(Ada) Fix resolving of homonym components in tagged types
[binutils-gdb.git] / gdb / iq2000-tdep.c
blob9f7f35d287c64100a2090aeb552aaff15672b701
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
4 Copyright (C) 2000-2018 Free Software Foundation, Inc.
6 Contributed by Red Hat.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
36 enum gdb_regnum
38 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
39 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
40 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
41 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46 E_PC_REGNUM,
47 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
48 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
49 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
50 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
51 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
52 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
53 E_NUM_REGS = E_PC_REGNUM + 1
56 /* Use an invalid address value as 'not available' marker. */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
59 struct iq2000_frame_cache
61 /* Base address. */
62 CORE_ADDR base;
63 CORE_ADDR pc;
64 LONGEST framesize;
65 int using_fp;
66 CORE_ADDR saved_sp;
67 CORE_ADDR saved_regs [E_NUM_REGS];
70 /* Harvard methods: */
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
75 return addr & 0x7fffffffL;
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
81 return (ptr & 0x7fffffffL) | 0x80000000L;
84 /* Function: pointer_to_address
85 Convert a target pointer to an address in host (CORE_ADDR) format. */
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 struct type * type, const gdb_byte * buf)
91 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
93 CORE_ADDR addr
94 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
99 addr = insn_addr_from_ptr (addr);
101 return addr;
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 struct type *type, gdb_byte *buf, CORE_ADDR addr)
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
114 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115 addr = insn_ptr_from_addr (addr);
116 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
119 /* Real register methods: */
121 /* Function: register_name
122 Returns the name of the iq2000 register number N. */
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
127 static const char * names[E_NUM_REGS] =
129 "r0", "r1", "r2", "r3", "r4",
130 "r5", "r6", "r7", "r8", "r9",
131 "r10", "r11", "r12", "r13", "r14",
132 "r15", "r16", "r17", "r18", "r19",
133 "r20", "r21", "r22", "r23", "r24",
134 "r25", "r26", "r27", "r28", "r29",
135 "r30", "r31",
136 "pc"
138 if (regnum < 0 || regnum >= E_NUM_REGS)
139 return NULL;
140 return names[regnum];
143 /* Prologue analysis methods: */
145 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
146 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
147 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
148 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
149 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
151 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
152 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
153 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
154 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
156 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
157 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
158 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
159 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
160 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
162 /* Function: find_last_line_symbol
164 Given an address range, first find a line symbol corresponding to
165 the starting address. Then find the last line symbol within the
166 range that has a line number less than or equal to the first line.
168 For optimized code with code motion, this finds the last address
169 for the lowest-numbered line within the address range. */
171 static struct symtab_and_line
172 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
174 struct symtab_and_line sal = find_pc_line (start, notcurrent);
175 struct symtab_and_line best_sal = sal;
177 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
178 return sal;
182 if (sal.line && sal.line <= best_sal.line)
183 best_sal = sal;
184 sal = find_pc_line (sal.end, notcurrent);
186 while (sal.pc && sal.pc < end);
188 return best_sal;
