1 // output.cc -- manage the output file for gold
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t
)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 // Mingw does not have S_ISLNK.
116 # define S_ISLNK(mode) 0
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
128 gold_fallocate(int o
, off_t offset
, off_t len
)
133 #ifdef HAVE_POSIX_FALLOCATE
134 if (parameters
->options().posix_fallocate())
136 int err
= ::posix_fallocate(o
, offset
, len
);
137 if (err
!= EINVAL
&& err
!= ENOSYS
&& err
!= EOPNOTSUPP
)
140 #endif // defined(HAVE_POSIX_FALLOCATE)
142 #ifdef HAVE_FALLOCATE
144 int err
= ::fallocate(o
, 0, offset
, len
);
145 if (err
!= EINVAL
&& err
!= ENOSYS
&& err
!= EOPNOTSUPP
)
148 #endif // defined(HAVE_FALLOCATE)
150 if (::ftruncate(o
, offset
+ len
) < 0)
155 // Output_data variables.
157 bool Output_data::allocated_sizes_are_fixed
;
159 // Output_data methods.
161 Output_data::~Output_data()
165 // Return the default alignment for the target size.
168 Output_data::default_alignment()
170 return Output_data::default_alignment_for_size(
171 parameters
->target().get_size());
174 // Return the default alignment for a size--32 or 64.
177 Output_data::default_alignment_for_size(int size
)
187 // Output_section_header methods. This currently assumes that the
188 // segment and section lists are complete at construction time.
190 Output_section_headers::Output_section_headers(
191 const Layout
* layout
,
192 const Layout::Segment_list
* segment_list
,
193 const Layout::Section_list
* section_list
,
194 const Layout::Section_list
* unattached_section_list
,
195 const Stringpool
* secnamepool
,
196 const Output_section
* shstrtab_section
)
198 segment_list_(segment_list
),
199 section_list_(section_list
),
200 unattached_section_list_(unattached_section_list
),
201 secnamepool_(secnamepool
),
202 shstrtab_section_(shstrtab_section
)
206 // Compute the current data size.
209 Output_section_headers::do_size() const
211 // Count all the sections. Start with 1 for the null section.
213 if (!parameters
->options().relocatable())
215 for (Layout::Segment_list::const_iterator p
=
216 this->segment_list_
->begin();
217 p
!= this->segment_list_
->end();
219 if ((*p
)->type() == elfcpp::PT_LOAD
)
220 count
+= (*p
)->output_section_count();
224 for (Layout::Section_list::const_iterator p
=
225 this->section_list_
->begin();
226 p
!= this->section_list_
->end();
228 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
231 count
+= this->unattached_section_list_
->size();
233 const int size
= parameters
->target().get_size();
236 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
238 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
242 return count
* shdr_size
;
245 // Write out the section headers.
248 Output_section_headers::do_write(Output_file
* of
)
250 switch (parameters
->size_and_endianness())
252 #ifdef HAVE_TARGET_32_LITTLE
253 case Parameters::TARGET_32_LITTLE
:
254 this->do_sized_write
<32, false>(of
);
257 #ifdef HAVE_TARGET_32_BIG
258 case Parameters::TARGET_32_BIG
:
259 this->do_sized_write
<32, true>(of
);
262 #ifdef HAVE_TARGET_64_LITTLE
263 case Parameters::TARGET_64_LITTLE
:
264 this->do_sized_write
<64, false>(of
);
267 #ifdef HAVE_TARGET_64_BIG
268 case Parameters::TARGET_64_BIG
:
269 this->do_sized_write
<64, true>(of
);
277 template<int size
, bool big_endian
>
279 Output_section_headers::do_sized_write(Output_file
* of
)
281 off_t all_shdrs_size
= this->data_size();
282 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
284 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
285 unsigned char* v
= view
;
288 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
289 oshdr
.put_sh_name(0);
290 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
291 oshdr
.put_sh_flags(0);
292 oshdr
.put_sh_addr(0);
293 oshdr
.put_sh_offset(0);
295 size_t section_count
= (this->data_size()
296 / elfcpp::Elf_sizes
<size
>::shdr_size
);
297 if (section_count
< elfcpp::SHN_LORESERVE
)
298 oshdr
.put_sh_size(0);
300 oshdr
.put_sh_size(section_count
);
302 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
303 if (shstrndx
< elfcpp::SHN_LORESERVE
)
304 oshdr
.put_sh_link(0);
306 oshdr
.put_sh_link(shstrndx
);
308 size_t segment_count
= this->segment_list_
->size();
309 oshdr
.put_sh_info(segment_count
>= elfcpp::PN_XNUM
? segment_count
: 0);
311 oshdr
.put_sh_addralign(0);
312 oshdr
.put_sh_entsize(0);
317 unsigned int shndx
= 1;
318 if (!parameters
->options().relocatable())
320 for (Layout::Segment_list::const_iterator p
=
321 this->segment_list_
->begin();
322 p
!= this->segment_list_
->end();
324 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
331 for (Layout::Section_list::const_iterator p
=
332 this->section_list_
->begin();
333 p
!= this->section_list_
->end();
336 // We do unallocated sections below, except that group
337 // sections have to come first.
338 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
339 && (*p
)->type() != elfcpp::SHT_GROUP
)
341 gold_assert(shndx
== (*p
)->out_shndx());
342 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
343 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
349 for (Layout::Section_list::const_iterator p
=
350 this->unattached_section_list_
->begin();
351 p
!= this->unattached_section_list_
->end();
354 // For a relocatable link, we did unallocated group sections
355 // above, since they have to come first.
356 if ((*p
)->type() == elfcpp::SHT_GROUP
357 && parameters
->options().relocatable())
359 gold_assert(shndx
== (*p
)->out_shndx());
360 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
361 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
366 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
369 // Output_segment_header methods.
371 Output_segment_headers::Output_segment_headers(
372 const Layout::Segment_list
& segment_list
)
373 : segment_list_(segment_list
)
375 this->set_current_data_size_for_child(this->do_size());
379 Output_segment_headers::do_write(Output_file
* of
)
381 switch (parameters
->size_and_endianness())
383 #ifdef HAVE_TARGET_32_LITTLE
384 case Parameters::TARGET_32_LITTLE
:
385 this->do_sized_write
<32, false>(of
);
388 #ifdef HAVE_TARGET_32_BIG
389 case Parameters::TARGET_32_BIG
:
390 this->do_sized_write
<32, true>(of
);
393 #ifdef HAVE_TARGET_64_LITTLE
394 case Parameters::TARGET_64_LITTLE
:
395 this->do_sized_write
<64, false>(of
);
398 #ifdef HAVE_TARGET_64_BIG
399 case Parameters::TARGET_64_BIG
:
400 this->do_sized_write
<64, true>(of
);
408 template<int size
, bool big_endian
>
410 Output_segment_headers::do_sized_write(Output_file
* of
)
412 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
413 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
414 gold_assert(all_phdrs_size
== this->data_size());
415 unsigned char* view
= of
->get_output_view(this->offset(),
417 unsigned char* v
= view
;
418 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
419 p
!= this->segment_list_
.end();
422 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
423 (*p
)->write_header(&ophdr
);
427 gold_assert(v
- view
== all_phdrs_size
);
429 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
433 Output_segment_headers::do_size() const
435 const int size
= parameters
->target().get_size();
438 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
440 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
444 return this->segment_list_
.size() * phdr_size
;
447 // Output_file_header methods.
449 Output_file_header::Output_file_header(Target
* target
,
450 const Symbol_table
* symtab
,
451 const Output_segment_headers
* osh
)
454 segment_header_(osh
),
455 section_header_(NULL
),
458 this->set_data_size(this->do_size());
461 // Set the section table information for a file header.
464 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
465 const Output_section
* shstrtab
)
467 this->section_header_
= shdrs
;
468 this->shstrtab_
= shstrtab
;
471 // Write out the file header.
474 Output_file_header::do_write(Output_file
* of
)
476 gold_assert(this->offset() == 0);
478 switch (parameters
->size_and_endianness())
480 #ifdef HAVE_TARGET_32_LITTLE
481 case Parameters::TARGET_32_LITTLE
:
482 this->do_sized_write
<32, false>(of
);
485 #ifdef HAVE_TARGET_32_BIG
486 case Parameters::TARGET_32_BIG
:
487 this->do_sized_write
<32, true>(of
);
490 #ifdef HAVE_TARGET_64_LITTLE
491 case Parameters::TARGET_64_LITTLE
:
492 this->do_sized_write
<64, false>(of
);
495 #ifdef HAVE_TARGET_64_BIG
496 case Parameters::TARGET_64_BIG
:
497 this->do_sized_write
<64, true>(of
);
505 // Write out the file header with appropriate size and endianness.
507 template<int size
, bool big_endian
>
509 Output_file_header::do_sized_write(Output_file
* of
)
511 gold_assert(this->offset() == 0);
513 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
514 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
515 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
517 unsigned char e_ident
[elfcpp::EI_NIDENT
];
518 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
519 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
520 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
521 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
522 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
524 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
526 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
529 e_ident
[elfcpp::EI_DATA
] = (big_endian
530 ? elfcpp::ELFDATA2MSB
531 : elfcpp::ELFDATA2LSB
);
532 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
533 oehdr
.put_e_ident(e_ident
);
536 if (parameters
->options().relocatable())
537 e_type
= elfcpp::ET_REL
;
538 else if (parameters
->options().output_is_position_independent())
539 e_type
= elfcpp::ET_DYN
;
541 e_type
= elfcpp::ET_EXEC
;
542 oehdr
.put_e_type(e_type
);
544 oehdr
.put_e_machine(this->target_
->machine_code());
545 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
547 oehdr
.put_e_entry(this->entry
<size
>());
549 if (this->segment_header_
== NULL
)
550 oehdr
.put_e_phoff(0);
552 oehdr
.put_e_phoff(this->segment_header_
->offset());
554 oehdr
.put_e_shoff(this->section_header_
->offset());
555 oehdr
.put_e_flags(this->target_
->processor_specific_flags());
556 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
558 if (this->segment_header_
== NULL
)
560 oehdr
.put_e_phentsize(0);
561 oehdr
.put_e_phnum(0);
565 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
566 size_t phnum
= (this->segment_header_
->data_size()
567 / elfcpp::Elf_sizes
<size
>::phdr_size
);
568 if (phnum
> elfcpp::PN_XNUM
)
569 phnum
= elfcpp::PN_XNUM
;
570 oehdr
.put_e_phnum(phnum
);
573 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
574 size_t section_count
= (this->section_header_
->data_size()
575 / elfcpp::Elf_sizes
<size
>::shdr_size
);
577 if (section_count
< elfcpp::SHN_LORESERVE
)
578 oehdr
.put_e_shnum(this->section_header_
->data_size()
579 / elfcpp::Elf_sizes
<size
>::shdr_size
);
581 oehdr
.put_e_shnum(0);
583 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
584 if (shstrndx
< elfcpp::SHN_LORESERVE
)
585 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
587 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
589 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
590 // the e_ident field.
591 this->target_
->adjust_elf_header(view
, ehdr_size
);
593 of
->write_output_view(0, ehdr_size
, view
);
596 // Return the value to use for the entry address.
599 typename
elfcpp::Elf_types
<size
>::Elf_Addr
600 Output_file_header::entry()
602 const bool should_issue_warning
= (parameters
->options().entry() != NULL
603 && !parameters
->options().relocatable()
604 && !parameters
->options().shared());
605 const char* entry
= parameters
->entry();
606 Symbol
* sym
= this->symtab_
->lookup(entry
);
608 typename Sized_symbol
<size
>::Value_type v
;
611 Sized_symbol
<size
>* ssym
;
612 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
613 if (!ssym
->is_defined() && should_issue_warning
)
614 gold_warning("entry symbol '%s' exists but is not defined", entry
);
619 // We couldn't find the entry symbol. See if we can parse it as
620 // a number. This supports, e.g., -e 0x1000.
622 v
= strtoull(entry
, &endptr
, 0);
625 if (should_issue_warning
)
626 gold_warning("cannot find entry symbol '%s'", entry
);
634 // Compute the current data size.
637 Output_file_header::do_size() const
639 const int size
= parameters
->target().get_size();
641 return elfcpp::Elf_sizes
<32>::ehdr_size
;
643 return elfcpp::Elf_sizes
<64>::ehdr_size
;
648 // Output_data_const methods.
651 Output_data_const::do_write(Output_file
* of
)
653 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
656 // Output_data_const_buffer methods.
659 Output_data_const_buffer::do_write(Output_file
* of
)
661 of
->write(this->offset(), this->p_
, this->data_size());
664 // Output_section_data methods.
666 // Record the output section, and set the entry size and such.
669 Output_section_data::set_output_section(Output_section
* os
)
671 gold_assert(this->output_section_
== NULL
);
672 this->output_section_
= os
;
673 this->do_adjust_output_section(os
);
676 // Return the section index of the output section.
679 Output_section_data::do_out_shndx() const
681 gold_assert(this->output_section_
!= NULL
);
682 return this->output_section_
->out_shndx();
685 // Set the alignment, which means we may need to update the alignment
686 // of the output section.
689 Output_section_data::set_addralign(uint64_t addralign
)
691 this->addralign_
= addralign
;
692 if (this->output_section_
!= NULL
693 && this->output_section_
->addralign() < addralign
)
694 this->output_section_
->set_addralign(addralign
);
697 // Output_data_strtab methods.
699 // Set the final data size.
702 Output_data_strtab::set_final_data_size()
704 this->strtab_
->set_string_offsets();
705 this->set_data_size(this->strtab_
->get_strtab_size());
708 // Write out a string table.
711 Output_data_strtab::do_write(Output_file
* of
)
713 this->strtab_
->write(of
, this->offset());
716 // Output_reloc methods.
718 // A reloc against a global symbol.
720 template<bool dynamic
, int size
, bool big_endian
>
721 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
729 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
730 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
731 is_section_symbol_(false), use_plt_offset_(use_plt_offset
), shndx_(INVALID_CODE
)
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_
== type
);
735 this->u1_
.gsym
= gsym
;
738 this->set_needs_dynsym_index();
741 template<bool dynamic
, int size
, bool big_endian
>
742 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
745 Sized_relobj
<size
, big_endian
>* relobj
,
751 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
752 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
753 is_section_symbol_(false), use_plt_offset_(use_plt_offset
), shndx_(shndx
)
755 gold_assert(shndx
!= INVALID_CODE
);
756 // this->type_ is a bitfield; make sure TYPE fits.
757 gold_assert(this->type_
== type
);
758 this->u1_
.gsym
= gsym
;
759 this->u2_
.relobj
= relobj
;
761 this->set_needs_dynsym_index();
764 // A reloc against a local symbol.
766 template<bool dynamic
, int size
, bool big_endian
>
767 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
768 Sized_relobj
<size
, big_endian
>* relobj
,
769 unsigned int local_sym_index
,
775 bool is_section_symbol
,
777 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
778 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
779 is_section_symbol_(is_section_symbol
), use_plt_offset_(use_plt_offset
),
782 gold_assert(local_sym_index
!= GSYM_CODE
783 && local_sym_index
!= INVALID_CODE
);
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_
== type
);
786 this->u1_
.relobj
= relobj
;
789 this->set_needs_dynsym_index();
792 template<bool dynamic
, int size
, bool big_endian
>
793 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
794 Sized_relobj
<size
, big_endian
>* relobj
,
795 unsigned int local_sym_index
,
801 bool is_section_symbol
,
803 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
804 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
805 is_section_symbol_(is_section_symbol
), use_plt_offset_(use_plt_offset
),
808 gold_assert(local_sym_index
!= GSYM_CODE
809 && local_sym_index
!= INVALID_CODE
);
810 gold_assert(shndx
!= INVALID_CODE
);
811 // this->type_ is a bitfield; make sure TYPE fits.
812 gold_assert(this->type_
== type
);
813 this->u1_
.relobj
= relobj
;
814 this->u2_
.relobj
= relobj
;
816 this->set_needs_dynsym_index();
819 // A reloc against the STT_SECTION symbol of an output section.
821 template<bool dynamic
, int size
, bool big_endian
>
822 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
828 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
829 is_relative_(is_relative
), is_symbolless_(is_relative
),
830 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE
)
832 // this->type_ is a bitfield; make sure TYPE fits.
833 gold_assert(this->type_
== type
);
837 this->set_needs_dynsym_index();
839 os
->set_needs_symtab_index();
842 template<bool dynamic
, int size
, bool big_endian
>
843 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
846 Sized_relobj
<size
, big_endian
>* relobj
,
850 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
851 is_relative_(is_relative
), is_symbolless_(is_relative
),
852 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx
)
854 gold_assert(shndx
!= INVALID_CODE
);
855 // this->type_ is a bitfield; make sure TYPE fits.
856 gold_assert(this->type_
== type
);
858 this->u2_
.relobj
= relobj
;
860 this->set_needs_dynsym_index();
862 os
->set_needs_symtab_index();
865 // An absolute or relative relocation.
867 template<bool dynamic
, int size
, bool big_endian
>
868 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
873 : address_(address
), local_sym_index_(0), type_(type
),
874 is_relative_(is_relative
), is_symbolless_(false),
875 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
877 // this->type_ is a bitfield; make sure TYPE fits.
