1 /* Renesas RX specific support for 32-bit ELF.
2 Copyright (C) 2008-2020 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #define RX_OPCODE_BIG_ENDIAN 0
31 /* This is a meta-target that's used only with objcopy, to avoid the
32 endian-swap we would otherwise get. We check for this in
34 const bfd_target rx_elf32_be_ns_vec
;
35 const bfd_target rx_elf32_be_vec
;
38 char * rx_get_reloc (long);
39 void rx_dump_symtab (bfd
*, void *, void *);
42 #define RXREL(n,sz,bit,shift,complain,pcrel) \
43 HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
44 bfd_elf_generic_reloc, "R_RX_" #n, FALSE, 0, ~0, FALSE)
46 /* Note that the relocations around 0x7f are internal to this file;
47 feel free to move them as needed to avoid conflicts with published
48 relocation numbers. */
50 static reloc_howto_type rx_elf_howto_table
[] =
52 RXREL (NONE
, 3, 0, 0, dont
, FALSE
),
53 RXREL (DIR32
, 2, 32, 0, signed, FALSE
),
54 RXREL (DIR24S
, 2, 24, 0, signed, FALSE
),
55 RXREL (DIR16
, 1, 16, 0, dont
, FALSE
),
56 RXREL (DIR16U
, 1, 16, 0, unsigned, FALSE
),
57 RXREL (DIR16S
, 1, 16, 0, signed, FALSE
),
58 RXREL (DIR8
, 0, 8, 0, dont
, FALSE
),
59 RXREL (DIR8U
, 0, 8, 0, unsigned, FALSE
),
60 RXREL (DIR8S
, 0, 8, 0, signed, FALSE
),
61 RXREL (DIR24S_PCREL
, 2, 24, 0, signed, TRUE
),
62 RXREL (DIR16S_PCREL
, 1, 16, 0, signed, TRUE
),
63 RXREL (DIR8S_PCREL
, 0, 8, 0, signed, TRUE
),
64 RXREL (DIR16UL
, 1, 16, 2, unsigned, FALSE
),
65 RXREL (DIR16UW
, 1, 16, 1, unsigned, FALSE
),
66 RXREL (DIR8UL
, 0, 8, 2, unsigned, FALSE
),
67 RXREL (DIR8UW
, 0, 8, 1, unsigned, FALSE
),
68 RXREL (DIR32_REV
, 1, 16, 0, dont
, FALSE
),
69 RXREL (DIR16_REV
, 1, 16, 0, dont
, FALSE
),
70 RXREL (DIR3U_PCREL
, 0, 3, 0, dont
, TRUE
),
86 RXREL (RH_3_PCREL
, 0, 3, 0, signed, TRUE
),
87 RXREL (RH_16_OP
, 1, 16, 0, signed, FALSE
),
88 RXREL (RH_24_OP
, 2, 24, 0, signed, FALSE
),
89 RXREL (RH_32_OP
, 2, 32, 0, signed, FALSE
),
90 RXREL (RH_24_UNS
, 2, 24, 0, unsigned, FALSE
),
91 RXREL (RH_8_NEG
, 0, 8, 0, signed, FALSE
),
92 RXREL (RH_16_NEG
, 1, 16, 0, signed, FALSE
),
93 RXREL (RH_24_NEG
, 2, 24, 0, signed, FALSE
),
94 RXREL (RH_32_NEG
, 2, 32, 0, signed, FALSE
),
95 RXREL (RH_DIFF
, 2, 32, 0, signed, FALSE
),
96 RXREL (RH_GPRELB
, 1, 16, 0, unsigned, FALSE
),
97 RXREL (RH_GPRELW
, 1, 16, 0, unsigned, FALSE
),
98 RXREL (RH_GPRELL
, 1, 16, 0, unsigned, FALSE
),
99 RXREL (RH_RELAX
, 0, 0, 0, dont
, FALSE
),
121 RXREL (ABS32
, 2, 32, 0, dont
, FALSE
),
122 RXREL (ABS24S
, 2, 24, 0, signed, FALSE
),
123 RXREL (ABS16
, 1, 16, 0, dont
, FALSE
),
124 RXREL (ABS16U
, 1, 16, 0, unsigned, FALSE
),
125 RXREL (ABS16S
, 1, 16, 0, signed, FALSE
),
126 RXREL (ABS8
, 0, 8, 0, dont
, FALSE
),
127 RXREL (ABS8U
, 0, 8, 0, unsigned, FALSE
),
128 RXREL (ABS8S
, 0, 8, 0, signed, FALSE
),
129 RXREL (ABS24S_PCREL
, 2, 24, 0, signed, TRUE
),
130 RXREL (ABS16S_PCREL
, 1, 16, 0, signed, TRUE
),
131 RXREL (ABS8S_PCREL
, 0, 8, 0, signed, TRUE
),
132 RXREL (ABS16UL
, 1, 16, 0, unsigned, FALSE
),
133 RXREL (ABS16UW
, 1, 16, 0, unsigned, FALSE
),
134 RXREL (ABS8UL
, 0, 8, 0, unsigned, FALSE
),
135 RXREL (ABS8UW
, 0, 8, 0, unsigned, FALSE
),
136 RXREL (ABS32_REV
, 2, 32, 0, dont
, FALSE
),
137 RXREL (ABS16_REV
, 1, 16, 0, dont
, FALSE
),
139 #define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32)
180 /* These are internal. */
181 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */
182 /* ---- ---- 4--- 3210. */
183 #define R_RX_RH_ABS5p8B 0x78
184 RXREL (RH_ABS5p8B
, 0, 0, 0, dont
, FALSE
),
185 #define R_RX_RH_ABS5p8W 0x79
186 RXREL (RH_ABS5p8W
, 0, 0, 0, dont
, FALSE
),
187 #define R_RX_RH_ABS5p8L 0x7a
188 RXREL (RH_ABS5p8L
, 0, 0, 0, dont
, FALSE
),
189 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */
190 /* ---- -432 1--- 0---. */
191 #define R_RX_RH_ABS5p5B 0x7b
192 RXREL (RH_ABS5p5B
, 0, 0, 0, dont
, FALSE
),
193 #define R_RX_RH_ABS5p5W 0x7c
194 RXREL (RH_ABS5p5W
, 0, 0, 0, dont
, FALSE
),
195 #define R_RX_RH_ABS5p5L 0x7d
196 RXREL (RH_ABS5p5L
, 0, 0, 0, dont
, FALSE
),
197 /* A 4-bit unsigned immediate at bit position 8. */
198 #define R_RX_RH_UIMM4p8 0x7e
199 RXREL (RH_UIMM4p8
, 0, 0, 0, dont
, FALSE
),
200 /* A 4-bit negative unsigned immediate at bit position 8. */
201 #define R_RX_RH_UNEG4p8 0x7f
202 RXREL (RH_UNEG4p8
, 0, 0, 0, dont
, FALSE
),
203 /* End of internal relocs. */
205 RXREL (SYM
, 2, 32, 0, dont
, FALSE
),
206 RXREL (OPneg
, 2, 32, 0, dont
, FALSE
),
207 RXREL (OPadd
, 2, 32, 0, dont
, FALSE
),
208 RXREL (OPsub
, 2, 32, 0, dont
, FALSE
),
209 RXREL (OPmul
, 2, 32, 0, dont
, FALSE
),
210 RXREL (OPdiv
, 2, 32, 0, dont
, FALSE
),
211 RXREL (OPshla
, 2, 32, 0, dont
, FALSE
),
212 RXREL (OPshra
, 2, 32, 0, dont
, FALSE
),
213 RXREL (OPsctsize
, 2, 32, 0, dont
, FALSE
),
214 RXREL (OPscttop
, 2, 32, 0, dont
, FALSE
),
215 RXREL (OPand
, 2, 32, 0, dont
, FALSE
),
216 RXREL (OPor
, 2, 32, 0, dont
, FALSE
),
217 RXREL (OPxor
, 2, 32, 0, dont
, FALSE
),
218 RXREL (OPnot
, 2, 32, 0, dont
, FALSE
),
219 RXREL (OPmod
, 2, 32, 0, dont
, FALSE
),
220 RXREL (OPromtop
, 2, 32, 0, dont
, FALSE
),
221 RXREL (OPramtop
, 2, 32, 0, dont
, FALSE
)
224 /* Map BFD reloc types to RX ELF reloc types. */
228 bfd_reloc_code_real_type bfd_reloc_val
;
229 unsigned int rx_reloc_val
;
232 static const struct rx_reloc_map rx_reloc_map
[] =
234 { BFD_RELOC_NONE
, R_RX_NONE
},
235 { BFD_RELOC_8
, R_RX_DIR8S
},
236 { BFD_RELOC_16
, R_RX_DIR16S
},
237 { BFD_RELOC_24
, R_RX_DIR24S
},
238 { BFD_RELOC_32
, R_RX_DIR32
},
239 { BFD_RELOC_RX_16_OP
, R_RX_DIR16
},
240 { BFD_RELOC_RX_DIR3U_PCREL
, R_RX_DIR3U_PCREL
},
241 { BFD_RELOC_8_PCREL
, R_RX_DIR8S_PCREL
},
242 { BFD_RELOC_16_PCREL
, R_RX_DIR16S_PCREL
},
243 { BFD_RELOC_24_PCREL
, R_RX_DIR24S_PCREL
},
244 { BFD_RELOC_RX_8U
, R_RX_DIR8U
},
245 { BFD_RELOC_RX_16U
, R_RX_DIR16U
},
246 { BFD_RELOC_RX_24U
, R_RX_RH_24_UNS
},
247 { BFD_RELOC_RX_NEG8
, R_RX_RH_8_NEG
},
248 { BFD_RELOC_RX_NEG16
, R_RX_RH_16_NEG
},
249 { BFD_RELOC_RX_NEG24
, R_RX_RH_24_NEG
},
250 { BFD_RELOC_RX_NEG32
, R_RX_RH_32_NEG
},
251 { BFD_RELOC_RX_DIFF
, R_RX_RH_DIFF
},
252 { BFD_RELOC_RX_GPRELB
, R_RX_RH_GPRELB
},
253 { BFD_RELOC_RX_GPRELW
, R_RX_RH_GPRELW
},
254 { BFD_RELOC_RX_GPRELL
, R_RX_RH_GPRELL
},
255 { BFD_RELOC_RX_RELAX
, R_RX_RH_RELAX
},
256 { BFD_RELOC_RX_SYM
, R_RX_SYM
},
257 { BFD_RELOC_RX_OP_SUBTRACT
, R_RX_OPsub
},
258 { BFD_RELOC_RX_OP_NEG
, R_RX_OPneg
},
259 { BFD_RELOC_RX_ABS8
, R_RX_ABS8
},
260 { BFD_RELOC_RX_ABS16
, R_RX_ABS16
},
261 { BFD_RELOC_RX_ABS16_REV
, R_RX_ABS16_REV
},
262 { BFD_RELOC_RX_ABS32
, R_RX_ABS32
},
263 { BFD_RELOC_RX_ABS32_REV
, R_RX_ABS32_REV
},
264 { BFD_RELOC_RX_ABS16UL
, R_RX_ABS16UL
},
265 { BFD_RELOC_RX_ABS16UW
, R_RX_ABS16UW
},
266 { BFD_RELOC_RX_ABS16U
, R_RX_ABS16U
}
269 #define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG)
271 static reloc_howto_type
*
272 rx_reloc_type_lookup (bfd
* abfd ATTRIBUTE_UNUSED
,
273 bfd_reloc_code_real_type code
)
277 if (code
== BFD_RELOC_RX_32_OP
)
278 return rx_elf_howto_table
+ R_RX_DIR32
;
280 for (i
= ARRAY_SIZE (rx_reloc_map
); i
--;)
281 if (rx_reloc_map
[i
].bfd_reloc_val
== code
)
282 return rx_elf_howto_table
+ rx_reloc_map
[i
].rx_reloc_val
;
287 static reloc_howto_type
*
288 rx_reloc_name_lookup (bfd
* abfd ATTRIBUTE_UNUSED
, const char * r_name
)
292 for (i
= 0; i
< ARRAY_SIZE (rx_elf_howto_table
); i
++)
293 if (rx_elf_howto_table
[i
].name
!= NULL
294 && strcasecmp (rx_elf_howto_table
[i
].name
, r_name
) == 0)
295 return rx_elf_howto_table
+ i
;
300 /* Set the howto pointer for an RX ELF reloc. */
303 rx_info_to_howto_rela (bfd
* abfd
,
305 Elf_Internal_Rela
* dst
)
309 r_type
= ELF32_R_TYPE (dst
->r_info
);
310 if (r_type
>= (unsigned int) R_RX_max
)
312 /* xgettext:c-format */
313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
315 bfd_set_error (bfd_error_bad_value
);
318 cache_ptr
->howto
= rx_elf_howto_table
+ r_type
;
319 if (cache_ptr
->howto
->name
== NULL
)
321 /* xgettext:c-format */
322 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
324 bfd_set_error (bfd_error_bad_value
);
331 get_symbol_value (const char * name
,
332 struct bfd_link_info
* info
,
334 asection
* input_section
,
338 struct bfd_link_hash_entry
* h
;
340 h
= bfd_link_hash_lookup (info
->hash
, name
, FALSE
, FALSE
, TRUE
);
343 || (h
->type
!= bfd_link_hash_defined
344 && h
->type
!= bfd_link_hash_defweak
))
345 (*info
->callbacks
->undefined_symbol
)
346 (info
, name
, input_bfd
, input_section
, offset
, TRUE
);
348 value
= (h
->u
.def
.value
349 + h
->u
.def
.section
->output_section
->vma
350 + h
->u
.def
.section
->output_offset
);
356 get_symbol_value_maybe (const char * name
,
357 struct bfd_link_info
* info
)
360 struct bfd_link_hash_entry
* h
;
362 h
= bfd_link_hash_lookup (info
->hash
, name
, FALSE
, FALSE
, TRUE
);
365 || (h
->type
!= bfd_link_hash_defined
366 && h
->type
!= bfd_link_hash_defweak
))
369 value
= (h
->u
.def
.value
370 + h
->u
.def
.section
->output_section
->vma
371 + h
->u
.def
.section
->output_offset
);
377 get_gp (struct bfd_link_info
* info
,
382 static bfd_boolean cached
= FALSE
;
383 static bfd_vma cached_value
= 0;
387 cached_value
= get_symbol_value ("__gp", info
, abfd
, sec
, offset
);
394 get_romstart (struct bfd_link_info
* info
,
399 static bfd_boolean cached
= FALSE
;
400 static bfd_vma cached_value
= 0;
404 cached_value
= get_symbol_value ("_start", info
, abfd
, sec
, offset
);
411 get_ramstart (struct bfd_link_info
* info
,
416 static bfd_boolean cached
= FALSE
;
417 static bfd_vma cached_value
= 0;
421 cached_value
= get_symbol_value ("__datastart", info
, abfd
, sec
, offset
);
427 #define NUM_STACK_ENTRIES 16
428 static int32_t rx_stack
[ NUM_STACK_ENTRIES
];
429 static unsigned int rx_stack_top
;
431 #define RX_STACK_PUSH(val) \
434 if (rx_stack_top < NUM_STACK_ENTRIES) \
435 rx_stack [rx_stack_top ++] = (val); \
437 r = bfd_reloc_dangerous; \
441 #define RX_STACK_POP(dest) \
444 if (rx_stack_top > 0) \
445 (dest) = rx_stack [-- rx_stack_top]; \
447 (dest) = 0, r = bfd_reloc_dangerous; \
451 /* Relocate an RX ELF section.
