1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type
*desc_base_type (struct type
*);
74 static struct type
*desc_bounds_type (struct type
*);
76 static struct value
*desc_bounds (struct value
*);
78 static int fat_pntr_bounds_bitpos (struct type
*);
80 static int fat_pntr_bounds_bitsize (struct type
*);
82 static struct type
*desc_data_target_type (struct type
*);
84 static struct value
*desc_data (struct value
*);
86 static int fat_pntr_data_bitpos (struct type
*);
88 static int fat_pntr_data_bitsize (struct type
*);
90 static struct value
*desc_one_bound (struct value
*, int, int);
92 static int desc_bound_bitpos (struct type
*, int, int);
94 static int desc_bound_bitsize (struct type
*, int, int);
96 static struct type
*desc_index_type (struct type
*, int);
98 static int desc_arity (struct type
*);
100 static int ada_args_match (struct symbol
*, struct value
**, int);
102 static struct value
*make_array_descriptor (struct type
*, struct value
*);
104 static void ada_add_block_symbols (std::vector
<struct block_symbol
> &,
105 const struct block
*,
106 const lookup_name_info
&lookup_name
,
107 domain_enum
, struct objfile
*);
109 static void ada_add_all_symbols (std::vector
<struct block_symbol
> &,
110 const struct block
*,
111 const lookup_name_info
&lookup_name
,
112 domain_enum
, int, int *);
114 static int is_nonfunction (const std::vector
<struct block_symbol
> &);
116 static void add_defn_to_vec (std::vector
<struct block_symbol
> &,
118 const struct block
*);
120 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
122 static const char *ada_decoded_op_name (enum exp_opcode
);
124 static int numeric_type_p (struct type
*);
126 static int integer_type_p (struct type
*);
128 static int scalar_type_p (struct type
*);
130 static int discrete_type_p (struct type
*);
132 static struct type
*ada_lookup_struct_elt_type (struct type
*, const char *,
135 static struct type
*ada_find_parallel_type_with_name (struct type
*,
138 static int is_dynamic_field (struct type
*, int);
140 static struct type
*to_fixed_variant_branch_type (struct type
*,
142 CORE_ADDR
, struct value
*);
144 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
146 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
148 static struct type
*to_static_fixed_type (struct type
*);
149 static struct type
*static_unwrap_type (struct type
*type
);
151 static struct value
*unwrap_value (struct value
*);
153 static struct type
*constrained_packed_array_type (struct type
*, long *);
155 static struct type
*decode_constrained_packed_array_type (struct type
*);
157 static long decode_packed_array_bitsize (struct type
*);
159 static struct value
*decode_constrained_packed_array (struct value
*);
161 static int ada_is_unconstrained_packed_array_type (struct type
*);
163 static struct value
*value_subscript_packed (struct value
*, int,
166 static struct value
*coerce_unspec_val_to_type (struct value
*,
169 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
171 static int equiv_types (struct type
*, struct type
*);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name
, const char *patn
);
179 static struct value
*ada_coerce_ref (struct value
*);
181 static LONGEST
pos_atr (struct value
*);
183 static struct value
*val_atr (struct type
*, LONGEST
);
185 static struct symbol
*standard_lookup (const char *, const struct block
*,
188 static struct value
*ada_search_struct_field (const char *, struct value
*, int,
191 static int find_struct_field (const char *, struct type
*, int,
192 struct type
**, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector
<struct block_symbol
> &,
195 struct value
**, int, const char *,
196 struct type
*, bool);
198 static int ada_is_direct_array_type (struct type
*);
200 static struct value
*ada_index_struct_field (int, struct value
*, int,
203 static void add_component_interval (LONGEST
, LONGEST
, std::vector
<LONGEST
> &);
206 static struct type
*ada_find_any_type (const char *name
);
208 static symbol_name_matcher_ftype
*ada_get_symbol_name_matcher
209 (const lookup_name_info
&lookup_name
);
213 /* The character set used for source files. */
214 static const char *ada_source_charset
;
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8
[] = "UTF-8";
220 /* Each entry in the UTF-32 case-folding table is of this form. */
223 /* The start and end, inclusive, of this range of codepoints. */
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
232 bool operator< (uint32_t val
) const
238 static const utf8_entry ada_case_fold
[] =
240 #include "ada-casefold.h"
245 /* The result of a symbol lookup to be stored in our symbol cache. */
249 /* The name used to perform the lookup. */
251 /* The namespace used during the lookup. */
253 /* The symbol returned by the lookup, or NULL if no matching symbol
256 /* The block where the symbol was found, or NULL if no matching
258 const struct block
*block
;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry
*next
;
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
272 #define HASH_SIZE 1009
274 struct ada_symbol_cache
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space
;
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry
*root
[HASH_SIZE
] {};
283 static const char ada_completer_word_break_characters
[] =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit
= 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued
= 0;
301 static const char * const known_runtime_file_name_patterns
[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char * const known_auxiliary_function_name_patterns
[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Maintenance-related settings for this module. */
311 static struct cmd_list_element
*maint_set_ada_cmdlist
;
312 static struct cmd_list_element
*maint_show_ada_cmdlist
;
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
316 static bool ada_ignore_descriptive_types_p
= false;
318 /* Inferior-specific data. */
320 /* Per-inferior data for this module. */
322 struct ada_inferior_data
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type
*tsd_type
= nullptr;
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
333 const struct exception_support_info
*exception_info
= nullptr;
336 /* Our key to this module's inferior data. */
337 static const struct inferior_key
<ada_inferior_data
> ada_inferior_data
;
339 /* Return our inferior data for the given inferior (INF).
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
347 static struct ada_inferior_data
*
348 get_ada_inferior_data (struct inferior
*inf
)
350 struct ada_inferior_data
*data
;
352 data
= ada_inferior_data
.get (inf
);
354 data
= ada_inferior_data
.emplace (inf
);
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
363 ada_inferior_exit (struct inferior
*inf
)
365 ada_inferior_data
.clear (inf
);
369 /* program-space-specific data. */
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
374 /* The Ada symbol cache. */
375 std::unique_ptr
<ada_symbol_cache
> sym_cache
;
378 /* Key to our per-program-space data. */
379 static const struct program_space_key
<ada_pspace_data
> ada_pspace_data_handle
;
381 /* Return this module's data for the given program space (PSPACE).
382 If not is found, add a zero'ed one now.
384 This function always returns a valid object. */
386 static struct ada_pspace_data
*
387 get_ada_pspace_data (struct program_space
*pspace
)
389 struct ada_pspace_data
*data
;
391 data
= ada_pspace_data_handle
.get (pspace
);
393 data
= ada_pspace_data_handle
.emplace (pspace
);
400 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
401 all typedef layers have been peeled. Otherwise, return TYPE.
403 Normally, we really expect a typedef type to only have 1 typedef layer.
404 In other words, we really expect the target type of a typedef type to be
405 a non-typedef type. This is particularly true for Ada units, because
406 the language does not have a typedef vs not-typedef distinction.
407 In that respect, the Ada compiler has been trying to eliminate as many
408 typedef definitions in the debugging information, since they generally
409 do not bring any extra information (we still use typedef under certain
410 circumstances related mostly to the GNAT encoding).
412 Unfortunately, we have seen situations where the debugging information
413 generated by the compiler leads to such multiple typedef layers. For
414 instance, consider the following example with stabs:
416 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
417 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
419 This is an error in the debugging information which causes type
420 pck__float_array___XUP to be defined twice, and the second time,
421 it is defined as a typedef of a typedef.
423 This is on the fringe of legality as far as debugging information is
424 concerned, and certainly unexpected. But it is easy to handle these
425 situations correctly, so we can afford to be lenient in this case. */
428 ada_typedef_target_type (struct type
*type
)
430 while (type
->code () == TYPE_CODE_TYPEDEF
)
431 type
= TYPE_TARGET_TYPE (type
);
435 /* Given DECODED_NAME a string holding a symbol name in its
436 decoded form (ie using the Ada dotted notation), returns
437 its unqualified name. */
440 ada_unqualified_name (const char *decoded_name
)
444 /* If the decoded name starts with '<', it means that the encoded
445 name does not follow standard naming conventions, and thus that
446 it is not your typical Ada symbol name. Trying to unqualify it
447 is therefore pointless and possibly erroneous. */
448 if (decoded_name
[0] == '<')
451 result
= strrchr (decoded_name
, '.');
453 result
++; /* Skip the dot... */
455 result
= decoded_name
;
460 /* Return a string starting with '<', followed by STR, and '>'. */
463 add_angle_brackets (const char *str
)
465 return string_printf ("<%s>", str
);
468 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
469 suffix of FIELD_NAME beginning "___". */
472 field_name_match (const char *field_name
, const char *target
)
474 int len
= strlen (target
);
477 (strncmp (field_name
, target
, len
) == 0
478 && (field_name
[len
] == '\0'
479 || (startswith (field_name
+ len
, "___")
480 && strcmp (field_name
+ strlen (field_name
) - 6,
485 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
486 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
487 and return its index. This function also handles fields whose name
488 have ___ suffixes because the compiler sometimes alters their name
489 by adding such a suffix to represent fields with certain constraints.
490 If the field could not be found, return a negative number if
491 MAYBE_MISSING is set. Otherwise raise an error. */
494 ada_get_field_index (const struct type
*type
, const char *field_name
,
498 struct type
*struct_type
= check_typedef ((struct type
*) type
);
500 for (fieldno
= 0; fieldno
< struct_type
->num_fields (); fieldno
++)
501 if (field_name_match (struct_type
->field (fieldno
).name (), field_name
))
505 error (_("Unable to find field %s in struct %s. Aborting"),
506 field_name
, struct_type
->name ());
511 /* The length of the prefix of NAME prior to any "___" suffix. */
514 ada_name_prefix_len (const char *name
)
520 const char *p
= strstr (name
, "___");
523 return strlen (name
);
529 /* Return non-zero if SUFFIX is a suffix of STR.
530 Return zero if STR is null. */
533 is_suffix (const char *str
, const char *suffix
)
540 len2
= strlen (suffix
);
541 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
544 /* The contents of value VAL, treated as a value of type TYPE. The
545 result is an lval in memory if VAL is. */
547 static struct value
*
548 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
550 type
= ada_check_typedef (type
);
551 if (value_type (val
) == type
)
555 struct value
*result
;
557 if (value_optimized_out (val
))
558 result
= allocate_optimized_out_value (type
);
559 else if (value_lazy (val
)
560 /* Be careful not to make a lazy not_lval value. */
561 || (VALUE_LVAL (val
) != not_lval
562 && TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
))))
563 result
= allocate_value_lazy (type
);
566 result
= allocate_value (type
);
567 value_contents_copy (result
, 0, val
, 0, TYPE_LENGTH (type
));
569 set_value_component_location (result
, val
);
570 set_value_bitsize (result
, value_bitsize (val
));
571 set_value_bitpos (result
, value_bitpos (val
));
572 if (VALUE_LVAL (result
) == lval_memory
)
573 set_value_address (result
, value_address (val
));
578 static const gdb_byte
*
579 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
584 return valaddr
+ offset
;
588 cond_offset_target (CORE_ADDR address
, long offset
)
593 return address
+ offset
;
596 /* Issue a warning (as for the definition of warning in utils.c, but
597 with exactly one argument rather than ...), unless the limit on the
598 number of warnings has passed during the evaluation of the current
601 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
602 provided by "complaint". */
603 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
606 lim_warning (const char *format
, ...)
