2 ******************************************************************************
3 * @addtogroup PIOS PIOS Core hardware abstraction layer
5 * @addtogroup PIOS_BMI160 BMI160 Functions
6 * @brief Hardware functions to deal with the 6DOF gyro / accel sensor
10 * @author dRonin, http://dRonin.org/, Copyright (C) 2016
11 * @brief BMI160 Gyro / Accel Sensor Routines
12 * @see The GNU Public License (GPL) Version 3
13 ******************************************************************************/
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 3 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful, but
22 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
23 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
26 * You should have received a copy of the GNU General Public License along
27 * with this program; if not, write to the Free Software Foundation, Inc.,
28 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 * Additional note on redistribution: The copyright and license notices above
31 * must be maintained in each individual source file that is a derivative work
32 * of this source file; otherwise redistribution is prohibited.
42 #ifdef USE_ACCGYRO_BMI160
44 #include "drivers/accgyro/accgyro.h"
45 #include "drivers/accgyro/accgyro_spi_bmi160.h"
46 #include "drivers/bus_spi.h"
47 #include "drivers/exti.h"
48 #include "drivers/io.h"
49 #include "drivers/io_impl.h"
50 #include "drivers/nvic.h"
51 #include "drivers/sensor.h"
52 #include "drivers/system.h"
53 #include "drivers/time.h"
55 #include "sensors/gyro.h"
57 // 10 MHz max SPI frequency
58 #define BMI160_MAX_SPI_CLK_HZ 10000000
60 /* BMI160 Registers */
61 #define BMI160_REG_CHIPID 0x00
62 #define BMI160_REG_PMU_STAT 0x03
63 #define BMI160_REG_GYR_DATA_X_LSB 0x0C
64 #define BMI160_REG_ACC_DATA_X_LSB 0x12
65 #define BMI160_REG_STATUS 0x1B
66 #define BMI160_REG_TEMPERATURE_0 0x20
67 #define BMI160_REG_ACC_CONF 0x40
68 #define BMI160_REG_ACC_RANGE 0x41
69 #define BMI160_REG_GYR_CONF 0x42
70 #define BMI160_REG_GYR_RANGE 0x43
71 #define BMI160_REG_INT_EN1 0x51
72 #define BMI160_REG_INT_OUT_CTRL 0x53
73 #define BMI160_REG_INT_MAP1 0x56
74 #define BMI160_REG_FOC_CONF 0x69
75 #define BMI160_REG_CONF 0x6A
76 #define BMI160_REG_OFFSET_0 0x77
77 #define BMI160_REG_CMD 0x7E
80 #define BMI160_PMU_CMD_PMU_ACC_NORMAL 0x11
81 #define BMI160_PMU_CMD_PMU_GYR_NORMAL 0x15
82 #define BMI160_INT_EN1_DRDY 0x10
83 #define BMI160_INT_OUT_CTRL_INT1_CONFIG 0x0A
84 #define BMI160_REG_INT_MAP1_INT1_DRDY 0x80
85 #define BMI160_CMD_START_FOC 0x03
86 #define BMI160_CMD_PROG_NVM 0xA0
87 #define BMI160_REG_STATUS_NVM_RDY 0x10
88 #define BMI160_REG_STATUS_FOC_RDY 0x08
89 #define BMI160_REG_CONF_NVM_PROG_EN 0x02
90 #define BMI160_VAL_GYRO_CONF_BWP_OSR4 0x00
91 #define BMI160_VAL_GYRO_CONF_BWP_OSR2 0x10
92 #define BMI160_VAL_GYRO_CONF_BWP_NORM 0x20
93 #define BMI160_VAL_ACC_CONF_BWP_OSR4 0x00
94 #define BMI160_VAL_ACC_CONF_BWP_OSR2 0x10
95 #define BMI160_VAL_ACC_CONF_BWP_NORM 0x20
96 #define BMI160_VAL_ACC_CONF_US_HP 0x00
98 // Need to see at least this many interrupts during initialisation to confirm EXTI connectivity
99 #define GYRO_EXTI_DETECT_THRESHOLD 1000
102 static volatile bool BMI160InitDone
= false;
103 static volatile bool BMI160Detected
= false;
105 //! Private functions
106 static int32_t BMI160_Config(const extDevice_t
*dev
);
107 static int32_t BMI160_do_foc(const extDevice_t
*dev
);
109 uint8_t bmi160Detect(const extDevice_t
*dev
)
111 if (BMI160Detected
) {
115 // Toggle CS to activate SPI (see https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi160-ds000.pdf section 3.2.1)
118 delay(100); // Give SPI some time to start up
121 if (spiReadRegMsk(dev
, BMI160_REG_CHIPID
) != 0xd1) {
125 BMI160Detected
= true;
131 * @brief Initialize the BMI160 6-axis sensor.