452 There is some attempt to make this function usable for many architectures,
453 both USE_REL and USE_RELA ['twould be nice if such a critter existed],
454 if only to serve as a learning tool.
456 The RELOCATE_SECTION function is called by the new ELF backend linker
457 to handle the relocations for a section.
459 The relocs are always passed as Rela structures; if the section
460 actually uses Rel structures, the r_addend field will always be
463 This function is responsible for adjusting the section contents as
464 necessary, and (if using Rela relocs and generating a relocatable
465 output file) adjusting the reloc addend as necessary.
467 This function does not have to worry about setting the reloc
468 address or the reloc symbol index.
470 LOCAL_SYMS is a pointer to the swapped in local symbols.
472 LOCAL_SECTIONS is an array giving the section in the input file
473 corresponding to the st_shndx field of each local symbol.
475 The global hash table entry for the global symbols can be found
476 via elf_sym_hashes (input_bfd).
478 When generating relocatable output, this function must handle
479 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
480 going to be the section symbol corresponding to the output
481 section, which means that the addend must be adjusted
485 rx_elf_relocate_section
487 struct bfd_link_info
* info
,
489 asection
* input_section
,
491 Elf_Internal_Rela
* relocs
,
492 Elf_Internal_Sym
* local_syms
,
493 asection
** local_sections
)
495 Elf_Internal_Shdr
* symtab_hdr
;
496 struct elf_link_hash_entry
** sym_hashes
;
497 Elf_Internal_Rela
* rel
;
498 Elf_Internal_Rela
* relend
;
499 bfd_boolean pid_mode
;
500 bfd_boolean saw_subtract
= FALSE
;
501 const char * table_default_cache
= NULL
;
502 bfd_vma table_start_cache
= 0;
503 bfd_vma table_end_cache
= 0;
505 if (elf_elfheader (output_bfd
)->e_flags
& E_FLAG_RX_PID
)
510 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
511 sym_hashes
= elf_sym_hashes (input_bfd
);
512 relend
= relocs
+ input_section
->reloc_count
;
513 for (rel
= relocs
; rel
< relend
; rel
++)
515 reloc_howto_type
* howto
;
516 unsigned long r_symndx
;
517 Elf_Internal_Sym
* sym
;
519 struct elf_link_hash_entry
* h
;
521 bfd_reloc_status_type r
;
522 const char * name
= NULL
;
523 bfd_boolean unresolved_reloc
= TRUE
;
526 r_type
= ELF32_R_TYPE (rel
->r_info
);
527 r_symndx
= ELF32_R_SYM (rel
->r_info
);
529 howto
= rx_elf_howto_table
+ ELF32_R_TYPE (rel
->r_info
);
535 if (rx_stack_top
== 0)
536 saw_subtract
= FALSE
;
538 if (r_symndx
< symtab_hdr
->sh_info
)
540 sym
= local_syms
+ r_symndx
;
541 sec
= local_sections
[r_symndx
];
542 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, & sec
, rel
);
544 name
= bfd_elf_string_from_elf_section
545 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
546 name
= sym
->st_name
== 0 ? bfd_section_name (sec
) : name
;
550 bfd_boolean warned
, ignored
;
552 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
553 r_symndx
, symtab_hdr
, sym_hashes
, h
,
554 sec
, relocation
, unresolved_reloc
,
557 name
= h
->root
.root
.string
;
560 if (strncmp (name
, "$tableentry$default$", 20) == 0)
566 if (table_default_cache
!= name
)
569 /* All relocs for a given table should be to the same
570 (weak) default symbol) so we can use it to detect a
571 cache miss. We use the offset into the table to find
572 the "real" symbol. Calculate and store the table's
575 table_default_cache
= name
;
577 /* We have already done error checking in rx_table_find(). */
579 buf
= (char *) malloc (13 + strlen (name
+ 20));
581 sprintf (buf
, "$tablestart$%s", name
+ 20);
582 table_start_cache
= get_symbol_value (buf
,
588 sprintf (buf
, "$tableend$%s", name
+ 20);
589 table_end_cache
= get_symbol_value (buf
,
598 entry_vma
= (input_section
->output_section
->vma
599 + input_section
->output_offset
602 if (table_end_cache
<= entry_vma
|| entry_vma
< table_start_cache
)
604 /* xgettext:c-format */
605 _bfd_error_handler (_("%pB:%pA: table entry %s outside table"),
606 input_bfd
, input_section
,
609 else if ((int) (entry_vma
- table_start_cache
) % 4)
611 /* xgettext:c-format */
612 _bfd_error_handler (_("%pB:%pA: table entry %s not word-aligned within table"),
613 input_bfd
, input_section
,
618 idx
= (int) (entry_vma
- table_start_cache
) / 4;
620 /* This will look like $tableentry$<N>$<name> */
621 buf
= (char *) malloc (12 + 20 + strlen (name
+ 20));
622 sprintf (buf
, "$tableentry$%d$%s", idx
, name
+ 20);
624 h
= (struct elf_link_hash_entry
*) bfd_link_hash_lookup (info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
628 relocation
= (h
->root
.u
.def
.value
629 + h
->root
.u
.def
.section
->output_section
->vma
630 + h
->root
.u
.def
.section
->output_offset
);;
637 if (sec
!= NULL
&& discarded_section (sec
))
638 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
639 rel
, 1, relend
, howto
, 0, contents
);
641 if (bfd_link_relocatable (info
))
643 /* This is a relocatable link. We don't have to change
644 anything, unless the reloc is against a section symbol,
645 in which case we have to adjust according to where the
646 section symbol winds up in the output section. */
647 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
648 rel
->r_addend
+= sec
->output_offset
;
652 if (h
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
653 /* If the symbol is undefined and weak
654 then the relocation resolves to zero. */
658 if (howto
->pc_relative
)
660 relocation
-= (input_section
->output_section
->vma
661 + input_section
->output_offset
663 if (r_type
!= R_RX_RH_3_PCREL
664 && r_type
!= R_RX_DIR3U_PCREL
)
668 relocation
+= rel
->r_addend
;
674 if (a > (long) relocation || (long) relocation > b) \
675 r = bfd_reloc_overflow
677 if (relocation & m) \
680 (contents[rel->r_offset + (i)])
681 #define WARN_REDHAT(type) \
682 /* xgettext:c-format */ \
684 (_("%pB:%pA: warning: deprecated Red Hat reloc " \
685 "%s detected against: %s"), \
686 input_bfd, input_section, #type, name)
688 /* Check for unsafe relocs in PID mode. These are any relocs where
689 an absolute address is being computed. There are special cases
690 for relocs against symbols that are known to be referenced in
691 crt0.o before the PID base address register has been initialised. */
692 #define UNSAFE_FOR_PID \
697 && sec->flags & SEC_READONLY \
698 && !(input_section->flags & SEC_DEBUGGING) \
699 && strcmp (name, "__pid_base") != 0 \
700 && strcmp (name, "__gp") != 0 \
701 && strcmp (name, "__romdatastart") != 0 \
703 /* xgettext:c-format */ \
704 _bfd_error_handler (_("%pB(%pA): unsafe PID relocation %s " \
705 "at %#" PRIx64 " (against %s in %s)"), \
706 input_bfd, input_section, howto->name, \
707 (uint64_t) (input_section->output_section->vma \
708 + input_section->output_offset \
714 /* Opcode relocs are always big endian. Data relocs are bi-endian. */
723 case R_RX_RH_3_PCREL
:
724 WARN_REDHAT ("RX_RH_3_PCREL");
727 OP (0) |= relocation
& 0x07;
731 WARN_REDHAT ("RX_RH_8_NEG");
732 relocation
= - relocation
;
734 case R_RX_DIR8S_PCREL
:
753 WARN_REDHAT ("RX_RH_16_NEG");
754 relocation
= - relocation
;
756 case R_RX_DIR16S_PCREL
:
758 RANGE (-32768, 32767);
759 #if RX_OPCODE_BIG_ENDIAN
762 OP (1) = relocation
>> 8;
767 WARN_REDHAT ("RX_RH_16_OP");
769 RANGE (-32768, 32767);
770 #if RX_OPCODE_BIG_ENDIAN
772 OP (0) = relocation
>> 8;
775 OP (1) = relocation
>> 8;
781 RANGE (-32768, 65535);
782 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
785 OP (0) = relocation
>> 8;
790 OP (1) = relocation
>> 8;
797 #if RX_OPCODE_BIG_ENDIAN
799 OP (0) = relocation
>> 8;
802 OP (1) = relocation
>> 8;
808 RANGE (-32768, 65536);
809 #if RX_OPCODE_BIG_ENDIAN
811 OP (0) = relocation
>> 8;
814 OP (1) = relocation
>> 8;
820 RANGE (-32768, 65536);
821 #if RX_OPCODE_BIG_ENDIAN
823 OP (1) = relocation
>> 8;
826 OP (0) = relocation
>> 8;
830 case R_RX_DIR3U_PCREL
:
833 OP (0) |= relocation
& 0x07;
838 WARN_REDHAT ("RX_RH_24_NEG");
839 relocation
= - relocation
;
841 case R_RX_DIR24S_PCREL
:
842 RANGE (-0x800000, 0x7fffff);
843 #if RX_OPCODE_BIG_ENDIAN
845 OP (1) = relocation
>> 8;
846 OP (0) = relocation
>> 16;
849 OP (1) = relocation
>> 8;
850 OP (2) = relocation
>> 16;
856 WARN_REDHAT ("RX_RH_24_OP");
857 RANGE (-0x800000, 0x7fffff);
858 #if RX_OPCODE_BIG_ENDIAN
860 OP (1) = relocation
>> 8;
861 OP (0) = relocation
>> 16;
864 OP (1) = relocation
>> 8;
865 OP (2) = relocation
>> 16;
871 RANGE (-0x800000, 0x7fffff);
872 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
875 OP (1) = relocation
>> 8;
876 OP (0) = relocation
>> 16;
881 OP (1) = relocation
>> 8;
882 OP (2) = relocation
>> 16;
888 WARN_REDHAT ("RX_RH_24_UNS");
890 #if RX_OPCODE_BIG_ENDIAN
892 OP (1) = relocation
>> 8;
893 OP (0) = relocation
>> 16;
896 OP (1) = relocation
>> 8;
897 OP (2) = relocation
>> 16;
903 WARN_REDHAT ("RX_RH_32_NEG");
904 relocation
= - relocation
;
905 #if RX_OPCODE_BIG_ENDIAN
907 OP (2) = relocation
>> 8;
908 OP (1) = relocation
>> 16;
909 OP (0) = relocation
>> 24;
912 OP (1) = relocation
>> 8;
913 OP (2) = relocation
>> 16;
914 OP (3) = relocation
>> 24;
920 WARN_REDHAT ("RX_RH_32_OP");
921 #if RX_OPCODE_BIG_ENDIAN
923 OP (2) = relocation
>> 8;
924 OP (1) = relocation
>> 16;
925 OP (0) = relocation
>> 24;
928 OP (1) = relocation
>> 8;
929 OP (2) = relocation
>> 16;
930 OP (3) = relocation
>> 24;
935 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
938 OP (2) = relocation
>> 8;
939 OP (1) = relocation
>> 16;
940 OP (0) = relocation
>> 24;
945 OP (1) = relocation
>> 8;
946 OP (2) = relocation
>> 16;
947 OP (3) = relocation
>> 24;
952 if (BIGE (output_bfd
))
955 OP (1) = relocation
>> 8;
956 OP (2) = relocation
>> 16;
957 OP (3) = relocation
>> 24;
962 OP (2) = relocation
>> 8;
963 OP (1) = relocation
>> 16;
964 OP (0) = relocation
>> 24;
971 WARN_REDHAT ("RX_RH_DIFF");
972 val
= bfd_get_32 (output_bfd
, & OP (0));
974 bfd_put_32 (output_bfd
, val
, & OP (0));
979 WARN_REDHAT ("RX_RH_GPRELB");
980 relocation
-= get_gp (info
, input_bfd
, input_section
, rel
->r_offset
);
982 #if RX_OPCODE_BIG_ENDIAN
984 OP (0) = relocation
>> 8;
987 OP (1) = relocation
>> 8;
992 WARN_REDHAT ("RX_RH_GPRELW");
993 relocation
-= get_gp (info
, input_bfd
, input_section
, rel
->r_offset
);
997 #if RX_OPCODE_BIG_ENDIAN
999 OP (0) = relocation
>> 8;
1001 OP (0) = relocation
;
1002 OP (1) = relocation
>> 8;
1006 case R_RX_RH_GPRELL
:
1007 WARN_REDHAT ("RX_RH_GPRELL");
1008 relocation
-= get_gp (info
, input_bfd
, input_section
, rel
->r_offset
);
1012 #if RX_OPCODE_BIG_ENDIAN
1013 OP (1) = relocation
;
1014 OP (0) = relocation
>> 8;
1016 OP (0) = relocation