610 va_start (args
, format
);
611 warnings_issued
+= 1;
612 if (warnings_issued
<= warning_limit
)
613 vwarning (format
, args
);
618 /* Maximum value of a SIZE-byte signed integer type. */
620 max_of_size (int size
)
622 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
624 return top_bit
| (top_bit
- 1);
627 /* Minimum value of a SIZE-byte signed integer type. */
629 min_of_size (int size
)
631 return -max_of_size (size
) - 1;
634 /* Maximum value of a SIZE-byte unsigned integer type. */
636 umax_of_size (int size
)
638 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
640 return top_bit
| (top_bit
- 1);
643 /* Maximum value of integral type T, as a signed quantity. */
645 max_of_type (struct type
*t
)
647 if (t
->is_unsigned ())
648 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
650 return max_of_size (TYPE_LENGTH (t
));
653 /* Minimum value of integral type T, as a signed quantity. */
655 min_of_type (struct type
*t
)
657 if (t
->is_unsigned ())
660 return min_of_size (TYPE_LENGTH (t
));
663 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
665 ada_discrete_type_high_bound (struct type
*type
)
667 type
= resolve_dynamic_type (type
, {}, 0);
668 switch (type
->code ())
670 case TYPE_CODE_RANGE
:
672 const dynamic_prop
&high
= type
->bounds ()->high
;
674 if (high
.kind () == PROP_CONST
)
675 return high
.const_val ();
678 gdb_assert (high
.kind () == PROP_UNDEFINED
);
680 /* This happens when trying to evaluate a type's dynamic bound
681 without a live target. There is nothing relevant for us to
682 return here, so return 0. */
687 return type
->field (type
->num_fields () - 1).loc_enumval ();
692 return max_of_type (type
);
694 error (_("Unexpected type in ada_discrete_type_high_bound."));
698 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
700 ada_discrete_type_low_bound (struct type
*type
)
702 type
= resolve_dynamic_type (type
, {}, 0);
703 switch (type
->code ())
705 case TYPE_CODE_RANGE
:
707 const dynamic_prop
&low
= type
->bounds ()->low
;
709 if (low
.kind () == PROP_CONST
)
710 return low
.const_val ();
713 gdb_assert (low
.kind () == PROP_UNDEFINED
);
715 /* This happens when trying to evaluate a type's dynamic bound
716 without a live target. There is nothing relevant for us to
717 return here, so return 0. */
722 return type
->field (0).loc_enumval ();
727 return min_of_type (type
);
729 error (_("Unexpected type in ada_discrete_type_low_bound."));
733 /* The identity on non-range types. For range types, the underlying
734 non-range scalar type. */
737 get_base_type (struct type
*type
)
739 while (type
!= NULL
&& type
->code () == TYPE_CODE_RANGE
)
741 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
743 type
= TYPE_TARGET_TYPE (type
);
748 /* Return a decoded version of the given VALUE. This means returning
749 a value whose type is obtained by applying all the GNAT-specific
750 encodings, making the resulting type a static but standard description
751 of the initial type. */
754 ada_get_decoded_value (struct value
*value
)
756 struct type
*type
= ada_check_typedef (value_type (value
));
758 if (ada_is_array_descriptor_type (type
)
759 || (ada_is_constrained_packed_array_type (type
)
760 && type
->code () != TYPE_CODE_PTR
))
762 if (type
->code () == TYPE_CODE_TYPEDEF
) /* array access type. */
763 value
= ada_coerce_to_simple_array_ptr (value
);
765 value
= ada_coerce_to_simple_array (value
);
768 value
= ada_to_fixed_value (value
);
773 /* Same as ada_get_decoded_value, but with the given TYPE.
774 Because there is no associated actual value for this type,
775 the resulting type might be a best-effort approximation in
776 the case of dynamic types. */
779 ada_get_decoded_type (struct type
*type
)
781 type
= to_static_fixed_type (type
);
782 if (ada_is_constrained_packed_array_type (type
))
783 type
= ada_coerce_to_simple_array_type (type
);
789 /* Language Selection */
791 /* If the main program is in Ada, return language_ada, otherwise return LANG
792 (the main program is in Ada iif the adainit symbol is found). */
795 ada_update_initial_language (enum language lang
)
797 if (lookup_minimal_symbol ("adainit", NULL
, NULL
).minsym
!= NULL
)
803 /* If the main procedure is written in Ada, then return its name.
804 The result is good until the next call. Return NULL if the main
805 procedure doesn't appear to be in Ada. */
810 struct bound_minimal_symbol msym
;
811 static gdb::unique_xmalloc_ptr
<char> main_program_name
;
813 /* For Ada, the name of the main procedure is stored in a specific
814 string constant, generated by the binder. Look for that symbol,
815 extract its address, and then read that string. If we didn't find
816 that string, then most probably the main procedure is not written
818 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
820 if (msym
.minsym
!= NULL
)
822 CORE_ADDR main_program_name_addr
= msym
.value_address ();
823 if (main_program_name_addr
== 0)
824 error (_("Invalid address for Ada main program name."));
826 main_program_name
= target_read_string (main_program_name_addr
, 1024);
827 return main_program_name
.get ();
830 /* The main procedure doesn't seem to be in Ada. */
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 const struct ada_opname_map ada_opname_table
[] = {
840 {"Oadd", "\"+\"", BINOP_ADD
},
841 {"Osubtract", "\"-\"", BINOP_SUB
},
842 {"Omultiply", "\"*\"", BINOP_MUL
},
843 {"Odivide", "\"/\"", BINOP_DIV
},
844 {"Omod", "\"mod\"", BINOP_MOD
},
845 {"Orem", "\"rem\"", BINOP_REM
},
846 {"Oexpon", "\"**\"", BINOP_EXP
},
847 {"Olt", "\"<\"", BINOP_LESS
},
848 {"Ole", "\"<=\"", BINOP_LEQ
},
849 {"Ogt", "\">\"", BINOP_GTR
},
850 {"Oge", "\">=\"", BINOP_GEQ
},
851 {"Oeq", "\"=\"", BINOP_EQUAL
},
852 {"One", "\"/=\"", BINOP_NOTEQUAL
},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
856 {"Oconcat", "\"&\"", BINOP_CONCAT
},
857 {"Oabs", "\"abs\"", UNOP_ABS
},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
859 {"Oadd", "\"+\"", UNOP_PLUS
},
860 {"Osubtract", "\"-\"", UNOP_NEG
},
864 /* If STR is a decoded version of a compiler-provided suffix (like the
865 "[cold]" in "symbol[cold]"), return true. Otherwise, return
869 is_compiler_suffix (const char *str
)
871 gdb_assert (*str
== '[');
873 while (*str
!= '\0' && isalpha (*str
))
875 /* We accept a missing "]" in order to support completion. */
876 return *str
== '\0' || (str
[0] == ']' && str
[1] == '\0');
879 /* Append a non-ASCII character to RESULT. */
881 append_hex_encoded (std::string
&result
, uint32_t one_char
)
883 if (one_char
<= 0xff)
886 result
.append (phex (one_char
, 1));
888 else if (one_char
<= 0xffff)
891 result
.append (phex (one_char
, 2));
895 result
.append ("WW");
896 result
.append (phex (one_char
, 4));
900 /* Return a string that is a copy of the data in STORAGE, with
901 non-ASCII characters replaced by the appropriate hex encoding. A
902 template is used because, for UTF-8, we actually want to work with
903 UTF-32 codepoints. */
906 copy_and_hex_encode (struct obstack
*storage
)
908 const T
*chars
= (T
*) obstack_base (storage
);
909 int num_chars
= obstack_object_size (storage
) / sizeof (T
);
911 for (int i
= 0; i
< num_chars
; ++i
)
913 if (chars
[i
] <= 0x7f)
915 /* The host character set has to be a superset of ASCII, as
916 are all the other character sets we can use. */
917 result
.push_back (chars
[i
]);
920 append_hex_encoded (result
, chars
[i
]);
925 /* The "encoded" form of DECODED, according to GNAT conventions. If
926 THROW_ERRORS, throw an error if invalid operator name is found.
927 Otherwise, return the empty string in that case. */
930 ada_encode_1 (const char *decoded
, bool throw_errors
)
935 std::string encoding_buffer
;
936 bool saw_non_ascii
= false;
937 for (const char *p
= decoded
; *p
!= '\0'; p
+= 1)
939 if ((*p
& 0x80) != 0)
940 saw_non_ascii
= true;
943 encoding_buffer
.append ("__");
944 else if (*p
== '[' && is_compiler_suffix (p
))
946 encoding_buffer
= encoding_buffer
+ "." + (p
+ 1);
947 if (encoding_buffer
.back () == ']')
948 encoding_buffer
.pop_back ();
953 const struct ada_opname_map
*mapping
;
955 for (mapping
= ada_opname_table
;
956 mapping
->encoded
!= NULL
957 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
959 if (mapping
->encoded
== NULL
)
962 error (_("invalid Ada operator name: %s"), p
);
966 encoding_buffer
.append (mapping
->encoded
);
970 encoding_buffer
.push_back (*p
);
973 /* If a non-ASCII character is seen, we must convert it to the
974 appropriate hex form. As this is more expensive, we keep track
975 of whether it is even necessary. */
978 auto_obstack storage
;
979 bool is_utf8
= ada_source_charset
== ada_utf8
;
982 convert_between_encodings
984 is_utf8
? HOST_UTF32
: ada_source_charset
,
985 (const gdb_byte
*) encoding_buffer
.c_str (),
986 encoding_buffer
.length (), 1,
987 &storage
, translit_none
);
989 catch (const gdb_exception
&)
991 static bool warned
= false;
993 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
994 might like to know why. */
998 warning (_("charset conversion failure for '%s'.\n"
999 "You may have the wrong value for 'set ada source-charset'."),
1000 encoding_buffer
.c_str ());
1003 /* We don't try to recover from errors. */
1004 return encoding_buffer
;
1008 return copy_and_hex_encode
<uint32_t> (&storage
);
1009 return copy_and_hex_encode
<gdb_byte
> (&storage
);
1012 return encoding_buffer
;
1015 /* Find the entry for C in the case-folding table. Return nullptr if
1016 the entry does not cover C. */
1017 static const utf8_entry
*
1018 find_case_fold_entry (uint32_t c
)
1020 auto iter
= std::lower_bound (std::begin (ada_case_fold
),
1021 std::end (ada_case_fold
),
1023 if (iter
== std::end (ada_case_fold
)
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. If
1032 THROW_ON_ERROR is true, encoding failures will throw an exception
1033 rather than emitting a warning. Result good to next call. */
1036 ada_fold_name (gdb::string_view name
, bool throw_on_error
= false)
1038 static std::string fold_storage
;
1040 if (!name
.empty () && name
[0] == '\'')
1041 fold_storage
= gdb::to_string (name
.substr (1, name
.size () - 2));
1044 /* Why convert to UTF-32 and implement our own case-folding,
1045 rather than convert to wchar_t and use the platform's
1046 functions? I'm glad you asked.
1048 The main problem is that GNAT implements an unusual rule for
1049 case folding. For ASCII letters, letters in single-byte
1050 encodings (such as ISO-8859-*), and Unicode letters that fit
1051 in a single byte (i.e., code point is <= 0xff), the letter is
1052 folded to lower case. Other Unicode letters are folded to
1055 This rule means that the code must be able to examine the
1056 value of the character. And, some hosts do not use Unicode
1057 for wchar_t, so examining the value of such characters is
1059 auto_obstack storage
;
1062 convert_between_encodings
1063 (host_charset (), HOST_UTF32
,
1064 (const gdb_byte
*) name
.data (),
1066 &storage
, translit_none
);
1068 catch (const gdb_exception
&)
1073 static bool warned
= false;
1075 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1076 might like to know why. */
1080 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1081 "This normally should not happen, please file a bug report."),
1082 gdb::to_string (name
).c_str (), host_charset ());
1085 /* We don't try to recover from errors; just return the
1087 fold_storage
= gdb::to_string (name
);
1088 return fold_storage
.c_str ();
1091 bool is_utf8
= ada_source_charset
== ada_utf8
;
1092 uint32_t *chars
= (uint32_t *) obstack_base (&storage
);
1093 int num_chars
= obstack_object_size (&storage
) / sizeof (uint32_t);
1094 for (int i
= 0; i
< num_chars
; ++i
)
1096 const struct utf8_entry
*entry
= find_case_fold_entry (chars
[i
]);
1097 if (entry
!= nullptr)
1099 uint32_t low
= chars
[i
] + entry
->lower_delta
;
1100 if (!is_utf8
|| low
<= 0xff)
1103 chars
[i
] = chars
[i
] + entry
->upper_delta
;
1107 /* Now convert back to ordinary characters. */
1108 auto_obstack reconverted
;
1111 convert_between_encodings (HOST_UTF32
,
1113 (const gdb_byte
*) chars
,
1114 num_chars
* sizeof (uint32_t),
1118 obstack_1grow (&reconverted
, '\0');
1119 fold_storage
= std::string ((const char *) obstack_base (&reconverted
));
1121 catch (const gdb_exception
&)
1126 static bool warned
= false;
1128 /* Converting back from UTF-32 shouldn't normally fail, but
1129 there are some host encodings without upper/lower
1134 warning (_("could not convert the lower-cased variant of '%s'\n"
1135 "from UTF-32 to the host encoding (%s)."),
1136 gdb::to_string (name
).c_str (), host_charset ());
1139 /* We don't try to recover from errors; just return the
1141 fold_storage
= gdb::to_string (name
);
1145 return fold_storage
.c_str ();
1148 /* The "encoded" form of DECODED, according to GNAT conventions. */
1151 ada_encode (const char *decoded
)
1153 if (decoded
[0] != '<')
1154 decoded
= ada_fold_name (decoded
);
1155 return ada_encode_1 (decoded
, true);
1158 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1161 is_lower_alphanum (const char c
)
1163 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1166 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1167 This function saves in LEN the length of that same symbol name but
1168 without either of these suffixes:
1174 These are suffixes introduced by the compiler for entities such as
1175 nested subprogram for instance, in order to avoid name clashes.
1176 They do not serve any purpose for the debugger. */
1179 ada_remove_trailing_digits (const char *encoded
, int *len
)
1181 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1185 while (i
> 0 && isdigit (encoded
[i
]))
1187 if (i
>= 0 && encoded
[i
] == '.')
1189 else if (i
>= 0 && encoded
[i
] == '$')
1191 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1193 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1198 /* Remove the suffix introduced by the compiler for protected object
1202 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1204 /* Remove trailing N. */
1206 /* Protected entry subprograms are broken into two
1207 separate subprograms: The first one is unprotected, and has
1208 a 'N' suffix; the second is the protected version, and has
1209 the 'P' suffix. The second calls the first one after handling
1210 the protection. Since the P subprograms are internally generated,
1211 we leave these names undecoded, giving the user a clue that this
1212 entity is internal. */
1215 && encoded
[*len
- 1] == 'N'
1216 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1220 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1221 then update *LEN to remove the suffix and return the offset of the
1222 character just past the ".". Otherwise, return -1. */
1225 remove_compiler_suffix (const char *encoded
, int *len
)
1227 int offset
= *len
- 1;
1228 while (offset
> 0 && isalpha (encoded
[offset
]))
1230 if (offset
> 0 && encoded
[offset
] == '.')