878 gold_assert(this->type_
== type
);
879 this->u1_
.relobj
= NULL
;
883 template<bool dynamic
, int size
, bool big_endian
>
884 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
886 Sized_relobj
<size
, big_endian
>* relobj
,
890 : address_(address
), local_sym_index_(0), type_(type
),
891 is_relative_(is_relative
), is_symbolless_(false),
892 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
894 gold_assert(shndx
!= INVALID_CODE
);
895 // this->type_ is a bitfield; make sure TYPE fits.
896 gold_assert(this->type_
== type
);
897 this->u1_
.relobj
= NULL
;
898 this->u2_
.relobj
= relobj
;
901 // A target specific relocation.
903 template<bool dynamic
, int size
, bool big_endian
>
904 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
909 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
910 is_relative_(false), is_symbolless_(false),
911 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
913 // this->type_ is a bitfield; make sure TYPE fits.
914 gold_assert(this->type_
== type
);
919 template<bool dynamic
, int size
, bool big_endian
>
920 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
923 Sized_relobj
<size
, big_endian
>* relobj
,
926 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
927 is_relative_(false), is_symbolless_(false),
928 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
930 gold_assert(shndx
!= INVALID_CODE
);
931 // this->type_ is a bitfield; make sure TYPE fits.
932 gold_assert(this->type_
== type
);
934 this->u2_
.relobj
= relobj
;
937 // Record that we need a dynamic symbol index for this relocation.
939 template<bool dynamic
, int size
, bool big_endian
>
941 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
942 set_needs_dynsym_index()
944 if (this->is_symbolless_
)
946 switch (this->local_sym_index_
)
952 this->u1_
.gsym
->set_needs_dynsym_entry();
956 this->u1_
.os
->set_needs_dynsym_index();
960 // The target must take care of this if necessary.
968 const unsigned int lsi
= this->local_sym_index_
;
969 Sized_relobj_file
<size
, big_endian
>* relobj
=
970 this->u1_
.relobj
->sized_relobj();
971 gold_assert(relobj
!= NULL
);
972 if (!this->is_section_symbol_
)
973 relobj
->set_needs_output_dynsym_entry(lsi
);
975 relobj
->output_section(lsi
)->set_needs_dynsym_index();
981 // Get the symbol index of a relocation.
983 template<bool dynamic
, int size
, bool big_endian
>
985 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
989 if (this->is_symbolless_
)
991 switch (this->local_sym_index_
)
997 if (this->u1_
.gsym
== NULL
)
1000 index
= this->u1_
.gsym
->dynsym_index();
1002 index
= this->u1_
.gsym
->symtab_index();
1007 index
= this->u1_
.os
->dynsym_index();
1009 index
= this->u1_
.os
->symtab_index();
1013 index
= parameters
->target().reloc_symbol_index(this->u1_
.arg
,
1018 // Relocations without symbols use a symbol index of 0.
1024 const unsigned int lsi
= this->local_sym_index_
;
1025 Sized_relobj_file
<size
, big_endian
>* relobj
=
1026 this->u1_
.relobj
->sized_relobj();
1027 gold_assert(relobj
!= NULL
);
1028 if (!this->is_section_symbol_
)
1031 index
= relobj
->dynsym_index(lsi
);
1033 index
= relobj
->symtab_index(lsi
);
1037 Output_section
* os
= relobj
->output_section(lsi
);
1038 gold_assert(os
!= NULL
);
1040 index
= os
->dynsym_index();
1042 index
= os
->symtab_index();
1047 gold_assert(index
!= -1U);
1051 // For a local section symbol, get the address of the offset ADDEND
1052 // within the input section.
1054 template<bool dynamic
, int size
, bool big_endian
>
1055 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1056 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1057 local_section_offset(Addend addend
) const
1059 gold_assert(this->local_sym_index_
!= GSYM_CODE
1060 && this->local_sym_index_
!= SECTION_CODE
1061 && this->local_sym_index_
!= TARGET_CODE
1062 && this->local_sym_index_
!= INVALID_CODE
1063 && this->local_sym_index_
!= 0
1064 && this->is_section_symbol_
);
1065 const unsigned int lsi
= this->local_sym_index_
;
1066 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
1067 gold_assert(os
!= NULL
);
1068 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
1069 if (offset
!= invalid_address
)
1070 return offset
+ addend
;
1071 // This is a merge section.
1072 Sized_relobj_file
<size
, big_endian
>* relobj
=
1073 this->u1_
.relobj
->sized_relobj();
1074 gold_assert(relobj
!= NULL
);
1075 offset
= os
->output_address(relobj
, lsi
, addend
);
1076 gold_assert(offset
!= invalid_address
);
1080 // Get the output address of a relocation.
1082 template<bool dynamic
, int size
, bool big_endian
>
1083 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1084 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
1086 Address address
= this->address_
;
1087 if (this->shndx_
!= INVALID_CODE
)
1089 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
1090 gold_assert(os
!= NULL
);
1091 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
1092 if (off
!= invalid_address
)
1093 address
+= os
->address() + off
;
1096 Sized_relobj_file
<size
, big_endian
>* relobj
=
1097 this->u2_
.relobj
->sized_relobj();
1098 gold_assert(relobj
!= NULL
);
1099 address
= os
->output_address(relobj
, this->shndx_
, address
);
1100 gold_assert(address
!= invalid_address
);
1103 else if (this->u2_
.od
!= NULL
)
1104 address
+= this->u2_
.od
->address();
1108 // Write out the offset and info fields of a Rel or Rela relocation
1111 template<bool dynamic
, int size
, bool big_endian
>
1112 template<typename Write_rel
>
1114 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
1115 Write_rel
* wr
) const
1117 wr
->put_r_offset(this->get_address());
1118 unsigned int sym_index
= this->get_symbol_index();
1119 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
1122 // Write out a Rel relocation.
1124 template<bool dynamic
, int size
, bool big_endian
>
1126 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
1127 unsigned char* pov
) const
1129 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
1130 this->write_rel(&orel
);
1133 // Get the value of the symbol referred to by a Rel relocation.
1135 template<bool dynamic
, int size
, bool big_endian
>
1136 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1137 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
1138 Addend addend
) const
1140 if (this->local_sym_index_
== GSYM_CODE
)
1142 const Sized_symbol
<size
>* sym
;
1143 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
1144 if (this->use_plt_offset_
&& sym
->has_plt_offset())
1145 return parameters
->target().plt_address_for_global(sym
);
1147 return sym
->value() + addend
;
1149 if (this->local_sym_index_
== SECTION_CODE
)
1151 gold_assert(!this->use_plt_offset_
);
1152 return this->u1_
.os
->address() + addend
;
1154 gold_assert(this->local_sym_index_
!= TARGET_CODE
1155 && this->local_sym_index_
!= INVALID_CODE
1156 && this->local_sym_index_
!= 0
1157 && !this->is_section_symbol_
);
1158 const unsigned int lsi
= this->local_sym_index_
;
1159 Sized_relobj_file
<size
, big_endian
>* relobj
=
1160 this->u1_
.relobj
->sized_relobj();
1161 gold_assert(relobj
!= NULL
);
1162 if (this->use_plt_offset_
)
1163 return parameters
->target().plt_address_for_local(relobj
, lsi
);
1164 const Symbol_value
<size
>* symval
= relobj
->local_symbol(lsi
);
1165 return symval
->value(relobj
, addend
);
1168 // Reloc comparison. This function sorts the dynamic relocs for the
1169 // benefit of the dynamic linker. First we sort all relative relocs
1170 // to the front. Among relative relocs, we sort by output address.
1171 // Among non-relative relocs, we sort by symbol index, then by output
1174 template<bool dynamic
, int size
, bool big_endian
>
1176 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1177 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1180 if (this->is_relative_
)
1182 if (!r2
.is_relative_
)
1184 // Otherwise sort by reloc address below.
1186 else if (r2
.is_relative_
)
1190 unsigned int sym1
= this->get_symbol_index();
1191 unsigned int sym2
= r2
.get_symbol_index();
1194 else if (sym1
> sym2
)
1196 // Otherwise sort by reloc address.
1199 section_offset_type addr1
= this->get_address();
1200 section_offset_type addr2
= r2
.get_address();
1203 else if (addr1
> addr2
)
1206 // Final tie breaker, in order to generate the same output on any
1207 // host: reloc type.
1208 unsigned int type1
= this->type_
;
1209 unsigned int type2
= r2
.type_
;
1212 else if (type1
> type2
)
1215 // These relocs appear to be exactly the same.
1219 // Write out a Rela relocation.
1221 template<bool dynamic
, int size
, bool big_endian
>
1223 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
1224 unsigned char* pov
) const
1226 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
1227 this->rel_
.write_rel(&orel
);
1228 Addend addend
= this->addend_
;
1229 if (this->rel_
.is_target_specific())
1230 addend
= parameters
->target().reloc_addend(this->rel_
.target_arg(),
1231 this->rel_
.type(), addend
);
1232 else if (this->rel_
.is_symbolless())
1233 addend
= this->rel_
.symbol_value(addend
);
1234 else if (this->rel_
.is_local_section_symbol())
1235 addend
= this->rel_
.local_section_offset(addend
);
1236 orel
.put_r_addend(addend
);
1239 // Output_data_reloc_base methods.
1241 // Adjust the output section.
1243 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1245 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1246 ::do_adjust_output_section(Output_section
* os
)
1248 if (sh_type
== elfcpp::SHT_REL
)
1249 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1250 else if (sh_type
== elfcpp::SHT_RELA
)
1251 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1255 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1256 // static link. The backends will generate a dynamic reloc section
1257 // to hold this. In that case we don't want to link to the dynsym
1258 // section, because there isn't one.
1260 os
->set_should_link_to_symtab();
1261 else if (parameters
->doing_static_link())
1264 os
->set_should_link_to_dynsym();
1267 // Standard relocation writer, which just calls Output_reloc::write().
1269 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1270 struct Output_reloc_writer
1272 typedef Output_reloc
<sh_type
, dynamic
, size
, big_endian
> Output_reloc_type
;
1273 typedef std::vector
<Output_reloc_type
> Relocs
;
1276 write(typename
Relocs::const_iterator p
, unsigned char* pov
)
1280 // Write out relocation data.
1282 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1284 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1287 typedef Output_reloc_writer
<sh_type
, dynamic
, size
, big_endian
> Writer
;
1288 this->do_write_generic
<Writer
>(of
);
1291 // Class Output_relocatable_relocs.
1293 template<int sh_type
, int size
, bool big_endian
>
1295 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1297 this->set_data_size(this->rr_
->output_reloc_count()
1298 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1301 // class Output_data_group.
1303 template<int size
, bool big_endian
>
1304 Output_data_group
<size
, big_endian
>::Output_data_group(
1305 Sized_relobj_file
<size
, big_endian
>* relobj
,
1306 section_size_type entry_count
,
1307 elfcpp::Elf_Word flags
,
1308 std::vector
<unsigned int>* input_shndxes
)
1309 : Output_section_data(entry_count
* 4, 4, false),
1313 this->input_shndxes_
.swap(*input_shndxes
);
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1319 template<int size
, bool big_endian
>
1321 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1323 const off_t off
= this->offset();
1324 const section_size_type oview_size
=
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1328 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1329 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1332 for (std::vector
<unsigned int>::const_iterator p
=
1333 this->input_shndxes_
.begin();
1334 p
!= this->input_shndxes_
.end();
1337 Output_section
* os
= this->relobj_
->output_section(*p
);
1339 unsigned int output_shndx
;
1341 output_shndx
= os
->out_shndx();
1344 this->relobj_
->error(_("section group retained but "
1345 "group element discarded"));
1349 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1352 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1353 gold_assert(wrote
== oview_size
);
1355 of
->write_output_view(off
, oview_size
, oview
);
1357 // We no longer need this information.
1358 this->input_shndxes_
.clear();
1361 // Output_data_got::Got_entry methods.
1363 // Write out the entry.
1365 template<int got_size
, bool big_endian
>
1367 Output_data_got
<got_size
, big_endian
>::Got_entry::write(
1368 unsigned int got_indx
,
1369 unsigned char* pov
) const
1373 switch (this->local_sym_index_
)
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
1380 Symbol
* gsym
= this->u_
.gsym
;
1381 if (this->use_plt_or_tls_offset_
&& gsym
->has_plt_offset())
1382 val
= parameters
->target().plt_address_for_global(gsym
);
1385 switch (parameters
->size_and_endianness())
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE
:
1389 case Parameters::TARGET_32_BIG
:
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol
<32>::Value_type v
;
1395 v
= static_cast<Sized_symbol
<32>*>(gsym
)->value();
1396 val
= convert_types
<Valtype
, Sized_symbol
<32>::Value_type
>(v
);
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE
:
1402 case Parameters::TARGET_64_BIG
:
1404 Sized_symbol
<64>::Value_type v
;
1405 v
= static_cast<Sized_symbol
<64>*>(gsym
)->value();
1406 val
= convert_types
<Valtype
, Sized_symbol
<64>::Value_type
>(v
);
1413 if (this->use_plt_or_tls_offset_
1414 && gsym
->type() == elfcpp::STT_TLS
)
1415 val
+= parameters
->target().tls_offset_for_global(gsym
,
1422 val
= this->u_
.constant
;
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters
->incremental_update())
1429 val
= this->u_
.constant
;
1434 const Relobj
* object
= this->u_
.object
;
1435 const unsigned int lsi
= this->local_sym_index_
;
1436 bool is_tls
= object
->local_is_tls(lsi
);
1437 if (this->use_plt_or_tls_offset_
&& !is_tls
)
1438 val
= parameters
->target().plt_address_for_local(object
, lsi
);
1441 uint64_t lval
= object
->local_symbol_value(lsi
, this->addend_
);
1442 val
= convert_types
<Valtype
, uint64_t>(lval
);
1443 if (this->use_plt_or_tls_offset_
&& is_tls
)
1444 val
+= parameters
->target().tls_offset_for_local(object
, lsi
,
1451 elfcpp::Swap
<got_size
, big_endian
>::writeval(pov
, val
);
1454 // Output_data_got methods.
1456 // Add an entry for a global symbol to the GOT. This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1460 template<int got_size
, bool big_endian
>
1462 Output_data_got
<got_size
, big_endian
>::add_global(
1464 unsigned int got_type
)
1466 if (gsym
->has_got_offset(got_type
))
1469 unsigned int got_offset
= this->add_got_entry(Got_entry(gsym
, false));
1470 gsym
->set_got_offset(got_type
, got_offset
);
1474 // Like add_global, but use the PLT offset.
1476 template<int got_size
, bool big_endian
>
1478 Output_data_got
<got_size
, big_endian
>::add_global_plt(Symbol
* gsym
,
1479 unsigned int got_type
)
1481 if (gsym
->has_got_offset(got_type
))
1484 unsigned int got_offset
= this->add_got_entry(Got_entry(gsym
, true));
1485 gsym
->set_got_offset(got_type
, got_offset
);
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1492 template<int got_size
, bool big_endian
>
1494 Output_data_got
<got_size
, big_endian
>::add_global_with_rel(
1496 unsigned int got_type
,
1497 Output_data_reloc_generic
* rel_dyn
,
1498 unsigned int r_type
)
1500 if (gsym
->has_got_offset(got_type
))
1503 unsigned int got_offset
= this->add_got_entry(Got_entry());
1504 gsym
->set_got_offset(got_type
, got_offset
);
1505 rel_dyn
->add_global_generic(gsym
, r_type
, this, got_offset
, 0);
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size
, bool big_endian
>
1513 Output_data_got
<got_size
, big_endian
>::add_global_pair_with_rel(
1515 unsigned int got_type
,
1516 Output_data_reloc_generic
* rel_dyn
,
1517 unsigned int r_type_1
,
1518 unsigned int r_type_2
)
1520 if (gsym
->has_got_offset(got_type
))
1523 unsigned int got_offset
= this->add_got_entry_pair(Got_entry(), Got_entry());
1524 gsym
->set_got_offset(got_type
, got_offset
);
1525 rel_dyn
->add_global_generic(gsym
, r_type_1
, this, got_offset
, 0);
1528 rel_dyn
->add_global_generic(gsym
, r_type_2
, this,
1529 got_offset
+ got_size
/ 8, 0);
1532 // Add an entry for a local symbol to the GOT. This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1536 template<int got_size
, bool big_endian
>
1538 Output_data_got
<got_size
, big_endian
>::add_local(
1540 unsigned int symndx
,
1541 unsigned int got_type
)
1543 if (object
->local_has_got_offset(symndx
, got_type
))
1546 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1548 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1552 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1553 // true if this is a new GOT entry, false if the symbol already has a GOT
1556 template<int got_size
, bool big_endian
>
1558 Output_data_got
<got_size
, big_endian
>::add_local(
1560 unsigned int symndx
,
1561 unsigned int got_type
,
1564 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1567 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1569 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1573 // Like add_local, but use the PLT offset.
1575 template<int got_size
, bool big_endian
>
1577 Output_data_got
<got_size
, big_endian
>::add_local_plt(
1579 unsigned int symndx
,
1580 unsigned int got_type
)
1582 if (object
->local_has_got_offset(symndx
, got_type
))
1585 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1587 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1591 // Add an entry for a local symbol to the GOT, and add a dynamic
1592 // relocation of type R_TYPE for the GOT entry.