;
1017 OP (1) = relocation
>> 8;
1021 /* Internal relocations just for relaxation: */
1022 case R_RX_RH_ABS5p5B
:
1023 RX_STACK_POP (relocation
);
1026 OP (0) |= relocation
>> 2;
1028 OP (1) |= (relocation
<< 6) & 0x80;
1029 OP (1) |= (relocation
<< 3) & 0x08;
1032 case R_RX_RH_ABS5p5W
:
1033 RX_STACK_POP (relocation
);
1038 OP (0) |= relocation
>> 2;
1040 OP (1) |= (relocation
<< 6) & 0x80;
1041 OP (1) |= (relocation
<< 3) & 0x08;
1044 case R_RX_RH_ABS5p5L
:
1045 RX_STACK_POP (relocation
);
1050 OP (0) |= relocation
>> 2;
1052 OP (1) |= (relocation
<< 6) & 0x80;
1053 OP (1) |= (relocation
<< 3) & 0x08;
1056 case R_RX_RH_ABS5p8B
:
1057 RX_STACK_POP (relocation
);
1060 OP (0) |= (relocation
<< 3) & 0x80;
1061 OP (0) |= relocation
& 0x0f;
1064 case R_RX_RH_ABS5p8W
:
1065 RX_STACK_POP (relocation
);
1070 OP (0) |= (relocation
<< 3) & 0x80;
1071 OP (0) |= relocation
& 0x0f;
1074 case R_RX_RH_ABS5p8L
:
1075 RX_STACK_POP (relocation
);
1080 OP (0) |= (relocation
<< 3) & 0x80;
1081 OP (0) |= relocation
& 0x0f;
1084 case R_RX_RH_UIMM4p8
:
1087 OP (0) |= relocation
<< 4;
1090 case R_RX_RH_UNEG4p8
:
1093 OP (0) |= (-relocation
) << 4;
1096 /* Complex reloc handling: */
1100 RX_STACK_POP (relocation
);
1101 #if RX_OPCODE_BIG_ENDIAN
1102 OP (3) = relocation
;
1103 OP (2) = relocation
>> 8;
1104 OP (1) = relocation
>> 16;
1105 OP (0) = relocation
>> 24;
1107 OP (0) = relocation
;
1108 OP (1) = relocation
>> 8;
1109 OP (2) = relocation
>> 16;
1110 OP (3) = relocation
>> 24;
1114 case R_RX_ABS32_REV
:
1116 RX_STACK_POP (relocation
);
1117 #if RX_OPCODE_BIG_ENDIAN
1118 OP (0) = relocation
;
1119 OP (1) = relocation
>> 8;
1120 OP (2) = relocation
>> 16;
1121 OP (3) = relocation
>> 24;
1123 OP (3) = relocation
;
1124 OP (2) = relocation
>> 8;
1125 OP (1) = relocation
>> 16;
1126 OP (0) = relocation
>> 24;
1130 case R_RX_ABS24S_PCREL
:
1133 RX_STACK_POP (relocation
);
1134 RANGE (-0x800000, 0x7fffff);
1135 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
1137 OP (2) = relocation
;
1138 OP (1) = relocation
>> 8;
1139 OP (0) = relocation
>> 16;
1143 OP (0) = relocation
;
1144 OP (1) = relocation
>> 8;
1145 OP (2) = relocation
>> 16;
1151 RX_STACK_POP (relocation
);
1152 RANGE (-32768, 65535);
1153 #if RX_OPCODE_BIG_ENDIAN
1154 OP (1) = relocation
;
1155 OP (0) = relocation
>> 8;
1157 OP (0) = relocation
;
1158 OP (1) = relocation
>> 8;
1162 case R_RX_ABS16_REV
:
1164 RX_STACK_POP (relocation
);
1165 RANGE (-32768, 65535);
1166 #if RX_OPCODE_BIG_ENDIAN
1167 OP (0) = relocation
;
1168 OP (1) = relocation
>> 8;
1170 OP (1) = relocation
;
1171 OP (0) = relocation
>> 8;
1175 case R_RX_ABS16S_PCREL
:
1177 RX_STACK_POP (relocation
);
1178 RANGE (-32768, 32767);
1179 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
1181 OP (1) = relocation
;
1182 OP (0) = relocation
>> 8;
1186 OP (0) = relocation
;
1187 OP (1) = relocation
>> 8;
1193 RX_STACK_POP (relocation
);
1195 #if RX_OPCODE_BIG_ENDIAN
1196 OP (1) = relocation
;
1197 OP (0) = relocation
>> 8;
1199 OP (0) = relocation
;
1200 OP (1) = relocation
>> 8;
1206 RX_STACK_POP (relocation
);
1209 #if RX_OPCODE_BIG_ENDIAN
1210 OP (1) = relocation
;
1211 OP (0) = relocation
>> 8;
1213 OP (0) = relocation
;
1214 OP (1) = relocation
>> 8;
1220 RX_STACK_POP (relocation
);
1223 #if RX_OPCODE_BIG_ENDIAN
1224 OP (1) = relocation
;
1225 OP (0) = relocation
>> 8;
1227 OP (0) = relocation
;
1228 OP (1) = relocation
>> 8;
1234 RX_STACK_POP (relocation
);
1236 OP (0) = relocation
;
1241 RX_STACK_POP (relocation
);
1243 OP (0) = relocation
;
1248 RX_STACK_POP (relocation
);
1251 OP (0) = relocation
;
1256 RX_STACK_POP (relocation
);
1259 OP (0) = relocation
;
1265 case R_RX_ABS8S_PCREL
:
1266 RX_STACK_POP (relocation
);
1268 OP (0) = relocation
;
1272 if (r_symndx
< symtab_hdr
->sh_info
)
1273 RX_STACK_PUSH (sec
->output_section
->vma
1274 + sec
->output_offset
1280 && (h
->root
.type
== bfd_link_hash_defined
1281 || h
->root
.type
== bfd_link_hash_defweak
))
1282 RX_STACK_PUSH (h
->root
.u
.def
.value
1283 + sec
->output_section
->vma
1284 + sec
->output_offset
1288 (_("warning: RX_SYM reloc with an unknown symbol"));
1296 saw_subtract
= TRUE
;
1299 RX_STACK_PUSH (tmp
);
1307 RX_STACK_POP (tmp1
);
1308 RX_STACK_POP (tmp2
);
1310 RX_STACK_PUSH (tmp1
);
1318 saw_subtract
= TRUE
;
1319 RX_STACK_POP (tmp1
);
1320 RX_STACK_POP (tmp2
);
1322 RX_STACK_PUSH (tmp2
);
1330 RX_STACK_POP (tmp1
);
1331 RX_STACK_POP (tmp2
);
1333 RX_STACK_PUSH (tmp1
);
1341 RX_STACK_POP (tmp1
);
1342 RX_STACK_POP (tmp2
);
1344 RX_STACK_PUSH (tmp1
);
1352 RX_STACK_POP (tmp1
);
1353 RX_STACK_POP (tmp2
);
1355 RX_STACK_PUSH (tmp1
);
1363 RX_STACK_POP (tmp1
);
1364 RX_STACK_POP (tmp2
);
1366 RX_STACK_PUSH (tmp1
);
1370 case R_RX_OPsctsize
:
1371 RX_STACK_PUSH (input_section
->size
);
1375 RX_STACK_PUSH (input_section
->output_section
->vma
);
1382 RX_STACK_POP (tmp1
);
1383 RX_STACK_POP (tmp2
);
1385 RX_STACK_PUSH (tmp1
);
1393 RX_STACK_POP (tmp1
);
1394 RX_STACK_POP (tmp2
);
1396 RX_STACK_PUSH (tmp1
);
1404 RX_STACK_POP (tmp1
);
1405 RX_STACK_POP (tmp2
);
1407 RX_STACK_PUSH (tmp1
);
1417 RX_STACK_PUSH (tmp
);
1425 RX_STACK_POP (tmp1
);
1426 RX_STACK_POP (tmp2
);
1428 RX_STACK_PUSH (tmp1
);
1433 RX_STACK_PUSH (get_romstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1437 RX_STACK_PUSH (get_ramstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1441 r
= bfd_reloc_notsupported
;
1445 if (r
!= bfd_reloc_ok
)
1447 const char * msg
= NULL
;
1451 case bfd_reloc_overflow
:
1452 /* Catch the case of a missing function declaration
1453 and emit a more helpful error message. */
1454 if (r_type
== R_RX_DIR24S_PCREL
)
1455 /* xgettext:c-format */
1456 msg
= _("%pB(%pA): error: call to undefined function '%s'");
1458 (*info
->callbacks
->reloc_overflow
)
1459 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
, (bfd_vma
) 0,
1460 input_bfd
, input_section
, rel
->r_offset
);
1463 case bfd_reloc_undefined
:
1464 (*info
->callbacks
->undefined_symbol
)
1465 (info
, name
, input_bfd
, input_section
, rel
->r_offset
, TRUE
);
1468 case bfd_reloc_other
:
1469 /* xgettext:c-format */
1470 msg
= _("%pB(%pA): warning: unaligned access to symbol '%s' in the small data area");
1473 case bfd_reloc_outofrange
:
1474 /* xgettext:c-format */
1475 msg
= _("%pB(%pA): internal error: out of range error");
1478 case bfd_reloc_notsupported
:
1479 /* xgettext:c-format */
1480 msg
= _("%pB(%pA): internal error: unsupported relocation error");
1483 case bfd_reloc_dangerous
:
1484 /* xgettext:c-format */
1485 msg
= _("%pB(%pA): internal error: dangerous relocation");
1489 /* xgettext:c-format */
1490 msg
= _("%pB(%pA): internal error: unknown error");
1495 _bfd_error_handler (msg
, input_bfd
, input_section
, name
);
1502 /* Relaxation Support. */
1504 /* Progression of relocations from largest operand size to smallest
1508 next_smaller_reloc (int r
)
1512 case R_RX_DIR32
: return R_RX_DIR24S
;
1513 case R_RX_DIR24S
: return R_RX_DIR16S
;
1514 case R_RX_DIR16S
: return R_RX_DIR8S
;
1515 case R_RX_DIR8S
: return R_RX_NONE
;
1517 case R_RX_DIR16
: return R_RX_DIR8
;
1518 case R_RX_DIR8
: return R_RX_NONE
;
1520 case R_RX_DIR16U
: return R_RX_DIR8U
;
1521 case R_RX_DIR8U
: return R_RX_NONE
;
1523 case R_RX_DIR24S_PCREL
: return R_RX_DIR16S_PCREL
;
1524 case R_RX_DIR16S_PCREL
: return R_RX_DIR8S_PCREL
;
1525 case R_RX_DIR8S_PCREL
: return R_RX_DIR3U_PCREL
;
1527 case R_RX_DIR16UL
: return R_RX_DIR8UL
;
1528 case R_RX_DIR8UL
: return R_RX_NONE
;
1529 case R_RX_DIR16UW
: return R_RX_DIR8UW
;
1530 case R_RX_DIR8UW
: return R_RX_NONE
;
1532 case R_RX_RH_32_OP
: return R_RX_RH_24_OP
;
1533 case R_RX_RH_24_OP
: return R_RX_RH_16_OP
;
1534 case R_RX_RH_16_OP
: return R_RX_DIR8
;
1536 case R_RX_ABS32
: return R_RX_ABS24S
;
1537 case R_RX_ABS24S
: return R_RX_ABS16S
;
1538 case R_RX_ABS16
: return R_RX_ABS8
;
1539 case R_RX_ABS16U
: return R_RX_ABS8U
;
1540 case R_RX_ABS16S
: return R_RX_ABS8S
;
1541 case R_RX_ABS8
: return R_RX_NONE
;
1542 case R_RX_ABS8U
: return R_RX_NONE
;
1543 case R_RX_ABS8S
: return R_RX_NONE
;
1544 case R_RX_ABS24S_PCREL
: return R_RX_ABS16S_PCREL
;
1545 case R_RX_ABS16S_PCREL
: return R_RX_ABS8S_PCREL
;
1546 case R_RX_ABS8S_PCREL
: return R_RX_NONE
;
1547 case R_RX_ABS16UL
: return R_RX_ABS8UL
;
1548 case R_RX_ABS16UW
: return R_RX_ABS8UW
;
1549 case R_RX_ABS8UL
: return R_RX_NONE
;
1550 case R_RX_ABS8UW
: return R_RX_NONE
;
1555 /* Delete some bytes from a section while relaxing. */
1558 elf32_rx_relax_delete_bytes (bfd
*abfd
, asection
*sec
, bfd_vma addr
, int count
,
1559 Elf_Internal_Rela
*alignment_rel
, int force_snip
,
1560 Elf_Internal_Rela
*irelstart
)
1562 Elf_Internal_Shdr
* symtab_hdr
;
1563 unsigned int sec_shndx
;
1564 bfd_byte
* contents
;
1565 Elf_Internal_Rela
* irel
;
1566 Elf_Internal_Rela
* irelend
;
1567 Elf_Internal_Sym
* isym
;
1568 Elf_Internal_Sym
* isymend
;
1570 unsigned int symcount
;
1571 struct elf_link_hash_entry
** sym_hashes
;
1572 struct elf_link_hash_entry
** end_hashes
;
1577 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
1579 contents
= elf_section_data (sec
)->this_hdr
.contents
;
1581 /* The deletion must stop at the next alignment boundary, if
1582 ALIGNMENT_REL is non-NULL. */
1585 toaddr
= alignment_rel
->r_offset
;
1587 BFD_ASSERT (toaddr
> addr
);
1589 /* Actually delete the bytes. */
1590 memmove (contents
+ addr
, contents
+ addr
+ count
,
1591 (size_t) (toaddr
- addr
- count
));
1593 /* If we don't have an alignment marker to worry about, we can just
1594 shrink the section. Otherwise, we have to fill in the newly
1595 created gap with NOP insns (0x03). */
1599 memset (contents
+ toaddr
- count
, 0x03, count
);
1602 BFD_ASSERT (irel
!= NULL
|| sec
->reloc_count
== 0);
1603 irelend
= irel
+ sec
->reloc_count
;
1605 /* Adjust all the relocs. */
1606 for (; irel
< irelend
; irel
++)
1608 /* Get the new reloc address. */
1609 if (irel
->r_offset
> addr
1610 && (irel
->r_offset
< toaddr
1611 || (force_snip
&& irel
->r_offset
== toaddr
)))
1612 irel
->r_offset
-= count
;
1614 /* If we see an ALIGN marker at the end of the gap, we move it
1615 to the beginning of the gap, since marking these gaps is what
1617 if (irel
->r_offset
== toaddr
1618 && ELF32_R_TYPE (irel
->r_info
) == R_RX_RH_RELAX
1619 && irel
->r_addend
& RX_RELAXA_ALIGN
)
1620 irel
->r_offset
-= count
;
1623 /* Adjust the local symbols defined in this section. */
1624 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1625 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
1626 isymend
= isym
+ symtab_hdr
->sh_info
;
1628 for (; isym
< isymend
; isym
++)