132 * @return 0 for success, -1 for failure to allocate, -10 for failure to get irq
134 static void BMI160_Init(const extDevice_t
*dev
)
136 if (BMI160InitDone
|| !BMI160Detected
) {
140 /* Configure the BMI160 Sensor */
141 if (BMI160_Config(dev
) != 0) {
147 /* Perform fast offset compensation if requested */
152 BMI160InitDone
= true;
155 static uint8_t getBmiOsrMode(void)
157 switch(gyroConfig()->gyro_hardware_lpf
) {
158 case GYRO_HARDWARE_LPF_NORMAL
:
159 return BMI160_VAL_GYRO_CONF_BWP_OSR4
;
160 case GYRO_HARDWARE_LPF_OPTION_1
:
161 return BMI160_VAL_GYRO_CONF_BWP_OSR2
;
162 case GYRO_HARDWARE_LPF_OPTION_2
:
163 return BMI160_VAL_GYRO_CONF_BWP_NORM
;
164 #ifdef USE_GYRO_DLPF_EXPERIMENTAL
165 case GYRO_HARDWARE_LPF_EXPERIMENTAL
:
166 return BMI160_VAL_GYRO_CONF_BWP_NORM
;
169 return BMI160_VAL_GYRO_CONF_BWP_OSR4
;
174 * @brief Configure the sensor
176 static int32_t BMI160_Config(const extDevice_t
*dev
)
178 // Set normal power mode for gyro and accelerometer
179 spiWriteReg(dev
, BMI160_REG_CMD
, BMI160_PMU_CMD_PMU_GYR_NORMAL
);
180 delay(100); // can take up to 80ms
182 spiWriteReg(dev
, BMI160_REG_CMD
, BMI160_PMU_CMD_PMU_ACC_NORMAL
);
183 delay(5); // can take up to 3.8ms
185 // Verify that normal power mode was entered
186 uint8_t pmu_status
= spiReadRegMsk(dev
, BMI160_REG_PMU_STAT
);
187 if ((pmu_status
& 0x3C) != 0x14) {
191 // Set odr and ranges
192 // Set acc_us = 0 & acc_bwp = 0b001 for high performance and OSR2 mode
193 spiWriteReg(dev
, BMI160_REG_ACC_CONF
, BMI160_VAL_ACC_CONF_US_HP
| BMI160_VAL_ACC_CONF_BWP_OSR2
| BMI160_ODR_800_Hz
);
196 spiWriteReg(dev
, BMI160_REG_GYR_CONF
, getBmiOsrMode() | BMI160_ODR_3200_Hz
);
199 spiWriteReg(dev
, BMI160_REG_ACC_RANGE
, BMI160_RANGE_8G
);
202 spiWriteReg(dev
, BMI160_REG_GYR_RANGE
, BMI160_RANGE_2000DPS
);
205 // Enable offset compensation
206 uint8_t val
= spiReadRegMsk(dev
, BMI160_REG_OFFSET_0
);
207 spiWriteReg(dev
, BMI160_REG_OFFSET_0
, val
| 0xC0);
209 // Enable data ready interrupt
210 spiWriteReg(dev
, BMI160_REG_INT_EN1
, BMI160_INT_EN1_DRDY
);
214 spiWriteReg(dev
, BMI160_REG_INT_OUT_CTRL
, BMI160_INT_OUT_CTRL_INT1_CONFIG
);
217 // Map data ready interrupt to INT1 pin
218 spiWriteReg(dev
, BMI160_REG_INT_MAP1
, BMI160_REG_INT_MAP1_INT1_DRDY
);
224 static int32_t BMI160_do_foc(const extDevice_t
*dev
)
226 // assume sensor is mounted on top
228 spiWriteReg(dev
, BMI160_REG_FOC_CONF
, val
);
231 spiWriteReg(dev
, BMI160_REG_CMD
, BMI160_CMD_START_FOC
);
233 // Wait for FOC to complete
234 for (int i
=0; i
<50; i
++) {
235 val
= spiReadRegMsk(dev
, BMI160_REG_STATUS
);
236 if (val
& BMI160_REG_STATUS_FOC_RDY
) {
241 if (!(val
& BMI160_REG_STATUS_FOC_RDY
)) {
246 val