1594 template<int got_size
, bool big_endian
>
1596 Output_data_got
<got_size
, big_endian
>::add_local_with_rel(
1598 unsigned int symndx
,
1599 unsigned int got_type
,
1600 Output_data_reloc_generic
* rel_dyn
,
1601 unsigned int r_type
)
1603 if (object
->local_has_got_offset(symndx
, got_type
))
1606 unsigned int got_offset
= this->add_got_entry(Got_entry());
1607 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1608 rel_dyn
->add_local_generic(object
, symndx
, r_type
, this, got_offset
, 0);
1611 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1612 // relocation of type R_TYPE for the GOT entry.
1614 template<int got_size
, bool big_endian
>
1616 Output_data_got
<got_size
, big_endian
>::add_local_with_rel(
1618 unsigned int symndx
,
1619 unsigned int got_type
,
1620 Output_data_reloc_generic
* rel_dyn
,
1621 unsigned int r_type
, uint64_t addend
)
1623 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1626 unsigned int got_offset
= this->add_got_entry(Got_entry());
1627 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1628 rel_dyn
->add_local_generic(object
, symndx
, r_type
, this, got_offset
,
1632 // Add a pair of entries for a local symbol to the GOT, and add
1633 // a dynamic relocation of type R_TYPE using the section symbol of
1634 // the output section to which input section SHNDX maps, on the first.
1635 // The first got entry will have a value of zero, the second the
1636 // value of the local symbol.
1637 template<int got_size
, bool big_endian
>
1639 Output_data_got
<got_size
, big_endian
>::add_local_pair_with_rel(
1641 unsigned int symndx
,
1643 unsigned int got_type
,
1644 Output_data_reloc_generic
* rel_dyn
,
1645 unsigned int r_type
)
1647 if (object
->local_has_got_offset(symndx
, got_type
))
1650 unsigned int got_offset
=
1651 this->add_got_entry_pair(Got_entry(),
1652 Got_entry(object
, symndx
, false));
1653 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1654 Output_section
* os
= object
->output_section(shndx
);
1655 rel_dyn
->add_output_section_generic(os
, r_type
, this, got_offset
, 0);
1658 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1659 // a dynamic relocation of type R_TYPE using the section symbol of
1660 // the output section to which input section SHNDX maps, on the first.
1661 // The first got entry will have a value of zero, the second the
1662 // value of the local symbol.
1663 template<int got_size
, bool big_endian
>
1665 Output_data_got
<got_size
, big_endian
>::add_local_pair_with_rel(
1667 unsigned int symndx
,
1669 unsigned int got_type
,
1670 Output_data_reloc_generic
* rel_dyn
,
1671 unsigned int r_type
, uint64_t addend
)
1673 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1676 unsigned int got_offset
=
1677 this->add_got_entry_pair(Got_entry(),
1678 Got_entry(object
, symndx
, false, addend
));
1679 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1680 Output_section
* os
= object
->output_section(shndx
);
1681 rel_dyn
->add_output_section_generic(os
, r_type
, this, got_offset
, addend
);
1684 // Add a pair of entries for a local symbol to the GOT, and add
1685 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1686 // The first got entry will have a value of zero, the second the
1687 // value of the local symbol offset by Target::tls_offset_for_local.
1688 template<int got_size
, bool big_endian
>
1690 Output_data_got
<got_size
, big_endian
>::add_local_tls_pair(
1692 unsigned int symndx
,
1693 unsigned int got_type
,
1694 Output_data_reloc_generic
* rel_dyn
,
1695 unsigned int r_type
)
1697 if (object
->local_has_got_offset(symndx
, got_type
))
1700 unsigned int got_offset
1701 = this->add_got_entry_pair(Got_entry(),
1702 Got_entry(object
, symndx
, true));
1703 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1704 rel_dyn
->add_local_generic(object
, 0, r_type
, this, got_offset
, 0);
1707 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1709 template<int got_size
, bool big_endian
>
1711 Output_data_got
<got_size
, big_endian
>::reserve_local(
1714 unsigned int sym_index
,
1715 unsigned int got_type
)
1717 this->do_reserve_slot(i
);
1718 object
->set_local_got_offset(sym_index
, got_type
, this->got_offset(i
));
1721 // Reserve a slot in the GOT for a global symbol.
1723 template<int got_size
, bool big_endian
>
1725 Output_data_got
<got_size
, big_endian
>::reserve_global(
1728 unsigned int got_type
)
1730 this->do_reserve_slot(i
);
1731 gsym
->set_got_offset(got_type
, this->got_offset(i
));
1734 // Write out the GOT.
1736 template<int got_size
, bool big_endian
>
1738 Output_data_got
<got_size
, big_endian
>::do_write(Output_file
* of
)
1740 const int add
= got_size
/ 8;
1742 const off_t off
= this->offset();
1743 const off_t oview_size
= this->data_size();
1744 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1746 unsigned char* pov
= oview
;
1747 for (unsigned int i
= 0; i
< this->entries_
.size(); ++i
)
1749 this->entries_
[i
].write(i
, pov
);
1753 gold_assert(pov
- oview
== oview_size
);
1755 of
->write_output_view(off
, oview_size
, oview
);
1757 // We no longer need the GOT entries.
1758 this->entries_
.clear();
1761 // Create a new GOT entry and return its offset.
1763 template<int got_size
, bool big_endian
>
1765 Output_data_got
<got_size
, big_endian
>::add_got_entry(Got_entry got_entry
)
1767 if (!this->is_data_size_valid())
1769 this->entries_
.push_back(got_entry
);
1770 this->set_got_size();
1771 return this->last_got_offset();
1775 // For an incremental update, find an available slot.
1776 off_t got_offset
= this->free_list_
.allocate(got_size
/ 8,
1778 if (got_offset
== -1)
1779 gold_fallback(_("out of patch space (GOT);"
1780 " relink with --incremental-full"));
1781 unsigned int got_index
= got_offset
/ (got_size
/ 8);
1782 gold_assert(got_index
< this->entries_
.size());
1783 this->entries_
[got_index
] = got_entry
;
1784 return static_cast<unsigned int>(got_offset
);
1788 // Create a pair of new GOT entries and return the offset of the first.
1790 template<int got_size
, bool big_endian
>
1792 Output_data_got
<got_size
, big_endian
>::add_got_entry_pair(
1793 Got_entry got_entry_1
,
1794 Got_entry got_entry_2
)
1796 if (!this->is_data_size_valid())
1798 unsigned int got_offset
;
1799 this->entries_
.push_back(got_entry_1
);
1800 got_offset
= this->last_got_offset();
1801 this->entries_
.push_back(got_entry_2
);
1802 this->set_got_size();
1807 // For an incremental update, find an available pair of slots.
1808 off_t got_offset
= this->free_list_
.allocate(2 * got_size
/ 8,
1810 if (got_offset
== -1)
1811 gold_fallback(_("out of patch space (GOT);"
1812 " relink with --incremental-full"));
1813 unsigned int got_index
= got_offset
/ (got_size
/ 8);
1814 gold_assert(got_index
< this->entries_
.size());
1815 this->entries_
[got_index
] = got_entry_1
;
1816 this->entries_
[got_index
+ 1] = got_entry_2
;
1817 return static_cast<unsigned int>(got_offset
);
1821 // Replace GOT entry I with a new value.
1823 template<int got_size
, bool big_endian
>
1825 Output_data_got
<got_size
, big_endian
>::replace_got_entry(
1827 Got_entry got_entry
)
1829 gold_assert(i
< this->entries_
.size());
1830 this->entries_
[i
] = got_entry
;
1833 // Output_data_dynamic::Dynamic_entry methods.
1835 // Write out the entry.
1837 template<int size
, bool big_endian
>
1839 Output_data_dynamic::Dynamic_entry::write(
1841 const Stringpool
* pool
) const
1843 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1844 switch (this->offset_
)
1846 case DYNAMIC_NUMBER
:
1850 case DYNAMIC_SECTION_SIZE
:
1851 val
= this->u_
.od
->data_size();
1852 if (this->od2
!= NULL
)
1853 val
+= this->od2
->data_size();
1856 case DYNAMIC_SYMBOL
:
1858 const Sized_symbol
<size
>* s
=
1859 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1864 case DYNAMIC_STRING
:
1865 val
= pool
->get_offset(this->u_
.str
);
1868 case DYNAMIC_CUSTOM
:
1869 val
= parameters
->target().dynamic_tag_custom_value(this->tag_
);
1873 val
= this->u_
.od
->address() + this->offset_
;
1877 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1878 dw
.put_d_tag(this->tag_
);
1882 // Output_data_dynamic methods.
1884 // Adjust the output section to set the entry size.
1887 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1889 if (parameters
->target().get_size() == 32)
1890 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1891 else if (parameters
->target().get_size() == 64)
1892 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1897 // Get a dynamic entry offset.
1900 Output_data_dynamic::get_entry_offset(elfcpp::DT tag
) const
1904 if (parameters
->target().get_size() == 32)
1905 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1906 else if (parameters
->target().get_size() == 64)
1907 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1911 for (size_t i
= 0; i
< entries_
.size(); ++i
)
1912 if (entries_
[i
].tag() == tag
)
1913 return i
* dyn_size
;
1918 // Set the final data size.
1921 Output_data_dynamic::set_final_data_size()
1923 // Add the terminating entry if it hasn't been added.
1924 // Because of relaxation, we can run this multiple times.
1925 if (this->entries_
.empty() || this->entries_
.back().tag() != elfcpp::DT_NULL
)
1927 int extra
= parameters
->options().spare_dynamic_tags();
1928 for (int i
= 0; i
< extra
; ++i
)
1929 this->add_constant(elfcpp::DT_NULL
, 0);
1930 this->add_constant(elfcpp::DT_NULL
, 0);
1934 if (parameters
->target().get_size() == 32)
1935 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1936 else if (parameters
->target().get_size() == 64)
1937 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1940 this->set_data_size(this->entries_
.size() * dyn_size
);
1943 // Write out the dynamic entries.
1946 Output_data_dynamic::do_write(Output_file
* of
)
1948 switch (parameters
->size_and_endianness())
1950 #ifdef HAVE_TARGET_32_LITTLE
1951 case Parameters::TARGET_32_LITTLE
:
1952 this->sized_write
<32, false>(of
);
1955 #ifdef HAVE_TARGET_32_BIG
1956 case Parameters::TARGET_32_BIG
:
1957 this->sized_write
<32, true>(of
);
1960 #ifdef HAVE_TARGET_64_LITTLE
1961 case Parameters::TARGET_64_LITTLE
:
1962 this->sized_write
<64, false>(of
);
1965 #ifdef HAVE_TARGET_64_BIG
1966 case Parameters::TARGET_64_BIG
:
1967 this->sized_write
<64, true>(of
);
1975 template<int size
, bool big_endian
>
1977 Output_data_dynamic::sized_write(Output_file
* of
)
1979 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1981 const off_t offset
= this->offset();
1982 const off_t oview_size
= this->data_size();
1983 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1985 unsigned char* pov
= oview
;
1986 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1987 p
!= this->entries_
.end();
1990 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1994 gold_assert(pov
- oview
== oview_size
);
1996 of
->write_output_view(offset
, oview_size
, oview
);
1998 // We no longer need the dynamic entries.
1999 this->entries_
.clear();
2002 // Class Output_symtab_xindex.
2005 Output_symtab_xindex::do_write(Output_file
* of
)
2007 const off_t offset
= this->offset();
2008 const off_t oview_size
= this->data_size();
2009 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
2011 memset(oview
, 0, oview_size
);
2013 if (parameters
->target().is_big_endian())
2014 this->endian_do_write
<true>(oview
);
2016 this->endian_do_write
<false>(oview
);
2018 of
->write_output_view(offset
, oview_size
, oview
);
2020 // We no longer need the data.
2021 this->entries_
.clear();
2024 template<bool big_endian
>
2026 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
2028 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
2029 p
!= this->entries_
.end();
2032 unsigned int symndx
= p
->first
;
2033 gold_assert(static_cast<off_t
>(symndx
) * 4 < this->data_size());
2034 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ symndx
* 4, p
->second
);
2038 // Output_fill_debug_info methods.
2040 // Return the minimum size needed for a dummy compilation unit header.
2043 Output_fill_debug_info::do_minimum_hole_size() const
2045 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2047 const size_t len
= 4 + 2 + 4 + 1;
2048 // For type units, add type_signature, type_offset.
2049 if (this->is_debug_types_
)
2054 // Write a dummy compilation unit header to fill a hole in the
2055 // .debug_info or .debug_types section.
2058 Output_fill_debug_info::do_write(Output_file
* of
, off_t off
, size_t len
) const
2060 gold_debug(DEBUG_INCREMENTAL
, "fill_debug_info(%08lx, %08lx)",
2061 static_cast<long>(off
), static_cast<long>(len
));
2063 gold_assert(len
>= this->do_minimum_hole_size());
2065 unsigned char* const oview
= of
->get_output_view(off
, len
);
2066 unsigned char* pov
= oview
;
2068 // Write header fields: unit_length, version, debug_abbrev_offset,
2070 if (this->is_big_endian())
2072 elfcpp::Swap_unaligned
<32, true>::writeval(pov
, len
- 4);
2073 elfcpp::Swap_unaligned
<16, true>::writeval(pov
+ 4, this->version
);
2074 elfcpp::Swap_unaligned
<32, true>::writeval(pov
+ 6, 0);
2078 elfcpp::Swap_unaligned
<32, false>::writeval(pov
, len
- 4);
2079 elfcpp::Swap_unaligned
<16, false>::writeval(pov
+ 4, this->version
);
2080 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 6, 0);
2085 // For type units, the additional header fields -- type_signature,
2086 // type_offset -- can be filled with zeroes.
2088 // Fill the remainder of the free space with zeroes. The first
2089 // zero should tell the consumer there are no DIEs to read in this
2090 // compilation unit.
2091 if (pov
< oview
+ len
)
2092 memset(pov
, 0, oview
+ len
- pov
);
2094 of
->write_output_view(off
, len
, oview
);
2097 // Output_fill_debug_line methods.
2099 // Return the minimum size needed for a dummy line number program header.
2102 Output_fill_debug_line::do_minimum_hole_size() const
2104 // Line number program header fields: unit_length, version, header_length,
2105 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2106 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2107 const size_t len
= 4 + 2 + 4 + this->header_length
;
2111 // Write a dummy line number program header to fill a hole in the
2112 // .debug_line section.
2115 Output_fill_debug_line::do_write(Output_file
* of
, off_t off
, size_t len
) const
2117 gold_debug(DEBUG_INCREMENTAL
, "fill_debug_line(%08lx, %08lx)",
2118 static_cast<long>(off
), static_cast<long>(len
));
2120 gold_assert(len
>= this->do_minimum_hole_size());
2122 unsigned char* const oview
= of
->get_output_view(off
, len
);
2123 unsigned char* pov
= oview
;
2125 // Write header fields: unit_length, version, header_length,
2126 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2127 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2128 // We set the header_length field to cover the entire hole, so the
2129 // line number program is empty.
2130 if (this->is_big_endian())
2132 elfcpp::Swap_unaligned
<32, true>::writeval(pov
, len
- 4);
2133 elfcpp::Swap_unaligned
<16, true>::writeval(pov
+ 4, this->version
);
2134 elfcpp::Swap_unaligned
<32, true>::writeval(pov
+ 6, len
- (4 + 2 + 4));
2138 elfcpp::Swap_unaligned
<32, false>::writeval(pov
, len
- 4);
2139 elfcpp::Swap_unaligned
<16, false>::writeval(pov
+ 4, this->version
);
2140 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 6, len
- (4 + 2 + 4));
2143 *pov
++ = 1; // minimum_instruction_length
2144 *pov
++ = 0; // default_is_stmt
2145 *pov
++ = 0; // line_base
2146 *pov
++ = 5; // line_range
2147 *pov
++ = 13; // opcode_base
2148 *pov
++ = 0; // standard_opcode_lengths[1]
2149 *pov
++ = 1; // standard_opcode_lengths[2]
2150 *pov
++ = 1; // standard_opcode_lengths[3]
2151 *pov
++ = 1; // standard_opcode_lengths[4]
2152 *pov
++ = 1; // standard_opcode_lengths[5]
2153 *pov
++ = 0; // standard_opcode_lengths[6]
2154 *pov
++ = 0; // standard_opcode_lengths[7]
2155 *pov
++ = 0; // standard_opcode_lengths[8]
2156 *pov
++ = 1; // standard_opcode_lengths[9]
2157 *pov
++ = 0; // standard_opcode_lengths[10]
2158 *pov
++ = 0; // standard_opcode_lengths[11]
2159 *pov
++ = 1; // standard_opcode_lengths[12]
2160 *pov
++ = 0; // include_directories (empty)
2161 *pov
++ = 0; // filenames (empty)
2163 // Some consumers don't check the header_length field, and simply
2164 // start reading the line number program immediately following the
2165 // header. For those consumers, we fill the remainder of the free
2166 // space with DW_LNS_set_basic_block opcodes. These are effectively
2167 // no-ops: the resulting line table program will not create any rows.
2168 if (pov
< oview
+ len
)
2169 memset(pov
, elfcpp::DW_LNS_set_basic_block
, oview
+ len
- pov
);
2171 of
->write_output_view(off
, len
, oview
);
2174 // Output_section::Input_section methods.
2176 // Return the current data size. For an input section we store the size here.
2177 // For an Output_section_data, we have to ask it for the size.
2180 Output_section::Input_section::current_data_size() const
2182 if (this->is_input_section())
2183 return this->u1_
.data_size
;
2186 this->u2_
.posd
->pre_finalize_data_size();
2187 return this->u2_
.posd
->current_data_size();
2191 // Return the data size. For an input section we store the size here.