1630 /* If the symbol is in the range of memory we just moved, we
1631 have to adjust its value. */
1632 if (isym
->st_shndx
== sec_shndx
1633 && isym
->st_value
> addr
1634 && isym
->st_value
< toaddr
)
1635 isym
->st_value
-= count
;
1637 /* If the symbol *spans* the bytes we just deleted (i.e. it's
1638 *end* is in the moved bytes but it's *start* isn't), then we
1639 must adjust its size. */
1640 if (isym
->st_shndx
== sec_shndx
1641 && isym
->st_value
< addr
1642 && isym
->st_value
+ isym
->st_size
> addr
1643 && isym
->st_value
+ isym
->st_size
< toaddr
)
1644 isym
->st_size
-= count
;
1647 /* Now adjust the global symbols defined in this section. */
1648 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
1649 - symtab_hdr
->sh_info
);
1650 sym_hashes
= elf_sym_hashes (abfd
);
1651 end_hashes
= sym_hashes
+ symcount
;
1653 for (; sym_hashes
< end_hashes
; sym_hashes
++)
1655 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
1657 if ((sym_hash
->root
.type
== bfd_link_hash_defined
1658 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
1659 && sym_hash
->root
.u
.def
.section
== sec
)
1661 /* As above, adjust the value if needed. */
1662 if (sym_hash
->root
.u
.def
.value
> addr
1663 && sym_hash
->root
.u
.def
.value
< toaddr
)
1664 sym_hash
->root
.u
.def
.value
-= count
;
1666 /* As above, adjust the size if needed. */
1667 if (sym_hash
->root
.u
.def
.value
< addr
1668 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
> addr
1669 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
< toaddr
)
1670 sym_hash
->size
-= count
;
1677 /* Used to sort relocs by address. If relocs have the same address,
1678 we maintain their relative order, except that R_RX_RH_RELAX
1679 alignment relocs must be the first reloc for any given address. */
1682 reloc_bubblesort (Elf_Internal_Rela
* r
, int count
)
1686 bfd_boolean swappit
;
1688 /* This is almost a classic bubblesort. It's the slowest sort, but
1689 we're taking advantage of the fact that the relocations are
1690 mostly in order already (the assembler emits them that way) and
1691 we need relocs with the same address to remain in the same
1697 for (i
= 0; i
< count
- 1; i
++)
1699 if (r
[i
].r_offset
> r
[i
+ 1].r_offset
)
1701 else if (r
[i
].r_offset
< r
[i
+ 1].r_offset
)
1703 else if (ELF32_R_TYPE (r
[i
+ 1].r_info
) == R_RX_RH_RELAX
1704 && (r
[i
+ 1].r_addend
& RX_RELAXA_ALIGN
))
1706 else if (ELF32_R_TYPE (r
[i
+ 1].r_info
) == R_RX_RH_RELAX
1707 && (r
[i
+ 1].r_addend
& RX_RELAXA_ELIGN
)
1708 && !(ELF32_R_TYPE (r
[i
].r_info
) == R_RX_RH_RELAX
1709 && (r
[i
].r_addend
& RX_RELAXA_ALIGN
)))
1716 Elf_Internal_Rela tmp
;
1721 /* If we do move a reloc back, re-scan to see if it
1722 needs to be moved even further back. This avoids
1723 most of the O(n^2) behavior for our cases. */
1733 #define OFFSET_FOR_RELOC(rel, lrel, scale) \
1734 rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
1735 lrel, abfd, sec, link_info, scale)
1738 rx_offset_for_reloc (bfd
* abfd
,
1739 Elf_Internal_Rela
* rel
,
1740 Elf_Internal_Shdr
* symtab_hdr
,
1741 Elf_External_Sym_Shndx
* shndx_buf ATTRIBUTE_UNUSED
,
1742 Elf_Internal_Sym
* intsyms
,
1743 Elf_Internal_Rela
** lrel
,
1745 asection
* input_section
,
1746 struct bfd_link_info
* info
,
1750 bfd_reloc_status_type r
;
1754 /* REL is the first of 1..N relocations. We compute the symbol
1755 value for each relocation, then combine them if needed. LREL
1756 gets a pointer to the last relocation used. */
1761 /* Get the value of the symbol referred to by the reloc. */
1762 if (ELF32_R_SYM (rel
->r_info
) < symtab_hdr
->sh_info
)
1764 /* A local symbol. */
1765 Elf_Internal_Sym
*isym
;
1768 isym
= intsyms
+ ELF32_R_SYM (rel
->r_info
);
1770 if (isym
->st_shndx
== SHN_UNDEF
)
1771 ssec
= bfd_und_section_ptr
;
1772 else if (isym
->st_shndx
== SHN_ABS
)
1773 ssec
= bfd_abs_section_ptr
;
1774 else if (isym
->st_shndx
== SHN_COMMON
)
1775 ssec
= bfd_com_section_ptr
;
1777 ssec
= bfd_section_from_elf_index (abfd
,
1780 /* Initial symbol value. */
1781 symval
= isym
->st_value
;
1783 /* GAS may have made this symbol relative to a section, in
1784 which case, we have to add the addend to find the
1786 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
1787 symval
+= rel
->r_addend
;
1791 if ((ssec
->flags
& SEC_MERGE
)
1792 && ssec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
1793 symval
= _bfd_merged_section_offset (abfd
, & ssec
,
1794 elf_section_data (ssec
)->sec_info
,
1798 /* Now make the offset relative to where the linker is putting it. */
1801 ssec
->output_section
->vma
+ ssec
->output_offset
;
1803 symval
+= rel
->r_addend
;
1808 struct elf_link_hash_entry
* h
;
1810 /* An external symbol. */
1811 indx
= ELF32_R_SYM (rel
->r_info
) - symtab_hdr
->sh_info
;
1812 h
= elf_sym_hashes (abfd
)[indx
];
1813 BFD_ASSERT (h
!= NULL
);
1815 if (h
->root
.type
!= bfd_link_hash_defined
1816 && h
->root
.type
!= bfd_link_hash_defweak
)
1818 /* This appears to be a reference to an undefined
1819 symbol. Just ignore it--it will be caught by the
1820 regular reloc processing. */
1826 symval
= (h
->root
.u
.def
.value
1827 + h
->root
.u
.def
.section
->output_section
->vma
1828 + h
->root
.u
.def
.section
->output_offset
);
1830 symval
+= rel
->r_addend
;
1833 switch (ELF32_R_TYPE (rel
->r_info
))
1836 RX_STACK_PUSH (symval
);
1840 RX_STACK_POP (tmp1
);
1842 RX_STACK_PUSH (tmp1
);
1846 RX_STACK_POP (tmp1
);
1847 RX_STACK_POP (tmp2
);
1849 RX_STACK_PUSH (tmp1
);
1853 RX_STACK_POP (tmp1
);
1854 RX_STACK_POP (tmp2
);
1856 RX_STACK_PUSH (tmp2
);
1860 RX_STACK_POP (tmp1
);
1861 RX_STACK_POP (tmp2
);
1863 RX_STACK_PUSH (tmp1
);
1867 RX_STACK_POP (tmp1
);
1868 RX_STACK_POP (tmp2
);
1870 RX_STACK_PUSH (tmp1
);
1874 RX_STACK_POP (tmp1
);
1875 RX_STACK_POP (tmp2
);
1877 RX_STACK_PUSH (tmp1
);
1881 RX_STACK_POP (tmp1
);
1882 RX_STACK_POP (tmp2
);
1884 RX_STACK_PUSH (tmp1
);
1887 case R_RX_OPsctsize
:
1888 RX_STACK_PUSH (input_section
->size
);
1892 RX_STACK_PUSH (input_section
->output_section
->vma
);
1896 RX_STACK_POP (tmp1
);
1897 RX_STACK_POP (tmp2
);
1899 RX_STACK_PUSH (tmp1
);
1903 RX_STACK_POP (tmp1
);
1904 RX_STACK_POP (tmp2
);
1906 RX_STACK_PUSH (tmp1
);
1910 RX_STACK_POP (tmp1
);
1911 RX_STACK_POP (tmp2
);
1913 RX_STACK_PUSH (tmp1
);
1917 RX_STACK_POP (tmp1
);
1919 RX_STACK_PUSH (tmp1
);
1923 RX_STACK_POP (tmp1
);
1924 RX_STACK_POP (tmp2
);
1926 RX_STACK_PUSH (tmp1
);
1930 RX_STACK_PUSH (get_romstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1934 RX_STACK_PUSH (get_ramstart (info
, input_bfd
, input_section
, rel
->r_offset
));
1942 RX_STACK_POP (symval
);
1953 RX_STACK_POP (symval
);
1961 RX_STACK_POP (symval
);
1974 move_reloc (Elf_Internal_Rela
* irel
, Elf_Internal_Rela
* srel
, int delta
)
1976 bfd_vma old_offset
= srel
->r_offset
;
1979 while (irel
<= srel
)
1981 if (irel
->r_offset
== old_offset
)
1982 irel
->r_offset
+= delta
;
1987 /* Relax one section. */
1990 elf32_rx_relax_section (bfd
* abfd
,
1992 struct bfd_link_info
* link_info
,
1993 bfd_boolean
* again
,
1994 bfd_boolean allow_pcrel3
)
1996 Elf_Internal_Shdr
* symtab_hdr
;
1997 Elf_Internal_Shdr
* shndx_hdr
;
1998 Elf_Internal_Rela
* internal_relocs
;
1999 Elf_Internal_Rela
* irel
;
2000 Elf_Internal_Rela
* srel
;
2001 Elf_Internal_Rela
* irelend
;
2002 Elf_Internal_Rela
* next_alignment
;
2003 Elf_Internal_Rela
* prev_alignment
;
2004 bfd_byte
* contents
= NULL
;
2005 bfd_byte
* free_contents
= NULL
;
2006 Elf_Internal_Sym
* intsyms
= NULL
;
2007 Elf_Internal_Sym
* free_intsyms
= NULL
;
2008 Elf_External_Sym_Shndx
* shndx_buf
= NULL
;
2014 int section_alignment_glue
;
2015 /* how much to scale the relocation by - 1, 2, or 4. */
2018 /* Assume nothing changes. */
2021 /* We don't have to do anything for a relocatable link, if
2022 this section does not have relocs, or if this is not a
2024 if (bfd_link_relocatable (link_info
)
2025 || (sec
->flags
& SEC_RELOC
) == 0
2026 || sec
->reloc_count
== 0
2027 || (sec
->flags
& SEC_CODE
) == 0)
2030 symtab_hdr
= & elf_symtab_hdr (abfd
);
2031 if (elf_symtab_shndx_list (abfd
))
2032 shndx_hdr
= & elf_symtab_shndx_list (abfd
)->hdr
;
2036 sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
2038 /* Get the section contents. */
2039 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
2040 contents
= elf_section_data (sec
)->this_hdr
.contents
;
2041 /* Go get them off disk. */
2044 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
2046 elf_section_data (sec
)->this_hdr
.contents
= contents
;
2049 /* Read this BFD's symbols. */
2050 /* Get cached copy if it exists. */
2051 if (symtab_hdr
->contents
!= NULL
)
2052 intsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2055 intsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
, symtab_hdr
->sh_info
, 0, NULL
, NULL
, NULL
);
2056 symtab_hdr
->contents
= (bfd_byte
*) intsyms
;
2059 if (shndx_hdr
&& shndx_hdr
->sh_size
!= 0)
2063 amt
= symtab_hdr
->sh_info
;
2064 amt
*= sizeof (Elf_External_Sym_Shndx
);
2065 shndx_buf
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
2066 if (shndx_buf
== NULL
)
2068 if (bfd_seek (abfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0
2069 || bfd_bread (shndx_buf
, amt
, abfd
) != amt
)
2071 shndx_hdr
->contents
= (bfd_byte
*) shndx_buf
;
2074 /* Get a copy of the native relocations. */
2075 /* Note - we ignore the setting of link_info->keep_memory when reading
2076 in these relocs. We have to maintain a permanent copy of the relocs
2077 because we are going to walk over them multiple times, adjusting them
2078 as bytes are deleted from the section, and with this relaxation
2079 function itself being called multiple times on the same section... */
2080 internal_relocs
= _bfd_elf_link_read_relocs
2081 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, TRUE
);
2082 if (internal_relocs
== NULL
)
2085 /* The RL_ relocs must be just before the operand relocs they go
2086 with, so we must sort them to guarantee this. We use bubblesort
2087 instead of qsort so we can guarantee that relocs with the same
2088 address remain in the same relative order. */
2089 reloc_bubblesort (internal_relocs
, sec
->reloc_count
);
2091 /* Walk through them looking for relaxing opportunities. */
2092 irelend
= internal_relocs
+ sec
->reloc_count
;
2094 /* This will either be NULL or a pointer to the next alignment
2096 next_alignment
= internal_relocs
;
2097 /* This will be the previous alignment, although at first it points
2098 to the first real relocation. */
2099 prev_alignment
= internal_relocs
;
2101 /* We calculate worst case shrinkage caused by alignment directives.