1238 /* Convert an ASCII hex string to a number. Reads exactly N
1239 characters from STR. Returns true on success, false if one of the
1240 digits was not a hex digit. */
1242 convert_hex (const char *str
, int n
, uint32_t *out
)
1244 uint32_t result
= 0;
1246 for (int i
= 0; i
< n
; ++i
)
1248 if (!isxdigit (str
[i
]))
1251 result
|= fromhex (str
[i
]);
1258 /* Convert a wide character from its ASCII hex representation in STR
1259 (consisting of exactly N characters) to the host encoding,
1260 appending the resulting bytes to OUT. If N==2 and the Ada source
1261 charset is not UTF-8, then hex refers to an encoding in the
1262 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1263 Return false and do not modify OUT on conversion failure. */
1265 convert_from_hex_encoded (std::string
&out
, const char *str
, int n
)
1269 if (!convert_hex (str
, n
, &value
))
1274 /* In the 'U' case, the hex digits encode the character in the
1275 Ada source charset. However, if the source charset is UTF-8,
1276 this really means it is a single-byte UTF-32 character. */
1277 if (n
== 2 && ada_source_charset
!= ada_utf8
)
1279 gdb_byte one_char
= (gdb_byte
) value
;
1281 convert_between_encodings (ada_source_charset
, host_charset (),
1283 sizeof (one_char
), sizeof (one_char
),
1284 &bytes
, translit_none
);
1287 convert_between_encodings (HOST_UTF32
, host_charset (),
1288 (const gdb_byte
*) &value
,
1289 sizeof (value
), sizeof (value
),
1290 &bytes
, translit_none
);
1291 obstack_1grow (&bytes
, '\0');
1292 out
.append ((const char *) obstack_base (&bytes
));
1294 catch (const gdb_exception
&)
1296 /* On failure, the caller will just let the encoded form
1297 through, which seems basically reasonable. */
1304 /* See ada-lang.h. */
1307 ada_decode (const char *encoded
, bool wrap
, bool operators
)
1313 std::string decoded
;
1316 /* With function descriptors on PPC64, the value of a symbol named
1317 ".FN", if it exists, is the entry point of the function "FN". */
1318 if (encoded
[0] == '.')
1321 /* The name of the Ada main procedure starts with "_ada_".
1322 This prefix is not part of the decoded name, so skip this part
1323 if we see this prefix. */
1324 if (startswith (encoded
, "_ada_"))
1326 /* The "___ghost_" prefix is used for ghost entities. Normally
1327 these aren't preserved but when they are, it's useful to see
1329 if (startswith (encoded
, "___ghost_"))
1332 /* If the name starts with '_', then it is not a properly encoded
1333 name, so do not attempt to decode it. Similarly, if the name
1334 starts with '<', the name should not be decoded. */
1335 if (encoded
[0] == '_' || encoded
[0] == '<')
1338 len0
= strlen (encoded
);
1340 suffix
= remove_compiler_suffix (encoded
, &len0
);
1342 ada_remove_trailing_digits (encoded
, &len0
);
1343 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1345 /* Remove the ___X.* suffix if present. Do not forget to verify that
1346 the suffix is located before the current "end" of ENCODED. We want
1347 to avoid re-matching parts of ENCODED that have previously been
1348 marked as discarded (by decrementing LEN0). */
1349 p
= strstr (encoded
, "___");
1350 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1358 /* Remove any trailing TKB suffix. It tells us that this symbol
1359 is for the body of a task, but that information does not actually
1360 appear in the decoded name. */
1362 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1365 /* Remove any trailing TB suffix. The TB suffix is slightly different
1366 from the TKB suffix because it is used for non-anonymous task
1369 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1372 /* Remove trailing "B" suffixes. */
1373 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1375 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1378 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1380 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1383 while ((i
>= 0 && isdigit (encoded
[i
]))
1384 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1386 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1388 else if (encoded
[i
] == '$')
1392 /* The first few characters that are not alphabetic are not part
1393 of any encoding we use, so we can copy them over verbatim. */
1395 for (i
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1)
1396 decoded
.push_back (encoded
[i
]);
1401 /* Is this a symbol function? */
1402 if (operators
&& at_start_name
&& encoded
[i
] == 'O')
1406 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1408 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1409 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1411 && !isalnum (encoded
[i
+ op_len
]))
1413 decoded
.append (ada_opname_table
[k
].decoded
);
1419 if (ada_opname_table
[k
].encoded
!= NULL
)
1424 /* Replace "TK__" with "__", which will eventually be translated
1425 into "." (just below). */
1427 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1430 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1431 be translated into "." (just below). These are internal names
1432 generated for anonymous blocks inside which our symbol is nested. */
1434 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1435 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1436 && isdigit (encoded
[i
+4]))
1440 while (k
< len0
&& isdigit (encoded
[k
]))
1441 k
++; /* Skip any extra digit. */
1443 /* Double-check that the "__B_{DIGITS}+" sequence we found
1444 is indeed followed by "__". */
1445 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1449 /* Remove _E{DIGITS}+[sb] */
1451 /* Just as for protected object subprograms, there are 2 categories
1452 of subprograms created by the compiler for each entry. The first
1453 one implements the actual entry code, and has a suffix following
1454 the convention above; the second one implements the barrier and
1455 uses the same convention as above, except that the 'E' is replaced
1458 Just as above, we do not decode the name of barrier functions
1459 to give the user a clue that the code he is debugging has been
1460 internally generated. */
1462 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1463 && isdigit (encoded
[i
+2]))
1467 while (k
< len0
&& isdigit (encoded
[k
]))
1471 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1474 /* Just as an extra precaution, make sure that if this
1475 suffix is followed by anything else, it is a '_'.
1476 Otherwise, we matched this sequence by accident. */
1478 || (k
< len0
&& encoded
[k
] == '_'))
1483 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1484 the GNAT front-end in protected object subprograms. */
1487 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1489 /* Backtrack a bit up until we reach either the begining of
1490 the encoded name, or "__". Make sure that we only find
1491 digits or lowercase characters. */
1492 const char *ptr
= encoded
+ i
- 1;
1494 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1497 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1501 if (i
< len0
+ 3 && encoded
[i
] == 'U' && isxdigit (encoded
[i
+ 1]))
1503 if (convert_from_hex_encoded (decoded
, &encoded
[i
+ 1], 2))
1509 else if (i
< len0
+ 5 && encoded
[i
] == 'W' && isxdigit (encoded
[i
+ 1]))
1511 if (convert_from_hex_encoded (decoded
, &encoded
[i
+ 1], 4))
1517 else if (i
< len0
+ 10 && encoded
[i
] == 'W' && encoded
[i
+ 1] == 'W'
1518 && isxdigit (encoded
[i
+ 2]))
1520 if (convert_from_hex_encoded (decoded
, &encoded
[i
+ 2], 8))
1527 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1529 /* This is a X[bn]* sequence not separated from the previous
1530 part of the name with a non-alpha-numeric character (in other
1531 words, immediately following an alpha-numeric character), then
1532 verify that it is placed at the end of the encoded name. If
1533 not, then the encoding is not valid and we should abort the
1534 decoding. Otherwise, just skip it, it is used in body-nested
1538 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1542 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1544 /* Replace '__' by '.'. */
1545 decoded
.push_back ('.');
1551 /* It's a character part of the decoded name, so just copy it
1553 decoded
.push_back (encoded
[i
]);
1558 /* Decoded names should never contain any uppercase character.
1559 Double-check this, and abort the decoding if we find one. */
1563 for (i
= 0; i
< decoded
.length(); ++i
)
1564 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1568 /* If the compiler added a suffix, append it now. */
1570 decoded
= decoded
+ "[" + &encoded
[suffix
] + "]";
1578 if (encoded
[0] == '<')
1581 decoded
= '<' + std::string(encoded
) + '>';
1585 /* Table for keeping permanent unique copies of decoded names. Once
1586 allocated, names in this table are never released. While this is a
1587 storage leak, it should not be significant unless there are massive
1588 changes in the set of decoded names in successive versions of a
1589 symbol table loaded during a single session. */
1590 static struct htab
*decoded_names_store
;
1592 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1593 in the language-specific part of GSYMBOL, if it has not been
1594 previously computed. Tries to save the decoded name in the same
1595 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1596 in any case, the decoded symbol has a lifetime at least that of
1598 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1599 const, but nevertheless modified to a semantically equivalent form
1600 when a decoded name is cached in it. */
1603 ada_decode_symbol (const struct general_symbol_info
*arg
)
1605 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1606 const char **resultp
=
1607 &gsymbol
->language_specific
.demangled_name
;
1609 if (!gsymbol
->ada_mangled
)
1611 std::string decoded
= ada_decode (gsymbol
->linkage_name ());
1612 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1614 gsymbol
->ada_mangled
= 1;
1616 if (obstack
!= NULL
)
1617 *resultp
= obstack_strdup (obstack
, decoded
.c_str ());
1620 /* Sometimes, we can't find a corresponding objfile, in
1621 which case, we put the result on the heap. Since we only
1622 decode when needed, we hope this usually does not cause a
1623 significant memory leak (FIXME). */
1625 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1626 decoded
.c_str (), INSERT
);
1629 *slot
= xstrdup (decoded
.c_str ());
1641 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1642 generated by the GNAT compiler to describe the index type used
1643 for each dimension of an array, check whether it follows the latest
1644 known encoding. If not, fix it up to conform to the latest encoding.
1645 Otherwise, do nothing. This function also does nothing if
1646 INDEX_DESC_TYPE is NULL.
1648 The GNAT encoding used to describe the array index type evolved a bit.
1649 Initially, the information would be provided through the name of each
1650 field of the structure type only, while the type of these fields was
1651 described as unspecified and irrelevant. The debugger was then expected
1652 to perform a global type lookup using the name of that field in order
1653 to get access to the full index type description. Because these global
1654 lookups can be very expensive, the encoding was later enhanced to make
1655 the global lookup unnecessary by defining the field type as being
1656 the full index type description.