2192 // For an Output_section_data, we have to ask it for the size.
2195 Output_section::Input_section::data_size() const
2197 if (this->is_input_section())
2198 return this->u1_
.data_size
;
2200 return this->u2_
.posd
->data_size();
2203 // Return the object for an input section.
2206 Output_section::Input_section::relobj() const
2208 if (this->is_input_section())
2209 return this->u2_
.object
;
2210 else if (this->is_merge_section())
2212 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
2213 return this->u2_
.pomb
->first_relobj();
2215 else if (this->is_relaxed_input_section())
2216 return this->u2_
.poris
->relobj();
2221 // Return the input section index for an input section.
2224 Output_section::Input_section::shndx() const
2226 if (this->is_input_section())
2227 return this->shndx_
;
2228 else if (this->is_merge_section())
2230 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
2231 return this->u2_
.pomb
->first_shndx();
2233 else if (this->is_relaxed_input_section())
2234 return this->u2_
.poris
->shndx();
2239 // Set the address and file offset.
2242 Output_section::Input_section::set_address_and_file_offset(
2245 off_t section_file_offset
)
2247 if (this->is_input_section())
2248 this->u2_
.object
->set_section_offset(this->shndx_
,
2249 file_offset
- section_file_offset
);
2251 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
2254 // Reset the address and file offset.
2257 Output_section::Input_section::reset_address_and_file_offset()
2259 if (!this->is_input_section())
2260 this->u2_
.posd
->reset_address_and_file_offset();
2263 // Finalize the data size.
2266 Output_section::Input_section::finalize_data_size()
2268 if (!this->is_input_section())
2269 this->u2_
.posd
->finalize_data_size();
2272 // Try to turn an input offset into an output offset. We want to
2273 // return the output offset relative to the start of this
2274 // Input_section in the output section.
2277 Output_section::Input_section::output_offset(
2278 const Relobj
* object
,
2280 section_offset_type offset
,
2281 section_offset_type
* poutput
) const
2283 if (!this->is_input_section())
2284 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
2287 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
2294 // Write out the data. We don't have to do anything for an input
2295 // section--they are handled via Object::relocate--but this is where
2296 // we write out the data for an Output_section_data.
2299 Output_section::Input_section::write(Output_file
* of
)
2301 if (!this->is_input_section())
2302 this->u2_
.posd
->write(of
);
2305 // Write the data to a buffer. As for write(), we don't have to do
2306 // anything for an input section.
2309 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
2311 if (!this->is_input_section())
2312 this->u2_
.posd
->write_to_buffer(buffer
);
2315 // Print to a map file.
2318 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
2320 switch (this->shndx_
)
2322 case OUTPUT_SECTION_CODE
:
2323 case MERGE_DATA_SECTION_CODE
:
2324 case MERGE_STRING_SECTION_CODE
:
2325 this->u2_
.posd
->print_to_mapfile(mapfile
);
2328 case RELAXED_INPUT_SECTION_CODE
:
2330 Output_relaxed_input_section
* relaxed_section
=
2331 this->relaxed_input_section();
2332 mapfile
->print_input_section(relaxed_section
->relobj(),
2333 relaxed_section
->shndx());
2337 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
2342 // Output_section methods.
2344 // Construct an Output_section. NAME will point into a Stringpool.
2346 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
2347 elfcpp::Elf_Xword flags
)
2352 link_section_(NULL
),
2354 info_section_(NULL
),
2359 order_(ORDER_INVALID
),
2364 first_input_offset_(0),
2366 postprocessing_buffer_(NULL
),
2367 needs_symtab_index_(false),
2368 needs_dynsym_index_(false),
2369 should_link_to_symtab_(false),
2370 should_link_to_dynsym_(false),
2371 after_input_sections_(false),
2372 requires_postprocessing_(false),
2373 found_in_sections_clause_(false),
2374 has_load_address_(false),
2375 info_uses_section_index_(false),
2376 input_section_order_specified_(false),
2377 may_sort_attached_input_sections_(false),
2378 must_sort_attached_input_sections_(false),
2379 attached_input_sections_are_sorted_(false),
2381 is_small_section_(false),
2382 is_large_section_(false),
2383 generate_code_fills_at_write_(false),
2384 is_entsize_zero_(false),
2385 section_offsets_need_adjustment_(false),
2387 always_keeps_input_sections_(false),
2388 has_fixed_layout_(false),
2389 is_patch_space_allowed_(false),
2390 is_unique_segment_(false),
2392 extra_segment_flags_(0),
2393 segment_alignment_(0),
2395 lookup_maps_(new Output_section_lookup_maps
),
2397 free_space_fill_(NULL
),
2399 reloc_section_(NULL
)
2401 // An unallocated section has no address. Forcing this means that
2402 // we don't need special treatment for symbols defined in debug
2404 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
2405 this->set_address(0);
2408 Output_section::~Output_section()
2410 delete this->checkpoint_
;
2413 // Set the entry size.
2416 Output_section::set_entsize(uint64_t v
)
2418 if (this->is_entsize_zero_
)
2420 else if (this->entsize_
== 0)
2422 else if (this->entsize_
!= v
)
2425 this->is_entsize_zero_
= 1;
2429 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2430 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2431 // relocation section which applies to this section, or 0 if none, or
2432 // -1U if more than one. Return the offset of the input section
2433 // within the output section. Return -1 if the input section will
2434 // receive special handling. In the normal case we don't always keep
2435 // track of input sections for an Output_section. Instead, each
2436 // Object keeps track of the Output_section for each of its input
2437 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2438 // track of input sections here; this is used when SECTIONS appears in
2441 template<int size
, bool big_endian
>
2443 Output_section::add_input_section(Layout
* layout
,
2444 Sized_relobj_file
<size
, big_endian
>* object
,
2446 const char* secname
,
2447 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2448 unsigned int reloc_shndx
,
2449 bool have_sections_script
)
2451 section_size_type input_section_size
= shdr
.get_sh_size();
2452 section_size_type uncompressed_size
;
2453 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
2454 if (object
->section_is_compressed(shndx
, &uncompressed_size
,
2456 input_section_size
= uncompressed_size
;
2458 if ((addralign
& (addralign
- 1)) != 0)
2460 object
->error(_("invalid alignment %lu for section \"%s\""),
2461 static_cast<unsigned long>(addralign
), secname
);
2465 if (addralign
> this->addralign_
)
2466 this->addralign_
= addralign
;
2468 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
2469 uint64_t entsize
= shdr
.get_sh_entsize();
2471 // .debug_str is a mergeable string section, but is not always so
2472 // marked by compilers. Mark manually here so we can optimize.
2473 if (strcmp(secname
, ".debug_str") == 0)
2475 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
2479 this->update_flags_for_input_section(sh_flags
);
2480 this->set_entsize(entsize
);
2482 // If this is a SHF_MERGE section, we pass all the input sections to
2483 // a Output_data_merge. We don't try to handle relocations for such
2484 // a section. We don't try to handle empty merge sections--they
2485 // mess up the mappings, and are useless anyhow.
2486 // FIXME: Need to handle merge sections during incremental update.
2487 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
2489 && shdr
.get_sh_size() > 0
2490 && !parameters
->incremental())
2492 // Keep information about merged input sections for rebuilding fast
2493 // lookup maps if we have sections-script or we do relaxation.
2494 bool keeps_input_sections
= (this->always_keeps_input_sections_
2495 || have_sections_script
2496 || parameters
->target().may_relax());
2498 if (this->add_merge_input_section(object
, shndx
, sh_flags
, entsize
,
2499 addralign
, keeps_input_sections
))
2501 // Tell the relocation routines that they need to call the
2502 // output_offset method to determine the final address.
2507 off_t offset_in_section
;
2509 if (this->has_fixed_layout())
2511 // For incremental updates, find a chunk of unused space in the section.
2512 offset_in_section
= this->free_list_
.allocate(input_section_size
,
2514 if (offset_in_section
== -1)
2515 gold_fallback(_("out of patch space in section %s; "
2516 "relink with --incremental-full"),
2518 return offset_in_section
;
2521 offset_in_section
= this->current_data_size_for_child();
2522 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2524 this->set_current_data_size_for_child(aligned_offset_in_section
2525 + input_section_size
);
2527 // Determine if we want to delay code-fill generation until the output
2528 // section is written. When the target is relaxing, we want to delay fill
2529 // generating to avoid adjusting them during relaxation. Also, if we are
2530 // sorting input sections we must delay fill generation.
2531 if (!this->generate_code_fills_at_write_
2532 && !have_sections_script
2533 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2534 && parameters
->target().has_code_fill()
2535 && (parameters
->target().may_relax()
2536 || layout
->is_section_ordering_specified()))
2538 gold_assert(this->fills_
.empty());
2539 this->generate_code_fills_at_write_
= true;
2542 if (aligned_offset_in_section
> offset_in_section
2543 && !this->generate_code_fills_at_write_
2544 && !have_sections_script
2545 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2546 && parameters
->target().has_code_fill())
2548 // We need to add some fill data. Using fill_list_ when
2549 // possible is an optimization, since we will often have fill
2550 // sections without input sections.
2551 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
2552 if (this->input_sections_
.empty())
2553 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
2556 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2557 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
2558 this->input_sections_
.push_back(Input_section(odc
));
2562 // We need to keep track of this section if we are already keeping
2563 // track of sections, or if we are relaxing. Also, if this is a
2564 // section which requires sorting, or which may require sorting in
2565 // the future, we keep track of the sections. If the
2566 // --section-ordering-file option is used to specify the order of
2567 // sections, we need to keep track of sections.
2568 if (this->always_keeps_input_sections_
2569 || have_sections_script
2570 || !this->input_sections_
.empty()
2571 || this->may_sort_attached_input_sections()
2572 || this->must_sort_attached_input_sections()
2573 || parameters
->options().user_set_Map()
2574 || parameters
->target().may_relax()
2575 || layout
->is_section_ordering_specified())
2577 Input_section
isecn(object
, shndx
, input_section_size
, addralign
);
2578 /* If section ordering is requested by specifying a ordering file,
2579 using --section-ordering-file, match the section name with
2581 if (parameters
->options().section_ordering_file())
2583 unsigned int section_order_index
=
2584 layout
->find_section_order_index(std::string(secname
));
2585 if (section_order_index
!= 0)
2587 isecn
.set_section_order_index(section_order_index
);
2588 this->set_input_section_order_specified();
2591 this->input_sections_
.push_back(isecn
);
2594 return aligned_offset_in_section
;
2597 // Add arbitrary data to an output section.
2600 Output_section::add_output_section_data(Output_section_data
* posd
)
2602 Input_section
inp(posd
);
2603 this->add_output_section_data(&inp
);
2605 if (posd
->is_data_size_valid())
2607 off_t offset_in_section
;
2608 if (this->has_fixed_layout())
2610 // For incremental updates, find a chunk of unused space.
2611 offset_in_section
= this->free_list_
.allocate(posd
->data_size(),
2612 posd
->addralign(), 0);
2613 if (offset_in_section
== -1)
2614 gold_fallback(_("out of patch space in section %s; "
2615 "relink with --incremental-full"),
2617 // Finalize the address and offset now.
2618 uint64_t addr
= this->address();
2619 off_t offset
= this->offset();
2620 posd
->set_address_and_file_offset(addr
+ offset_in_section
,
2621 offset
+ offset_in_section
);
2625 offset_in_section
= this->current_data_size_for_child();
2626 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2628 this->set_current_data_size_for_child(aligned_offset_in_section
2629 + posd
->data_size());
2632 else if (this->has_fixed_layout())
2634 // For incremental updates, arrange for the data to have a fixed layout.
2635 // This will mean that additions to the data must be allocated from
2636 // free space within the containing output section.
2637 uint64_t addr
= this->address();
2638 posd
->set_address(addr
);
2639 posd
->set_file_offset(0);
2640 // FIXME: This should eventually be unreachable.
2641 // gold_unreachable();
2645 // Add a relaxed input section.
2648 Output_section::add_relaxed_input_section(Layout
* layout
,
2649 Output_relaxed_input_section
* poris
,
2650 const std::string
& name
)
2652 Input_section
inp(poris
);
2654 // If the --section-ordering-file option is used to specify the order of
2655 // sections, we need to keep track of sections.
2656 if (layout
->is_section_ordering_specified())
2658 unsigned int section_order_index
=
2659 layout
->find_section_order_index(name
);
2660 if (section_order_index
!= 0)
2662 inp
.set_section_order_index(section_order_index
);
2663 this->set_input_section_order_specified();
2667 this->add_output_section_data(&inp
);
2668 if (this->lookup_maps_
->is_valid())
2669 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2670 poris
->shndx(), poris
);
2672 // For a relaxed section, we use the current data size. Linker scripts
2673 // get all the input sections, including relaxed one from an output
2674 // section and add them back to the same output section to compute the
2675 // output section size. If we do not account for sizes of relaxed input
2676 // sections, an output section would be incorrectly sized.
2677 off_t offset_in_section
= this->current_data_size_for_child();
2678 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2679 poris
->addralign());
2680 this->set_current_data_size_for_child(aligned_offset_in_section
2681 + poris
->current_data_size());
2684 // Add arbitrary data to an output section by Input_section.
2687 Output_section::add_output_section_data(Input_section
* inp
)
2689 if (this->input_sections_
.empty())
2690 this->first_input_offset_
= this->current_data_size_for_child();
2692 this->input_sections_
.push_back(*inp
);
2694 uint64_t addralign
= inp
->addralign();
2695 if (addralign
> this->addralign_
)
2696 this->addralign_
= addralign
;
2698 inp
->set_output_section(this);
2701 // Add a merge section to an output section.
2704 Output_section::add_output_merge_section(Output_section_data
* posd
,
2705 bool is_string
, uint64_t entsize
)
2707 Input_section
inp(posd
, is_string
, entsize
);
2708 this->add_output_section_data(&inp
);
2711 // Add an input section to a SHF_MERGE section.
2714 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
2715 uint64_t flags
, uint64_t entsize
,
2717 bool keeps_input_sections
)
2719 // We cannot merge sections with entsize == 0.
2723 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
2725 // We cannot restore merged input section states.
2726 gold_assert(this->checkpoint_
== NULL
);
2728 // Look up merge sections by required properties.
2729 // Currently, we only invalidate the lookup maps in script processing
2730 // and relaxation. We should not have done either when we reach here.
2731 // So we assume that the lookup maps are valid to simply code.
2732 gold_assert(this->lookup_maps_
->is_valid());
2733 Merge_section_properties
msp(is_string
, entsize
, addralign
);
2734 Output_merge_base
* pomb
= this->lookup_maps_
->find_merge_section(msp
);
2735 bool is_new
= false;
2738 gold_assert(pomb
->is_string() == is_string
2739 && pomb
->entsize() == entsize
2740 && pomb
->addralign() == addralign
);
2744 // Create a new Output_merge_data or Output_merge_string_data.
2746 pomb
= new Output_merge_data(entsize
, addralign
);
2752 pomb
= new Output_merge_string
<char>(addralign
);
2755 pomb
= new Output_merge_string
<uint16_t>(addralign
);
2758 pomb
= new Output_merge_string
<uint32_t>(addralign
);
2764 // If we need to do script processing or relaxation, we need to keep
2765 // the original input sections to rebuild the fast lookup maps.
2766 if (keeps_input_sections
)
2767 pomb
->set_keeps_input_sections();
2771 if (pomb
->add_input_section(object
, shndx
))
2773 // Add new merge section to this output section and link merge
2774 // section properties to new merge section in map.
2777 this->add_output_merge_section(pomb
, is_string
, entsize
);
2778 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2785 // If add_input_section failed, delete new merge section to avoid
2786 // exporting empty merge sections in Output_section::get_input_section.
2793 // Build a relaxation map to speed up relaxation of existing input sections.
2794 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2797 Output_section::build_relaxation_map(
2798 const Input_section_list
& input_sections
,
2800 Relaxation_map
* relaxation_map
) const
2802 for (size_t i
= 0; i
< limit
; ++i
)
2804 const Input_section
& is(input_sections
[i
]);
2805 if (is
.is_input_section() || is
.is_relaxed_input_section())
2807 Section_id
sid(is
.relobj(), is
.shndx());
2808 (*relaxation_map
)[sid
] = i
;
2813 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2814 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2815 // indices of INPUT_SECTIONS.
2818 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2819 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
2820 const Relaxation_map
& map
,
2821 Input_section_list
* input_sections
)
2823 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2825 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2826 Section_id
sid(poris
->relobj(), poris
->shndx());
2827 Relaxation_map::const_iterator p
= map
.find(sid
);
2828 gold_assert(p
!= map
.end());
2829 gold_assert((*input_sections
)[p
->second
].is_input_section());
2831 // Remember section order index of original input section
2832 // if it is set. Copy it to the relaxed input section.
2834 (*input_sections
)[p
->second
].section_order_index();
2835 (*input_sections
)[p
->second
] = Input_section(poris
);
2836 (*input_sections
)[p
->second
].set_section_order_index(soi
);
2840 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2841 // is a vector of pointers to Output_relaxed_input_section or its derived
2842 // classes. The relaxed sections must correspond to existing input sections.