2102 No fool-proof, but better than either ignoring the problem or
2103 doing heavy duty analysis of all the alignment markers in all
2105 section_alignment_glue
= 0;
2106 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2107 if (ELF32_R_TYPE (irel
->r_info
) == R_RX_RH_RELAX
2108 && irel
->r_addend
& RX_RELAXA_ALIGN
)
2110 int this_glue
= 1 << (irel
->r_addend
& RX_RELAXA_ANUM
);
2112 if (section_alignment_glue
< this_glue
)
2113 section_alignment_glue
= this_glue
;
2115 /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
2117 section_alignment_glue
*= 2;
2119 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2121 unsigned char *insn
;
2124 /* The insns we care about are all marked with one of these. */
2125 if (ELF32_R_TYPE (irel
->r_info
) != R_RX_RH_RELAX
)
2128 if (irel
->r_addend
& RX_RELAXA_ALIGN
2129 || next_alignment
== internal_relocs
)
2131 /* When we delete bytes, we need to maintain all the alignments
2132 indicated. In addition, we need to be careful about relaxing
2133 jumps across alignment boundaries - these displacements
2134 *grow* when we delete bytes. For now, don't shrink
2135 displacements across an alignment boundary, just in case.
2136 Note that this only affects relocations to the same
2138 prev_alignment
= next_alignment
;
2139 next_alignment
+= 2;
2140 while (next_alignment
< irelend
2141 && (ELF32_R_TYPE (next_alignment
->r_info
) != R_RX_RH_RELAX
2142 || !(next_alignment
->r_addend
& RX_RELAXA_ELIGN
)))
2144 if (next_alignment
>= irelend
|| next_alignment
->r_offset
== 0)
2145 next_alignment
= NULL
;
2148 /* When we hit alignment markers, see if we've shrunk enough
2149 before them to reduce the gap without violating the alignment
2151 if (irel
->r_addend
& RX_RELAXA_ALIGN
)
2153 /* At this point, the next relocation *should* be the ELIGN
2155 Elf_Internal_Rela
*erel
= irel
+ 1;
2156 unsigned int alignment
, nbytes
;
2158 if (ELF32_R_TYPE (erel
->r_info
) != R_RX_RH_RELAX
)
2160 if (!(erel
->r_addend
& RX_RELAXA_ELIGN
))
2163 alignment
= 1 << (irel
->r_addend
& RX_RELAXA_ANUM
);
2165 if (erel
->r_offset
- irel
->r_offset
< alignment
)
2168 nbytes
= erel
->r_offset
- irel
->r_offset
;
2169 nbytes
/= alignment
;
2170 nbytes
*= alignment
;
2172 elf32_rx_relax_delete_bytes (abfd
, sec
, erel
->r_offset
-nbytes
, nbytes
, next_alignment
,
2173 erel
->r_offset
== sec
->size
, internal_relocs
);
2179 if (irel
->r_addend
& RX_RELAXA_ELIGN
)
2182 insn
= contents
+ irel
->r_offset
;
2184 nrelocs
= irel
->r_addend
& RX_RELAXA_RNUM
;
2186 /* At this point, we have an insn that is a candidate for linker
2187 relaxation. There are NRELOCS relocs following that may be
2188 relaxed, although each reloc may be made of more than one
2189 reloc entry (such as gp-rel symbols). */
2191 /* Get the value of the symbol referred to by the reloc. Just
2192 in case this is the last reloc in the list, use the RL's
2193 addend to choose between this reloc (no addend) or the next
2194 (yes addend, which means at least one following reloc). */
2196 /* srel points to the "current" reloction for this insn -
2197 actually the last reloc for a given operand, which is the one
2198 we need to update. We check the relaxations in the same
2199 order that the relocations happen, so we'll just push it
2203 pc
= sec
->output_section
->vma
+ sec
->output_offset
2207 symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
2208 pcrel = symval - pc + srel->r_addend; \
2211 #define SNIPNR(offset, nbytes) \
2212 elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0, internal_relocs);
2213 #define SNIP(offset, nbytes, newtype) \
2214 SNIPNR (offset, nbytes); \
2215 srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
2217 /* The order of these bit tests must match the order that the
2218 relocs appear in. Since we sorted those by offset, we can
2221 /* Note that the numbers in, say, DSP6 are the bit offsets of
2222 the code fields that describe the operand. Bits number 0 for
2223 the MSB of insn[0]. */
2230 if (irel
->r_addend
& RX_RELAXA_DSP6
)
2235 if (code
== 2 && symval
/scale
<= 255)
2237 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2240 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2241 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2243 SNIP (3, 1, newrel
);
2248 else if (code
== 1 && symval
== 0)
2251 SNIP (2, 1, R_RX_NONE
);
2255 /* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */
2256 else if (code
== 1 && symval
/scale
<= 31
2257 /* Decodable bits. */
2258 && (insn
[0] & 0xcc) == 0xcc
2260 && (insn
[0] & 0x30) != 0x30
2261 /* Register MSBs. */
2262 && (insn
[1] & 0x88) == 0x00)
2266 insn
[0] = 0x88 | (insn
[0] & 0x30);
2267 /* The register fields are in the right place already. */
2269 /* We can't relax this new opcode. */
2272 switch ((insn
[0] & 0x30) >> 4)
2275 newrel
= R_RX_RH_ABS5p5B
;
2278 newrel
= R_RX_RH_ABS5p5W
;
2281 newrel
= R_RX_RH_ABS5p5L
;
2285 move_reloc (irel
, srel
, -2);
2286 SNIP (2, 1, newrel
);
2289 /* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */
2290 else if (code
== 1 && symval
/scale
<= 31
2291 /* Decodable bits. */
2292 && (insn
[0] & 0xf8) == 0x58
2293 /* Register MSBs. */
2294 && (insn
[1] & 0x88) == 0x00)
2298 insn
[0] = 0xb0 | ((insn
[0] & 0x04) << 1);
2299 /* The register fields are in the right place already. */
2301 /* We can't relax this new opcode. */
2304 switch ((insn
[0] & 0x08) >> 3)
2307 newrel
= R_RX_RH_ABS5p5B
;
2310 newrel
= R_RX_RH_ABS5p5W
;
2314 move_reloc (irel
, srel
, -2);
2315 SNIP (2, 1, newrel
);
2319 /* A DSP4 operand always follows a DSP6 operand, even if there's
2320 no relocation for it. We have to read the code out of the
2321 opcode to calculate the offset of the operand. */
2322 if (irel
->r_addend
& RX_RELAXA_DSP4
)
2324 int code6
, offset
= 0;
2328 code6
= insn
[0] & 0x03;
2331 case 0: offset
= 2; break;
2332 case 1: offset
= 3; break;
2333 case 2: offset
= 4; break;
2334 case 3: offset
= 2; break;
2337 code
= (insn
[0] & 0x0c) >> 2;
2339 if (code
== 2 && symval
/ scale
<= 255)
2341 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2345 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2346 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2348 SNIP (offset
+1, 1, newrel
);
2353 else if (code
== 1 && symval
== 0)
2356 SNIP (offset
, 1, R_RX_NONE
);
2359 /* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */
2360 else if (code
== 1 && symval
/scale
<= 31
2361 /* Decodable bits. */
2362 && (insn
[0] & 0xc3) == 0xc3
2364 && (insn
[0] & 0x30) != 0x30
2365 /* Register MSBs. */
2366 && (insn
[1] & 0x88) == 0x00)
2370 insn
[0] = 0x80 | (insn
[0] & 0x30);
2371 /* The register fields are in the right place already. */
2373 /* We can't relax this new opcode. */
2376 switch ((insn
[0] & 0x30) >> 4)
2379 newrel
= R_RX_RH_ABS5p5B
;
2382 newrel
= R_RX_RH_ABS5p5W
;
2385 newrel
= R_RX_RH_ABS5p5L
;
2389 move_reloc (irel
, srel
, -2);
2390 SNIP (2, 1, newrel
);
2394 /* These always occur alone, but the offset depends on whether
2395 it's a MEMEX opcode (0x06) or not. */
2396 if (irel
->r_addend
& RX_RELAXA_DSP14
)
2401 if (insn
[0] == 0x06)
2408 if (code
== 2 && symval
/ scale
<= 255)
2410 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2414 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2415 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2417 SNIP (offset
, 1, newrel
);
2421 else if (code
== 1 && symval
== 0)
2424 SNIP (offset
, 1, R_RX_NONE
);
2435 /* These always occur alone. */
2436 if (irel
->r_addend
& RX_RELAXA_IMM6
)
2442 /* These relocations sign-extend, so we must do signed compares. */
2443 ssymval
= (long) symval
;
2445 code
= insn
[0] & 0x03;
2447 if (code
== 0 && ssymval
<= 8388607 && ssymval
>= -8388608)
2449 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2453 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2454 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2456 SNIP (2, 1, newrel
);
2461 else if (code
== 3 && ssymval
<= 32767 && ssymval
>= -32768)
2463 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2467 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2468 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2470 SNIP (2, 1, newrel
);
2475 /* Special case UIMM8 format: CMP #uimm8,Rdst. */
2476 else if (code
== 2 && ssymval
<= 255 && ssymval
>= 16
2477 /* Decodable bits. */
2478 && (insn
[0] & 0xfc) == 0x74
2479 /* Decodable bits. */
2480 && ((insn
[1] & 0xf0) == 0x00))
2485 insn
[1] = 0x50 | (insn
[1] & 0x0f);
2487 /* We can't relax this new opcode. */
2490 if (STACK_REL_P (ELF32_R_TYPE (srel
->r_info
)))
2491 newrel
= R_RX_ABS8U
;
2493 newrel
= R_RX_DIR8U
;
2495 SNIP (2, 1, newrel
);
2499 else if (code
== 2 && ssymval
<= 127 && ssymval
>= -128)
2501 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2505 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2506 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2508 SNIP (2, 1, newrel
);
2513 /* Special case UIMM4 format: CMP, MUL, AND, OR. */
2514 else if (code
== 1 && ssymval
<= 15 && ssymval
>= 0
2515 /* Decodable bits and immediate type. */
2517 /* Decodable bits. */
2518 && (insn
[1] & 0xc0) == 0x00)
2520 static const int newop
[4] = { 1, 3, 4, 5 };
2522 insn
[0] = 0x60 | newop
[insn
[1] >> 4];
2523 /* The register number doesn't move. */
2525 /* We can't relax this new opcode. */
2528 move_reloc (irel
, srel
, -1);
2530 SNIP (2, 1, R_RX_RH_UIMM4p8
);
2534 /* Special case UIMM4 format: ADD -> ADD/SUB. */
2535 else if (code
== 1 && ssymval
<= 15 && ssymval
>= -15
2536 /* Decodable bits and immediate type. */
2538 /* Same register for source and destination. */
2539 && ((insn
[1] >> 4) == (insn
[1] & 0x0f)))
2543 /* Note that we can't turn "add $0,Rs" into a NOP
2544 because the flags need to be set right. */
2548 insn
[0] = 0x60; /* Subtract. */
2549 newrel
= R_RX_RH_UNEG4p8
;
2553 insn
[0] = 0x62; /* Add. */
2554 newrel
= R_RX_RH_UIMM4p8
;
2557 /* The register number is in the right place. */
2559 /* We can't relax this new opcode. */
2562 move_reloc (irel
, srel
, -1);
2564 SNIP (2, 1, newrel
);
2569 /* These are either matched with a DSP6 (2-byte base) or an id24
2571 if (irel
->r_addend
& RX_RELAXA_IMM12
)
2573 int dspcode
, offset
= 0;
2578 if ((insn
[0] & 0xfc) == 0xfc)
2579 dspcode
= 1; /* Just something with one byte operand. */
2581 dspcode
= insn
[0] & 3;
2584 case 0: offset
= 2; break;
2585 case 1: offset
= 3; break;
2586 case 2: offset
= 4; break;
2587 case 3: offset
= 2; break;
2590 /* These relocations sign-extend, so we must do signed compares. */
2591 ssymval
= (long) symval
;
2593 code
= (insn
[1] >> 2) & 3;
2594 if (code
== 0 && ssymval
<= 8388607 && ssymval
>= -8388608)
2596 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2600 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2601 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2603 SNIP (offset
, 1, newrel
);
2608 else if (code
== 3 && ssymval
<= 32767 && ssymval
>= -32768)
2610 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2614 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2615 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2617 SNIP (offset
, 1, newrel
);
2622 /* Special case UIMM8 format: MOV #uimm8,Rdst. */
2623 else if (code
== 2 && ssymval
<= 255 && ssymval
>= 16
2624 /* Decodable bits. */
2626 /* Decodable bits. */
2627 && ((insn
[1] & 0x03) == 0x02))
2632 insn
[1] = 0x40 | (insn
[1] >> 4);
2634 /* We can't relax this new opcode. */
2637 if (STACK_REL_P (ELF32_R_TYPE (srel
->r_info
)))
2638 newrel
= R_RX_ABS8U
;
2640 newrel
= R_RX_DIR8U
;
2642 SNIP (2, 1, newrel
);
2646 else if (code
== 2 && ssymval
<= 127 && ssymval
>= -128)
2648 unsigned int newrel
= ELF32_R_TYPE(srel
->r_info
);
2652 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2653 if (newrel
!= ELF32_R_TYPE(srel
->r_info
))
2655 SNIP (offset
, 1, newrel
);
2660 /* Special case UIMM4 format: MOV #uimm4,Rdst. */
2661 else if (code
== 1 && ssymval
<= 15 && ssymval
>= 0
2662 /* Decodable bits. */
2664 /* Decodable bits. */
2665 && ((insn
[1] & 0x03) == 0x02))
2668 insn
[1] = insn
[1] >> 4;
2670 /* We can't relax this new opcode. */
2673 move_reloc (irel
, srel
, -1);
2675 SNIP (2, 1, R_RX_RH_UIMM4p8
);
2680 if (irel
->r_addend
& RX_RELAXA_BRA
)
2682 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2684 int alignment_glue
= 0;
2688 /* Branches over alignment chunks are problematic, as
2689 deleting bytes here makes the branch *further* away. We
2690 can be agressive with branches within this alignment
2691 block, but not branches outside it. */
2692 if ((prev_alignment
== NULL
2693 || symval
< (bfd_vma
)(sec_start
+ prev_alignment
->r_offset
))
2694 && (next_alignment
== NULL
2695 || symval
> (bfd_vma
)(sec_start
+ next_alignment
->r_offset
)))
2696 alignment_glue
= section_alignment_glue
;
2698 if (ELF32_R_TYPE(srel
[1].r_info
) == R_RX_RH_RELAX
2699 && srel
[1].r_addend
& RX_RELAXA_BRA
2700 && srel
[1].r_offset
< irel
->r_offset
+ pcrel
)
2703 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2705 /* The values we compare PCREL with are not what you'd
2706 expect; they're off by a little to compensate for (1)
2707 where the reloc is relative to the insn, and (2) how much
2708 the insn is going to change when we relax it. */
2710 /* These we have to decode. */
2713 case 0x04: /* BRA pcdsp:24 */
2714 if (-32768 + alignment_glue
<= pcrel
2715 && pcrel
<= 32765 - alignment_glue
)
2718 SNIP (3, 1, newrel
);
2723 case 0x38: /* BRA pcdsp:16 */
2724 if (-128 + alignment_glue
<= pcrel
2725 && pcrel
<= 127 - alignment_glue
)
2728 SNIP (2, 1, newrel
);
2733 case 0x2e: /* BRA pcdsp:8 */
2734 /* Note that there's a risk here of shortening things so
2735 much that we no longer fit this reloc; it *should*
2736 only happen when you branch across a branch, and that
2737 branch also devolves into BRA.S. "Real" code should
2739 if (max_pcrel3
+ alignment_glue
<= pcrel
2740 && pcrel
<= 10 - alignment_glue
2744 SNIP (1, 1, newrel
);
2745 move_reloc (irel
, srel
, -1);
2750 case 0x05: /* BSR pcdsp:24 */
2751 if (-32768 + alignment_glue
<= pcrel
2752 && pcrel
<= 32765 - alignment_glue
)
2755 SNIP (1, 1, newrel
);
2760 case 0x3a: /* BEQ.W pcdsp:16 */
2761 case 0x3b: /* BNE.W pcdsp:16 */
2762 if (-128 + alignment_glue
<= pcrel
2763 && pcrel
<= 127 - alignment_glue
)
2765 insn
[0] = 0x20 | (insn
[0] & 1);
2766 SNIP (1, 1, newrel
);
2771 case 0x20: /* BEQ.B pcdsp:8 */
2772 case 0x21: /* BNE.B pcdsp:8 */
2773 if (max_pcrel3
+ alignment_glue
<= pcrel
2774 && pcrel
- alignment_glue
<= 10
2777 insn
[0] = 0x10 | ((insn
[0] & 1) << 3);
2778 SNIP (1, 1, newrel
);
2779 move_reloc (irel
, srel
, -1);
2784 case 0x16: /* synthetic BNE dsp24 */
2785 case 0x1e: /* synthetic BEQ dsp24 */
2786 if (-32767 + alignment_glue
<= pcrel
2787 && pcrel
<= 32766 - alignment_glue
2790 if (insn
[0] == 0x16)
2794 /* We snip out the bytes at the end else the reloc
2795 will get moved too, and too much. */
2796 SNIP (3, 2, newrel
);
2797 move_reloc (irel
, srel
, -1);
2803 /* Special case - synthetic conditional branches, pcrel24.