1658 The purpose of this routine is to allow us to support older versions
1659 of the compiler by detecting the use of the older encoding, and by
1660 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1661 we essentially replace each field's meaningless type by the associated
1665 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1669 if (index_desc_type
== NULL
)
1671 gdb_assert (index_desc_type
->num_fields () > 0);
1673 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1674 to check one field only, no need to check them all). If not, return
1677 If our INDEX_DESC_TYPE was generated using the older encoding,
1678 the field type should be a meaningless integer type whose name
1679 is not equal to the field name. */
1680 if (index_desc_type
->field (0).type ()->name () != NULL
1681 && strcmp (index_desc_type
->field (0).type ()->name (),
1682 index_desc_type
->field (0).name ()) == 0)
1685 /* Fixup each field of INDEX_DESC_TYPE. */
1686 for (i
= 0; i
< index_desc_type
->num_fields (); i
++)
1688 const char *name
= index_desc_type
->field (i
).name ();
1689 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1692 index_desc_type
->field (i
).set_type (raw_type
);
1696 /* The desc_* routines return primitive portions of array descriptors
1699 /* The descriptor or array type, if any, indicated by TYPE; removes
1700 level of indirection, if needed. */
1702 static struct type
*
1703 desc_base_type (struct type
*type
)
1707 type
= ada_check_typedef (type
);
1708 if (type
->code () == TYPE_CODE_TYPEDEF
)
1709 type
= ada_typedef_target_type (type
);
1712 && (type
->code () == TYPE_CODE_PTR
1713 || type
->code () == TYPE_CODE_REF
))
1714 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1719 /* True iff TYPE indicates a "thin" array pointer type. */
1722 is_thin_pntr (struct type
*type
)
1725 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1726 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1729 /* The descriptor type for thin pointer type TYPE. */
1731 static struct type
*
1732 thin_descriptor_type (struct type
*type
)
1734 struct type
*base_type
= desc_base_type (type
);
1736 if (base_type
== NULL
)
1738 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1742 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1744 if (alt_type
== NULL
)
1751 /* A pointer to the array data for thin-pointer value VAL. */
1753 static struct value
*
1754 thin_data_pntr (struct value
*val
)
1756 struct type
*type
= ada_check_typedef (value_type (val
));
1757 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1759 data_type
= lookup_pointer_type (data_type
);
1761 if (type
->code () == TYPE_CODE_PTR
)
1762 return value_cast (data_type
, value_copy (val
));
1764 return value_from_longest (data_type
, value_address (val
));
1767 /* True iff TYPE indicates a "thick" array pointer type. */
1770 is_thick_pntr (struct type
*type
)
1772 type
= desc_base_type (type
);
1773 return (type
!= NULL
&& type
->code () == TYPE_CODE_STRUCT
1774 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its bounds data; otherwise, NULL. */
1780 static struct type
*
1781 desc_bounds_type (struct type
*type
)
1785 type
= desc_base_type (type
);
1789 else if (is_thin_pntr (type
))
1791 type
= thin_descriptor_type (type
);
1794 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1796 return ada_check_typedef (r
);
1798 else if (type
->code () == TYPE_CODE_STRUCT
)
1800 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1802 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1807 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1808 one, a pointer to its bounds data. Otherwise NULL. */
1810 static struct value
*
1811 desc_bounds (struct value
*arr
)
1813 struct type
*type
= ada_check_typedef (value_type (arr
));
1815 if (is_thin_pntr (type
))
1817 struct type
*bounds_type
=
1818 desc_bounds_type (thin_descriptor_type (type
));
1821 if (bounds_type
== NULL
)
1822 error (_("Bad GNAT array descriptor"));
1824 /* NOTE: The following calculation is not really kosher, but
1825 since desc_type is an XVE-encoded type (and shouldn't be),
1826 the correct calculation is a real pain. FIXME (and fix GCC). */
1827 if (type
->code () == TYPE_CODE_PTR
)
1828 addr
= value_as_long (arr
);
1830 addr
= value_address (arr
);
1833 value_from_longest (lookup_pointer_type (bounds_type
),
1834 addr
- TYPE_LENGTH (bounds_type
));
1837 else if (is_thick_pntr (type
))
1839 struct value
*p_bounds
= value_struct_elt (&arr
, {}, "P_BOUNDS", NULL
,
1840 _("Bad GNAT array descriptor"));
1841 struct type
*p_bounds_type
= value_type (p_bounds
);
1844 && p_bounds_type
->code () == TYPE_CODE_PTR
)
1846 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1848 if (target_type
->is_stub ())
1849 p_bounds
= value_cast (lookup_pointer_type
1850 (ada_check_typedef (target_type
)),
1854 error (_("Bad GNAT array descriptor"));
1862 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1863 position of the field containing the address of the bounds data. */
1866 fat_pntr_bounds_bitpos (struct type
*type
)
1868 return desc_base_type (type
)->field (1).loc_bitpos ();
1871 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1872 size of the field containing the address of the bounds data. */
1875 fat_pntr_bounds_bitsize (struct type
*type
)
1877 type
= desc_base_type (type
);
1879 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1880 return TYPE_FIELD_BITSIZE (type
, 1);
1882 return 8 * TYPE_LENGTH (ada_check_typedef (type
->field (1).type ()));
1885 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1886 pointer to one, the type of its array data (a array-with-no-bounds type);
1887 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1890 static struct type
*
1891 desc_data_target_type (struct type
*type
)
1893 type
= desc_base_type (type
);
1895 /* NOTE: The following is bogus; see comment in desc_bounds. */
1896 if (is_thin_pntr (type
))
1897 return desc_base_type (thin_descriptor_type (type
)->field (1).type ());
1898 else if (is_thick_pntr (type
))
1900 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1903 && ada_check_typedef (data_type
)->code () == TYPE_CODE_PTR
)
1904 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1910 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1913 static struct value
*
1914 desc_data (struct value
*arr
)
1916 struct type
*type
= value_type (arr
);
1918 if (is_thin_pntr (type
))
1919 return thin_data_pntr (arr
);
1920 else if (is_thick_pntr (type
))
1921 return value_struct_elt (&arr
, {}, "P_ARRAY", NULL
,
1922 _("Bad GNAT array descriptor"));
1928 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1929 position of the field containing the address of the data. */
1932 fat_pntr_data_bitpos (struct type
*type
)
1934 return desc_base_type (type
)->field (0).loc_bitpos ();
1937 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1938 size of the field containing the address of the data. */
1941 fat_pntr_data_bitsize (struct type
*type
)
1943 type
= desc_base_type (type
);
1945 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1946 return TYPE_FIELD_BITSIZE (type
, 0);
1948 return TARGET_CHAR_BIT
* TYPE_LENGTH (type
->field (0).type ());
1951 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1952 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1953 bound, if WHICH is 1. The first bound is I=1. */
1955 static struct value
*
1956 desc_one_bound (struct value
*bounds
, int i
, int which
)
1958 char bound_name
[20];
1959 xsnprintf (bound_name
, sizeof (bound_name
), "%cB%d",
1960 which
? 'U' : 'L', i
- 1);
1961 return value_struct_elt (&bounds
, {}, bound_name
, NULL
,
1962 _("Bad GNAT array descriptor bounds"));
1965 /* If BOUNDS is an array-bounds structure type, return the bit position
1966 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1967 bound, if WHICH is 1. The first bound is I=1. */
1970 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1972 return desc_base_type (type
)->field (2 * i
+ which
- 2).loc_bitpos ();
1975 /* If BOUNDS is an array-bounds structure type, return the bit field size
1976 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1977 bound, if WHICH is 1. The first bound is I=1. */
1980 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1982 type
= desc_base_type (type
);
1984 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1985 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1987 return 8 * TYPE_LENGTH (type
->field (2 * i
+ which
- 2).type ());
1990 /* If TYPE is the type of an array-bounds structure, the type of its
1991 Ith bound (numbering from 1). Otherwise, NULL. */
1993 static struct type
*
1994 desc_index_type (struct type
*type
, int i
)
1996 type
= desc_base_type (type
);
1998 if (type
->code () == TYPE_CODE_STRUCT
)
2000 char bound_name
[20];
2001 xsnprintf (bound_name
, sizeof (bound_name
), "LB%d", i
- 1);
2002 return lookup_struct_elt_type (type
, bound_name
, 1);
2008 /* The number of index positions in the array-bounds type TYPE.
2009 Return 0 if TYPE is NULL. */
2012 desc_arity (struct type
*type
)
2014 type
= desc_base_type (type
);
2017 return type
->num_fields () / 2;
2021 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2022 an array descriptor type (representing an unconstrained array
2026 ada_is_direct_array_type (struct type
*type
)
2030 type
= ada_check_typedef (type
);
2031 return (type
->code () == TYPE_CODE_ARRAY
2032 || ada_is_array_descriptor_type (type
));
2035 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2039 ada_is_array_type (struct type
*type
)
2042 && (type
->code () == TYPE_CODE_PTR
2043 || type
->code () == TYPE_CODE_REF
))
2044 type
= TYPE_TARGET_TYPE (type
);
2045 return ada_is_direct_array_type (type
);
2048 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2051 ada_is_simple_array_type (struct type
*type
)
2055 type
= ada_check_typedef (type
);
2056 return (type
->code () == TYPE_CODE_ARRAY
2057 || (type
->code () == TYPE_CODE_PTR
2058 && (ada_check_typedef (TYPE_TARGET_TYPE (type
))->code ()
2059 == TYPE_CODE_ARRAY
)));
2062 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2065 ada_is_array_descriptor_type (struct type
*type
)
2067 struct type
*data_type
= desc_data_target_type (type
);
2071 type
= ada_check_typedef (type
);
2072 return (data_type
!= NULL
2073 && data_type
->code () == TYPE_CODE_ARRAY
2074 && desc_arity (desc_bounds_type (type
)) > 0);
2077 /* Non-zero iff type is a partially mal-formed GNAT array
2078 descriptor. FIXME: This is to compensate for some problems with
2079 debugging output from GNAT. Re-examine periodically to see if it
2083 ada_is_bogus_array_descriptor (struct type
*type
)
2087 && type
->code () == TYPE_CODE_STRUCT
2088 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
2089 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
2090 && !ada_is_array_descriptor_type (type
);
2094 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2095 (fat pointer) returns the type of the array data described---specifically,
2096 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2097 in from the descriptor; otherwise, they are left unspecified. If
2098 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2099 returns NULL. The result is simply the type of ARR if ARR is not
2102 static struct type
*
2103 ada_type_of_array (struct value
*arr
, int bounds
)
2105 if (ada_is_constrained_packed_array_type (value_type (arr
)))
2106 return decode_constrained_packed_array_type (value_type (arr
));
2108 if (!ada_is_array_descriptor_type (value_type (arr
)))
2109 return value_type (arr
);
2113 struct type
*array_type
=
2114 ada_check_typedef (desc_data_target_type (value_type (arr
)));
2116 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
2117 TYPE_FIELD_BITSIZE (array_type
, 0) =
2118 decode_packed_array_bitsize (value_type (arr
));
2124 struct type
*elt_type
;
2126 struct value
*descriptor
;
2128 elt_type
= ada_array_element_type (value_type (arr
), -1);
2129 arity
= ada_array_arity (value_type (arr
));
2131 if (elt_type
== NULL
|| arity
== 0)
2132 return ada_check_typedef (value_type (arr
));
2134 descriptor
= desc_bounds (arr
);
2135 if (value_as_long (descriptor
) == 0)
2139 struct type
*range_type
= alloc_type_copy (value_type (arr
));
2140 struct type
*array_type
= alloc_type_copy (value_type (arr
));
2141 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
2142 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
2145 create_static_range_type (range_type
, value_type (low
),
2146 longest_to_int (value_as_long (low
)),
2147 longest_to_int (value_as_long (high
)));
2148 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
2150 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
2152 /* We need to store the element packed bitsize, as well as
2153 recompute the array size, because it was previously
2154 computed based on the unpacked element size. */
2155 LONGEST lo
= value_as_long (low
);
2156 LONGEST hi
= value_as_long (high
);
2158 TYPE_FIELD_BITSIZE (elt_type
, 0) =
2159 decode_packed_array_bitsize (value_type (arr
));
2160 /* If the array has no element, then the size is already
2161 zero, and does not need to be recomputed. */
2165 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
2167 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
2172 return lookup_pointer_type (elt_type
);
2176 /* If ARR does not represent an array, returns ARR unchanged.
2177 Otherwise, returns either a standard GDB array with bounds set
2178 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2179 GDB array. Returns NULL if ARR is a null fat pointer. */
2182 ada_coerce_to_simple_array_ptr (struct value
*arr
)
2184 if (ada_is_array_descriptor_type (value_type (arr
)))
2186 struct type
*arrType
= ada_type_of_array (arr
, 1);
2188 if (arrType
== NULL
)
2190 return value_cast (arrType
, value_copy (desc_data (arr
)));
2192 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2193 return decode_constrained_packed_array (arr
);
2198 /* If ARR does not represent an array, returns ARR unchanged.
2199 Otherwise, returns a standard GDB array describing ARR (which may
2200 be ARR itself if it already is in the proper form). */
2203 ada_coerce_to_simple_array (struct value
*arr
)
2205 if (ada_is_array_descriptor_type (value_type (arr
)))
2207 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
2210 error (_("Bounds unavailable for null array pointer."));
2211 return value_ind (arrVal
);
2213 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2214 return decode_constrained_packed_array (arr
);
2219 /* If TYPE represents a GNAT array type, return it translated to an
2220 ordinary GDB array type (possibly with BITSIZE fields indicating
2221 packing). For other types, is the identity. */
2224 ada_coerce_to_simple_array_type (struct type
*type
)
2226 if (ada_is_constrained_packed_array_type (type
))
2227 return decode_constrained_packed_array_type (type
);
2229 if (ada_is_array_descriptor_type (type
))
2230 return ada_check_typedef (desc_data_target_type (type
));
2235 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2238 ada_is_gnat_encoded_packed_array_type (struct type
*type
)
2242 type
= desc_base_type (type
);
2243 type
= ada_check_typedef (type
);
2245 ada_type_name (type
) != NULL
2246 && strstr (ada_type_name (type
), "___XP") != NULL
;
2249 /* Non-zero iff TYPE represents a standard GNAT constrained
2250 packed-array type. */
2253 ada_is_constrained_packed_array_type (struct type
*type
)
2255 return ada_is_gnat_encoded_packed_array_type (type
)
2256 && !ada_is_array_descriptor_type (type
);
2259 /* Non-zero iff TYPE represents an array descriptor for a
2260 unconstrained packed-array type. */
2263 ada_is_unconstrained_packed_array_type (struct type
*type
)
2265 if (!ada_is_array_descriptor_type (type
))
2268 if (ada_is_gnat_encoded_packed_array_type (type
))
2271 /* If we saw GNAT encodings, then the above code is sufficient.
2272 However, with minimal encodings, we will just have a thick
2274 if (is_thick_pntr (type
))
2276 type
= desc_base_type (type
);
2277 /* The structure's first field is a pointer to an array, so this
2278 fetches the array type. */
2279 type
= TYPE_TARGET_TYPE (type
->field (0).type ());
2280 if (type
->code () == TYPE_CODE_TYPEDEF
)
2281 type
= ada_typedef_target_type (type
);
2282 /* Now we can see if the array elements are packed. */
2283 return TYPE_FIELD_BITSIZE (type
, 0) > 0;
2289 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2290 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2293 ada_is_any_packed_array_type (struct type
*type
)
2295 return (ada_is_constrained_packed_array_type (type
)
2296 || (type
->code () == TYPE_CODE_ARRAY
2297 && TYPE_FIELD_BITSIZE (type
, 0) % 8 != 0));
2300 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2301 return the size of its elements in bits. */
2304 decode_packed_array_bitsize (struct type
*type
)
2306 const char *raw_name
;
2310 /* Access to arrays implemented as fat pointers are encoded as a typedef
2311 of the fat pointer type. We need the name of the fat pointer type
2312 to do the decoding, so strip the typedef layer. */
2313 if (type
->code () == TYPE_CODE_TYPEDEF
)
2314 type
= ada_typedef_target_type (type
);
2316 raw_name
= ada_type_name (ada_check_typedef (type
));
2318 raw_name
= ada_type_name (desc_base_type (type
));
2323 tail
= strstr (raw_name
, "___XP");
2324 if (tail
== nullptr)
2326 gdb_assert (is_thick_pntr (type
));
2327 /* The structure's first field is a pointer to an array, so this
2328 fetches the array type. */
2329 type
= TYPE_TARGET_TYPE (type
->field (0).type ());
2330 /* Now we can see if the array elements are packed. */
2331 return TYPE_FIELD_BITSIZE (type
, 0);
2334 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2337 (_("could not understand bit size information on packed array"));
2344 /* Given that TYPE is a standard GDB array type with all bounds filled
2345 in, and that the element size of its ultimate scalar constituents
2346 (that is, either its elements, or, if it is an array of arrays, its
2347 elements' elements, etc.) is *ELT_BITS, return an identical type,
2348 but with the bit sizes of its elements (and those of any
2349 constituent arrays) recorded in the BITSIZE components of its
2350 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2353 Note that, for arrays whose index type has an XA encoding where
2354 a bound references a record discriminant, getting that discriminant,
2355 and therefore the actual value of that bound, is not possible
2356 because none of the given parameters gives us access to the record.