2845 Output_section::convert_input_sections_to_relaxed_sections(
2846 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
)
2848 gold_assert(parameters
->target().may_relax());
2850 // We want to make sure that restore_states does not undo the effect of
2851 // this. If there is no checkpoint active, just search the current
2852 // input section list and replace the sections there. If there is
2853 // a checkpoint, also replace the sections there.
2855 // By default, we look at the whole list.
2856 size_t limit
= this->input_sections_
.size();
2858 if (this->checkpoint_
!= NULL
)
2860 // Replace input sections with relaxed input section in the saved
2861 // copy of the input section list.
2862 if (this->checkpoint_
->input_sections_saved())
2865 this->build_relaxation_map(
2866 *(this->checkpoint_
->input_sections()),
2867 this->checkpoint_
->input_sections()->size(),
2869 this->convert_input_sections_in_list_to_relaxed_sections(
2872 this->checkpoint_
->input_sections());
2876 // We have not copied the input section list yet. Instead, just
2877 // look at the portion that would be saved.
2878 limit
= this->checkpoint_
->input_sections_size();
2882 // Convert input sections in input_section_list.
2884 this->build_relaxation_map(this->input_sections_
, limit
, &map
);
2885 this->convert_input_sections_in_list_to_relaxed_sections(
2888 &this->input_sections_
);
2890 // Update fast look-up map.
2891 if (this->lookup_maps_
->is_valid())
2892 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2894 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2895 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2896 poris
->shndx(), poris
);
2900 // Update the output section flags based on input section flags.
2903 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2905 // If we created the section with SHF_ALLOC clear, we set the
2906 // address. If we are now setting the SHF_ALLOC flag, we need to
2908 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2909 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2910 this->mark_address_invalid();
2912 this->flags_
|= (flags
2913 & (elfcpp::SHF_WRITE
2915 | elfcpp::SHF_EXECINSTR
));
2917 if ((flags
& elfcpp::SHF_MERGE
) == 0)
2918 this->flags_
&=~ elfcpp::SHF_MERGE
;
2921 if (this->current_data_size_for_child() == 0)
2922 this->flags_
|= elfcpp::SHF_MERGE
;
2925 if ((flags
& elfcpp::SHF_STRINGS
) == 0)
2926 this->flags_
&=~ elfcpp::SHF_STRINGS
;
2929 if (this->current_data_size_for_child() == 0)
2930 this->flags_
|= elfcpp::SHF_STRINGS
;
2934 // Find the merge section into which an input section with index SHNDX in
2935 // OBJECT has been added. Return NULL if none found.
2937 const Output_section_data
*
2938 Output_section::find_merge_section(const Relobj
* object
,
2939 unsigned int shndx
) const
2941 return object
->find_merge_section(shndx
);
2944 // Build the lookup maps for relaxed sections. This needs
2945 // to be declared as a const method so that it is callable with a const
2946 // Output_section pointer. The method only updates states of the maps.
2949 Output_section::build_lookup_maps() const
2951 this->lookup_maps_
->clear();
2952 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2953 p
!= this->input_sections_
.end();
2956 if (p
->is_relaxed_input_section())
2958 Output_relaxed_input_section
* poris
= p
->relaxed_input_section();
2959 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2960 poris
->shndx(), poris
);
2965 // Find an relaxed input section corresponding to an input section
2966 // in OBJECT with index SHNDX.
2968 const Output_relaxed_input_section
*
2969 Output_section::find_relaxed_input_section(const Relobj
* object
,
2970 unsigned int shndx
) const
2972 if (!this->lookup_maps_
->is_valid())
2973 this->build_lookup_maps();
2974 return this->lookup_maps_
->find_relaxed_input_section(object
, shndx
);
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in OBJECT, return whether this address is being included in
2979 // the final link. This should only be called if SHNDX in OBJECT has
2980 // a special mapping.
2983 Output_section::is_input_address_mapped(const Relobj
* object
,
2987 // Look at the Output_section_data_maps first.
2988 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2990 posd
= this->find_relaxed_input_section(object
, shndx
);
2994 section_offset_type output_offset
;
2995 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2996 // By default we assume that the address is mapped. See comment at the
3000 return output_offset
!= -1;
3003 // Fall back to the slow look-up.
3004 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3005 p
!= this->input_sections_
.end();
3008 section_offset_type output_offset
;
3009 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
3010 return output_offset
!= -1;
3013 // By default we assume that the address is mapped. This should
3014 // only be called after we have passed all sections to Layout. At
3015 // that point we should know what we are discarding.
3019 // Given an address OFFSET relative to the start of input section
3020 // SHNDX in object OBJECT, return the output offset relative to the
3021 // start of the input section in the output section. This should only
3022 // be called if SHNDX in OBJECT has a special mapping.
3025 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
3026 section_offset_type offset
) const
3028 // This can only be called meaningfully when we know the data size
3030 gold_assert(this->is_data_size_valid());
3032 // Look at the Output_section_data_maps first.
3033 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
3035 posd
= this->find_relaxed_input_section(object
, shndx
);
3038 section_offset_type output_offset
;
3039 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
3041 return output_offset
;
3044 // Fall back to the slow look-up.
3045 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3046 p
!= this->input_sections_
.end();
3049 section_offset_type output_offset
;
3050 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
3051 return output_offset
;
3056 // Return the output virtual address of OFFSET relative to the start
3057 // of input section SHNDX in object OBJECT.
3060 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
3063 uint64_t addr
= this->address() + this->first_input_offset_
;
3065 // Look at the Output_section_data_maps first.
3066 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
3068 posd
= this->find_relaxed_input_section(object
, shndx
);
3069 if (posd
!= NULL
&& posd
->is_address_valid())
3071 section_offset_type output_offset
;
3072 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
3074 return posd
->address() + output_offset
;
3077 // Fall back to the slow look-up.
3078 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3079 p
!= this->input_sections_
.end();
3082 addr
= align_address(addr
, p
->addralign());
3083 section_offset_type output_offset
;
3084 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
3086 if (output_offset
== -1)
3088 return addr
+ output_offset
;
3090 addr
+= p
->data_size();
3093 // If we get here, it means that we don't know the mapping for this
3094 // input section. This might happen in principle if
3095 // add_input_section were called before add_output_section_data.
3096 // But it should never actually happen.
3101 // Find the output address of the start of the merged section for
3102 // input section SHNDX in object OBJECT.
3105 Output_section::find_starting_output_address(const Relobj
* object
,
3107 uint64_t* paddr
) const
3109 const Output_section_data
* data
= this->find_merge_section(object
, shndx
);
3113 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3114 // Looking up the merge section map does not always work as we sometimes
3115 // find a merge section without its address set.
3116 uint64_t addr
= this->address() + this->first_input_offset_
;
3117 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3118 p
!= this->input_sections_
.end();
3121 addr
= align_address(addr
, p
->addralign());
3123 // It would be nice if we could use the existing output_offset
3124 // method to get the output offset of input offset 0.
3125 // Unfortunately we don't know for sure that input offset 0 is
3127 if (!p
->is_input_section() && p
->output_section_data() == data
)
3133 addr
+= p
->data_size();
3136 // We couldn't find a merge output section for this input section.
3140 // Update the data size of an Output_section.
3143 Output_section::update_data_size()
3145 if (this->input_sections_
.empty())
3148 if (this->must_sort_attached_input_sections()
3149 || this->input_section_order_specified())
3150 this->sort_attached_input_sections();
3152 off_t off
= this->first_input_offset_
;
3153 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3154 p
!= this->input_sections_
.end();
3157 off
= align_address(off
, p
->addralign());
3158 off
+= p
->current_data_size();
3161 this->set_current_data_size_for_child(off
);
3164 // Set the data size of an Output_section. This is where we handle
3165 // setting the addresses of any Output_section_data objects.
3168 Output_section::set_final_data_size()
3172 if (this->input_sections_
.empty())
3173 data_size
= this->current_data_size_for_child();
3176 if (this->must_sort_attached_input_sections()
3177 || this->input_section_order_specified())
3178 this->sort_attached_input_sections();
3180 uint64_t address
= this->address();
3181 off_t startoff
= this->offset();
3182 off_t off
= this->first_input_offset_
;
3183 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3184 p
!= this->input_sections_
.end();
3187 off
= align_address(off
, p
->addralign());
3188 p
->set_address_and_file_offset(address
+ off
, startoff
+ off
,
3190 off
+= p
->data_size();
3195 // For full incremental links, we want to allocate some patch space
3196 // in most sections for subsequent incremental updates.
3197 if (this->is_patch_space_allowed_
&& parameters
->incremental_full())
3199 double pct
= parameters
->options().incremental_patch();
3200 size_t extra
= static_cast<size_t>(data_size
* pct
);
3201 if (this->free_space_fill_
!= NULL
3202 && this->free_space_fill_
->minimum_hole_size() > extra
)
3203 extra
= this->free_space_fill_
->minimum_hole_size();
3204 off_t new_size
= align_address(data_size
+ extra
, this->addralign());
3205 this->patch_space_
= new_size
- data_size
;
3206 gold_debug(DEBUG_INCREMENTAL
,
3207 "set_final_data_size: %08lx + %08lx: section %s",
3208 static_cast<long>(data_size
),
3209 static_cast<long>(this->patch_space_
),
3211 data_size
= new_size
;
3214 this->set_data_size(data_size
);
3217 // Reset the address and file offset.
3220 Output_section::do_reset_address_and_file_offset()
3222 // An unallocated section has no address. Forcing this means that
3223 // we don't need special treatment for symbols defined in debug
3224 // sections. We do the same in the constructor. This does not
3225 // apply to NOLOAD sections though.
3226 if (((this->flags_
& elfcpp::SHF_ALLOC
) == 0) && !this->is_noload_
)
3227 this->set_address(0);
3229 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3230 p
!= this->input_sections_
.end();
3232 p
->reset_address_and_file_offset();
3234 // Remove any patch space that was added in set_final_data_size.
3235 if (this->patch_space_
> 0)
3237 this->set_current_data_size_for_child(this->current_data_size_for_child()
3238 - this->patch_space_
);
3239 this->patch_space_
= 0;
3243 // Return true if address and file offset have the values after reset.
3246 Output_section::do_address_and_file_offset_have_reset_values() const
3248 if (this->is_offset_valid())
3251 // An unallocated section has address 0 after its construction or a reset.
3252 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0)
3253 return this->is_address_valid() && this->address() == 0;
3255 return !this->is_address_valid();
3258 // Set the TLS offset. Called only for SHT_TLS sections.
3261 Output_section::do_set_tls_offset(uint64_t tls_base
)
3263 this->tls_offset_
= this->address() - tls_base
;
3266 // In a few cases we need to sort the input sections attached to an
3267 // output section. This is used to implement the type of constructor
3268 // priority ordering implemented by the GNU linker, in which the
3269 // priority becomes part of the section name and the sections are
3270 // sorted by name. We only do this for an output section if we see an
3271 // attached input section matching ".ctors.*", ".dtors.*",
3272 // ".init_array.*" or ".fini_array.*".
3274 class Output_section::Input_section_sort_entry
3277 Input_section_sort_entry()
3278 : input_section_(), index_(-1U), section_name_()
3281 Input_section_sort_entry(const Input_section
& input_section
,
3283 bool must_sort_attached_input_sections
,
3284 const char* output_section_name
)
3285 : input_section_(input_section
), index_(index
), section_name_()
3287 if ((input_section
.is_input_section()
3288 || input_section
.is_relaxed_input_section())
3289 && must_sort_attached_input_sections
)
3291 // This is only called single-threaded from Layout::finalize,
3292 // so it is OK to lock. Unfortunately we have no way to pass
3294 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
3295 Object
* obj
= (input_section
.is_input_section()
3296 ? input_section
.relobj()
3297 : input_section
.relaxed_input_section()->relobj());
3298 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
3300 // This is a slow operation, which should be cached in
3301 // Layout::layout if this becomes a speed problem.
3302 this->section_name_
= obj
->section_name(input_section
.shndx());
3304 else if (input_section
.is_output_section_data()
3305 && must_sort_attached_input_sections
)
3307 // For linker-generated sections, use the output section name.
3308 this->section_name_
.assign(output_section_name
);
3312 // Return the Input_section.
3313 const Input_section
&
3314 input_section() const
3316 gold_assert(this->index_
!= -1U);
3317 return this->input_section_
;
3320 // The index of this entry in the original list. This is used to
3321 // make the sort stable.
3325 gold_assert(this->index_
!= -1U);
3326 return this->index_
;
3329 // The section name.
3331 section_name() const
3333 return this->section_name_
;
3336 // Return true if the section name has a priority. This is assumed
3337 // to be true if it has a dot after the initial dot.
3339 has_priority() const
3341 return this->section_name_
.find('.', 1) != std::string::npos
;
3344 // Return the priority. Believe it or not, gcc encodes the priority
3345 // differently for .ctors/.dtors and .init_array/.fini_array
3348 get_priority() const
3351 if (is_prefix_of(".ctors.", this->section_name_
.c_str())
3352 || is_prefix_of(".dtors.", this->section_name_
.c_str()))
3354 else if (is_prefix_of(".init_array.", this->section_name_
.c_str())
3355 || is_prefix_of(".fini_array.", this->section_name_
.c_str()))
3360 unsigned long prio
= strtoul((this->section_name_
.c_str()
3361 + (is_ctors
? 7 : 12)),
3366 return 65535 - prio
;
3371 // Return true if this an input file whose base name matches
3372 // FILE_NAME. The base name must have an extension of ".o", and
3373 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3374 // This is to match crtbegin.o as well as crtbeginS.o without
3375 // getting confused by other possibilities. Overall matching the
3376 // file name this way is a dreadful hack, but the GNU linker does it
3377 // in order to better support gcc, and we need to be compatible.
3379 match_file_name(const char* file_name
) const
3381 if (this->input_section_
.is_output_section_data())
3383 return Layout::match_file_name(this->input_section_
.relobj(), file_name
);
3386 // Returns 1 if THIS should appear before S in section order, -1 if S
3387 // appears before THIS and 0 if they are not comparable.
3389 compare_section_ordering(const Input_section_sort_entry
& s
) const
3391 unsigned int this_secn_index
= this->input_section_
.section_order_index();
3392 unsigned int s_secn_index
= s
.input_section().section_order_index();
3393 if (this_secn_index
> 0 && s_secn_index
> 0)
3395 if (this_secn_index
< s_secn_index
)
3397 else if (this_secn_index
> s_secn_index
)
3404 // The Input_section we are sorting.
3405 Input_section input_section_
;
3406 // The index of this Input_section in the original list.
3407 unsigned int index_
;
3408 // The section name if there is one.
3409 std::string section_name_
;
3412 // Return true if S1 should come before S2 in the output section.
3415 Output_section::Input_section_sort_compare::operator()(
3416 const Output_section::Input_section_sort_entry
& s1
,
3417 const Output_section::Input_section_sort_entry
& s2
) const
3419 // crtbegin.o must come first.
3420 bool s1_begin
= s1
.match_file_name("crtbegin");
3421 bool s2_begin
= s2
.match_file_name("crtbegin");
3422 if (s1_begin
|| s2_begin
)
3428 return s1
.index() < s2
.index();
3431 // crtend.o must come last.
3432 bool s1_end
= s1
.match_file_name("crtend");
3433 bool s2_end
= s2
.match_file_name("crtend");
3434 if (s1_end
|| s2_end
)
3440 return s1
.index() < s2
.index();
3443 // A section with a priority follows a section without a priority.
3444 bool s1_has_priority
= s1
.has_priority();
3445 bool s2_has_priority
= s2
.has_priority();
3446 if (s1_has_priority
&& !s2_has_priority
)
3448 if (!s1_has_priority
&& s2_has_priority
)
3451 // Check if a section order exists for these sections through a section
3452 // ordering file. If sequence_num is 0, an order does not exist.
3453 int sequence_num
= s1
.compare_section_ordering(s2
);
3454 if (sequence_num
!= 0)
3455 return sequence_num
== 1;
3457 // Otherwise we sort by name.
3458 int compare
= s1
.section_name().compare(s2
.section_name());
3462 // Otherwise we keep the input order.
3463 return s1
.index() < s2
.index();
3466 // Return true if S1 should come before S2 in an .init_array or .fini_array
3470 Output_section::Input_section_sort_init_fini_compare::operator()(
3471 const Output_section::Input_section_sort_entry
& s1
,
3472 const Output_section::Input_section_sort_entry
& s2
) const
3474 // A section without a priority follows a section with a priority.
3475 // This is the reverse of .ctors and .dtors sections.
3476 bool s1_has_priority
= s1
.has_priority();
3477 bool s2_has_priority
= s2
.has_priority();
3478 if (s1_has_priority
&& !s2_has_priority
)
3480 if (!s1_has_priority
&& s2_has_priority
)
3483 // .ctors and .dtors sections without priority come after
3484 // .init_array and .fini_array sections without priority.
3485 if (!s1_has_priority
3486 && (s1
.section_name() == ".ctors" || s1
.section_name() == ".dtors")
3487 && s1
.section_name() != s2
.section_name())
3489 if (!s2_has_priority
3490 && (s2
.section_name() == ".ctors" || s2
.section_name() == ".dtors")
3491 && s2
.section_name() != s1
.section_name())
3494 // Sort by priority if we can.
3495 if (s1_has_priority
)
3497 unsigned int s1_prio
= s1
.get_priority();
3498 unsigned int s2_prio
= s2
.get_priority();
3499 if (s1_prio
< s2_prio
)
3501 else if (s1_prio
> s2_prio
)
3505 // Check if a section order exists for these sections through a section
3506 // ordering file. If sequence_num is 0, an order does not exist.