= spiReadRegMsk(dev
, BMI160_REG_CONF
);
247 spiWriteReg(dev
, BMI160_REG_CONF
, val
| BMI160_REG_CONF_NVM_PROG_EN
);
249 spiWriteReg(dev
, BMI160_REG_CMD
, BMI160_CMD_PROG_NVM
);
251 // Wait for NVM programming to complete
252 for (int i
=0; i
<50; i
++) {
253 val
= spiReadRegMsk(dev
, BMI160_REG_STATUS
);
254 if (val
& BMI160_REG_STATUS_NVM_RDY
) {
259 if (!(val
& BMI160_REG_STATUS_NVM_RDY
)) {
266 extiCallbackRec_t bmi160IntCallbackRec
;
268 // Called in ISR context
269 // Gyro read has just completed
270 busStatus_e
bmi160Intcallback(uint32_t arg
)
272 gyroDev_t
*gyro
= (gyroDev_t
*)arg
;
273 int32_t gyroDmaDuration
= cmpTimeCycles(getCycleCounter(), gyro
->gyroLastEXTI
);
275 if (gyroDmaDuration
> gyro
->gyroDmaMaxDuration
) {
276 gyro
->gyroDmaMaxDuration
= gyroDmaDuration
;
279 gyro
->dataReady
= true;
284 void bmi160ExtiHandler(extiCallbackRec_t
*cb
)
286 gyroDev_t
*gyro
= container_of(cb
, gyroDev_t
, exti
);
287 extDevice_t
*dev
= &gyro
->dev
;
289 // Ideally we'd use a timer to capture such information, but unfortunately the port used for EXTI interrupt does
290 // not have an associated timer
291 uint32_t nowCycles
= getCycleCounter();
292 gyro
->gyroSyncEXTI
= gyro
->gyroLastEXTI
+ gyro
->gyroDmaMaxDuration
;
293 gyro
->gyroLastEXTI
= nowCycles
;
295 if (gyro
->gyroModeSPI
== GYRO_EXTI_INT_DMA
) {
296 spiSequence(dev
, gyro
->segments
);
299 gyro
->detectedEXTI
++;
303 static void bmi160IntExtiInit(gyroDev_t
*gyro
)
305 if (gyro
->mpuIntExtiTag
== IO_TAG_NONE
) {
309 IO_t mpuIntIO
= IOGetByTag(gyro
->mpuIntExtiTag
);
311 IOInit(mpuIntIO
, OWNER_GYRO_EXTI
, 0);
312 EXTIHandlerInit(&gyro
->exti
, bmi160ExtiHandler
);
313 EXTIConfig(mpuIntIO
, &gyro
->exti
, NVIC_PRIO_MPU_INT_EXTI
, IOCFG_IN_FLOATING
, BETAFLIGHT_EXTI_TRIGGER_RISING
);
314 EXTIEnable(mpuIntIO
);
317 static bool bmi160AccRead(accDev_t
*acc
)
319 extDevice_t
*dev
= &acc
->gyro
->dev
;
321 switch (acc
->gyro
->gyroModeSPI
) {
323 case GYRO_EXTI_NO_INT
:
325 dev
->txBuf
[1] = BMI160_REG_ACC_DATA_X_LSB
| 0x80;
327 busSegment_t segments
[] = {
328 {.u
.buffers
= {NULL
, NULL
}, 7, true, NULL
},
329 {.u
.link
= {NULL
, NULL
}, 0, true, NULL
},
331 segments
[0].u
.buffers
.txData
= &dev
->txBuf
[1];
332 segments
[0].u
.buffers
.rxData
= &dev
->rxBuf
[1];
334 spiSequence(&acc
->gyro
->dev
, &segments
[0]);
336 // Wait for completion
337 spiWait(&acc
->gyro
->dev
);
339 int16_t *accData
= (int16_t *)dev
->rxBuf
;
340 acc
->ADCRaw
[X
] = accData
[1];
341 acc
->ADCRaw
[Y
] = accData
[2];
342 acc
->ADCRaw
[Z
] = accData
[3];
346 case GYRO_EXTI_INT_DMA
:
348 // If read was triggered in interrupt don't bother waiting. The worst that could happen is that we pick