2357 This function assumes that it is OK in the context where it is being
2358 used to return an array whose bounds are still dynamic and where
2359 the length is arbitrary. */
2361 static struct type
*
2362 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2364 struct type
*new_elt_type
;
2365 struct type
*new_type
;
2366 struct type
*index_type_desc
;
2367 struct type
*index_type
;
2368 LONGEST low_bound
, high_bound
;
2370 type
= ada_check_typedef (type
);
2371 if (type
->code () != TYPE_CODE_ARRAY
)
2374 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2375 if (index_type_desc
)
2376 index_type
= to_fixed_range_type (index_type_desc
->field (0).type (),
2379 index_type
= type
->index_type ();
2381 new_type
= alloc_type_copy (type
);
2383 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2385 create_array_type (new_type
, new_elt_type
, index_type
);
2386 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2387 new_type
->set_name (ada_type_name (type
));
2389 if ((check_typedef (index_type
)->code () == TYPE_CODE_RANGE
2390 && is_dynamic_type (check_typedef (index_type
)))
2391 || !get_discrete_bounds (index_type
, &low_bound
, &high_bound
))
2392 low_bound
= high_bound
= 0;
2393 if (high_bound
< low_bound
)
2394 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2397 *elt_bits
*= (high_bound
- low_bound
+ 1);
2398 TYPE_LENGTH (new_type
) =
2399 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2402 new_type
->set_is_fixed_instance (true);
2406 /* The array type encoded by TYPE, where
2407 ada_is_constrained_packed_array_type (TYPE). */
2409 static struct type
*
2410 decode_constrained_packed_array_type (struct type
*type
)
2412 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2415 struct type
*shadow_type
;
2419 raw_name
= ada_type_name (desc_base_type (type
));
2424 name
= (char *) alloca (strlen (raw_name
) + 1);
2425 tail
= strstr (raw_name
, "___XP");
2426 type
= desc_base_type (type
);
2428 memcpy (name
, raw_name
, tail
- raw_name
);
2429 name
[tail
- raw_name
] = '\000';
2431 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2433 if (shadow_type
== NULL
)
2435 lim_warning (_("could not find bounds information on packed array"));
2438 shadow_type
= check_typedef (shadow_type
);
2440 if (shadow_type
->code () != TYPE_CODE_ARRAY
)
2442 lim_warning (_("could not understand bounds "
2443 "information on packed array"));
2447 bits
= decode_packed_array_bitsize (type
);
2448 return constrained_packed_array_type (shadow_type
, &bits
);
2451 /* Helper function for decode_constrained_packed_array. Set the field
2452 bitsize on a series of packed arrays. Returns the number of
2453 elements in TYPE. */
2456 recursively_update_array_bitsize (struct type
*type
)
2458 gdb_assert (type
->code () == TYPE_CODE_ARRAY
);
2461 if (!get_discrete_bounds (type
->index_type (), &low
, &high
)
2464 LONGEST our_len
= high
- low
+ 1;
2466 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
2467 if (elt_type
->code () == TYPE_CODE_ARRAY
)
2469 LONGEST elt_len
= recursively_update_array_bitsize (elt_type
);
2470 LONGEST elt_bitsize
= elt_len
* TYPE_FIELD_BITSIZE (elt_type
, 0);
2471 TYPE_FIELD_BITSIZE (type
, 0) = elt_bitsize
;
2473 TYPE_LENGTH (type
) = ((our_len
* elt_bitsize
+ HOST_CHAR_BIT
- 1)
2480 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2481 array, returns a simple array that denotes that array. Its type is a
2482 standard GDB array type except that the BITSIZEs of the array
2483 target types are set to the number of bits in each element, and the
2484 type length is set appropriately. */
2486 static struct value
*
2487 decode_constrained_packed_array (struct value
*arr
)
2491 /* If our value is a pointer, then dereference it. Likewise if
2492 the value is a reference. Make sure that this operation does not
2493 cause the target type to be fixed, as this would indirectly cause
2494 this array to be decoded. The rest of the routine assumes that
2495 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2496 and "value_ind" routines to perform the dereferencing, as opposed
2497 to using "ada_coerce_ref" or "ada_value_ind". */
2498 arr
= coerce_ref (arr
);
2499 if (ada_check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
2500 arr
= value_ind (arr
);
2502 type
= decode_constrained_packed_array_type (value_type (arr
));
2505 error (_("can't unpack array"));
2509 /* Decoding the packed array type could not correctly set the field
2510 bitsizes for any dimension except the innermost, because the
2511 bounds may be variable and were not passed to that function. So,
2512 we further resolve the array bounds here and then update the
2514 const gdb_byte
*valaddr
= value_contents_for_printing (arr
).data ();
2515 CORE_ADDR address
= value_address (arr
);
2516 gdb::array_view
<const gdb_byte
> view
2517 = gdb::make_array_view (valaddr
, TYPE_LENGTH (type
));
2518 type
= resolve_dynamic_type (type
, view
, address
);
2519 recursively_update_array_bitsize (type
);
2521 if (type_byte_order (value_type (arr
)) == BFD_ENDIAN_BIG
2522 && ada_is_modular_type (value_type (arr
)))
2524 /* This is a (right-justified) modular type representing a packed
2525 array with no wrapper. In order to interpret the value through
2526 the (left-justified) packed array type we just built, we must
2527 first left-justify it. */
2528 int bit_size
, bit_pos
;
2531 mod
= ada_modulus (value_type (arr
)) - 1;
2538 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2539 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2540 bit_pos
/ HOST_CHAR_BIT
,
2541 bit_pos
% HOST_CHAR_BIT
,
2546 return coerce_unspec_val_to_type (arr
, type
);
2550 /* The value of the element of packed array ARR at the ARITY indices
2551 given in IND. ARR must be a simple array. */
2553 static struct value
*
2554 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2557 int bits
, elt_off
, bit_off
;
2558 long elt_total_bit_offset
;
2559 struct type
*elt_type
;
2563 elt_total_bit_offset
= 0;
2564 elt_type
= ada_check_typedef (value_type (arr
));
2565 for (i
= 0; i
< arity
; i
+= 1)
2567 if (elt_type
->code () != TYPE_CODE_ARRAY
2568 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2570 (_("attempt to do packed indexing of "
2571 "something other than a packed array"));
2574 struct type
*range_type
= elt_type
->index_type ();
2575 LONGEST lowerbound
, upperbound
;
2578 if (!get_discrete_bounds (range_type
, &lowerbound
, &upperbound
))
2580 lim_warning (_("don't know bounds of array"));
2581 lowerbound
= upperbound
= 0;
2584 idx
= pos_atr (ind
[i
]);
2585 if (idx
< lowerbound
|| idx
> upperbound
)
2586 lim_warning (_("packed array index %ld out of bounds"),
2588 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2589 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2590 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2593 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2594 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2596 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2601 /* Non-zero iff TYPE includes negative integer values. */
2604 has_negatives (struct type
*type
)
2606 switch (type
->code ())
2611 return !type
->is_unsigned ();
2612 case TYPE_CODE_RANGE
:
2613 return type
->bounds ()->low
.const_val () - type
->bounds ()->bias
< 0;
2617 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2618 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2619 the unpacked buffer.
2621 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2622 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2624 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2627 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2629 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2632 ada_unpack_from_contents (const gdb_byte
*src
, int bit_offset
, int bit_size
,
2633 gdb_byte
*unpacked
, int unpacked_len
,
2634 int is_big_endian
, int is_signed_type
,
2637 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2638 int src_idx
; /* Index into the source area */
2639 int src_bytes_left
; /* Number of source bytes left to process. */
2640 int srcBitsLeft
; /* Number of source bits left to move */
2641 int unusedLS
; /* Number of bits in next significant
2642 byte of source that are unused */
2644 int unpacked_idx
; /* Index into the unpacked buffer */
2645 int unpacked_bytes_left
; /* Number of bytes left to set in unpacked. */
2647 unsigned long accum
; /* Staging area for bits being transferred */
2648 int accumSize
; /* Number of meaningful bits in accum */
2651 /* Transmit bytes from least to most significant; delta is the direction
2652 the indices move. */
2653 int delta
= is_big_endian
? -1 : 1;
2655 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2657 if ((bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
> unpacked_len
)
2658 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2659 bit_size
, unpacked_len
);
2661 srcBitsLeft
= bit_size
;
2662 src_bytes_left
= src_len
;
2663 unpacked_bytes_left
= unpacked_len
;
2668 src_idx
= src_len
- 1;
2670 && ((src
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2674 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2680 unpacked_idx
= unpacked_len
- 1;
2684 /* Non-scalar values must be aligned at a byte boundary... */
2686 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2687 /* ... And are placed at the beginning (most-significant) bytes
2689 unpacked_idx
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2690 unpacked_bytes_left
= unpacked_idx
+ 1;
2695 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2697 src_idx
= unpacked_idx
= 0;
2698 unusedLS
= bit_offset
;
2701 if (is_signed_type
&& (src
[src_len
- 1] & (1 << sign_bit_offset
)))
2706 while (src_bytes_left
> 0)
2708 /* Mask for removing bits of the next source byte that are not
2709 part of the value. */
2710 unsigned int unusedMSMask
=
2711 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2713 /* Sign-extend bits for this byte. */
2714 unsigned int signMask
= sign
& ~unusedMSMask
;
2717 (((src
[src_idx
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2718 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2719 if (accumSize
>= HOST_CHAR_BIT
)
2721 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2722 accumSize
-= HOST_CHAR_BIT
;
2723 accum
>>= HOST_CHAR_BIT
;
2724 unpacked_bytes_left
-= 1;
2725 unpacked_idx
+= delta
;
2727 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2729 src_bytes_left
-= 1;
2732 while (unpacked_bytes_left
> 0)
2734 accum
|= sign
<< accumSize
;
2735 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2736 accumSize
-= HOST_CHAR_BIT
;
2739 accum
>>= HOST_CHAR_BIT
;
2740 unpacked_bytes_left
-= 1;
2741 unpacked_idx
+= delta
;
2745 /* Create a new value of type TYPE from the contents of OBJ starting
2746 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2747 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2748 assigning through the result will set the field fetched from.
2749 VALADDR is ignored unless OBJ is NULL, in which case,
2750 VALADDR+OFFSET must address the start of storage containing the
2751 packed value. The value returned in this case is never an lval.
2752 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2755 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2756 long offset
, int bit_offset
, int bit_size
,
2760 const gdb_byte
*src
; /* First byte containing data to unpack */
2762 const int is_scalar
= is_scalar_type (type
);
2763 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2764 gdb::byte_vector staging
;
2766 type
= ada_check_typedef (type
);
2769 src
= valaddr
+ offset
;
2771 src
= value_contents (obj
).data () + offset
;
2773 if (is_dynamic_type (type
))
2775 /* The length of TYPE might by dynamic, so we need to resolve
2776 TYPE in order to know its actual size, which we then use
2777 to create the contents buffer of the value we return.
2778 The difficulty is that the data containing our object is
2779 packed, and therefore maybe not at a byte boundary. So, what
2780 we do, is unpack the data into a byte-aligned buffer, and then
2781 use that buffer as our object's value for resolving the type. */
2782 int staging_len
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2783 staging
.resize (staging_len
);
2785 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2786 staging
.data (), staging
.size (),
2787 is_big_endian
, has_negatives (type
),
2789 type
= resolve_dynamic_type (type
, staging
, 0);
2790 if (TYPE_LENGTH (type
) < (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
)
2792 /* This happens when the length of the object is dynamic,
2793 and is actually smaller than the space reserved for it.
2794 For instance, in an array of variant records, the bit_size
2795 we're given is the array stride, which is constant and
2796 normally equal to the maximum size of its element.