191 /* Function: scan_prologue
192 Decode the instructions within the given address range.
193 Decide when we must have reached the end of the function prologue.
194 If a frame_info pointer is provided, fill in its prologue information.
196 Returns the address of the first instruction after the prologue. */
198 static CORE_ADDR
199 iq2000_scan_prologue (struct gdbarch *gdbarch,
200 CORE_ADDR scan_start,
201 CORE_ADDR scan_end,
202 struct frame_info *fi,
203 struct iq2000_frame_cache *cache)
205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
206 struct symtab_and_line sal;
207 CORE_ADDR pc;
208 CORE_ADDR loop_end;
209 int srcreg;
210 int tgtreg;
211 signed short offset;
213 if (scan_end == (CORE_ADDR) 0)
215 loop_end = scan_start + 100;
216 sal.end = sal.pc = 0;
218 else
220 loop_end = scan_end;
221 if (fi)
222 sal = find_last_line_symbol (scan_start, scan_end, 0);
223 else
224 sal.end = 0; /* Avoid GCC false warning. */
227 /* Saved registers:
228 We first have to save the saved register's offset, and
229 only later do we compute its actual address. Since the
230 offset can be zero, we must first initialize all the
231 saved regs to minus one (so we can later distinguish
232 between one that's not saved, and one that's saved at zero). */
233 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
234 cache->saved_regs[srcreg] = -1;
235 cache->using_fp = 0;
236 cache->framesize = 0;
238 for (pc = scan_start; pc < loop_end; pc += 4)
240 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
241 /* Skip any instructions writing to (sp) or decrementing the
242 SP. */
243 if ((insn & 0xffe00000) == 0xac200000)
245 /* sw using SP/%1 as base. */
246 /* LEGACY -- from assembly-only port. */
247 tgtreg = ((insn >> 16) & 0x1f);
248 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
249 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
251 continue;
254 if ((insn & 0xffff8000) == 0x20218000)
256 /* addi %1, %1, -N == addi %sp, %sp, -N */
257 /* LEGACY -- from assembly-only port. */
258 cache->framesize = -((signed short) (insn & 0xffff));
259 continue;
262 if (INSN_IS_ADDIU (insn))
264 srcreg = ADDIU_REG_SRC (insn);
265 tgtreg = ADDIU_REG_TGT (insn);
266 offset = ADDIU_IMMEDIATE (insn);
267 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
268 cache->framesize = -offset;
269 continue;
272 if (INSN_IS_STORE_WORD (insn))
274 srcreg = SW_REG_SRC (insn);
275 tgtreg = SW_REG_INDEX (insn);
276 offset = SW_OFFSET (insn);
278 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
280 /* "push" to stack (via SP or FP reg). */
281 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
282 cache->saved_regs[srcreg] = offset;
283 continue;
287 if (INSN_IS_MOVE (insn))
289 srcreg = MOVE_REG_SRC (insn);
290 tgtreg = MOVE_REG_TGT (insn);
292 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
294 /* Copy sp to fp. */
295 cache->using_fp = 1;
296 continue;
300 /* Unknown instruction encountered in frame. Bail out?
301 1) If we have a subsequent line symbol, we can keep going.
302 2) If not, we need to bail out and quit scanning instructions. */
304 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
305 continue;
306 else /* bail */
307 break;
310 return pc;
313 static void
314 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
316 int i;
318 cache->base = 0;
319 cache->framesize = 0;
320 cache->using_fp = 0;
321 cache->saved_sp = 0;
322 for (i = 0; i < E_NUM_REGS; i++)
323 cache->saved_regs[i] = -1;
326 /* Function: iq2000_skip_prologue
327 If the input address is in a function prologue,
328 returns the address of the end of the prologue;
329 else returns the input address.
331 Note: the input address is likely to be the function start,
332 since this function is mainly used for advancing a breakpoint
333 to the first line, or stepping to the first line when we have
334 stepped into a function call. */
336 static CORE_ADDR
337 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
339 CORE_ADDR func_addr = 0 , func_end = 0;
341 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
343 struct symtab_and_line sal;
344 struct iq2000_frame_cache cache;
346 /* Found a function. */
347 sal = find_pc_line (func_addr, 0);
348 if (sal.end && sal.end < func_end)
349 /* Found a line number, use it as end of prologue. */
350 return sal.end;
352 /* No useable line symbol. Use prologue parsing method. */
353 iq2000_init_frame_cache (&cache);
354 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