2804 Note that EQ and NE have been handled above. */
2805 if ((insn
[0] & 0xf0) == 0x20
2808 && srel
->r_offset
!= irel
->r_offset
+ 1
2809 && -32767 + alignment_glue
<= pcrel
2810 && pcrel
<= 32766 - alignment_glue
)
2814 SNIP (5, 1, newrel
);
2818 /* Special case - synthetic conditional branches, pcrel16 */
2819 if ((insn
[0] & 0xf0) == 0x20
2822 && srel
->r_offset
!= irel
->r_offset
+ 1
2823 && -127 + alignment_glue
<= pcrel
2824 && pcrel
<= 126 - alignment_glue
)
2826 int cond
= (insn
[0] & 0x0f) ^ 0x01;
2828 insn
[0] = 0x20 | cond
;
2829 /* By moving the reloc first, we avoid having
2830 delete_bytes move it also. */
2831 move_reloc (irel
, srel
, -2);
2832 SNIP (2, 3, newrel
);
2837 BFD_ASSERT (nrelocs
== 0);
2839 /* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can
2840 use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky
2841 because it may have one or two relocations. */
2842 if ((insn
[0] & 0xfc) == 0xf8
2843 && (insn
[1] & 0x80) == 0x00
2844 && (insn
[0] & 0x03) != 0x03)
2846 int dcode
, icode
, reg
, ioff
, dscale
, ilen
;
2847 bfd_vma disp_val
= 0;
2849 Elf_Internal_Rela
* disp_rel
= 0;
2850 Elf_Internal_Rela
* imm_rel
= 0;
2855 dcode
= insn
[0] & 0x03;
2856 icode
= (insn
[1] >> 2) & 0x03;
2857 reg
= (insn
[1] >> 4) & 0x0f;
2859 ioff
= dcode
== 1 ? 3 : dcode
== 2 ? 4 : 2;
2861 /* Figure out what the dispacement is. */
2862 if (dcode
== 1 || dcode
== 2)
2864 /* There's a displacement. See if there's a reloc for it. */
2865 if (srel
[1].r_offset
== irel
->r_offset
+ 2)
2877 #if RX_OPCODE_BIG_ENDIAN
2878 disp_val
= insn
[2] * 256 + insn
[3];
2880 disp_val
= insn
[2] + insn
[3] * 256;
2883 switch (insn
[1] & 3)
2899 /* Figure out what the immediate is. */
2900 if (srel
[1].r_offset
== irel
->r_offset
+ ioff
)
2903 imm_val
= (long) symval
;
2908 unsigned char * ip
= insn
+ ioff
;
2913 /* For byte writes, we don't sign extend. Makes the math easier later. */
2917 imm_val
= (char) ip
[0];
2920 #if RX_OPCODE_BIG_ENDIAN
2921 imm_val
= ((char) ip
[0] << 8) | ip
[1];
2923 imm_val
= ((char) ip
[1] << 8) | ip
[0];
2927 #if RX_OPCODE_BIG_ENDIAN
2928 imm_val
= ((char) ip
[0] << 16) | (ip
[1] << 8) | ip
[2];
2930 imm_val
= ((char) ip
[2] << 16) | (ip
[1] << 8) | ip
[0];
2934 #if RX_OPCODE_BIG_ENDIAN
2935 imm_val
= ((unsigned) ip
[0] << 24) | (ip
[1] << 16) | (ip
[2] << 8) | ip
[3];
2937 imm_val
= ((unsigned) ip
[3] << 24) | (ip
[2] << 16) | (ip
[1] << 8) | ip
[0];
2971 /* The shortcut happens when the immediate is 0..255,
2972 register r0 to r7, and displacement (scaled) 0..31. */
2974 if (0 <= imm_val
&& imm_val
<= 255
2975 && 0 <= reg
&& reg
<= 7
2976 && disp_val
/ dscale
<= 31)
2978 insn
[0] = 0x3c | (insn
[1] & 0x03);
2979 insn
[1] = (((disp_val
/ dscale
) << 3) & 0x80) | (reg
<< 4) | ((disp_val
/dscale
) & 0x0f);
2984 int newrel
= R_RX_NONE
;
2989 newrel
= R_RX_RH_ABS5p8B
;
2992 newrel
= R_RX_RH_ABS5p8W
;
2995 newrel
= R_RX_RH_ABS5p8L
;
2998 disp_rel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (disp_rel
->r_info
), newrel
);
2999 move_reloc (irel
, disp_rel
, -1);
3003 imm_rel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (imm_rel
->r_info
), R_RX_DIR8U
);
3004 move_reloc (disp_rel
? disp_rel
: irel
,
3006 irel
->r_offset
- imm_rel
->r_offset
+ 2);
3009 SNIPNR (3, ilen
- 3);
3012 /* We can't relax this new opcode. */
3018 /* We can't reliably relax branches to DIR3U_PCREL unless we know
3019 whatever they're branching over won't shrink any more. If we're
3020 basically done here, do one more pass just for branches - but
3021 don't request a pass after that one! */
3022 if (!*again
&& !allow_pcrel3
)
3024 bfd_boolean ignored
;
3026 elf32_rx_relax_section (abfd
, sec
, link_info
, &ignored
, TRUE
);
3032 if (free_contents
!= NULL
)
3033 free (free_contents
);
3035 if (shndx_buf
!= NULL
)
3037 shndx_hdr
->contents
= NULL
;
3041 if (free_intsyms
!= NULL
)
3042 free (free_intsyms
);
3048 elf32_rx_relax_section_wrapper (bfd
* abfd
,
3050 struct bfd_link_info
* link_info
,
3051 bfd_boolean
* again
)
3053 return elf32_rx_relax_section (abfd
, sec
, link_info
, again
, FALSE
);
3056 /* Function to set the ELF flag bits. */
3059 rx_elf_set_private_flags (bfd
* abfd
, flagword flags
)
3061 elf_elfheader (abfd
)->e_flags
= flags
;
3062 elf_flags_init (abfd
) = TRUE
;
3066 static bfd_boolean no_warn_mismatch
= FALSE
;
3067 static bfd_boolean ignore_lma
= TRUE
;
3069 void bfd_elf32_rx_set_target_flags (bfd_boolean
, bfd_boolean
);
3072 bfd_elf32_rx_set_target_flags (bfd_boolean user_no_warn_mismatch
,
3073 bfd_boolean user_ignore_lma
)
3075 no_warn_mismatch
= user_no_warn_mismatch
;
3076 ignore_lma
= user_ignore_lma
;
3079 /* Converts FLAGS into a descriptive string.
3080 Returns a static pointer. */
3083 describe_flags (flagword flags
)
3085 static char buf
[128];
3089 if (flags
& E_FLAG_RX_64BIT_DOUBLES
)
3090 strcat (buf
, "64-bit doubles");
3092 strcat (buf
, "32-bit doubles");
3094 if (flags
& E_FLAG_RX_DSP
)
3095 strcat (buf
, ", dsp");
3097 strcat (buf
, ", no dsp");
3099 if (flags
& E_FLAG_RX_PID
)
3100 strcat (buf
, ", pid");
3102 strcat (buf
, ", no pid");
3104 if (flags
& E_FLAG_RX_ABI
)
3105 strcat (buf
, ", RX ABI");
3107 strcat (buf
, ", GCC ABI");
3109 if (flags
& E_FLAG_RX_SINSNS_SET
)
3110 strcat (buf
, flags
& E_FLAG_RX_SINSNS_YES
? ", uses String instructions" : ", bans String instructions");
3115 /* Merge backend specific data from an object file to the output
3116 object file when linking. */
3119 rx_elf_merge_private_bfd_data (bfd
* ibfd
, struct bfd_link_info
*info
)
3121 bfd
*obfd
= info
->output_bfd
;
3124 bfd_boolean error
= FALSE
;
3126 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3127 old_flags
= elf_elfheader (obfd
)->e_flags
;
3129 if (!elf_flags_init (obfd
))
3131 /* First call, no flags set. */
3132 elf_flags_init (obfd
) = TRUE
;
3133 elf_elfheader (obfd
)->e_flags
= new_flags
;
3135 else if (old_flags
!= new_flags
)
3137 flagword known_flags
;
3139 if (old_flags
& E_FLAG_RX_SINSNS_SET
)
3141 if ((new_flags
& E_FLAG_RX_SINSNS_SET
) == 0)
3143 new_flags
&= ~ E_FLAG_RX_SINSNS_MASK
;
3144 new_flags
|= (old_flags
& E_FLAG_RX_SINSNS_MASK
);
3147 else if (new_flags
& E_FLAG_RX_SINSNS_SET
)
3149 old_flags
&= ~ E_FLAG_RX_SINSNS_MASK
;
3150 old_flags
|= (new_flags
& E_FLAG_RX_SINSNS_MASK
);
3153 known_flags
= E_FLAG_RX_ABI
| E_FLAG_RX_64BIT_DOUBLES
3154 | E_FLAG_RX_DSP
| E_FLAG_RX_PID
| E_FLAG_RX_SINSNS_MASK
;
3156 if ((old_flags
^ new_flags
) & known_flags
)
3158 /* Only complain if flag bits we care about do not match.
3159 Other bits may be set, since older binaries did use some
3160 deprecated flags. */
3161 if (no_warn_mismatch
)
3163 elf_elfheader (obfd
)->e_flags
= (new_flags
| old_flags
) & known_flags
;
3167 _bfd_error_handler (_("there is a conflict merging the"
3168 " ELF header flags from %pB"),
3170 _bfd_error_handler (_(" the input file's flags: %s"),
3171 describe_flags (new_flags
));
3172 _bfd_error_handler (_(" the output file's flags: %s"),
3173 describe_flags (old_flags
));
3178 elf_elfheader (obfd
)->e_flags
= new_flags
& known_flags
;
3182 bfd_set_error (bfd_error_bad_value
);
3188 rx_elf_print_private_bfd_data (bfd
* abfd
, void * ptr
)
3190 FILE * file
= (FILE *) ptr
;
3193 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
3195 /* Print normal ELF private data. */
3196 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
3198 flags
= elf_elfheader (abfd
)->e_flags
;
3199 fprintf (file
, _("private flags = 0x%lx:"), (long) flags
);
3201 fprintf (file
, "%s", describe_flags (flags
));
3205 /* Return the MACH for an e_flags value. */
3208 elf32_rx_machine (bfd
* abfd ATTRIBUTE_UNUSED
)
3210 #if 0 /* FIXME: EF_RX_CPU_MASK collides with E_FLAG_RX_...