2797 But, in reality, each element only actually spans a portion
2799 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2805 v
= allocate_value (type
);
2806 src
= valaddr
+ offset
;
2808 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2810 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2813 v
= value_at (type
, value_address (obj
) + offset
);
2814 buf
= (gdb_byte
*) alloca (src_len
);
2815 read_memory (value_address (v
), buf
, src_len
);
2820 v
= allocate_value (type
);
2821 src
= value_contents (obj
).data () + offset
;
2826 long new_offset
= offset
;
2828 set_value_component_location (v
, obj
);
2829 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2830 set_value_bitsize (v
, bit_size
);
2831 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2834 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2836 set_value_offset (v
, new_offset
);
2838 /* Also set the parent value. This is needed when trying to
2839 assign a new value (in inferior memory). */
2840 set_value_parent (v
, obj
);
2843 set_value_bitsize (v
, bit_size
);
2844 unpacked
= value_contents_writeable (v
).data ();
2848 memset (unpacked
, 0, TYPE_LENGTH (type
));
2852 if (staging
.size () == TYPE_LENGTH (type
))
2854 /* Small short-cut: If we've unpacked the data into a buffer
2855 of the same size as TYPE's length, then we can reuse that,
2856 instead of doing the unpacking again. */
2857 memcpy (unpacked
, staging
.data (), staging
.size ());
2860 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2861 unpacked
, TYPE_LENGTH (type
),
2862 is_big_endian
, has_negatives (type
), is_scalar
);
2867 /* Store the contents of FROMVAL into the location of TOVAL.
2868 Return a new value with the location of TOVAL and contents of
2869 FROMVAL. Handles assignment into packed fields that have
2870 floating-point or non-scalar types. */
2872 static struct value
*
2873 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2875 struct type
*type
= value_type (toval
);
2876 int bits
= value_bitsize (toval
);
2878 toval
= ada_coerce_ref (toval
);
2879 fromval
= ada_coerce_ref (fromval
);
2881 if (ada_is_direct_array_type (value_type (toval
)))
2882 toval
= ada_coerce_to_simple_array (toval
);
2883 if (ada_is_direct_array_type (value_type (fromval
)))
2884 fromval
= ada_coerce_to_simple_array (fromval
);
2886 if (!deprecated_value_modifiable (toval
))
2887 error (_("Left operand of assignment is not a modifiable lvalue."));
2889 if (VALUE_LVAL (toval
) == lval_memory
2891 && (type
->code () == TYPE_CODE_FLT
2892 || type
->code () == TYPE_CODE_STRUCT
))
2894 int len
= (value_bitpos (toval
)
2895 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2897 gdb_byte
*buffer
= (gdb_byte
*) alloca (len
);
2899 CORE_ADDR to_addr
= value_address (toval
);
2901 if (type
->code () == TYPE_CODE_FLT
)
2902 fromval
= value_cast (type
, fromval
);
2904 read_memory (to_addr
, buffer
, len
);
2905 from_size
= value_bitsize (fromval
);
2907 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2909 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2910 ULONGEST from_offset
= 0;
2911 if (is_big_endian
&& is_scalar_type (value_type (fromval
)))
2912 from_offset
= from_size
- bits
;
2913 copy_bitwise (buffer
, value_bitpos (toval
),
2914 value_contents (fromval
).data (), from_offset
,
2915 bits
, is_big_endian
);
2916 write_memory_with_notification (to_addr
, buffer
, len
);
2918 val
= value_copy (toval
);
2919 memcpy (value_contents_raw (val
).data (),
2920 value_contents (fromval
).data (),
2921 TYPE_LENGTH (type
));
2922 deprecated_set_value_type (val
, type
);
2927 return value_assign (toval
, fromval
);
2931 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2932 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2933 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2934 COMPONENT, and not the inferior's memory. The current contents
2935 of COMPONENT are ignored.
2937 Although not part of the initial design, this function also works
2938 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2939 had a null address, and COMPONENT had an address which is equal to
2940 its offset inside CONTAINER. */
2943 value_assign_to_component (struct value
*container
, struct value
*component
,
2946 LONGEST offset_in_container
=
2947 (LONGEST
) (value_address (component
) - value_address (container
));
2948 int bit_offset_in_container
=
2949 value_bitpos (component
) - value_bitpos (container
);
2952 val
= value_cast (value_type (component
), val
);
2954 if (value_bitsize (component
) == 0)
2955 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2957 bits
= value_bitsize (component
);
2959 if (type_byte_order (value_type (container
)) == BFD_ENDIAN_BIG
)
2963 if (is_scalar_type (check_typedef (value_type (component
))))
2965 = TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
;
2968 copy_bitwise ((value_contents_writeable (container
).data ()
2969 + offset_in_container
),
2970 value_bitpos (container
) + bit_offset_in_container
,
2971 value_contents (val
).data (), src_offset
, bits
, 1);
2974 copy_bitwise ((value_contents_writeable (container
).data ()
2975 + offset_in_container
),
2976 value_bitpos (container
) + bit_offset_in_container
,
2977 value_contents (val
).data (), 0, bits
, 0);
2980 /* Determine if TYPE is an access to an unconstrained array. */
2983 ada_is_access_to_unconstrained_array (struct type
*type
)
2985 return (type
->code () == TYPE_CODE_TYPEDEF
2986 && is_thick_pntr (ada_typedef_target_type (type
)));
2989 /* The value of the element of array ARR at the ARITY indices given in IND.
2990 ARR may be either a simple array, GNAT array descriptor, or pointer
2994 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2998 struct type
*elt_type
;
3000 elt
= ada_coerce_to_simple_array (arr
);
3002 elt_type
= ada_check_typedef (value_type (elt
));
3003 if (elt_type
->code () == TYPE_CODE_ARRAY
3004 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
3005 return value_subscript_packed (elt
, arity
, ind
);
3007 for (k
= 0; k
< arity
; k
+= 1)
3009 struct type
*saved_elt_type
= TYPE_TARGET_TYPE (elt_type
);
3011 if (elt_type
->code () != TYPE_CODE_ARRAY
)
3012 error (_("too many subscripts (%d expected)"), k
);
3014 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
3016 if (ada_is_access_to_unconstrained_array (saved_elt_type
)
3017 && value_type (elt
)->code () != TYPE_CODE_TYPEDEF
)
3019 /* The element is a typedef to an unconstrained array,
3020 except that the value_subscript call stripped the
3021 typedef layer. The typedef layer is GNAT's way to
3022 specify that the element is, at the source level, an
3023 access to the unconstrained array, rather than the
3024 unconstrained array. So, we need to restore that
3025 typedef layer, which we can do by forcing the element's
3026 type back to its original type. Otherwise, the returned
3027 value is going to be printed as the array, rather
3028 than as an access. Another symptom of the same issue
3029 would be that an expression trying to dereference the
3030 element would also be improperly rejected. */
3031 deprecated_set_value_type (elt
, saved_elt_type
);
3034 elt_type
= ada_check_typedef (value_type (elt
));
3040 /* Assuming ARR is a pointer to a GDB array, the value of the element
3041 of *ARR at the ARITY indices given in IND.
3042 Does not read the entire array into memory.
3044 Note: Unlike what one would expect, this function is used instead of
3045 ada_value_subscript for basically all non-packed array types. The reason
3046 for this is that a side effect of doing our own pointer arithmetics instead
3047 of relying on value_subscript is that there is no implicit typedef peeling.
3048 This is important for arrays of array accesses, where it allows us to
3049 preserve the fact that the array's element is an array access, where the
3050 access part os encoded in a typedef layer. */
3052 static struct value
*
3053 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
3056 struct value
*array_ind
= ada_value_ind (arr
);
3058 = check_typedef (value_enclosing_type (array_ind
));
3060 if (type
->code () == TYPE_CODE_ARRAY
3061 && TYPE_FIELD_BITSIZE (type
, 0) > 0)
3062 return value_subscript_packed (array_ind
, arity
, ind
);
3064 for (k
= 0; k
< arity
; k
+= 1)
3068 if (type
->code () != TYPE_CODE_ARRAY
)
3069 error (_("too many subscripts (%d expected)"), k
);
3070 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
3072 get_discrete_bounds (type
->index_type (), &lwb
, &upb
);
3073 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
3074 type
= TYPE_TARGET_TYPE (type
);
3077 return value_ind (arr
);
3080 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3081 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3082 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3083 this array is LOW, as per Ada rules. */
3084 static struct value
*
3085 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
3088 struct type
*type0
= ada_check_typedef (type
);
3089 struct type
*base_index_type
= TYPE_TARGET_TYPE (type0
->index_type ());
3090 struct type
*index_type
3091 = create_static_range_type (NULL
, base_index_type
, low
, high
);
3092 struct type
*slice_type
= create_array_type_with_stride
3093 (NULL
, TYPE_TARGET_TYPE (type0
), index_type
,
3094 type0
->dyn_prop (DYN_PROP_BYTE_STRIDE
),
3095 TYPE_FIELD_BITSIZE (type0
, 0));
3096 int base_low
= ada_discrete_type_low_bound (type0
->index_type ());
3097 gdb::optional
<LONGEST
> base_low_pos
, low_pos
;
3100 low_pos
= discrete_position (base_index_type
, low
);
3101 base_low_pos
= discrete_position (base_index_type
, base_low
);
3103 if (!low_pos
.has_value () || !base_low_pos
.has_value ())
3105 warning (_("unable to get positions in slice, use bounds instead"));
3107 base_low_pos
= base_low
;
3110 ULONGEST stride
= TYPE_FIELD_BITSIZE (slice_type
, 0) / 8;
3112 stride
= TYPE_LENGTH (TYPE_TARGET_TYPE (type0
));
3114 base
= value_as_address (array_ptr
) + (*low_pos
- *base_low_pos
) * stride
;
3115 return value_at_lazy (slice_type
, base
);
3119 static struct value
*
3120 ada_value_slice (struct value
*array
, int low
, int high
)
3122 struct type
*type
= ada_check_typedef (value_type (array
));
3123 struct type
*base_index_type
= TYPE_TARGET_TYPE (type
->index_type ());
3124 struct type
*index_type
3125 = create_static_range_type (NULL
, type
->index_type (), low
, high
);
3126 struct type
*slice_type
= create_array_type_with_stride
3127 (NULL
, TYPE_TARGET_TYPE (type
), index_type
,
3128 type
->dyn_prop (DYN_PROP_BYTE_STRIDE
),
3129 TYPE_FIELD_BITSIZE (type
, 0));
3130 gdb::optional
<LONGEST
> low_pos
, high_pos
;
3133 low_pos
= discrete_position (base_index_type
, low
);
3134 high_pos
= discrete_position (base_index_type
, high
);
3136 if (!low_pos
.has_value () || !high_pos
.has_value ())
3138 warning (_("unable to get positions in slice, use bounds instead"));
3143 return value_cast (slice_type
,
3144 value_slice (array
, low
, *high_pos
- *low_pos
+ 1));
3147 /* If type is a record type in the form of a standard GNAT array
3148 descriptor, returns the number of dimensions for type. If arr is a
3149 simple array, returns the number of "array of"s that prefix its
3150 type designation. Otherwise, returns 0. */
3153 ada_array_arity (struct type
*type
)
3160 type
= desc_base_type (type
);
3163 if (type
->code () == TYPE_CODE_STRUCT
)
3164 return desc_arity (desc_bounds_type (type
));
3166 while (type
->code () == TYPE_CODE_ARRAY
)
3169 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
3175 /* If TYPE is a record type in the form of a standard GNAT array
3176 descriptor or a simple array type, returns the element type for
3177 TYPE after indexing by NINDICES indices, or by all indices if
3178 NINDICES is -1. Otherwise, returns NULL. */
3181 ada_array_element_type (struct type
*type
, int nindices
)
3183 type
= desc_base_type (type
);
3185 if (type
->code () == TYPE_CODE_STRUCT
)
3188 struct type
*p_array_type
;
3190 p_array_type
= desc_data_target_type (type
);
3192 k
= ada_array_arity (type
);
3196 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3197 if (nindices
>= 0 && k
> nindices
)
3199 while (k
> 0 && p_array_type
!= NULL
)
3201 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
3204 return p_array_type
;
3206 else if (type
->code () == TYPE_CODE_ARRAY
)
3208 while (nindices
!= 0 && type
->code () == TYPE_CODE_ARRAY
)
3210 type
= TYPE_TARGET_TYPE (type
);
3219 /* See ada-lang.h. */
3222 ada_index_type (struct type
*type
, int n
, const char *name
)
3224 struct type
*result_type
;
3226 type
= desc_base_type (type
);
3228 if (n
< 0 || n
> ada_array_arity (type
))
3229 error (_("invalid dimension number to '%s"), name
);
3231 if (ada_is_simple_array_type (type
))
3235 for (i
= 1; i
< n
; i
+= 1)
3237 type
= ada_check_typedef (type
);
3238 type
= TYPE_TARGET_TYPE (type
);
3240 result_type
= TYPE_TARGET_TYPE (ada_check_typedef (type
)->index_type ());
3241 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3242 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3243 perhaps stabsread.c would make more sense. */
3244 if (result_type
&& result_type
->code () == TYPE_CODE_UNDEF
)
3249 result_type
= desc_index_type (desc_bounds_type (type
), n
);
3250 if (result_type
== NULL
)
3251 error (_("attempt to take bound of something that is not an array"));
3257 /* Given that arr is an array type, returns the lower bound of the
3258 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3259 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3260 array-descriptor type. It works for other arrays with bounds supplied
3261 by run-time quantities other than discriminants. */
3264 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
3266 struct type
*type
, *index_type_desc
, *index_type
;
3269 gdb_assert (which
== 0 || which
== 1);
3271 if (ada_is_constrained_packed_array_type (arr_type
))
3272 arr_type
= decode_constrained_packed_array_type (arr_type
);
3274 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
3275 return (LONGEST
) - which
;
3277 if (arr_type
->code () == TYPE_CODE_PTR
)
3278 type
= TYPE_TARGET_TYPE (arr_type
);
3282 if (type
->is_fixed_instance ())
3284 /* The array has already been fixed, so we do not need to
3285 check the parallel ___XA type again. That encoding has
3286 already been applied, so ignore it now. */
3287 index_type_desc
= NULL
;
3291 index_type_desc
= ada_find_parallel_type (type
, "___XA");
3292 ada_fixup_array_indexes_type (index_type_desc
);
3295 if (index_type_desc
!= NULL
)
3296 index_type
= to_fixed_range_type (index_type_desc
->field (n
- 1).type (),
3300 struct type
*elt_type
= check_typedef (type
);
3302 for (i
= 1; i
< n
; i
++)
3303 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
3305 index_type
= elt_type
->index_type ();
3309 (LONGEST
) (which
== 0
3310 ? ada_discrete_type_low_bound (index_type
)
3311 : ada_discrete_type_high_bound (index_type
));
3314 /* Given that arr is an array value, returns the lower bound of the
3315 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3316 WHICH is 1. This routine will also work for arrays with bounds
3317 supplied by run-time quantities other than discriminants. */
3320 ada_array_bound (struct value
*arr
, int n
, int which
)
3322 struct type
*arr_type
;
3324 if (check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
3325 arr
= value_ind (arr
);
3326 arr_type
= value_enclosing_type (arr
);
3328 if (ada_is_constrained_packed_array_type (arr_type
))
3329 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
3330 else if (ada_is_simple_array_type (arr_type
))
3331 return ada_array_bound_from_type (arr_type
, n
, which
);
3333 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
3336 /* Given that arr is an array value, returns the length of the
3337 nth index. This routine will also work for arrays with bounds
3338 supplied by run-time quantities other than discriminants.