357 /* No function symbol -- just return the PC. */
358 return (CORE_ADDR) pc;
361 static struct iq2000_frame_cache *
362 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
364 struct gdbarch *gdbarch = get_frame_arch (this_frame);
365 struct iq2000_frame_cache *cache;
366 CORE_ADDR current_pc;
367 int i;
369 if (*this_cache)
370 return (struct iq2000_frame_cache *) *this_cache;
372 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
373 iq2000_init_frame_cache (cache);
374 *this_cache = cache;
376 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
378 current_pc = get_frame_pc (this_frame);
379 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
380 if (cache->pc != 0)
381 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
382 if (!cache->using_fp)
383 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
385 cache->saved_sp = cache->base + cache->framesize;
387 for (i = 0; i < E_NUM_REGS; i++)
388 if (cache->saved_regs[i] != -1)
389 cache->saved_regs[i] += cache->base;
391 return cache;
394 static struct value *
395 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
396 int regnum)
398 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
399 this_cache);
401 if (regnum == E_SP_REGNUM && cache->saved_sp)
402 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
404 if (regnum == E_PC_REGNUM)
405 regnum = E_LR_REGNUM;
407 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
408 return frame_unwind_got_memory (this_frame, regnum,
409 cache->saved_regs[regnum]);
411 return frame_unwind_got_register (this_frame, regnum, regnum);
414 static void
415 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
418 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
419 this_cache);
421 /* This marks the outermost frame. */
422 if (cache->base == 0)
423 return;
425 *this_id = frame_id_build (cache->saved_sp, cache->pc);
428 static const struct frame_unwind iq2000_frame_unwind = {
429 NORMAL_FRAME,
430 default_frame_unwind_stop_reason,
431 iq2000_frame_this_id,
432 iq2000_frame_prev_register,
433 NULL,
434 default_frame_sniffer
437 static CORE_ADDR
438 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
440 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
443 static CORE_ADDR
444 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
446 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
449 static struct frame_id
450 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
452 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
453 return frame_id_build (sp, get_frame_pc (this_frame));
456 static CORE_ADDR
457 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
459 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
460 this_cache);
462 return cache->base;
465 static const struct frame_base iq2000_frame_base = {
466 &iq2000_frame_unwind,
467 iq2000_frame_base_address,
468 iq2000_frame_base_address,
469 iq2000_frame_base_address
472 static int
473 iq2000_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
475 if ((*pcptr & 3) != 0)
476 error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
477 (long) *pcptr);
479 return 4;
482 static const gdb_byte *
483 iq2000_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
485 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
486 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
487 *size = kind;
489 return (gdbarch_byte_order (gdbarch)
490 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
493 /* Target function return value methods: */
495 /* Function: store_return_value
496 Copy the function return value from VALBUF into the
497 proper location for a function return. */
499 static void
500 iq2000_store_return_value (struct type *type, struct regcache *regcache,
501 const void *valbuf)
503 int len = TYPE_LENGTH (type);
504 int regno = E_FN_RETURN_REGNUM;
506 while (len > 0)
508 gdb_byte buf[4];
509 int size = len % 4 ?: 4;
511 memset (buf, 0, 4);
512 memcpy (buf + 4 - size, valbuf, size);
513 regcache->raw_write (regno++, buf);
514 len -= size;
515 valbuf = ((char *) valbuf) + size;
519 /* Function: use_struct_convention
520 Returns non-zero if the given struct type will be returned using
521 a special convention, rather than the normal function return method. */
523 static int
524 iq2000_use_struct_convention (struct type *type)
526 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
527 || (TYPE_CODE (type) == TYPE_CODE_UNION))
528 && TYPE_LENGTH (type) > 8;