3507 int sequence_num
= s1
.compare_section_ordering(s2
);
3508 if (sequence_num
!= 0)
3509 return sequence_num
== 1;
3511 // Otherwise we sort by name.
3512 int compare
= s1
.section_name().compare(s2
.section_name());
3516 // Otherwise we keep the input order.
3517 return s1
.index() < s2
.index();
3520 // Return true if S1 should come before S2. Sections that do not match
3521 // any pattern in the section ordering file are placed ahead of the sections
3522 // that match some pattern.
3525 Output_section::Input_section_sort_section_order_index_compare::operator()(
3526 const Output_section::Input_section_sort_entry
& s1
,
3527 const Output_section::Input_section_sort_entry
& s2
) const
3529 unsigned int s1_secn_index
= s1
.input_section().section_order_index();
3530 unsigned int s2_secn_index
= s2
.input_section().section_order_index();
3532 // Keep input order if section ordering cannot determine order.
3533 if (s1_secn_index
== s2_secn_index
)
3534 return s1
.index() < s2
.index();
3536 return s1_secn_index
< s2_secn_index
;
3539 // Return true if S1 should come before S2. This is the sort comparison
3540 // function for .text to sort sections with prefixes
3541 // .text.{unlikely,exit,startup,hot} before other sections.
3544 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3546 const Output_section::Input_section_sort_entry
& s1
,
3547 const Output_section::Input_section_sort_entry
& s2
) const
3549 // Some input section names have special ordering requirements.
3550 const char *s1_section_name
= s1
.section_name().c_str();
3551 const char *s2_section_name
= s2
.section_name().c_str();
3552 int o1
= Layout::special_ordering_of_input_section(s1_section_name
);
3553 int o2
= Layout::special_ordering_of_input_section(s2_section_name
);
3563 else if (is_prefix_of(".text.sorted", s1_section_name
))
3564 return strcmp(s1_section_name
, s2_section_name
) <= 0;
3566 // Keep input order otherwise.
3567 return s1
.index() < s2
.index();
3570 // Return true if S1 should come before S2. This is the sort comparison
3571 // function for sections to sort them by name.
3574 Output_section::Input_section_sort_section_name_compare
3576 const Output_section::Input_section_sort_entry
& s1
,
3577 const Output_section::Input_section_sort_entry
& s2
) const
3580 int compare
= s1
.section_name().compare(s2
.section_name());
3584 // Keep input order otherwise.
3585 return s1
.index() < s2
.index();
3588 // This updates the section order index of input sections according to the
3589 // the order specified in the mapping from Section id to order index.
3592 Output_section::update_section_layout(
3593 const Section_layout_order
* order_map
)
3595 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3596 p
!= this->input_sections_
.end();
3599 if (p
->is_input_section()
3600 || p
->is_relaxed_input_section())
3602 Relobj
* obj
= (p
->is_input_section()
3604 : p
->relaxed_input_section()->relobj());
3605 unsigned int shndx
= p
->shndx();
3606 Section_layout_order::const_iterator it
3607 = order_map
->find(Section_id(obj
, shndx
));
3608 if (it
== order_map
->end())
3610 unsigned int section_order_index
= it
->second
;
3611 if (section_order_index
!= 0)
3613 p
->set_section_order_index(section_order_index
);
3614 this->set_input_section_order_specified();
3620 // Sort the input sections attached to an output section.
3623 Output_section::sort_attached_input_sections()
3625 if (this->attached_input_sections_are_sorted_
)
3628 if (this->checkpoint_
!= NULL
3629 && !this->checkpoint_
->input_sections_saved())
3630 this->checkpoint_
->save_input_sections();
3632 // The only thing we know about an input section is the object and
3633 // the section index. We need the section name. Recomputing this
3634 // is slow but this is an unusual case. If this becomes a speed
3635 // problem we can cache the names as required in Layout::layout.
3637 // We start by building a larger vector holding a copy of each
3638 // Input_section, plus its current index in the list and its name.
3639 std::vector
<Input_section_sort_entry
> sort_list
;
3642 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3643 p
!= this->input_sections_
.end();
3645 sort_list
.push_back(Input_section_sort_entry(*p
, i
,
3646 this->must_sort_attached_input_sections(),
3649 // Sort the input sections.
3650 if (this->must_sort_attached_input_sections())
3652 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3653 || this->type() == elfcpp::SHT_INIT_ARRAY
3654 || this->type() == elfcpp::SHT_FINI_ARRAY
)
3655 std::sort(sort_list
.begin(), sort_list
.end(),
3656 Input_section_sort_init_fini_compare());
3657 else if (strcmp(parameters
->options().sort_section(), "name") == 0)
3658 std::sort(sort_list
.begin(), sort_list
.end(),
3659 Input_section_sort_section_name_compare());
3660 else if (strcmp(this->name(), ".text") == 0)
3661 std::sort(sort_list
.begin(), sort_list
.end(),
3662 Input_section_sort_section_prefix_special_ordering_compare());
3664 std::sort(sort_list
.begin(), sort_list
.end(),
3665 Input_section_sort_compare());
3669 gold_assert(this->input_section_order_specified());
3670 std::sort(sort_list
.begin(), sort_list
.end(),
3671 Input_section_sort_section_order_index_compare());
3674 // Copy the sorted input sections back to our list.
3675 this->input_sections_
.clear();
3676 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
3677 p
!= sort_list
.end();
3679 this->input_sections_
.push_back(p
->input_section());
3682 // Remember that we sorted the input sections, since we might get
3684 this->attached_input_sections_are_sorted_
= true;
3687 // Write the section header to *OSHDR.
3689 template<int size
, bool big_endian
>
3691 Output_section::write_header(const Layout
* layout
,
3692 const Stringpool
* secnamepool
,
3693 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
3695 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
3696 oshdr
->put_sh_type(this->type_
);
3698 elfcpp::Elf_Xword flags
= this->flags_
;
3699 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
3700 flags
|= elfcpp::SHF_INFO_LINK
;
3701 oshdr
->put_sh_flags(flags
);
3703 oshdr
->put_sh_addr(this->address());
3704 oshdr
->put_sh_offset(this->offset());
3705 oshdr
->put_sh_size(this->data_size());
3706 if (this->link_section_
!= NULL
)
3707 oshdr
->put_sh_link(this->link_section_
->out_shndx());
3708 else if (this->should_link_to_symtab_
)
3709 oshdr
->put_sh_link(layout
->symtab_section_shndx());
3710 else if (this->should_link_to_dynsym_
)
3711 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
3713 oshdr
->put_sh_link(this->link_
);
3715 elfcpp::Elf_Word info
;
3716 if (this->info_section_
!= NULL
)
3718 if (this->info_uses_section_index_
)
3719 info
= this->info_section_
->out_shndx();
3721 info
= this->info_section_
->symtab_index();
3723 else if (this->info_symndx_
!= NULL
)
3724 info
= this->info_symndx_
->symtab_index();
3727 oshdr
->put_sh_info(info
);
3729 oshdr
->put_sh_addralign(this->addralign_
);
3730 oshdr
->put_sh_entsize(this->entsize_
);
3733 // Write out the data. For input sections the data is written out by
3734 // Object::relocate, but we have to handle Output_section_data objects
3738 Output_section::do_write(Output_file
* of
)
3740 gold_assert(!this->requires_postprocessing());
3742 // If the target performs relaxation, we delay filler generation until now.
3743 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3745 off_t output_section_file_offset
= this->offset();
3746 for (Fill_list::iterator p
= this->fills_
.begin();
3747 p
!= this->fills_
.end();
3750 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3751 of
->write(output_section_file_offset
+ p
->section_offset(),
3752 fill_data
.data(), fill_data
.size());
3755 off_t off
= this->offset() + this->first_input_offset_
;
3756 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3757 p
!= this->input_sections_
.end();
3760 off_t aligned_off
= align_address(off
, p
->addralign());
3761 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3763 size_t fill_len
= aligned_off
- off
;
3764 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3765 of
->write(off
, fill_data
.data(), fill_data
.size());
3769 off
= aligned_off
+ p
->data_size();
3772 // For incremental links, fill in unused chunks in debug sections
3773 // with dummy compilation unit headers.
3774 if (this->free_space_fill_
!= NULL
)
3776 for (Free_list::Const_iterator p
= this->free_list_
.begin();
3777 p
!= this->free_list_
.end();
3780 off_t off
= p
->start_
;
3781 size_t len
= p
->end_
- off
;
3782 this->free_space_fill_
->write(of
, this->offset() + off
, len
);
3784 if (this->patch_space_
> 0)
3786 off_t off
= this->current_data_size_for_child() - this->patch_space_
;
3787 this->free_space_fill_
->write(of
, this->offset() + off
,
3788 this->patch_space_
);
3793 // If a section requires postprocessing, create the buffer to use.
3796 Output_section::create_postprocessing_buffer()
3798 gold_assert(this->requires_postprocessing());
3800 if (this->postprocessing_buffer_
!= NULL
)
3803 if (!this->input_sections_
.empty())
3805 off_t off
= this->first_input_offset_
;
3806 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3807 p
!= this->input_sections_
.end();
3810 off
= align_address(off
, p
->addralign());
3811 p
->finalize_data_size();
3812 off
+= p
->data_size();
3814 this->set_current_data_size_for_child(off
);
3817 off_t buffer_size
= this->current_data_size_for_child();
3818 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
3821 // Write all the data of an Output_section into the postprocessing
3822 // buffer. This is used for sections which require postprocessing,
3823 // such as compression. Input sections are handled by
3824 // Object::Relocate.
3827 Output_section::write_to_postprocessing_buffer()
3829 gold_assert(this->requires_postprocessing());
3831 // If the target performs relaxation, we delay filler generation until now.
3832 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3834 unsigned char* buffer
= this->postprocessing_buffer();
3835 for (Fill_list::iterator p
= this->fills_
.begin();
3836 p
!= this->fills_
.end();
3839 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3840 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
3844 off_t off
= this->first_input_offset_
;
3845 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3846 p
!= this->input_sections_
.end();
3849 off_t aligned_off
= align_address(off
, p
->addralign());
3850 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3852 size_t fill_len
= aligned_off
- off
;
3853 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3854 memcpy(buffer
+ off
, fill_data
.data(), fill_data
.size());
3857 p
->write_to_buffer(buffer
+ aligned_off
);
3858 off
= aligned_off
+ p
->data_size();
3862 // Get the input sections for linker script processing. We leave
3863 // behind the Output_section_data entries. Note that this may be
3864 // slightly incorrect for merge sections. We will leave them behind,
3865 // but it is possible that the script says that they should follow
3866 // some other input sections, as in:
3867 // .rodata { *(.rodata) *(.rodata.cst*) }
3868 // For that matter, we don't handle this correctly:
3869 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3870 // With luck this will never matter.
3873 Output_section::get_input_sections(
3875 const std::string
& fill
,
3876 std::list
<Input_section
>* input_sections
)
3878 if (this->checkpoint_
!= NULL
3879 && !this->checkpoint_
->input_sections_saved())
3880 this->checkpoint_
->save_input_sections();
3882 // Invalidate fast look-up maps.
3883 this->lookup_maps_
->invalidate();
3885 uint64_t orig_address
= address
;
3887 address
= align_address(address
, this->addralign());
3889 Input_section_list remaining
;
3890 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3891 p
!= this->input_sections_
.end();
3894 if (p
->is_input_section()
3895 || p
->is_relaxed_input_section()
3896 || p
->is_merge_section())
3897 input_sections
->push_back(*p
);
3900 uint64_t aligned_address
= align_address(address
, p
->addralign());
3901 if (aligned_address
!= address
&& !fill
.empty())
3903 section_size_type length
=
3904 convert_to_section_size_type(aligned_address
- address
);
3905 std::string this_fill
;
3906 this_fill
.reserve(length
);
3907 while (this_fill
.length() + fill
.length() <= length
)
3909 if (this_fill
.length() < length
)
3910 this_fill
.append(fill
, 0, length
- this_fill
.length());
3912 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
3913 remaining
.push_back(Input_section(posd
));
3915 address
= aligned_address
;
3917 remaining
.push_back(*p
);
3919 p
->finalize_data_size();
3920 address
+= p
->data_size();
3924 this->input_sections_
.swap(remaining
);
3925 this->first_input_offset_
= 0;
3927 uint64_t data_size
= address
- orig_address
;
3928 this->set_current_data_size_for_child(data_size
);
3932 // Add a script input section. SIS is an Output_section::Input_section,
3933 // which can be either a plain input section or a special input section like
3934 // a relaxed input section. For a special input section, its size must be
3938 Output_section::add_script_input_section(const Input_section
& sis
)
3940 uint64_t data_size
= sis
.data_size();
3941 uint64_t addralign
= sis
.addralign();
3942 if (addralign
> this->addralign_
)
3943 this->addralign_
= addralign
;
3945 off_t offset_in_section
= this->current_data_size_for_child();
3946 off_t aligned_offset_in_section
= align_address(offset_in_section
,
3949 this->set_current_data_size_for_child(aligned_offset_in_section
3952 this->input_sections_
.push_back(sis
);
3954 // Update fast lookup maps if necessary.
3955 if (this->lookup_maps_
->is_valid())
3957 if (sis
.is_relaxed_input_section())
3959 Output_relaxed_input_section
* poris
= sis
.relaxed_input_section();
3960 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
3961 poris
->shndx(), poris
);
3966 // Save states for relaxation.
3969 Output_section::save_states()
3971 gold_assert(this->checkpoint_
== NULL
);
3972 Checkpoint_output_section
* checkpoint
=
3973 new Checkpoint_output_section(this->addralign_
, this->flags_
,
3974 this->input_sections_
,
3975 this->first_input_offset_
,
3976 this->attached_input_sections_are_sorted_
);
3977 this->checkpoint_
= checkpoint
;
3978 gold_assert(this->fills_
.empty());
3982 Output_section::discard_states()
3984 gold_assert(this->checkpoint_
!= NULL
);
3985 delete this->checkpoint_
;
3986 this->checkpoint_
= NULL
;
3987 gold_assert(this->fills_
.empty());
3989 // Simply invalidate the fast lookup maps since we do not keep
3991 this->lookup_maps_
->invalidate();
3995 Output_section::restore_states()
3997 gold_assert(this->checkpoint_
!= NULL
);
3998 Checkpoint_output_section
* checkpoint
= this->checkpoint_
;
4000 this->addralign_
= checkpoint
->addralign();
4001 this->flags_
= checkpoint
->flags();
4002 this->first_input_offset_
= checkpoint
->first_input_offset();
4004 if (!checkpoint
->input_sections_saved())
4006 // If we have not copied the input sections, just resize it.
4007 size_t old_size
= checkpoint
->input_sections_size();
4008 gold_assert(this->input_sections_
.size() >= old_size
);
4009 this->input_sections_
.resize(old_size
);
4013 // We need to copy the whole list. This is not efficient for
4014 // extremely large output with hundreads of thousands of input
4015 // objects. We may need to re-think how we should pass sections
4017 this->input_sections_
= *checkpoint
->input_sections();
4020 this->attached_input_sections_are_sorted_
=
4021 checkpoint
->attached_input_sections_are_sorted();
4023 // Simply invalidate the fast lookup maps since we do not keep
4025 this->lookup_maps_
->invalidate();
4028 // Update the section offsets of input sections in this. This is required if
4029 // relaxation causes some input sections to change sizes.
4032 Output_section::adjust_section_offsets()
4034 if (!this->section_offsets_need_adjustment_
)
4038 for (Input_section_list::iterator p
= this->input_sections_
.begin();
4039 p
!= this->input_sections_
.end();
4042 off
= align_address(off
, p
->addralign());
4043 if (p
->is_input_section())
4044 p
->relobj()->set_section_offset(p
->shndx(), off
);
4045 off
+= p
->data_size();
4048 this->section_offsets_need_adjustment_
= false;
4051 // Print to the map file.
4054 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
4056 mapfile
->print_output_section(this);
4058 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
4059 p
!= this->input_sections_
.end();
4061 p
->print_to_mapfile(mapfile
);
4064 // Print stats for merge sections to stderr.
4067 Output_section::print_merge_stats()
4069 Input_section_list::iterator p
;
4070 for (p
= this->input_sections_
.begin();
4071 p
!= this->input_sections_
.end();
4073 p
->print_merge_stats(this->name_
);
4076 // Set a fixed layout for the section. Used for incremental update links.
4079 Output_section::set_fixed_layout(uint64_t sh_addr
, off_t sh_offset
,
4080 off_t sh_size
, uint64_t sh_addralign
)
4082 this->addralign_
= sh_addralign
;
4083 this->set_current_data_size(sh_size
);
4084 if ((this->flags_
& elfcpp::SHF_ALLOC
) != 0)
4085 this->set_address(sh_addr
);
4086 this->set_file_offset(sh_offset
);
4087 this->finalize_data_size();
4088 this->free_list_
.init(sh_size
, false);
4089 this->has_fixed_layout_
= true;
4092 // Reserve space within the fixed layout for the section. Used for
4093 // incremental update links.
4096 Output_section::reserve(uint64_t sh_offset
, uint64_t sh_size
)
4098 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
4101 // Allocate space from the free list for the section. Used for
4102 // incremental update links.
4105 Output_section::allocate(off_t len
, uint64_t addralign
)
4107 return this->free_list_
.allocate(len
, addralign
, 0);
4110 // Output segment methods.