3339 Does not work for arrays indexed by enumeration types with representation
3340 clauses at the moment. */
3343 ada_array_length (struct value
*arr
, int n
)
3345 struct type
*arr_type
, *index_type
;
3348 if (check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
3349 arr
= value_ind (arr
);
3350 arr_type
= value_enclosing_type (arr
);
3352 if (ada_is_constrained_packed_array_type (arr_type
))
3353 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3355 if (ada_is_simple_array_type (arr_type
))
3357 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3358 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3362 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3363 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3366 arr_type
= check_typedef (arr_type
);
3367 index_type
= ada_index_type (arr_type
, n
, "length");
3368 if (index_type
!= NULL
)
3370 struct type
*base_type
;
3371 if (index_type
->code () == TYPE_CODE_RANGE
)
3372 base_type
= TYPE_TARGET_TYPE (index_type
);
3374 base_type
= index_type
;
3376 low
= pos_atr (value_from_longest (base_type
, low
));
3377 high
= pos_atr (value_from_longest (base_type
, high
));
3379 return high
- low
+ 1;
3382 /* An array whose type is that of ARR_TYPE (an array type), with
3383 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3384 less than LOW, then LOW-1 is used. */
3386 static struct value
*
3387 empty_array (struct type
*arr_type
, int low
, int high
)
3389 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3390 struct type
*index_type
3391 = create_static_range_type
3392 (NULL
, TYPE_TARGET_TYPE (arr_type0
->index_type ()), low
,
3393 high
< low
? low
- 1 : high
);
3394 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3396 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3400 /* Name resolution */
3402 /* The "decoded" name for the user-definable Ada operator corresponding
3406 ada_decoded_op_name (enum exp_opcode op
)
3410 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3412 if (ada_opname_table
[i
].op
== op
)
3413 return ada_opname_table
[i
].decoded
;
3415 error (_("Could not find operator name for opcode"));
3418 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3419 in a listing of choices during disambiguation (see sort_choices, below).
3420 The idea is that overloadings of a subprogram name from the
3421 same package should sort in their source order. We settle for ordering
3422 such symbols by their trailing number (__N or $N). */
3425 encoded_ordered_before (const char *N0
, const char *N1
)
3429 else if (N0
== NULL
)
3435 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3437 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3439 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3440 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3445 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3448 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3450 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3451 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3453 return (strcmp (N0
, N1
) < 0);
3457 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3461 sort_choices (struct block_symbol syms
[], int nsyms
)
3465 for (i
= 1; i
< nsyms
; i
+= 1)
3467 struct block_symbol sym
= syms
[i
];
3470 for (j
= i
- 1; j
>= 0; j
-= 1)
3472 if (encoded_ordered_before (syms
[j
].symbol
->linkage_name (),
3473 sym
.symbol
->linkage_name ()))
3475 syms
[j
+ 1] = syms
[j
];
3481 /* Whether GDB should display formals and return types for functions in the
3482 overloads selection menu. */
3483 static bool print_signatures
= true;
3485 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3486 all but functions, the signature is just the name of the symbol. For
3487 functions, this is the name of the function, the list of types for formals
3488 and the return type (if any). */
3491 ada_print_symbol_signature (struct ui_file
*stream
, struct symbol
*sym
,
3492 const struct type_print_options
*flags
)
3494 struct type
*type
= sym
->type ();
3496 gdb_printf (stream
, "%s", sym
->print_name ());
3497 if (!print_signatures
3499 || type
->code () != TYPE_CODE_FUNC
)
3502 if (type
->num_fields () > 0)
3506 gdb_printf (stream
, " (");
3507 for (i
= 0; i
< type
->num_fields (); ++i
)
3510 gdb_printf (stream
, "; ");
3511 ada_print_type (type
->field (i
).type (), NULL
, stream
, -1, 0,
3514 gdb_printf (stream
, ")");
3516 if (TYPE_TARGET_TYPE (type
) != NULL
3517 && TYPE_TARGET_TYPE (type
)->code () != TYPE_CODE_VOID
)
3519 gdb_printf (stream
, " return ");
3520 ada_print_type (TYPE_TARGET_TYPE (type
), NULL
, stream
, -1, 0, flags
);
3524 /* Read and validate a set of numeric choices from the user in the
3525 range 0 .. N_CHOICES-1. Place the results in increasing
3526 order in CHOICES[0 .. N-1], and return N.
3528 The user types choices as a sequence of numbers on one line
3529 separated by blanks, encoding them as follows:
3531 + A choice of 0 means to cancel the selection, throwing an error.
3532 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3533 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3535 The user is not allowed to choose more than MAX_RESULTS values.
3537 ANNOTATION_SUFFIX, if present, is used to annotate the input
3538 prompts (for use with the -f switch). */
3541 get_selections (int *choices
, int n_choices
, int max_results
,
3542 int is_all_choice
, const char *annotation_suffix
)
3547 int first_choice
= is_all_choice
? 2 : 1;
3549 prompt
= getenv ("PS2");
3553 args
= command_line_input (prompt
, annotation_suffix
);
3556 error_no_arg (_("one or more choice numbers"));
3560 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3561 order, as given in args. Choices are validated. */
3567 args
= skip_spaces (args
);
3568 if (*args
== '\0' && n_chosen
== 0)
3569 error_no_arg (_("one or more choice numbers"));
3570 else if (*args
== '\0')
3573 choice
= strtol (args
, &args2
, 10);
3574 if (args
== args2
|| choice
< 0
3575 || choice
> n_choices
+ first_choice
- 1)
3576 error (_("Argument must be choice number"));
3580 error (_("cancelled"));
3582 if (choice
< first_choice
)
3584 n_chosen
= n_choices
;
3585 for (j
= 0; j
< n_choices
; j
+= 1)
3589 choice
-= first_choice
;
3591 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3595 if (j
< 0 || choice
!= choices
[j
])
3599 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3600 choices
[k
+ 1] = choices
[k
];
3601 choices
[j
+ 1] = choice
;
3606 if (n_chosen
> max_results
)
3607 error (_("Select no more than %d of the above"), max_results
);
3612 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3613 by asking the user (if necessary), returning the number selected,
3614 and setting the first elements of SYMS items. Error if no symbols
3617 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3618 to be re-integrated one of these days. */
3621 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3624 int *chosen
= XALLOCAVEC (int , nsyms
);
3626 int first_choice
= (max_results
== 1) ? 1 : 2;
3627 const char *select_mode
= multiple_symbols_select_mode ();
3629 if (max_results
< 1)
3630 error (_("Request to select 0 symbols!"));
3634 if (select_mode
== multiple_symbols_cancel
)
3636 canceled because the command is ambiguous\n\
3637 See set/show multiple-symbol."));
3639 /* If select_mode is "all", then return all possible symbols.
3640 Only do that if more than one symbol can be selected, of course.
3641 Otherwise, display the menu as usual. */
3642 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3645 gdb_printf (_("[0] cancel\n"));
3646 if (max_results
> 1)
3647 gdb_printf (_("[1] all\n"));
3649 sort_choices (syms
, nsyms
);
3651 for (i
= 0; i
< nsyms
; i
+= 1)
3653 if (syms
[i
].symbol
== NULL
)
3656 if (syms
[i
].symbol
->aclass () == LOC_BLOCK
)
3658 struct symtab_and_line sal
=
3659 find_function_start_sal (syms
[i
].symbol
, 1);
3661 gdb_printf ("[%d] ", i
+ first_choice
);
3662 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3663 &type_print_raw_options
);
3664 if (sal
.symtab
== NULL
)
3665 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3666 metadata_style
.style ().ptr (), nullptr, sal
.line
);
3670 styled_string (file_name_style
.style (),
3671 symtab_to_filename_for_display (sal
.symtab
)),
3678 (syms
[i
].symbol
->aclass () == LOC_CONST
3679 && syms
[i
].symbol
->type () != NULL
3680 && syms
[i
].symbol
->type ()->code () == TYPE_CODE_ENUM
);
3681 struct symtab
*symtab
= NULL
;
3683 if (syms
[i
].symbol
->is_objfile_owned ())
3684 symtab
= syms
[i
].symbol
->symtab ();
3686 if (syms
[i
].symbol
->line () != 0 && symtab
!= NULL
)
3688 gdb_printf ("[%d] ", i
+ first_choice
);
3689 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3690 &type_print_raw_options
);
3691 gdb_printf (_(" at %s:%d\n"),
3692 symtab_to_filename_for_display (symtab
),
3693 syms
[i
].symbol
->line ());
3695 else if (is_enumeral
3696 && syms
[i
].symbol
->type ()->name () != NULL
)
3698 gdb_printf (("[%d] "), i
+ first_choice
);
3699 ada_print_type (syms
[i
].symbol
->type (), NULL
,
3700 gdb_stdout
, -1, 0, &type_print_raw_options
);
3701 gdb_printf (_("'(%s) (enumeral)\n"),
3702 syms
[i
].symbol
->print_name ());
3706 gdb_printf ("[%d] ", i
+ first_choice
);
3707 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3708 &type_print_raw_options
);
3711 gdb_printf (is_enumeral
3712 ? _(" in %s (enumeral)\n")
3714 symtab_to_filename_for_display (symtab
));
3716 gdb_printf (is_enumeral
3717 ? _(" (enumeral)\n")
3723 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3726 for (i
= 0; i
< n_chosen
; i
+= 1)
3727 syms
[i
] = syms
[chosen
[i
]];
3732 /* See ada-lang.h. */
3735 ada_find_operator_symbol (enum exp_opcode op
, bool parse_completion
,
3736 int nargs
, value
*argvec
[])
3738 if (possible_user_operator_p (op
, argvec
))
3740 std::vector
<struct block_symbol
> candidates
3741 = ada_lookup_symbol_list (ada_decoded_op_name (op
),
3744 int i
= ada_resolve_function (candidates
, argvec
,
3745 nargs
, ada_decoded_op_name (op
), NULL
,
3748 return candidates
[i
];
3753 /* See ada-lang.h. */
3756 ada_resolve_funcall (struct symbol
*sym
, const struct block
*block
,
3757 struct type
*context_type
,
3758 bool parse_completion
,
3759 int nargs
, value
*argvec
[],
3760 innermost_block_tracker
*tracker
)
3762 std::vector
<struct block_symbol
> candidates
3763 = ada_lookup_symbol_list (sym
->linkage_name (), block
, VAR_DOMAIN
);
3766 if (candidates
.size () == 1)
3770 i
= ada_resolve_function
3773 sym
->linkage_name (),
3774 context_type
, parse_completion
);
3776 error (_("Could not find a match for %s"), sym
->print_name ());
3779 tracker
->update (candidates
[i
]);
3780 return candidates
[i
];
3783 /* Resolve a mention of a name where the context type is an
3784 enumeration type. */
3787 ada_resolve_enum (std::vector
<struct block_symbol
> &syms
,
3788 const char *name
, struct type
*context_type
,
3789 bool parse_completion
)
3791 gdb_assert (context_type
->code () == TYPE_CODE_ENUM
);
3792 context_type
= ada_check_typedef (context_type
);
3794 for (int i
= 0; i
< syms
.size (); ++i
)
3796 /* We already know the name matches, so we're just looking for
3797 an element of the correct enum type. */
3798 if (ada_check_typedef (syms
[i
].symbol
->type ()) == context_type
)
3802 error (_("No name '%s' in enumeration type '%s'"), name
,
3803 ada_type_name (context_type
));
3806 /* See ada-lang.h. */
3809 ada_resolve_variable (struct symbol
*sym
, const struct block
*block
,
3810 struct type
*context_type
,
3811 bool parse_completion
,
3813 innermost_block_tracker
*tracker
)
3815 std::vector
<struct block_symbol
> candidates
3816 = ada_lookup_symbol_list (sym
->linkage_name (), block
, VAR_DOMAIN
);
3818 if (std::any_of (candidates
.begin (),
3820 [] (block_symbol
&bsym
)
3822 switch (bsym
.symbol
->aclass ())
3827 case LOC_REGPARM_ADDR
:
3836 /* Types tend to get re-introduced locally, so if there
3837 are any local symbols that are not types, first filter
3841 (candidates
.begin (),
3843 [] (block_symbol
&bsym
)
3845 return bsym
.symbol
->aclass () == LOC_TYPEDEF
;
3850 /* Filter out artificial symbols. */