531 /* Function: extract_return_value
532 Copy the function's return value into VALBUF.
533 This function is called only in the context of "target function calls",
534 ie. when the debugger forces a function to be called in the child, and
535 when the debugger forces a function to return prematurely via the
536 "return" command. */
538 static void
539 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
540 gdb_byte *valbuf)
542 struct gdbarch *gdbarch = regcache->arch ();
543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
545 /* If the function's return value is 8 bytes or less, it is
546 returned in a register, and if larger than 8 bytes, it is
547 returned in a stack location which is pointed to by the same
548 register. */
549 int len = TYPE_LENGTH (type);
551 if (len <= (2 * 4))
553 int regno = E_FN_RETURN_REGNUM;
555 /* Return values of <= 8 bytes are returned in
556 FN_RETURN_REGNUM. */
557 while (len > 0)
559 ULONGEST tmp;
560 int size = len % 4 ?: 4;
562 /* By using store_unsigned_integer we avoid having to
563 do anything special for small big-endian values. */
564 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
565 store_unsigned_integer (valbuf, size, byte_order, tmp);
566 len -= size;
567 valbuf += size;
570 else
572 /* Return values > 8 bytes are returned in memory,
573 pointed to by FN_RETURN_REGNUM. */
574 ULONGEST return_buffer;
575 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
576 &return_buffer);
577 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
581 static enum return_value_convention
582 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
583 struct type *type, struct regcache *regcache,
584 gdb_byte *readbuf, const gdb_byte *writebuf)
586 if (iq2000_use_struct_convention (type))
587 return RETURN_VALUE_STRUCT_CONVENTION;
588 if (writebuf)
589 iq2000_store_return_value (type, regcache, writebuf);
590 else if (readbuf)
591 iq2000_extract_return_value (type, regcache, readbuf);
592 return RETURN_VALUE_REGISTER_CONVENTION;
595 /* Function: register_virtual_type
596 Returns the default type for register N. */
598 static struct type *
599 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
601 return builtin_type (gdbarch)->builtin_int32;
604 static CORE_ADDR
605 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
607 /* This is the same frame alignment used by gcc. */
608 return ((sp + 7) & ~7);
611 /* Convenience function to check 8-byte types for being a scalar type
612 or a struct with only one long long or double member. */
613 static int
614 iq2000_pass_8bytetype_by_address (struct type *type)
616 struct type *ftype;
618 /* Skip typedefs. */
619 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
620 type = TYPE_TARGET_TYPE (type);
621 /* Non-struct and non-union types are always passed by value. */
622 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
623 && TYPE_CODE (type) != TYPE_CODE_UNION)
624 return 0;
625 /* Structs with more than 1 field are always passed by address. */
626 if (TYPE_NFIELDS (type) != 1)
627 return 1;
628 /* Get field type. */
629 ftype = (TYPE_FIELDS (type))[0].type;
630 /* The field type must have size 8, otherwise pass by address. */
631 if (TYPE_LENGTH (ftype) != 8)
632 return 1;
633 /* Skip typedefs of field type. */
634 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
635 ftype = TYPE_TARGET_TYPE (ftype);
636 /* If field is int or float, pass by value. */
637 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
638 || TYPE_CODE (ftype) == TYPE_CODE_INT)
639 return 0;
640 /* Everything else, pass by address. */
641 return 1;
644 static CORE_ADDR
645 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
646 struct regcache *regcache, CORE_ADDR bp_addr,
647 int nargs, struct value **args, CORE_ADDR sp,
648 int struct_return, CORE_ADDR struct_addr)
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651 const bfd_byte *val;
652 bfd_byte buf[4];
653 struct type *type;
654 int i, argreg, typelen, slacklen;
655 int stackspace = 0;
656 /* Used to copy struct arguments into the stack. */
657 CORE_ADDR struct_ptr;
659 /* First determine how much stack space we will need. */
660 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
662 type = value_type (args[i]);
663 typelen = TYPE_LENGTH (type);
664 if (typelen <= 4)
666 /* Scalars of up to 4 bytes,
667 structs of up to 4 bytes, and
668 pointers. */
669 if (argreg <= E_LAST_ARGREG)
670 argreg++;
671 else
672 stackspace += 4;
674 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
676 /* long long,
677 double, and possibly
678 structs with a single field of long long or double. */
679 if (argreg <= E_LAST_ARGREG - 1)
681 /* 8-byte arg goes into a register pair
682 (must start with an even-numbered reg). */
683 if (((argreg - E_1ST_ARGREG) % 2) != 0)
684 argreg ++;
685 argreg += 2;
687 else
689 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
690 /* 8-byte arg goes on stack, must be 8-byte aligned. */
691 stackspace = ((stackspace + 7) & ~7);
692 stackspace += 8;
695 else
697 /* Structs are passed as pointer to a copy of the struct.