4112 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4122 is_max_align_known_(false),
4123 are_addresses_set_(false),
4124 is_large_data_segment_(false),
4125 is_unique_segment_(false)
4127 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4129 if (type
== elfcpp::PT_TLS
)
4130 this->flags_
= elfcpp::PF_R
;
4133 // Add an Output_section to a PT_LOAD Output_segment.
4136 Output_segment::add_output_section_to_load(Layout
* layout
,
4138 elfcpp::Elf_Word seg_flags
)
4140 gold_assert(this->type() == elfcpp::PT_LOAD
);
4141 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
4142 gold_assert(!this->is_max_align_known_
);
4143 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
4145 this->update_flags_for_output_section(seg_flags
);
4147 // We don't want to change the ordering if we have a linker script
4148 // with a SECTIONS clause.
4149 Output_section_order order
= os
->order();
4150 if (layout
->script_options()->saw_sections_clause())
4151 order
= static_cast<Output_section_order
>(0);
4153 gold_assert(order
!= ORDER_INVALID
);
4155 this->output_lists_
[order
].push_back(os
);
4158 // Add an Output_section to a non-PT_LOAD Output_segment.
4161 Output_segment::add_output_section_to_nonload(Output_section
* os
,
4162 elfcpp::Elf_Word seg_flags
)
4164 gold_assert(this->type() != elfcpp::PT_LOAD
);
4165 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
4166 gold_assert(!this->is_max_align_known_
);
4168 this->update_flags_for_output_section(seg_flags
);
4170 this->output_lists_
[0].push_back(os
);
4173 // Remove an Output_section from this segment. It is an error if it
4177 Output_segment::remove_output_section(Output_section
* os
)
4179 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4181 Output_data_list
* pdl
= &this->output_lists_
[i
];
4182 for (Output_data_list::iterator p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
4194 // Add an Output_data (which need not be an Output_section) to the
4195 // start of a segment.
4198 Output_segment::add_initial_output_data(Output_data
* od
)
4200 gold_assert(!this->is_max_align_known_
);
4201 Output_data_list::iterator p
= this->output_lists_
[0].begin();
4202 this->output_lists_
[0].insert(p
, od
);
4205 // Return true if this segment has any sections which hold actual
4206 // data, rather than being a BSS section.
4209 Output_segment::has_any_data_sections() const
4211 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4213 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4214 for (Output_data_list::const_iterator p
= pdl
->begin();
4218 if (!(*p
)->is_section())
4220 if ((*p
)->output_section()->type() != elfcpp::SHT_NOBITS
)
4227 // Return whether the first data section (not counting TLS sections)
4228 // is a relro section.
4231 Output_segment::is_first_section_relro() const
4233 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4235 if (i
== static_cast<int>(ORDER_TLS_BSS
))
4237 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4240 Output_data
* p
= pdl
->front();
4241 return p
->is_section() && p
->output_section()->is_relro();
4247 // Return the maximum alignment of the Output_data in Output_segment.
4250 Output_segment::maximum_alignment()
4252 if (!this->is_max_align_known_
)
4254 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4256 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4257 uint64_t addralign
= Output_segment::maximum_alignment_list(pdl
);
4258 if (addralign
> this->max_align_
)
4259 this->max_align_
= addralign
;
4261 this->is_max_align_known_
= true;
4264 return this->max_align_
;
4267 // Return the maximum alignment of a list of Output_data.
4270 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
4273 for (Output_data_list::const_iterator p
= pdl
->begin();
4277 uint64_t addralign
= (*p
)->addralign();
4278 if (addralign
> ret
)
4284 // Return whether this segment has any dynamic relocs.
4287 Output_segment::has_dynamic_reloc() const
4289 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4290 if (this->has_dynamic_reloc_list(&this->output_lists_
[i
]))
4295 // Return whether this Output_data_list has any dynamic relocs.
4298 Output_segment::has_dynamic_reloc_list(const Output_data_list
* pdl
) const
4300 for (Output_data_list::const_iterator p
= pdl
->begin();
4303 if ((*p
)->has_dynamic_reloc())
4308 // Set the section addresses for an Output_segment. If RESET is true,
4309 // reset the addresses first. ADDR is the address and *POFF is the
4310 // file offset. Set the section indexes starting with *PSHNDX.
4311 // INCREASE_RELRO is the size of the portion of the first non-relro
4312 // section that should be included in the PT_GNU_RELRO segment.
4313 // If this segment has relro sections, and has been aligned for
4314 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4315 // the immediately following segment. Update *HAS_RELRO, *POFF,
4319 Output_segment::set_section_addresses(const Target
* target
,
4320 Layout
* layout
, bool reset
,
4322 unsigned int* increase_relro
,
4325 unsigned int* pshndx
)
4327 gold_assert(this->type_
== elfcpp::PT_LOAD
);
4329 uint64_t last_relro_pad
= 0;
4330 off_t orig_off
= *poff
;
4332 bool in_tls
= false;
4334 // If we have relro sections, we need to pad forward now so that the
4335 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4336 if (parameters
->options().relro()
4337 && this->is_first_section_relro()
4338 && (!this->are_addresses_set_
|| reset
))
4340 uint64_t relro_size
= 0;
4342 uint64_t max_align
= 0;
4343 for (int i
= 0; i
<= static_cast<int>(ORDER_RELRO_LAST
); ++i
)
4345 Output_data_list
* pdl
= &this->output_lists_
[i
];
4346 Output_data_list::iterator p
;
4347 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
4349 if (!(*p
)->is_section())
4351 uint64_t align
= (*p
)->addralign();
4352 if (align
> max_align
)
4354 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
4358 // Align the first non-TLS section to the alignment
4359 // of the TLS segment.
4363 // Ignore the size of the .tbss section.
4364 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
4365 && (*p
)->is_section_type(elfcpp::SHT_NOBITS
))
4367 relro_size
= align_address(relro_size
, align
);
4368 if ((*p
)->is_address_valid())
4369 relro_size
+= (*p
)->data_size();
4372 // FIXME: This could be faster.
4373 (*p
)->set_address_and_file_offset(relro_size
,
4375 relro_size
+= (*p
)->data_size();
4376 (*p
)->reset_address_and_file_offset();
4379 if (p
!= pdl
->end())
4382 relro_size
+= *increase_relro
;
4383 // Pad the total relro size to a multiple of the maximum
4384 // section alignment seen.
4385 uint64_t aligned_size
= align_address(relro_size
, max_align
);
4386 // Note the amount of padding added after the last relro section.
4387 last_relro_pad
= aligned_size
- relro_size
;
4390 uint64_t page_align
= parameters
->target().abi_pagesize();
4392 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4393 uint64_t desired_align
= page_align
- (aligned_size
% page_align
);
4394 if (desired_align
< off
% page_align
)
4396 off
+= desired_align
- off
% page_align
;
4397 addr
+= off
- orig_off
;
4402 if (!reset
&& this->are_addresses_set_
)
4404 gold_assert(this->paddr_
== addr
);
4405 addr
= this->vaddr_
;
4409 this->vaddr_
= addr
;
4410 this->paddr_
= addr
;
4411 this->are_addresses_set_
= true;
4416 this->offset_
= orig_off
;
4421 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4423 if (i
== static_cast<int>(ORDER_RELRO_LAST
))
4425 *poff
+= last_relro_pad
;
4426 foff
+= last_relro_pad
;
4427 addr
+= last_relro_pad
;
4428 if (this->output_lists_
[i
].empty())
4430 // If there is nothing in the ORDER_RELRO_LAST list,
4431 // the padding will occur at the end of the relro
4432 // segment, and we need to add it to *INCREASE_RELRO.
4433 *increase_relro
+= last_relro_pad
;
4436 addr
= this->set_section_list_addresses(layout
, reset
,
4437 &this->output_lists_
[i
],
4438 addr
, poff
, &foff
, pshndx
,
4441 // FOFF tracks the last offset used for the file image,
4442 // and *POFF tracks the last offset used for the memory image.
4443 // When not using a linker script, bss sections should all
4444 // be processed in the ORDER_SMALL_BSS and later buckets.
4445 gold_assert(*poff
== foff
4446 || i
== static_cast<int>(ORDER_TLS_BSS
)
4447 || i
>= static_cast<int>(ORDER_SMALL_BSS
)
4448 || layout
->script_options()->saw_sections_clause());
4450 this->filesz_
= foff
- orig_off
;
4456 // If the last section was a TLS section, align upward to the
4457 // alignment of the TLS segment, so that the overall size of the TLS
4458 // segment is aligned.
4461 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
4462 *poff
= align_address(*poff
, segment_align
);
4465 this->memsz_
= *poff
- orig_off
;
4467 // Ignore the file offset adjustments made by the BSS Output_data
4471 // If code segments must contain only code, and this code segment is
4472 // page-aligned in the file, then fill it out to a whole page with
4473 // code fill (the tail of the segment will not be within any section).
4474 // Thus the entire code segment can be mapped from the file as whole
4475 // pages and that mapping will contain only valid instructions.
4476 if (target
->isolate_execinstr() && (this->flags() & elfcpp::PF_X
) != 0)
4478 uint64_t abi_pagesize
= target
->abi_pagesize();
4479 if (orig_off
% abi_pagesize
== 0 && off
% abi_pagesize
!= 0)
4481 size_t fill_size
= abi_pagesize
- (off
% abi_pagesize
);
4483 std::string fill_data
;
4484 if (target
->has_code_fill())
4485 fill_data
= target
->code_fill(fill_size
);
4487 fill_data
.resize(fill_size
); // Zero fill.
4489 Output_data_const
* fill
= new Output_data_const(fill_data
, 0);
4490 fill
->set_address(this->vaddr_
+ this->memsz_
);
4491 fill
->set_file_offset(off
);
4492 layout
->add_relax_output(fill
);
4495 gold_assert(off
% abi_pagesize
== 0);
4497 gold_assert(ret
% abi_pagesize
== 0);
4499 gold_assert((uint64_t) this->filesz_
== this->memsz_
);
4500 this->memsz_
= this->filesz_
+= fill_size
;
4509 // Set the addresses and file offsets in a list of Output_data
4513 Output_segment::set_section_list_addresses(Layout
* layout
, bool reset
,
4514 Output_data_list
* pdl
,
4515 uint64_t addr
, off_t
* poff
,
4517 unsigned int* pshndx
,
4520 off_t startoff
= *poff
;
4521 // For incremental updates, we may allocate non-fixed sections from
4522 // free space in the file. This keeps track of the high-water mark.
4523 off_t maxoff
= startoff
;
4525 off_t off
= startoff
;
4526 off_t foff
= *pfoff
;
4527 for (Output_data_list::iterator p
= pdl
->begin();
4531 bool is_bss
= (*p
)->is_section_type(elfcpp::SHT_NOBITS
);
4532 bool is_tls
= (*p
)->is_section_flag_set(elfcpp::SHF_TLS
);
4535 (*p
)->reset_address_and_file_offset();
4537 // When doing an incremental update or when using a linker script,
4538 // the section will most likely already have an address.
4539 if (!(*p
)->is_address_valid())
4541 uint64_t align
= (*p
)->addralign();
4545 // Give the first TLS section the alignment of the
4546 // entire TLS segment. Otherwise the TLS segment as a
4547 // whole may be misaligned.
4550 Output_segment
* tls_segment
= layout
->tls_segment();
4551 gold_assert(tls_segment
!= NULL
);
4552 uint64_t segment_align
= tls_segment
->maximum_alignment();
4553 gold_assert(segment_align
>= align
);
4554 align
= segment_align
;
4561 // If this is the first section after the TLS segment,
4562 // align it to at least the alignment of the TLS
4563 // segment, so that the size of the overall TLS segment
4567 uint64_t segment_align
=
4568 layout
->tls_segment()->maximum_alignment();
4569 if (segment_align
> align
)
4570 align
= segment_align
;
4576 if (!parameters
->incremental_update())
4578 gold_assert(off
== foff
|| is_bss
);
4579 off
= align_address(off
, align
);
4580 if (is_tls
|| !is_bss
)
4582 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), foff
);
4586 // Incremental update: allocate file space from free list.
4587 (*p
)->pre_finalize_data_size();
4588 off_t current_size
= (*p
)->current_data_size();
4589 off
= layout
->allocate(current_size
, align
, startoff
);
4593 gold_assert((*p
)->output_section() != NULL
);
4594 gold_fallback(_("out of patch space for section %s; "
4595 "relink with --incremental-full"),
4596 (*p
)->output_section()->name());
4598 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), foff
);
4599 if ((*p
)->data_size() > current_size
)
4601 gold_assert((*p
)->output_section() != NULL
);
4602 gold_fallback(_("%s: section changed size; "
4603 "relink with --incremental-full"),
4604 (*p
)->output_section()->name());
4608 else if (parameters
->incremental_update())
4610 // For incremental updates, use the fixed offset for the
4611 // high-water mark computation.
4612 off
= (*p
)->offset();
4617 // The script may have inserted a skip forward, but it
4618 // better not have moved backward.
4619 if ((*p
)->address() >= addr
+ (off
- startoff
))
4621 if (!is_bss
&& off
> foff
)
4622 gold_warning(_("script places BSS section in the middle "
4623 "of a LOAD segment; space will be allocated "
4625 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
4626 if (is_tls
|| !is_bss
)
4631 if (!layout
->script_options()->saw_sections_clause())
4635 Output_section
* os
= (*p
)->output_section();
4637 // Cast to unsigned long long to avoid format warnings.
4638 unsigned long long previous_dot
=
4639 static_cast<unsigned long long>(addr
+ (off
- startoff
));
4640 unsigned long long dot
=
4641 static_cast<unsigned long long>((*p
)->address());
4644 gold_error(_("dot moves backward in linker script "
4645 "from 0x%llx to 0x%llx"), previous_dot
, dot
);
4647 gold_error(_("address of section '%s' moves backward "
4648 "from 0x%llx to 0x%llx"),
4649 os
->name(), previous_dot
, dot
);
4652 (*p
)->set_file_offset(foff
);
4653 (*p
)->finalize_data_size();
4656 if (parameters
->incremental_update())
4657 gold_debug(DEBUG_INCREMENTAL
,
4658 "set_section_list_addresses: %08lx %08lx %s",
4659 static_cast<long>(off
),
4660 static_cast<long>((*p
)->data_size()),
4661 ((*p
)->output_section() != NULL
4662 ? (*p
)->output_section()->name() : "(special)"));
4664 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4665 // section. Such a section does not affect the size of a
4667 if (!is_tls
|| !is_bss
)
4668 off
+= (*p
)->data_size();
4670 // We don't allocate space in the file for SHT_NOBITS sections,
4671 // unless a script has force-placed one in the middle of a segment.
4678 if ((*p
)->is_section())
4680 (*p
)->set_out_shndx(*pshndx
);
4687 return addr
+ (maxoff
- startoff
);
4690 // For a non-PT_LOAD segment, set the offset from the sections, if
4691 // any. Add INCREASE to the file size and the memory size.
4694 Output_segment::set_offset(unsigned int increase
)
4696 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
4698 gold_assert(!this->are_addresses_set_
);
4700 // A non-load section only uses output_lists_[0].
4702 Output_data_list
* pdl
= &this->output_lists_
[0];
4706 gold_assert(increase
== 0);
4709 this->are_addresses_set_
= true;
4711 this->min_p_align_
= 0;
4717 // Find the first and last section by address.
4718 const Output_data
* first
= NULL
;
4719 const Output_data
* last_data
= NULL
;
4720 const Output_data
* last_bss
= NULL
;
4721 for (Output_data_list::const_iterator p
= pdl
->begin();
4726 || (*p
)->address() < first
->address()
4727 || ((*p
)->address() == first
->address()
4728 && (*p
)->data_size() < first
->data_size()))
4730 const Output_data
** plast
;
4731 if ((*p
)->is_section()
4732 && (*p
)->output_section()->type() == elfcpp::SHT_NOBITS
)
4737 || (*p
)->address() > (*plast
)->address()
4738 || ((*p
)->address() == (*plast
)->address()
4739 && (*p
)->data_size() > (*plast
)->data_size()))
4743 this->vaddr_
= first
->address();
4744 this->paddr_
= (first
->has_load_address()
4745 ? first
->load_address()
4747 this->are_addresses_set_
= true;
4748 this->offset_
= first
->offset();
4750 if (last_data
== NULL
)
4753 this->filesz_
= (last_data
->address()
4754 + last_data
->data_size()
4757 const Output_data
* last
= last_bss
!= NULL
? last_bss
: last_data
;
4758 this->memsz_
= (last
->address()
4762 this->filesz_
+= increase
;
4763 this->memsz_
+= increase
;
4765 // If this is a RELRO segment, verify that the segment ends at a
4767 if (this->type_
== elfcpp::PT_GNU_RELRO
)
4769 uint64_t page_align
= parameters
->target().abi_pagesize();
4770 uint64_t segment_end
= this->vaddr_
+ this->memsz_
;
4771 if (parameters
->incremental_update())
4773 // The INCREASE_RELRO calculation is bypassed for an incremental
4774 // update, so we need to adjust the segment size manually here.
4775 segment_end
= align_address(segment_end
, page_align
);
4776 this->memsz_
= segment_end
- this->vaddr_
;
4779 gold_assert(segment_end
== align_address(segment_end
, page_align
));
4782 // If this is a TLS segment, align the memory size. The code in
4783 // set_section_list ensures that the section after the TLS segment
4784 // is aligned to give us room.
