on the specified values for the power.
843 The method
\ai[\tt]{gen
\_fun::substitute
} performs the
844 \ai{monomial substitution
} specified by the homogeneous matrix
\verb+CP+
845 that maps a set of ``
\ai{compressed parameter
}s''
\shortcite{Meister2004PhD
}
846 to the original set of parameters.
847 That is, if we are given a
\rgf/ $G(
\vec z)$ that encodes the
848 explicit function $g(
\vec i')$, where $
\vec i'$ are the coordinates of
849 the transformed space, and
\verb+CP+ represents the map
850 $
\vec i = A
\vec i' +
\vec a$ back to the original space with coordinates $
\vec i$,
851 then this method transforms the
\rgf/ to $F(
\vec x)$ encoding the
852 same explicit function $f(
\vec i)$, i.e.,
853 $$f(
\vec i) = f(A
\vec i' +
\vec a) = g(
\vec i ').$$
854 This means that the coefficient of the term
855 $
\vec x^
{\vec i
} =
\vec x^
{A
\vec i' +
\vec a
}$ in $F(
\vec x)$ should be equal to the
856 coefficient of the term $
\vec z^
{\vec i'
}$ in $G(
\vec z)$.
860 \sum_i \epsilon_i \frac{\vec z^
{\vec v_i
}}{\prod_j (
1-
\vec z^
{\vec b_
{ij
}})
}
865 \sum_i \epsilon_i \frac{\vec x^
{A
\vec v_i +
\vec a
}}
866 {\prod_j (
1-
\vec x^
{A
\vec b_
{ij
}})
}
870 The method
\ai[\tt]{gen
\_fun::Hadamard
\_product} computes the
871 \ai{Hadamard product
} of the current
\rgf/ with the
\rgf/
\verb+gf+,
872 as explained in
\citeN[Section~
4.5.2]{Verdoolaege2005PhD
}.
874 \subsection{Counting Functions
}
875 \label{a:counting:functions
}
877 Our library provides essentially three different counting functions:
878 one for non-parametric polytopes, one for parametric polytopes
879 and one for parametric sets with existential variables.
880 The old versions of these functions have a ``
\ai[\tt]{MaxRays
}''
881 argument, while the new versions have a more general
882 \ai[\tt]{barvinok
\_options} argument.
883 For more information on
\ai[\tt]{barvinok
\_options}, see Section~
\ref{a:options
}.
886 void barvinok_count(Polyhedron *P, Value* result,
888 void barvinok_count_with_options(Polyhedron *P, Value* result,
889 struct barvinok_options *options);
891 The function
\ai[\tt]{barvinok
\_count} or
892 \ai[\tt]{barvinok
\_count\_with\_options} enumerates the non-parametric
893 polytope
\verb+P+ and returns the result in the
\ai[\tt]{Value
}
894 pointed to by
\verb+result+, which needs to have been allocated
896 If
\verb+P+ is a union, then only the first set in the union will
897 be taken into account.
898 For the meaning of the argument
\verb+NbMaxCons+, see
899 the discussion on
\ai[\tt]{MaxRays
} in Section~
\ref{a:options
}.
901 The function
\ai[\tt]{barvinok
\_enumerate} for enumerating
902 parametric polytopes was meant to be
903 a drop-in replacement of
\PolyLib/'s
\ai[\tt]{Polyhedron
\_Enumerate}
905 Unfortunately, the latter has been changed to
906 accept an extra argument in recent versions of
\PolyLib/ as shown below.
908 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
910 extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
911 Polyhedron *C, unsigned MAXRAYS, char **pname);
913 The argument
\verb+MaxRays+ has the same meaning as the argument
914 \verb+NbMaxCons+ above.
915 The argument
\verb+P+ refers to the $(d+n)$-dimensional
916 polyhedron defining the parametric polytope.
917 The argument
\verb+C+ is an $n$-dimensional polyhedron containing
918 extra constraints on the parameter space.
919 Its primary use is to indicate how many of the dimensions
920 in
\verb+P+ refer to parameters as any constraint in
\verb+C+
921 could equally well have been added to
\verb+P+ itself.
922 Note that the dimensions referring to the parameters should
924 If either
\verb+P+ or
\verb+C+ is a union,
925 then only the first set in the union will be taken into account.
926 The result is a newly allocated
\ai[\tt]{Enumeration
}.
927 As an alternative we also provide a function
928 (
\ai[\tt]{barvinok
\_enumerate\_ev} or
929 \ai[\tt]{barvinok
\_enumerate\_with\_options}) that returns
932 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
934 evalue* barvinok_enumerate_with_options(Polyhedron *P,
935 Polyhedron* C, struct barvinok_options *options);
938 For enumerating parametric sets with existentially quantified variables,
939 we provide two functions:
940 \ai[\tt]{barvinok
\_enumerate\_e},
942 \ai[\tt]{barvinok
\_enumerate\_isl}.
944 evalue* barvinok_enumerate_e(Polyhedron *P,
945 unsigned exist, unsigned nparam, unsigned MaxRays);
946 evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
947 unsigned exist, unsigned nparam,
948 struct barvinok_options *options);
949 evalue *barvinok_enumerate_isl(Polyhedron *P,
950 unsigned exist, unsigned nparam,
951 struct barvinok_options *options);
952 evalue *barvinok_enumerate_scarf(Polyhedron *P,
953 unsigned exist, unsigned nparam,
954 struct barvinok_options *options);
956 The first function tries the simplification rules from
957 \citeN[Section~
4.6.2]{Verdoolaege2005PhD
} before resorting to the method
958 based on
\indac{PIP
} from
\citeN[Section~
4.6.3]{Verdoolaege2005PhD
}.