698 So we need room on the stack for a copy of the struct
699 plus for the argument pointer. */
700 if (argreg <= E_LAST_ARGREG)
701 argreg++;
702 else
703 stackspace += 4;
704 /* Care for 8-byte alignment of structs saved on stack. */
705 stackspace += ((typelen + 7) & ~7);
709 /* Now copy params, in ascending order, into their assigned location
710 (either in a register or on the stack). */
712 sp -= (sp % 8); /* align */
713 struct_ptr = sp;
714 sp -= stackspace;
715 sp -= (sp % 8); /* align again */
716 stackspace = 0;
718 argreg = E_1ST_ARGREG;
719 if (struct_return)
721 /* A function that returns a struct will consume one argreg to do so.
723 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
726 for (i = 0; i < nargs; i++)
728 type = value_type (args[i]);
729 typelen = TYPE_LENGTH (type);
730 val = value_contents (args[i]);
731 if (typelen <= 4)
733 /* Char, short, int, float, pointer, and structs <= four bytes. */
734 slacklen = (4 - (typelen % 4)) % 4;
735 memset (buf, 0, sizeof (buf));
736 memcpy (buf + slacklen, val, typelen);
737 if (argreg <= E_LAST_ARGREG)
739 /* Passed in a register. */
740 regcache->raw_write (argreg++, buf);
742 else
744 /* Passed on the stack. */
745 write_memory (sp + stackspace, buf, 4);
746 stackspace += 4;
749 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
751 /* (long long), (double), or struct consisting of
752 a single (long long) or (double). */
753 if (argreg <= E_LAST_ARGREG - 1)
755 /* 8-byte arg goes into a register pair
756 (must start with an even-numbered reg). */
757 if (((argreg - E_1ST_ARGREG) % 2) != 0)
758 argreg++;
759 regcache->raw_write (argreg++, val);
760 regcache->raw_write (argreg++, val + 4);
762 else
764 /* 8-byte arg goes on stack, must be 8-byte aligned. */
765 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
766 stackspace = ((stackspace + 7) & ~7);
767 write_memory (sp + stackspace, val, typelen);
768 stackspace += 8;
771 else
773 /* Store struct beginning at the upper end of the previously
774 computed stack space. Then store the address of the struct
775 using the usual rules for a 4 byte value. */
776 struct_ptr -= ((typelen + 7) & ~7);
777 write_memory (struct_ptr, val, typelen);
778 if (argreg <= E_LAST_ARGREG)
779 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
780 else
782 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
783 write_memory (sp + stackspace, buf, 4);
784 stackspace += 4;
789 /* Store return address. */
790 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
792 /* Update stack pointer. */
793 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
795 /* And that should do it. Return the new stack pointer. */
796 return sp;
799 /* Function: gdbarch_init
800 Initializer function for the iq2000 gdbarch vector.
801 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
803 static struct gdbarch *
804 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
806 struct gdbarch *gdbarch;
808 /* Look up list for candidates - only one. */
809 arches = gdbarch_list_lookup_by_info (arches, &info);
810 if (arches != NULL)
811 return arches->gdbarch;
813 gdbarch = gdbarch_alloc (&info, NULL);
815 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
816 set_gdbarch_num_pseudo_regs (gdbarch, 0);
817 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
818 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
819 set_gdbarch_register_name (gdbarch, iq2000_register_name);
820 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
821 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
822 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
823 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
824 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
825 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
826 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
827 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
828 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
829 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
830 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
831 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
832 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
833 set_gdbarch_return_value (gdbarch, iq2000_return_value);
834 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
835 iq2000_breakpoint_kind_from_pc);
836 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
837 iq2000_sw_breakpoint_from_kind);
838 set_gdbarch_frame_args_skip (gdbarch, 0);
839 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
840 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
841 set_gdbarch_register_type (gdbarch, iq2000_register_type);
842 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
843 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
844 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
845 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
846 frame_base_set_default (gdbarch, &iq2000_frame_base);
847 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
849 gdbarch_init_osabi (info, gdbarch);
851 dwarf2_append_unwinders (gdbarch);
852 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
854 return gdbarch;
857 /* Function: _initialize_iq2000_tdep
858 Initializer function for the iq2000 module.
859 Called by gdb at start-up. */
861 void
862 _initialize_iq2000_tdep (void)
864 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);