351 // This data was read from the gyro, which is the same SPI device as the acc
352 int16_t *accData
= (int16_t *)dev
->rxBuf
;
353 acc
->ADCRaw
[X
] = accData
[4];
354 acc
->ADCRaw
[Y
] = accData
[5];
355 acc
->ADCRaw
[Z
] = accData
[6];
367 static bool bmi160GyroRead(gyroDev_t
*gyro
)
369 extDevice_t
*dev
= &gyro
->dev
;
370 int16_t *gyroData
= (int16_t *)dev
->rxBuf
;
371 switch (gyro
->gyroModeSPI
) {
374 // Initialise the tx buffer to all 0x00
375 memset(dev
->txBuf
, 0x00, 14);
377 // Check that minimum number of interrupts have been detected
379 // We need some offset from the gyro interrupts to ensure sampling after the interrupt
380 gyro
->gyroDmaMaxDuration
= 5;
381 // Using DMA for gyro access upsets the scheduler on the F4
382 if (gyro
->detectedEXTI
> GYRO_EXTI_DETECT_THRESHOLD
) {
383 if (spiUseDMA(dev
)) {
384 dev
->callbackArg
= (uint32_t)gyro
;
385 dev
->txBuf
[1] = BMI160_REG_GYR_DATA_X_LSB
| 0x80;
386 gyro
->segments
[0].len
= 13;
387 gyro
->segments
[0].callback
= bmi160Intcallback
;
388 gyro
->segments
[0].u
.buffers
.txData
= &dev
->txBuf
[1];
389 gyro
->segments
[0].u
.buffers
.rxData
= &dev
->rxBuf
[1];
390 gyro
->segments
[0].negateCS
= true;
391 gyro
->gyroModeSPI
= GYRO_EXTI_INT_DMA
;
393 // Interrupts are present, but no DMA
394 gyro
->gyroModeSPI
= GYRO_EXTI_INT
;
397 gyro
->gyroModeSPI
= GYRO_EXTI_NO_INT
;
403 case GYRO_EXTI_NO_INT
:
405 dev
->txBuf
[1] = BMI160_REG_GYR_DATA_X_LSB
| 0x80;
407 busSegment_t segments
[] = {
408 {.u
.buffers
= {NULL
, NULL
}, 7, true, NULL
},
409 {.u
.link
= {NULL
, NULL
}, 0, true, NULL
},
411 segments
[0].u
.buffers
.txData
= &dev
->txBuf
[1];
412 segments
[0].u
.buffers
.rxData
= &dev
->rxBuf
[1];
414 spiSequence(dev
, &segments
[0]);
416 // Wait for completion
423 case GYRO_EXTI_INT_DMA
:
425 // If read was triggered in interrupt don't bother waiting. The worst that could happen is that we pick
427 gyro
->gyroADCRaw
[X
] = gyroData
[1];
428 gyro
->gyroADCRaw
[Y
] = gyroData
[2];
429 gyro
->gyroADCRaw
[Z
] = gyroData
[3];
440 void bmi160SpiGyroInit(gyroDev_t
*gyro
)
442 extDevice_t
*dev
= &gyro
->dev
;
445 bmi160IntExtiInit(gyro
);
447 spiSetClkDivisor(dev
, spiCalculateDivider(BMI160_MAX_SPI_CLK_HZ
));
450 void bmi160SpiAccInit(accDev_t
*acc
)
452 acc
->acc_1G
= 512 * 8;
455 bool bmi160SpiAccDetect(accDev_t
*acc
)
457 if (acc
->mpuDetectionResult
.sensor
!= BMI_160_SPI
) {
461 acc
->initFn
= bmi160SpiAccInit
;
462 acc
->readFn
= bmi160AccRead
;
467 bool bmi160SpiGyroDetect(gyroDev_t
*gyro
)
469 if (gyro
->mpuDetectionResult
.sensor
!= BMI_160_SPI
) {
473 gyro
->initFn
= bmi160SpiGyroInit
;
474 gyro
->readFn
= bmi160GyroRead
;
475 gyro
->scale
= GYRO_SCALE_2000DPS
;
479 #endif // USE_ACCGYRO_BMI160