959 The second function immediately applies the technique from
960 \citeN[Section~
4.6.3]{Verdoolaege2005PhD
}.
961 The argument
\verb+exist+ refers to the number of existential variables,
963 the argument
\verb+nparam+ refers to the number of parameters.
964 The order of the dimensions in
\verb+P+ is:
965 counted variables first, then existential variables and finally
967 The function
\ai[\tt]{barvinok
\_enumerate\_scarf} performs the same
968 computation as the function
\ai[\tt]{barvinok
\_enumerate\_scarf\_series}
969 below, but produces an explicit representation instead of a generating function.
972 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
974 gen_fun * barvinok_series_with_options(Polyhedron *P,
975 Polyhedron* C, barvinok_options *options);
976 gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
977 unsigned exist, unsigned nparam,
978 barvinok_options *options);
979 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
980 unsigned exist, unsigned nparam,
981 barvinok_options *options);
984 \ai[\tt]{barvinok
\_series} or
985 \ai[\tt]{barvinok
\_series\_with\_options} enumerates parametric polytopes
986 in the form of a
\rgf/.
987 The polyhedron
\verb+P+ is assumed to have only
988 revlex-positive rays.
990 The function
\ai[\tt]{barvinok
\_enumerate\_e\_series} computes a
991 generating function for the number of point in the parametric set
992 defined by
\verb+P+ with
\verb+exist+ existentially quantified
993 variables using the
\ai{projection theorem
}, as explained
994 in
\autoref{s:projection
}.
995 The function
\ai[\tt]{barvinok
\_enumerate\_scarf\_series} computes a
996 generating function for the number of point in the parametric set
997 defined by
\verb+P+ with
\verb+exist+ existentially quantified
998 variables, which is assumed to be
2.
999 This function implements the technique of
1000 \shortciteN{Scarf2006Neighborhood
} using the
\ai{neighborhood complex
}
1001 description of
\shortciteN{Scarf1981indivisibilities:II
}.
1002 It is currently restricted to problems with
3 or
4 constraints involving
1003 the existentially quantified variables.
1005 \subsection{Auxiliary Functions
}
1007 In this section we briefly mention some auxiliary functions
1008 available in the
\barvinok/ library.
1011 void Polyhedron_Polarize(Polyhedron *P);
1013 The function
\ai[\tt]{Polyhedron
\_Polarize}
1014 polarizes its argument and is explained
1015 in
\citeN[Section~
4.4.2]{Verdoolaege2005PhD
}.
1018 int unimodular_complete(Matrix *M, int row);
1020 The function
\ai[\tt]{unimodular
\_complete} extends
1021 the first
\verb+row+ rows of
1022 \verb+M+ with an integral basis of the orthogonal complement
1023 as explained in Section~
\ref{s:completion
}.
1025 if the resulting matrix is unimodular
\index{unimodular matrix
}.
1028 int DomainIncludes(Polyhedron *D1, Polyhedron *D2);
1030 The function
\ai[\tt]{DomainIncludes
} extends
1031 the function
\ai[\tt]{PolyhedronIncludes
}
1032 provided by
\PolyLib/
1033 to unions of polyhedra.
1034 It checks whether every polyhedron in the union
{\tt D2
}
1035 is included in some polyhedron of
{\tt D1
}.
1038 Polyhedron *DomainConstraintSimplify(Polyhedron *P,
1041 The value returned by
1042 \ai[\tt]{DomainConstraintSimplify
} is a pointer to
1043 a newly allocated
\ai[\tt]{Polyhedron
} that contains the
1044 same integer points as its first argument but possibly
1045 has simpler constraints.
1046 Each constraint $ g
\sp a x
\ge c $
1047 is replaced by $
\sp a x
\ge \ceil{ \frac c g
} $,
1048 where $g$ is the
\ac{gcd
} of the coefficients in the original
1050 The
\ai[\tt]{Polyhedron
} pointed to by
\verb+P+ is destroyed.
1053 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);
1055 The function
\ai[\tt]{Polyhedron
\_Project} projects
1056 \verb+P+ onto its last
\verb+dim+ dimensions.
1059 Matrix *left_inverse(Matrix *M, Matrix **Eq);
1061 The
\ai[\tt]{left
\_inverse} function computes the left inverse
1062 of
\verb+M+ as explained in Section~
\ref{s:inverse
}.
1064 \sindex{reduced
}{basis
}
1065 \sindex{generalized
}{reduced basis
}
1067 Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
1068 struct barvinok_options *options);
1070 \ai[\tt]{Polyhedron
\_Reduced\_Basis} computes
1071 a
\ai{generalized reduced basis
} of
{\tt P
}, which
1072 is assumed to be a polytope, using the algorithm
1073 of~
\shortciteN{Cook1993implementation
}.
1074 See
\autoref{s:feasibility
} for more information.
1075 The basis vectors are stored in the rows of the matrix returned.
1078 Vector *Polyhedron_Sample(Polyhedron *P,
1079 struct barvinok_options *options);
1081 \ai[\tt]{Polyhedron
\_Sample} returns an
\ai{integer point
} of
{\tt P
}
1082 or
{\tt NULL
} if
{\tt P
} contains no integer points.
1083 The integer point is found using the algorithm
1084 of~
\shortciteN{Cook1993implementation
} and uses
1085 \ai[\tt]{Polyhedron
\_Reduced\_Basis} to compute the reduced bases.
1086 See
\autoref{s:feasibility
} for more information.