4785 if (this->type_
== elfcpp::PT_TLS
)
4787 uint64_t segment_align
= this->maximum_alignment();
4788 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
4789 this->memsz_
= align_address(this->memsz_
, segment_align
);
4793 // Set the TLS offsets of the sections in the PT_TLS segment.
4796 Output_segment::set_tls_offsets()
4798 gold_assert(this->type_
== elfcpp::PT_TLS
);
4800 for (Output_data_list::iterator p
= this->output_lists_
[0].begin();
4801 p
!= this->output_lists_
[0].end();
4803 (*p
)->set_tls_offset(this->vaddr_
);
4806 // Return the first section.
4809 Output_segment::first_section() const
4811 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4813 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4814 for (Output_data_list::const_iterator p
= pdl
->begin();
4818 if ((*p
)->is_section())
4819 return (*p
)->output_section();
4825 // Return the number of Output_sections in an Output_segment.
4828 Output_segment::output_section_count() const
4830 unsigned int ret
= 0;
4831 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4832 ret
+= this->output_section_count_list(&this->output_lists_
[i
]);
4836 // Return the number of Output_sections in an Output_data_list.
4839 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
4841 unsigned int count
= 0;
4842 for (Output_data_list::const_iterator p
= pdl
->begin();
4846 if ((*p
)->is_section())
4852 // Return the section attached to the list segment with the lowest
4853 // load address. This is used when handling a PHDRS clause in a
4857 Output_segment::section_with_lowest_load_address() const
4859 Output_section
* found
= NULL
;
4860 uint64_t found_lma
= 0;
4861 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4862 this->lowest_load_address_in_list(&this->output_lists_
[i
], &found
,
4867 // Look through a list for a section with a lower load address.
4870 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
4871 Output_section
** found
,
4872 uint64_t* found_lma
) const
4874 for (Output_data_list::const_iterator p
= pdl
->begin();
4878 if (!(*p
)->is_section())
4880 Output_section
* os
= static_cast<Output_section
*>(*p
);
4881 uint64_t lma
= (os
->has_load_address()
4882 ? os
->load_address()
4884 if (*found
== NULL
|| lma
< *found_lma
)
4892 // Write the segment data into *OPHDR.
4894 template<int size
, bool big_endian
>
4896 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
4898 ophdr
->put_p_type(this->type_
);
4899 ophdr
->put_p_offset(this->offset_
);
4900 ophdr
->put_p_vaddr(this->vaddr_
);
4901 ophdr
->put_p_paddr(this->paddr_
);
4902 ophdr
->put_p_filesz(this->filesz_
);
4903 ophdr
->put_p_memsz(this->memsz_
);
4904 ophdr
->put_p_flags(this->flags_
);
4905 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
4908 // Write the section headers into V.
4910 template<int size
, bool big_endian
>
4912 Output_segment::write_section_headers(const Layout
* layout
,
4913 const Stringpool
* secnamepool
,
4915 unsigned int* pshndx
) const
4917 // Every section that is attached to a segment must be attached to a
4918 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4920 if (this->type_
!= elfcpp::PT_LOAD
)
4923 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4925 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4926 v
= this->write_section_headers_list
<size
, big_endian
>(layout
,
4935 template<int size
, bool big_endian
>
4937 Output_segment::write_section_headers_list(const Layout
* layout
,
4938 const Stringpool
* secnamepool
,
4939 const Output_data_list
* pdl
,
4941 unsigned int* pshndx
) const
4943 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
4944 for (Output_data_list::const_iterator p
= pdl
->begin();
4948 if ((*p
)->is_section())
4950 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
4951 gold_assert(*pshndx
== ps
->out_shndx());
4952 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
4953 ps
->write_header(layout
, secnamepool
, &oshdr
);
4961 // Print the output sections to the map file.
4964 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
4966 if (this->type() != elfcpp::PT_LOAD
)
4968 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4969 this->print_section_list_to_mapfile(mapfile
, &this->output_lists_
[i
]);
4972 // Print an output section list to the map file.
4975 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
4976 const Output_data_list
* pdl
) const
4978 for (Output_data_list::const_iterator p
= pdl
->begin();
4981 (*p
)->print_to_mapfile(mapfile
);
4984 // Output_file methods.
4986 Output_file::Output_file(const char* name
)
4991 map_is_anonymous_(false),
4992 map_is_allocated_(false),
4993 is_temporary_(false)
4997 // Try to open an existing file. Returns false if the file doesn't
4998 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4999 // NULL, open that file as the base for incremental linking, and
5000 // copy its contents to the new output file. This routine can
5001 // be called for incremental updates, in which case WRITABLE should
5002 // be true, or by the incremental-dump utility, in which case
5003 // WRITABLE should be false.
5006 Output_file::open_base_file(const char* base_name
, bool writable
)
5008 // The name "-" means "stdout".
5009 if (strcmp(this->name_
, "-") == 0)
5012 bool use_base_file
= base_name
!= NULL
;
5014 base_name
= this->name_
;
5015 else if (strcmp(base_name
, this->name_
) == 0)
5016 gold_fatal(_("%s: incremental base and output file name are the same"),
5019 // Don't bother opening files with a size of zero.
5021 if (::stat(base_name
, &s
) != 0)
5023 gold_info(_("%s: stat: %s"), base_name
, strerror(errno
));
5028 gold_info(_("%s: incremental base file is empty"), base_name
);
5032 // If we're using a base file, we want to open it read-only.
5036 int oflags
= writable
? O_RDWR
: O_RDONLY
;
5037 int o
= open_descriptor(-1, base_name
, oflags
, 0);
5040 gold_info(_("%s: open: %s"), base_name
, strerror(errno
));
5044 // If the base file and the output file are different, open a
5045 // new output file and read the contents from the base file into
5046 // the newly-mapped region.
5049 this->open(s
.st_size
);
5050 ssize_t bytes_to_read
= s
.st_size
;
5051 unsigned char* p
= this->base_
;
5052 while (bytes_to_read
> 0)
5054 ssize_t len
= ::read(o
, p
, bytes_to_read
);
5057 gold_info(_("%s: read failed: %s"), base_name
, strerror(errno
));
5062 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5064 static_cast<long long>(s
.st_size
- bytes_to_read
),
5065 static_cast<long long>(s
.st_size
));
5069 bytes_to_read
-= len
;
5076 this->file_size_
= s
.st_size
;
5078 if (!this->map_no_anonymous(writable
))
5080 release_descriptor(o
, true);
5082 this->file_size_
= 0;
5089 // Open the output file.
5092 Output_file::open(off_t file_size
)
5094 this->file_size_
= file_size
;
5096 // Unlink the file first; otherwise the open() may fail if the file
5097 // is busy (e.g. it's an executable that's currently being executed).
5099 // However, the linker may be part of a system where a zero-length
5100 // file is created for it to write to, with tight permissions (gcc
5101 // 2.95 did something like this). Unlinking the file would work
5102 // around those permission controls, so we only unlink if the file
5103 // has a non-zero size. We also unlink only regular files to avoid
5104 // trouble with directories/etc.
5106 // If we fail, continue; this command is merely a best-effort attempt
5107 // to improve the odds for open().
5109 // We let the name "-" mean "stdout"
5110 if (!this->is_temporary_
)
5112 if (strcmp(this->name_
, "-") == 0)
5113 this->o_
= STDOUT_FILENO
;
5117 if (::stat(this->name_
, &s
) == 0
5118 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
5121 ::unlink(this->name_
);
5122 else if (!parameters
->options().relocatable())
5124 // If we don't unlink the existing file, add execute
5125 // permission where read permissions already exist
5126 // and where the umask permits.
5127 int mask
= ::umask(0);
5129 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
5130 ::chmod(this->name_
, s
.st_mode
& ~mask
);
5134 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
5135 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
5138 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
5146 // Resize the output file.
5149 Output_file::resize(off_t file_size
)
5151 // If the mmap is mapping an anonymous memory buffer, this is easy:
5152 // just mremap to the new size. If it's mapping to a file, we want
5153 // to unmap to flush to the file, then remap after growing the file.
5154 if (this->map_is_anonymous_
)
5157 if (!this->map_is_allocated_
)
5159 base
= ::mremap(this->base_
, this->file_size_
, file_size
,
5161 if (base
== MAP_FAILED
)
5162 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
5166 base
= realloc(this->base_
, file_size
);
5169 if (file_size
> this->file_size_
)
5170 memset(static_cast<char*>(base
) + this->file_size_
, 0,
5171 file_size
- this->file_size_
);
5173 this->base_
= static_cast<unsigned char*>(base
);
5174 this->file_size_
= file_size
;
5179 this->file_size_
= file_size
;
5180 if (!this->map_no_anonymous(true))
5181 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
5185 // Map an anonymous block of memory which will later be written to the
5186 // file. Return whether the map succeeded.
5189 Output_file::map_anonymous()
5191 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
5192 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
5193 if (base
== MAP_FAILED
)
5195 base
= malloc(this->file_size_
);
5198 memset(base
, 0, this->file_size_
);
5199 this->map_is_allocated_
= true;
5201 this->base_
= static_cast<unsigned char*>(base
);
5202 this->map_is_anonymous_
= true;
5206 // Map the file into memory. Return whether the mapping succeeded.
5207 // If WRITABLE is true, map with write access.
5210 Output_file::map_no_anonymous(bool writable
)
5212 const int o
= this->o_
;
5214 // If the output file is not a regular file, don't try to mmap it;
5215 // instead, we'll mmap a block of memory (an anonymous buffer), and
5216 // then later write the buffer to the file.
5218 struct stat statbuf
;
5219 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
5220 || ::fstat(o
, &statbuf
) != 0
5221 || !S_ISREG(statbuf
.st_mode
)
5222 || this->is_temporary_
)
5225 // Ensure that we have disk space available for the file. If we
5226 // don't do this, it is possible that we will call munmap, close,
5227 // and exit with dirty buffers still in the cache with no assigned
5228 // disk blocks. If the disk is out of space at that point, the
5229 // output file will wind up incomplete, but we will have already
5230 // exited. The alternative to fallocate would be to use fdatasync,
5231 // but that would be a more significant performance hit.
5234 int err
= gold_fallocate(o
, 0, this->file_size_
);
5236 gold_fatal(_("%s: %s"), this->name_
, strerror(err
));
5239 // Map the file into memory.
5240 int prot
= PROT_READ
;
5243 base
= ::mmap(NULL
, this->file_size_
, prot
, MAP_SHARED
, o
, 0);
5245 // The mmap call might fail because of file system issues: the file
5246 // system might not support mmap at all, or it might not support
5247 // mmap with PROT_WRITE.
5248 if (base
== MAP_FAILED
)
5251 this->map_is_anonymous_
= false;
5252 this->base_
= static_cast<unsigned char*>(base
);
5256 // Map the file into memory.
5261 if (parameters
->options().mmap_output_file()
5262 && this->map_no_anonymous(true))
5265 // The mmap call might fail because of file system issues: the file
5266 // system might not support mmap at all, or it might not support
5267 // mmap with PROT_WRITE. I'm not sure which errno values we will
5268 // see in all cases, so if the mmap fails for any reason and we
5269 // don't care about file contents, try for an anonymous map.
5270 if (this->map_anonymous())
5273 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5274 this->name_
, static_cast<unsigned long>(this->file_size_
),
5278 // Unmap the file from memory.
5281 Output_file::unmap()
5283 if (this->map_is_anonymous_
)
5285 // We've already written out the data, so there is no reason to
5286 // waste time unmapping or freeing the memory.
5290 if (::munmap(this->base_
, this->file_size_
) < 0)
5291 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
5296 // Close the output file.
5299 Output_file::close()
5301 // If the map isn't file-backed, we need to write it now.
5302 if (this->map_is_anonymous_
&& !this->is_temporary_
)
5304 size_t bytes_to_write
= this->file_size_
;
5306 while (bytes_to_write
> 0)
5308 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
5310 if (bytes_written
== 0)
5311 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
5312 else if (bytes_written
< 0)
5313 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
5316 bytes_to_write
-= bytes_written
;
5317 offset
+= bytes_written
;
5323 // We don't close stdout or stderr
5324 if (this->o_
!= STDOUT_FILENO
5325 && this->o_
!= STDERR_FILENO
5326 && !this->is_temporary_
)
5327 if (::close(this->o_
) < 0)
5328 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
5332 // Instantiate the templates we need. We could use the configure
5333 // script to restrict this to only the ones for implemented targets.
5335 #ifdef HAVE_TARGET_32_LITTLE
5338 Output_section::add_input_section
<32, false>(
5340 Sized_relobj_file
<32, false>* object
,
5342 const char* secname
,
5343 const elfcpp::Shdr
<32, false>& shdr
,
5344 unsigned int reloc_shndx
,
5345 bool have_sections_script
);
5348 #ifdef HAVE_TARGET_32_BIG
5351 Output_section::add_input_section
<32, true>(
5353 Sized_relobj_file
<32, true>* object
,
5355 const char* secname
,
5356 const elfcpp::Shdr
<32, true>& shdr
,
5357 unsigned int reloc_shndx
,
5358 bool have_sections_script
);
5361 #ifdef HAVE_TARGET_64_LITTLE
5364 Output_section::add_input_section
<64, false>(
5366 Sized_relobj_file
<64, false>* object
,
5368 const char* secname
,
5369 const elfcpp::Shdr
<64, false>& shdr
,
5370 unsigned int reloc_shndx
,
5371 bool have_sections_script
);
5374 #ifdef HAVE_TARGET_64_BIG
5377 Output_section::add_input_section
<64, true>(
5379 Sized_relobj_file
<64, true>* object
,
5381 const char* secname
,
5382 const elfcpp::Shdr
<64, true>& shdr
,
5383 unsigned int reloc_shndx
,
5384 bool have_sections_script
);
5387 #ifdef HAVE_TARGET_32_LITTLE
5389 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
5392 #ifdef HAVE_TARGET_32_BIG
5394 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
5397 #ifdef HAVE_TARGET_64_LITTLE
5399 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
5402 #ifdef HAVE_TARGET_64_BIG
5404 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
5407 #ifdef HAVE_TARGET_32_LITTLE
5409 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
5412 #ifdef HAVE_TARGET_32_BIG
5414 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
5417 #ifdef HAVE_TARGET_64_LITTLE
5419 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
5422 #ifdef HAVE_TARGET_64_BIG
5424 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
5427 #ifdef HAVE_TARGET_32_LITTLE
5429 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
5432 #ifdef HAVE_TARGET_32_BIG
5434 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
5437 #ifdef HAVE_TARGET_64_LITTLE
5439 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
5442 #ifdef HAVE_TARGET_64_BIG
5444 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
5447 #ifdef HAVE_TARGET_32_LITTLE
5449 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
5452 #ifdef HAVE_TARGET_32_BIG
5454 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
5457 #ifdef HAVE_TARGET_64_LITTLE
5459 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
5462 #ifdef HAVE_TARGET_64_BIG
5464 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
5467 #ifdef HAVE_TARGET_32_LITTLE
5469 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
5472 #ifdef HAVE_TARGET_32_BIG
5474 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
5477 #ifdef HAVE_TARGET_64_LITTLE
5479 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
5482 #ifdef HAVE_TARGET_64_BIG
5484 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
5487 #ifdef HAVE_TARGET_32_LITTLE
5489 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
5492 #ifdef HAVE_TARGET_32_BIG
5494 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
5497 #ifdef HAVE_TARGET_64_LITTLE
5499 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
5502 #ifdef HAVE_TARGET_64_BIG
5504 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
5507 #ifdef HAVE_TARGET_32_LITTLE
5509 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
5512 #ifdef HAVE_TARGET_32_BIG
5514 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
5517 #ifdef HAVE_TARGET_64_LITTLE
5519 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
5522 #ifdef HAVE_TARGET_64_BIG
5524 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
5527 #ifdef HAVE_TARGET_32_LITTLE
5529 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
5532 #ifdef HAVE_TARGET_32_BIG
5534 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
5537 #ifdef HAVE_TARGET_64_LITTLE
5539 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
5542 #ifdef HAVE_TARGET_64_BIG
5544 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
5547 #ifdef HAVE_TARGET_32_LITTLE
5549 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
5552 #ifdef HAVE_TARGET_32_BIG
5554 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
5557 #ifdef HAVE_TARGET_64_LITTLE
5559 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
5562 #ifdef HAVE_TARGET_64_BIG
5564 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
5567 #ifdef HAVE_TARGET_32_LITTLE
5569 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
5572 #ifdef HAVE_TARGET_32_BIG
5574 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
5577 #ifdef HAVE_TARGET_64_LITTLE
5579 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
5582 #ifdef HAVE_TARGET_64_BIG
5584 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
5587 #ifdef HAVE_TARGET_32_LITTLE
5589 class Output_data_group
<32, false>;
5592 #ifdef HAVE_TARGET_32_BIG
5594 class Output_data_group
<32, true>;
5597 #ifdef HAVE_TARGET_64_LITTLE
5599 class Output_data_group
<64, false>;
5602 #ifdef HAVE_TARGET_64_BIG
5604 class Output_data_group
<64, true>;
5608 class Output_data_got
<32, false>;
5611 class Output_data_got
<32, true>;
5614 class Output_data_got
<64, false>;
5617 class Output_data_got
<64, true>;
5619 } // End namespace gold.