3211 Need to sort out how these flag bits are used.
3212 For now we assume that the flags are OK. */
3213 if ((elf_elfheader (abfd
)->e_flags
& EF_RX_CPU_MASK
) == EF_RX_CPU_RX
)
3215 if ((elf_elfheader (abfd
)->e_flags
& E_FLAG_RX_V2
))
3216 return bfd_mach_rx_v2
;
3217 else if ((elf_elfheader (abfd
)->e_flags
& E_FLAG_RX_V3
))
3218 return bfd_mach_rx_v3
;
3226 rx_elf_object_p (bfd
* abfd
)
3230 Elf_Internal_Phdr
*phdr
= elf_tdata (abfd
)->phdr
;
3231 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
3232 int nphdrs
= ehdr
->e_phnum
;
3234 static int saw_be
= FALSE
;
3235 bfd_vma end_phdroff
;
3237 /* We never want to automatically choose the non-swapping big-endian
3238 target. The user can only get that explicitly, such as with -I
3240 if (abfd
->xvec
== &rx_elf32_be_ns_vec
3241 && abfd
->target_defaulted
)
3244 /* BFD->target_defaulted is not set to TRUE when a target is chosen
3245 as a fallback, so we check for "scanning" to know when to stop
3246 using the non-swapping target. */
3247 if (abfd
->xvec
== &rx_elf32_be_ns_vec
3250 if (abfd
->xvec
== &rx_elf32_be_vec
)
3253 bfd_default_set_arch_mach (abfd
, bfd_arch_rx
,
3254 elf32_rx_machine (abfd
));
3256 /* For each PHDR in the object, we must find some section that
3257 corresponds (based on matching file offsets) and use its VMA
3258 information to reconstruct the p_vaddr field we clobbered when we
3260 /* If PT_LOAD headers include the ELF file header or program headers
3261 then the PT_LOAD header does not start with some section contents.
3262 Making adjustments based on the difference between sh_offset and
3263 p_offset is nonsense in such cases. Exclude them. Note that
3264 since standard linker scripts for RX do not use SIZEOF_HEADERS,
3265 the linker won't normally create PT_LOAD segments covering the
3266 headers so this is mainly for passing the ld testsuite.
3267 FIXME. Why are we looking at non-PT_LOAD headers here? */
3268 end_phdroff
= ehdr
->e_ehsize
;
3269 if (ehdr
->e_phoff
!= 0)
3270 end_phdroff
= ehdr
->e_phoff
+ nphdrs
* ehdr
->e_phentsize
;
3271 for (i
=0; i
<nphdrs
; i
++)
3273 for (u
=0; u
<elf_tdata(abfd
)->num_elf_sections
; u
++)
3275 Elf_Internal_Shdr
*sec
= elf_tdata(abfd
)->elf_sect_ptr
[u
];
3277 if (phdr
[i
].p_filesz
3278 && phdr
[i
].p_offset
>= end_phdroff
3279 && phdr
[i
].p_offset
<= (bfd_vma
) sec
->sh_offset
3281 && sec
->sh_type
!= SHT_NOBITS
3282 && (bfd_vma
)sec
->sh_offset
<= phdr
[i
].p_offset
+ (phdr
[i
].p_filesz
- 1))
3284 /* Found one! The difference between the two addresses,
3285 plus the difference between the two file offsets, is
3286 enough information to reconstruct the lma. */
3288 /* Example where they aren't:
3289 PHDR[1] = lma fffc0100 offset 00002010 size 00000100
3290 SEC[6] = vma 00000050 offset 00002050 size 00000040
3292 The correct LMA for the section is fffc0140 + (2050-2010).
3295 phdr
[i
].p_vaddr
= sec
->sh_addr
+ (sec
->sh_offset
- phdr
[i
].p_offset
);
3300 /* We must update the bfd sections as well, so we don't stop
3302 bsec
= abfd
->sections
;
3305 if (phdr
[i
].p_filesz
3306 && phdr
[i
].p_vaddr
<= bsec
->vma
3307 && bsec
->vma
<= phdr
[i
].p_vaddr
+ (phdr
[i
].p_filesz
- 1))
3309 bsec
->lma
= phdr
[i
].p_paddr
+ (bsec
->vma
- phdr
[i
].p_vaddr
);
3319 rx_linux_object_p (bfd
* abfd
)
3321 bfd_default_set_arch_mach (abfd
, bfd_arch_rx
, elf32_rx_machine (abfd
));
3328 rx_dump_symtab (bfd
* abfd
, void * internal_syms
, void * external_syms
)
3331 Elf_Internal_Sym
* isymbuf
;
3332 Elf_Internal_Sym
* isymend
;
3333 Elf_Internal_Sym
* isym
;
3334 Elf_Internal_Shdr
* symtab_hdr
;
3335 bfd_boolean free_internal
= FALSE
, free_external
= FALSE
;
3337 char * st_info_stb_str
;
3338 char * st_other_str
;
3339 char * st_shndx_str
;
3341 if (! internal_syms
)
3343 internal_syms
= bfd_malloc (1000);
3346 if (! external_syms
)
3348 external_syms
= bfd_malloc (1000);
3352 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3353 locsymcount
= symtab_hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3355 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
3356 symtab_hdr
->sh_info
, 0,
3357 internal_syms
, external_syms
, NULL
);
3359 isymbuf
= internal_syms
;
3360 isymend
= isymbuf
+ locsymcount
;
3362 for (isym
= isymbuf
; isym
< isymend
; isym
++)
3364 switch (ELF_ST_TYPE (isym
->st_info
))
3366 case STT_FUNC
: st_info_str
= "STT_FUNC"; break;
3367 case STT_SECTION
: st_info_str
= "STT_SECTION"; break;
3368 case STT_FILE
: st_info_str
= "STT_FILE"; break;
3369 case STT_OBJECT
: st_info_str
= "STT_OBJECT"; break;
3370 case STT_TLS
: st_info_str
= "STT_TLS"; break;
3371 default: st_info_str
= "";
3373 switch (ELF_ST_BIND (isym
->st_info
))
3375 case STB_LOCAL
: st_info_stb_str
= "STB_LOCAL"; break;
3376 case STB_GLOBAL
: st_info_stb_str
= "STB_GLOBAL"; break;
3377 default: st_info_stb_str
= "";
3379 switch (ELF_ST_VISIBILITY (isym
->st_other
))
3381 case STV_DEFAULT
: st_other_str
= "STV_DEFAULT"; break;
3382 case STV_INTERNAL
: st_other_str
= "STV_INTERNAL"; break;
3383 case STV_PROTECTED
: st_other_str
= "STV_PROTECTED"; break;
3384 default: st_other_str
= "";
3386 switch (isym
->st_shndx
)
3388 case SHN_ABS
: st_shndx_str
= "SHN_ABS"; break;
3389 case SHN_COMMON
: st_shndx_str
= "SHN_COMMON"; break;
3390 case SHN_UNDEF
: st_shndx_str
= "SHN_UNDEF"; break;
3391 default: st_shndx_str
= "";
3394 printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
3395 "st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
3397 (unsigned long) isym
->st_value
,
3398 (unsigned long) isym
->st_size
,
3400 bfd_elf_string_from_elf_section (abfd
, symtab_hdr
->sh_link
,
3402 isym
->st_info
, st_info_str
, st_info_stb_str
,
3403 isym
->st_other
, st_other_str
,
3404 isym
->st_shndx
, st_shndx_str
);
3407 free (internal_syms
);
3409 free (external_syms
);
3413 rx_get_reloc (long reloc
)
3415 if (0 <= reloc
&& reloc
< R_RX_max
)
3416 return rx_elf_howto_table
[reloc
].name
;
3422 /* We must take care to keep the on-disk copy of any code sections
3423 that are fully linked swapped if the target is big endian, to match
3424 the Renesas tools. */
3426 /* The rule is: big endian object that are final-link executables,
3427 have code sections stored with 32-bit words swapped relative to
3428 what you'd get by default. */
3431 rx_get_section_contents (bfd
* abfd
,
3435 bfd_size_type count
)
3437 int exec
= (abfd
->flags
& EXEC_P
) ? 1 : 0;
3438 int s_code
= (section
->flags
& SEC_CODE
) ? 1 : 0;
3442 fprintf (stderr
, "dj: get %ld %ld from %s %s e%d sc%d %08lx:%08lx\n",
3443 (long) offset
, (long) count
, section
->name
,
3444 bfd_big_endian(abfd
) ? "be" : "le",
3445 exec
, s_code
, (long unsigned) section
->filepos
,
3446 (long unsigned) offset
);
3449 if (exec
&& s_code
&& bfd_big_endian (abfd
))
3451 char * cloc
= (char *) location
;
3452 bfd_size_type cnt
, end_cnt
;
3456 /* Fetch and swap unaligned bytes at the beginning. */
3461 rv
= _bfd_generic_get_section_contents (abfd
, section
, buf
,
3466 bfd_putb32 (bfd_getl32 (buf
), buf
);
3468 cnt
= 4 - (offset
% 4);
3472 memcpy (location
, buf
+ (offset
% 4), cnt
);
3479 end_cnt
= count
% 4;
3481 /* Fetch and swap the middle bytes. */
3484 rv
= _bfd_generic_get_section_contents (abfd
, section
, cloc
, offset
,
3489 for (cnt
= count
; cnt
>= 4; cnt
-= 4, cloc
+= 4)
3490 bfd_putb32 (bfd_getl32 (cloc
), cloc
);
3493 /* Fetch and swap the end bytes. */
3498 /* Fetch the end bytes. */
3499 rv
= _bfd_generic_get_section_contents (abfd
, section
, buf
,
3500 offset
+ count
- end_cnt
, 4);
3504 bfd_putb32 (bfd_getl32 (buf
), buf
);
3505 memcpy (cloc
, buf
, end_cnt
);
3509 rv
= _bfd_generic_get_section_contents (abfd
, section
, location
, offset
, count
);
3516 rx2_set_section_contents (bfd
* abfd
,
3518 const void * location
,
3520 bfd_size_type count
)
3524 fprintf (stderr
, " set sec %s %08x loc %p offset %#x count %#x\n",
3525 section
->name
, (unsigned) section
->vma
, location
, (int) offset
, (int) count
);
3526 for (i
= 0; i
< count
; i
++)
3528 if (i
% 16 == 0 && i
> 0)
3529 fprintf (stderr
, "\n");
3531 if (i
% 16 && i
% 4 == 0)
3532 fprintf (stderr
, " ");
3535 fprintf (stderr
, " %08x:", (int) (section
->vma
+ offset
+ i
));
3537 fprintf (stderr
, " %02x", ((unsigned char *) location
)[i
]);
3539 fprintf (stderr
, "\n");
3541 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
, count
);
3543 #define _bfd_elf_set_section_contents rx2_set_section_contents
3547 rx_set_section_contents (bfd
* abfd
,
3549 const void * location
,
3551 bfd_size_type count
)
3553 bfd_boolean exec
= (abfd
->flags
& EXEC_P
) ? TRUE
: FALSE
;
3554 bfd_boolean s_code
= (section
->flags
& SEC_CODE
) ? TRUE
: FALSE
;
3556 char * swapped_data
= NULL
;
3558 bfd_vma caddr
= section
->vma
+ offset
;
3560 bfd_size_type scount
;
3565 fprintf (stderr
, "\ndj: set %ld %ld to %s %s e%d sc%d\n",
3566 (long) offset
, (long) count
, section
->name
,
3567 bfd_big_endian (abfd
) ? "be" : "le",
3570 for (i
= 0; i
< count
; i
++)
3572 int a
= section
->vma
+ offset
+ i
;
3574 if (a
% 16 == 0 && a
> 0)
3575 fprintf (stderr
, "\n");
3577 if (a
% 16 && a
% 4 == 0)
3578 fprintf (stderr
, " ");
3580 if (a
% 16 == 0 || i
== 0)
3581 fprintf (stderr
, " %08x:", (int) (section
->vma
+ offset
+ i
));
3583 fprintf (stderr
, " %02x", ((unsigned char *) location
)[i
]);
3586 fprintf (stderr
, "\n");
3589 if (! exec
|| ! s_code
|| ! bfd_big_endian (abfd
))
3590 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
, count
);
3592 while (count
> 0 && caddr
> 0 && caddr
% 4)
3596 case 0: faddr
= offset
+ 3; break;
3597 case 1: faddr
= offset
+ 1; break;
3598 case 2: faddr
= offset
- 1; break;
3599 case 3: faddr
= offset
- 3; break;
3602 rv
= _bfd_elf_set_section_contents (abfd
, section
, location
, faddr
, 1);
3606 location
= (bfd_byte
*) location
+ 1;
3612 scount
= (int)(count
/ 4) * 4;
3615 char * cloc
= (char *) location
;
3617 swapped_data
= (char *) bfd_alloc (abfd
, count
);
3619 for (i
= 0; i
< count
; i
+= 4)
3621 bfd_vma v
= bfd_getl32 (cloc
+ i
);
3622 bfd_putb32 (v
, swapped_data
+ i
);
3625 rv
= _bfd_elf_set_section_contents (abfd
, section
, swapped_data
, offset
, scount
);
3632 location
= (bfd_byte
*) location
+ scount
;
3637 caddr
= section
->vma
+ offset
;
3642 case 0: faddr
= offset
+ 3; break;
3643 case 1: faddr
= offset
+ 1; break;
3644 case 2: faddr
= offset
- 1; break;
3645 case 3: faddr
= offset
- 3; break;
3647 rv
= _bfd_elf_set_section_contents (abfd
, section
, location
, faddr
, 1);
3651 location
= (bfd_byte
*) location
+ 1;
3662 rx_final_link (bfd
* abfd
, struct bfd_link_info
* info
)
3666 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3669 fprintf (stderr
, "sec %s fl %x vma %lx lma %lx size %lx raw %lx\n",
3670 o
->name
, o
->flags
, o
->vma
, o
->lma
, o
->size
, o
->rawsize
);
3672 if (o
->flags
& SEC_CODE
3673 && bfd_big_endian (abfd
)
3677 fprintf (stderr
, "adjusting...\n");
3679 o
->size
+= 4 - (o
->size
% 4);
3683 return bfd_elf_final_link (abfd
, info
);
3687 elf32_rx_modify_headers (bfd
*abfd
, struct bfd_link_info
*info
)
3689 const struct elf_backend_data
* bed
;
3690 struct elf_obj_tdata
* tdata
;
3691 Elf_Internal_Phdr
* phdr
;
3695 bed
= get_elf_backend_data (abfd
);
3696 tdata
= elf_tdata (abfd
);
3698 count
= elf_program_header_size (abfd
) / bed
->s
->sizeof_phdr
;
3701 for (i
= count
; i
-- != 0;)
3702 if (phdr
[i
].p_type
== PT_LOAD
)
3704 /* The Renesas tools expect p_paddr to be zero. However,
3705 there is no other way to store the writable data in ROM for
3706 startup initialization. So, we let the linker *think*
3707 we're using paddr and vaddr the "usual" way, but at the
3708 last minute we move the paddr into the vaddr (which is what
3709 the simulator uses) and zero out paddr. Note that this
3710 does not affect the section headers, just the program
3711 headers. We hope. */
3712 phdr
[i
].p_vaddr
= phdr
[i
].p_paddr
;
3713 #if 0 /* If we zero out p_paddr, then the LMA in the section table
3715 phdr
[i
].p_paddr
= 0;
3719 return _bfd_elf_modify_headers (abfd
, info
);
3722 /* The default literal sections should always be marked as "code" (i.e.,
3723 SHF_EXECINSTR). This is particularly important for big-endian mode
3724 when we do not want their contents byte reversed. */
3725 static const struct bfd_elf_special_section elf32_rx_special_sections
[] =
3727 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3728 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3729 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3730 { NULL
, 0, 0, 0, 0 }
3735 struct bfd_link_info
*info
;
3736 bfd_vma table_start
;
3738 bfd_vma
*table_handlers
;
3739 bfd_vma table_default_handler
;
3740 struct bfd_link_hash_entry
**table_entries
;
3741 struct bfd_link_hash_entry
*table_default_entry
;
3746 rx_table_find (struct bfd_hash_entry
*vent
, void *vinfo
)
3748 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3749 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3750 const char *name
; /* of the symbol we've found */
3754 const char *tname
; /* name of the table */
3755 bfd_vma start_addr
, end_addr
;
3757 struct bfd_link_hash_entry
* h
;
3759 /* We're looking for globally defined symbols of the form
3760 $tablestart$<NAME>. */
3761 if (ent
->type
!= bfd_link_hash_defined
3762 && ent
->type
!= bfd_link_hash_defweak
)
3765 name
= ent
->root
.string
;
3766 sec
= ent
->u
.def
.section
;
3769 if (strncmp (name
, "$tablestart$", 12))
3772 sec
->flags
|= SEC_KEEP
;
3776 start_addr
= ent
->u
.def
.value
;
3778 /* At this point, we can't build the table but we can (and must)
3779 find all the related symbols and mark their sections as SEC_KEEP
3780 so we don't garbage collect them. */
3782 buf
= (char *) malloc (12 + 10 + strlen (tname
));
3784 sprintf (buf
, "$tableend$%s", tname
);
3785 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3786 if (!h
|| (h
->type
!= bfd_link_hash_defined
3787 && h
->type
!= bfd_link_hash_defweak
))
3789 /* xgettext:c-format */
3790 _bfd_error_handler (_("%pB:%pA: table %s missing corresponding %s"),
3791 abfd
, sec
, name
, buf
);
3795 if (h
->u
.def
.section
!= ent
->u
.def
.section
)
3797 /* xgettext:c-format */
3798 _bfd_error_handler (_("%pB:%pA: %s and %s must be in the same input section"),
3799 h
->u
.def
.section
->owner
, h
->u
.def
.section
,
3804 end_addr
= h
->u
.def
.value
;
3806 sprintf (buf
, "$tableentry$default$%s", tname
);
3807 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3808 if (h
&& (h
->type
== bfd_link_hash_defined
3809 || h
->type
== bfd_link_hash_defweak
))
3811 h
->u
.def
.section
->flags
|= SEC_KEEP
;
3814 for (idx
= 0; idx
< (int) (end_addr
- start_addr
) / 4; idx
++)
3816 sprintf (buf
, "$tableentry$%d$%s", idx
, tname
);
3817 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3818 if (h
&& (h
->type
== bfd_link_hash_defined
3819 || h
->type
== bfd_link_hash_defweak
))
3821 h
->u
.def
.section
->flags
|= SEC_KEEP
;
3825 /* Return TRUE to keep scanning, FALSE to end the traversal. */
3829 /* We need to check for table entry symbols and build the tables, and
3830 we need to do it before the linker does garbage collection. This function is
3831 called once per input object file. */
3834 (bfd
* abfd ATTRIBUTE_UNUSED
,
3835 struct bfd_link_info
* info ATTRIBUTE_UNUSED
)
3837 RX_Table_Info stuff
;
3841 bfd_hash_traverse (&(info
->hash
->table
), rx_table_find
, &stuff
);
3848 rx_table_map_2 (struct bfd_hash_entry
*vent
, void *vinfo
)
3850 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3851 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3856 /* See if the symbol ENT has an address listed in the table, and
3857 isn't a debug/special symbol. If so, put it in the table. */
3859 if (ent
->type
!= bfd_link_hash_defined
3860 && ent
->type
!= bfd_link_hash_defweak
)
3863 name
= ent
->root
.string
;
3865 if (name
[0] == '$' || name
[0] == '.' || name
[0] < ' ')
3868 addr
= (ent
->u
.def
.value
3869 + ent
->u
.def
.section
->output_section
->vma
3870 + ent
->u
.def
.section
->output_offset
);
3872 for (idx
= 0; idx
< info
->table_size
; idx
++)
3873 if (addr
== info
->table_handlers
[idx
])
3874 info
->table_entries
[idx
] = ent
;
3876 if (addr
== info
->table_default_handler
)
3877 info
->table_default_entry
= ent
;
3883 rx_table_map (struct bfd_hash_entry
*vent
, void *vinfo
)
3885 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3886 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3887 const char *name
; /* of the symbol we've found */
3889 const char *tname
; /* name of the table */
3890 bfd_vma start_addr
, end_addr
;
3892 struct bfd_link_hash_entry
* h
;
3895 /* We're looking for globally defined symbols of the form
3896 $tablestart$<NAME>. */
3897 if (ent
->type
!= bfd_link_hash_defined
3898 && ent
->type
!= bfd_link_hash_defweak
)
3901 name
= ent
->root
.string
;
3903 if (strncmp (name
, "$tablestart$", 12))
3907 start_addr
= (ent
->u
.def
.value
3908 + ent
->u
.def
.section
->output_section
->vma
3909 + ent
->u
.def
.section
->output_offset
);
3911 buf
= (char *) malloc (12 + 10 + strlen (tname
));
3913 sprintf (buf
, "$tableend$%s", tname
);
3914 end_addr
= get_symbol_value_maybe (buf
, info
->info
);
3916 sprintf (buf
, "$tableentry$default$%s", tname
);
3917 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3920 info
->table_default_handler
= (h
->u
.def
.value
3921 + h
->u
.def
.section
->output_section
->vma
3922 + h
->u
.def
.section
->output_offset
);
3925 /* Zero is a valid handler address! */
3926 info
->table_default_handler
= (bfd_vma
) (-1);
3927 info
->table_default_entry
= NULL
;
3929 info
->table_start
= start_addr
;
3930 info
->table_size
= (int) (end_addr
- start_addr
) / 4;
3931 info
->table_handlers
= (bfd_vma
*) malloc (info
->table_size
* sizeof (bfd_vma
));
3932 info
->table_entries
= (struct bfd_link_hash_entry
**) malloc (info
->table_size
* sizeof (struct bfd_link_hash_entry
));
3934 for (idx
= 0; idx
< (int) (end_addr
- start_addr
) / 4; idx
++)
3936 sprintf (buf
, "$tableentry$%d$%s", idx
, tname
);
3937 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3938 if (h
&& (h
->type
== bfd_link_hash_defined
3939 || h
->type
== bfd_link_hash_defweak
))
3941 info
->table_handlers
[idx
] = (h
->u
.def
.value
3942 + h
->u
.def
.section
->output_section
->vma
3943 + h
->u
.def
.section
->output_offset
);
3946 info
->table_handlers
[idx
] = info
->table_default_handler
;
3947 info
->table_entries
[idx
] = NULL
;
3952 bfd_hash_traverse (&(info
->info
->hash
->table
), rx_table_map_2
, info
);
3954 fprintf (info
->mapfile
, "\nRX Vector Table: %s has %d entries at 0x%08" BFD_VMA_FMT
"x\n\n",
3955 tname
, info
->table_size
, start_addr
);
3957 if (info
->table_default_entry
)
3958 fprintf (info
->mapfile
, " default handler is: %s at 0x%08" BFD_VMA_FMT
"x\n",
3959 info
->table_default_entry
->root
.string
,
3960 info
->table_default_handler
);
3961 else if (info
->table_default_handler
!= (bfd_vma
)(-1))
3962 fprintf (info
->mapfile
, " default handler is at 0x%08" BFD_VMA_FMT
"x\n",
3963 info
->table_default_handler
);
3965 fprintf (info
->mapfile
, " no default handler\n");
3968 for (idx
= 0; idx
< info
->table_size
; idx
++)
3970 if (info
->table_handlers
[idx
] == info
->table_default_handler
)
3973 fprintf (info
->mapfile
, " . . .\n");
3979 fprintf (info
->mapfile
, " 0x%08" BFD_VMA_FMT
"x [%3d] ", start_addr
+ 4 * idx
, idx
);
3981 if (info
->table_handlers
[idx
] == (bfd_vma
) (-1))
3982 fprintf (info
->mapfile
, "(no handler found)\n");
3984 else if (info
->table_handlers
[idx
] == info
->table_default_handler
)
3986 if (info
->table_default_entry
)
3987 fprintf (info
->mapfile
, "(default)\n");
3989 fprintf (info
->mapfile
, "(default)\n");
3992 else if (info
->table_entries
[idx
])
3994 fprintf (info
->mapfile
, "0x%08" BFD_VMA_FMT
"x %s\n", info
->table_handlers
[idx
], info
->table_entries
[idx
]->root
.string
);
3999 fprintf (info
->mapfile
, "0x%08" BFD_VMA_FMT
"x ???\n", info
->table_handlers
[idx
]);
4003 fprintf (info
->mapfile
, " . . .\n");
4009 rx_additional_link_map_text (bfd
*obfd
, struct bfd_link_info
*info
, FILE *mapfile
)
4011 /* We scan the symbol table looking for $tableentry$'s, and for
4012 each, try to deduce which handlers go with which entries. */
4014 RX_Table_Info stuff
;
4018 stuff
.mapfile
= mapfile
;
4019 bfd_hash_traverse (&(info
->hash
->table
), rx_table_map
, &stuff
);
4023 #define ELF_ARCH bfd_arch_rx
4024 #define ELF_MACHINE_CODE EM_RX
4025 #define ELF_MAXPAGESIZE 0x1000
4027 #define TARGET_BIG_SYM rx_elf32_be_vec
4028 #define TARGET_BIG_NAME "elf32-rx-be"
4030 #define TARGET_LITTLE_SYM rx_elf32_le_vec
4031 #define TARGET_LITTLE_NAME "elf32-rx-le"
4033 #define elf_info_to_howto_rel NULL
4034 #define elf_info_to_howto rx_info_to_howto_rela
4035 #define elf_backend_object_p rx_elf_object_p
4036 #define elf_backend_relocate_section rx_elf_relocate_section
4037 #define elf_symbol_leading_char ('_')
4038 #define elf_backend_can_gc_sections 1
4039 #define elf_backend_modify_headers elf32_rx_modify_headers
4041 #define bfd_elf32_bfd_reloc_type_lookup rx_reloc_type_lookup
4042 #define bfd_elf32_bfd_reloc_name_lookup rx_reloc_name_lookup
4043 #define bfd_elf32_bfd_set_private_flags rx_elf_set_private_flags
4044 #define bfd_elf32_bfd_merge_private_bfd_data rx_elf_merge_private_bfd_data
4045 #define bfd_elf32_bfd_print_private_bfd_data rx_elf_print_private_bfd_data
4046 #define bfd_elf32_get_section_contents rx_get_section_contents
4047 #define bfd_elf32_set_section_contents rx_set_section_contents
4048 #define bfd_elf32_bfd_final_link rx_final_link
4049 #define bfd_elf32_bfd_relax_section elf32_rx_relax_section_wrapper
4050 #define elf_backend_special_sections elf32_rx_special_sections
4051 #define elf_backend_check_directives rx_check_directives
4053 #include "elf32-target.h"
4055 /* We define a second big-endian target that doesn't have the custom
4056 section get/set hooks, for times when we want to preserve the
4057 pre-swapped .text sections (like objcopy). */
4059 #undef TARGET_BIG_SYM
4060 #define TARGET_BIG_SYM rx_elf32_be_ns_vec
4061 #undef TARGET_BIG_NAME
4062 #define TARGET_BIG_NAME "elf32-rx-be-ns"
4063 #undef TARGET_LITTLE_SYM
4065 #undef bfd_elf32_get_section_contents
4066 #undef bfd_elf32_set_section_contents
4069 #define elf32_bed elf32_rx_be_ns_bed
4071 #include "elf32-target.h"
4073 #undef TARGET_LITTLE_SYM
4074 #define TARGET_LITTLE_SYM rx_elf32_linux_le_vec
4075 #undef TARGET_LITTLE_NAME
4076 #define TARGET_LITTLE_NAME "elf32-rx-linux"
4077 #undef TARGET_BIG_SYM
4078 #undef TARGET_BIG_NAME
4080 #undef elf_backend_object_p
4081 #define elf_backend_object_p rx_linux_object_p
4082 #undef elf_symbol_leading_char
4084 #define elf32_bed elf32_rx_le_linux_bed
4086 #include "elf32-target.h"