3853 (candidates
.begin (),
3855 [] (block_symbol
&bsym
)
3857 return bsym
.symbol
->is_artificial ();
3862 if (candidates
.empty ())
3863 error (_("No definition found for %s"), sym
->print_name ());
3864 else if (candidates
.size () == 1)
3866 else if (context_type
!= nullptr
3867 && context_type
->code () == TYPE_CODE_ENUM
)
3868 i
= ada_resolve_enum (candidates
, sym
->linkage_name (), context_type
,
3870 else if (deprocedure_p
&& !is_nonfunction (candidates
))
3872 i
= ada_resolve_function
3873 (candidates
, NULL
, 0,
3874 sym
->linkage_name (),
3875 context_type
, parse_completion
);
3877 error (_("Could not find a match for %s"), sym
->print_name ());
3881 gdb_printf (_("Multiple matches for %s\n"), sym
->print_name ());
3882 user_select_syms (candidates
.data (), candidates
.size (), 1);
3886 tracker
->update (candidates
[i
]);
3887 return candidates
[i
];
3890 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3891 /* The term "match" here is rather loose. The match is heuristic and
3895 ada_type_match (struct type
*ftype
, struct type
*atype
)
3897 ftype
= ada_check_typedef (ftype
);
3898 atype
= ada_check_typedef (atype
);
3900 if (ftype
->code () == TYPE_CODE_REF
)
3901 ftype
= TYPE_TARGET_TYPE (ftype
);
3902 if (atype
->code () == TYPE_CODE_REF
)
3903 atype
= TYPE_TARGET_TYPE (atype
);
3905 switch (ftype
->code ())
3908 return ftype
->code () == atype
->code ();
3910 if (atype
->code () != TYPE_CODE_PTR
)
3912 atype
= TYPE_TARGET_TYPE (atype
);
3913 /* This can only happen if the actual argument is 'null'. */
3914 if (atype
->code () == TYPE_CODE_INT
&& TYPE_LENGTH (atype
) == 0)
3916 return ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
);
3918 case TYPE_CODE_ENUM
:
3919 case TYPE_CODE_RANGE
:
3920 switch (atype
->code ())
3923 case TYPE_CODE_ENUM
:
3924 case TYPE_CODE_RANGE
:
3930 case TYPE_CODE_ARRAY
:
3931 return (atype
->code () == TYPE_CODE_ARRAY
3932 || ada_is_array_descriptor_type (atype
));
3934 case TYPE_CODE_STRUCT
:
3935 if (ada_is_array_descriptor_type (ftype
))
3936 return (atype
->code () == TYPE_CODE_ARRAY
3937 || ada_is_array_descriptor_type (atype
));
3939 return (atype
->code () == TYPE_CODE_STRUCT
3940 && !ada_is_array_descriptor_type (atype
));
3942 case TYPE_CODE_UNION
:
3944 return (atype
->code () == ftype
->code ());
3948 /* Return non-zero if the formals of FUNC "sufficiently match" the
3949 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3950 may also be an enumeral, in which case it is treated as a 0-
3951 argument function. */
3954 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3957 struct type
*func_type
= func
->type ();
3959 if (func
->aclass () == LOC_CONST
3960 && func_type
->code () == TYPE_CODE_ENUM
)
3961 return (n_actuals
== 0);
3962 else if (func_type
== NULL
|| func_type
->code () != TYPE_CODE_FUNC
)
3965 if (func_type
->num_fields () != n_actuals
)
3968 for (i
= 0; i
< n_actuals
; i
+= 1)
3970 if (actuals
[i
] == NULL
)
3974 struct type
*ftype
= ada_check_typedef (func_type
->field (i
).type ());
3975 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3977 if (!ada_type_match (ftype
, atype
))
3984 /* False iff function type FUNC_TYPE definitely does not produce a value
3985 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3986 FUNC_TYPE is not a valid function type with a non-null return type
3987 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3990 return_match (struct type
*func_type
, struct type
*context_type
)
3992 struct type
*return_type
;
3994 if (func_type
== NULL
)
3997 if (func_type
->code () == TYPE_CODE_FUNC
)
3998 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
4000 return_type
= get_base_type (func_type
);
4001 if (return_type
== NULL
)
4004 context_type
= get_base_type (context_type
);
4006 if (return_type
->code () == TYPE_CODE_ENUM
)
4007 return context_type
== NULL
|| return_type
== context_type
;
4008 else if (context_type
== NULL
)
4009 return return_type
->code () != TYPE_CODE_VOID
;
4011 return return_type
->code () == context_type
->code ();
4015 /* Returns the index in SYMS that contains the symbol for the
4016 function (if any) that matches the types of the NARGS arguments in
4017 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4018 that returns that type, then eliminate matches that don't. If
4019 CONTEXT_TYPE is void and there is at least one match that does not
4020 return void, eliminate all matches that do.
4022 Asks the user if there is more than one match remaining. Returns -1
4023 if there is no such symbol or none is selected. NAME is used
4024 solely for messages. May re-arrange and modify SYMS in
4025 the process; the index returned is for the modified vector. */
4028 ada_resolve_function (std::vector
<struct block_symbol
> &syms
,
4029 struct value
**args
, int nargs
,
4030 const char *name
, struct type
*context_type
,
4031 bool parse_completion
)
4035 int m
; /* Number of hits */
4038 /* In the first pass of the loop, we only accept functions matching
4039 context_type. If none are found, we add a second pass of the loop
4040 where every function is accepted. */
4041 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
4043 for (k
= 0; k
< syms
.size (); k
+= 1)
4045 struct type
*type
= ada_check_typedef (syms
[k
].symbol
->type ());
4047 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
4048 && (fallback
|| return_match (type
, context_type
)))
4056 /* If we got multiple matches, ask the user which one to use. Don't do this
4057 interactive thing during completion, though, as the purpose of the
4058 completion is providing a list of all possible matches. Prompting the
4059 user to filter it down would be completely unexpected in this case. */
4062 else if (m
> 1 && !parse_completion
)
4064 gdb_printf (_("Multiple matches for %s\n"), name
);
4065 user_select_syms (syms
.data (), m
, 1);
4071 /* Type-class predicates */
4073 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4077 numeric_type_p (struct type
*type
)
4083 switch (type
->code ())
4087 case TYPE_CODE_FIXED_POINT
:
4089 case TYPE_CODE_RANGE
:
4090 return (type
== TYPE_TARGET_TYPE (type
)
4091 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
4098 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4101 integer_type_p (struct type
*type
)
4107 switch (type
->code ())
4111 case TYPE_CODE_RANGE
:
4112 return (type
== TYPE_TARGET_TYPE (type
)
4113 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4120 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4123 scalar_type_p (struct type
*type
)
4129 switch (type
->code ())
4132 case TYPE_CODE_RANGE
:
4133 case TYPE_CODE_ENUM
:
4135 case TYPE_CODE_FIXED_POINT
:
4143 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4146 discrete_type_p (struct type
*type
)
4152 switch (type
->code ())
4155 case TYPE_CODE_RANGE
:
4156 case TYPE_CODE_ENUM
:
4157 case TYPE_CODE_BOOL
:
4165 /* Returns non-zero if OP with operands in the vector ARGS could be
4166 a user-defined function. Errs on the side of pre-defined operators
4167 (i.e., result 0). */
4170 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4172 struct type
*type0
=
4173 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4174 struct type
*type1
=
4175 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4189 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4193 case BINOP_BITWISE_AND
:
4194 case BINOP_BITWISE_IOR
:
4195 case BINOP_BITWISE_XOR
:
4196 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4199 case BINOP_NOTEQUAL
:
4204 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4207 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4210 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4214 case UNOP_LOGICAL_NOT
:
4216 return (!numeric_type_p (type0
));
4225 1. In the following, we assume that a renaming type's name may
4226 have an ___XD suffix. It would be nice if this went away at some
4228 2. We handle both the (old) purely type-based representation of
4229 renamings and the (new) variable-based encoding. At some point,
4230 it is devoutly to be hoped that the former goes away
4231 (FIXME: hilfinger-2007-07-09).
4232 3. Subprogram renamings are not implemented, although the XRS
4233 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4235 /* If SYM encodes a renaming,
4237 <renaming> renames <renamed entity>,
4239 sets *LEN to the length of the renamed entity's name,
4240 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4241 the string describing the subcomponent selected from the renamed
4242 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4243 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4244 are undefined). Otherwise, returns a value indicating the category
4245 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4246 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4247 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4248 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4249 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4250 may be NULL, in which case they are not assigned.
4252 [Currently, however, GCC does not generate subprogram renamings.] */
4254 enum ada_renaming_category
4255 ada_parse_renaming (struct symbol
*sym
,
4256 const char **renamed_entity
, int *len
,
4257 const char **renaming_expr
)
4259 enum ada_renaming_category kind
;
4264 return ADA_NOT_RENAMING
;
4265 switch (sym
->aclass ())
4268 return ADA_NOT_RENAMING
;
4272 case LOC_OPTIMIZED_OUT
:
4273 info
= strstr (sym
->linkage_name (), "___XR");
4275 return ADA_NOT_RENAMING
;
4279 kind
= ADA_OBJECT_RENAMING
;
4283 kind
= ADA_EXCEPTION_RENAMING
;
4287 kind
= ADA_PACKAGE_RENAMING
;
4291 kind
= ADA_SUBPROGRAM_RENAMING
;
4295 return ADA_NOT_RENAMING
;
4299 if (renamed_entity
!= NULL
)
4300 *renamed_entity
= info
;
4301 suffix
= strstr (info
, "___XE");
4302 if (suffix
== NULL
|| suffix
== info
)
4303 return ADA_NOT_RENAMING
;
4305 *len
= strlen (info
) - strlen (suffix
);
4307 if (renaming_expr
!= NULL
)
4308 *renaming_expr
= suffix
;
4312 /* Compute the value of the given RENAMING_SYM, which is expected to
4313 be a symbol encoding a renaming expression. BLOCK is the block
4314 used to evaluate the renaming. */
4316 static struct value
*
4317 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4318 const struct block
*block
)
4320 const char *sym_name
;
4322 sym_name
= renaming_sym
->linkage_name ();
4323 expression_up expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4324 return evaluate_expression (expr
.get ());
4328 /* Evaluation: Function Calls */
4330 /* Return an lvalue containing the value VAL. This is the identity on
4331 lvalues, and otherwise has the side-effect of allocating memory
4332 in the inferior where a copy of the value contents is copied. */
4334 static struct value
*
4335 ensure_lval (struct value
*val
)
4337 if (VALUE_LVAL (val
) == not_lval
4338 || VALUE_LVAL (val
) == lval_internalvar
)
4340 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4341 const CORE_ADDR addr
=
4342 value_as_long (value_allocate_space_in_inferior (len
));
4344 VALUE_LVAL (val
) = lval_memory
;
4345 set_value_address (val
, addr
);
4346 write_memory (addr
, value_contents (val
).data (), len
);
4352 /* Given ARG, a value of type (pointer or reference to a)*
4353 structure/union, extract the component named NAME from the ultimate
4354 target structure/union and return it as a value with its
4357 The routine searches for NAME among all members of the structure itself
4358 and (recursively) among all members of any wrapper members
4361 If NO_ERR, then simply return NULL in case of error, rather than
4364 static struct value
*
4365 ada_value_struct_elt (struct value
*arg
, const char *name
, int no_err
)
4367 struct type
*t
, *t1
;
4372 t1
= t
= ada_check_typedef (value_type (arg
));
4373 if (t
->code () == TYPE_CODE_REF
)
4375 t1
= TYPE_TARGET_TYPE (t
);
4378 t1
= ada_check_typedef (t1
);
4379 if (t1
->code () == TYPE_CODE_PTR
)
4381 arg
= coerce_ref (arg
);
4386 while (t
->code () == TYPE_CODE_PTR
)
4388 t1
= TYPE_TARGET_TYPE (t
);
4391 t1
= ada_check_typedef (t1
);
4392 if (t1
->code () == TYPE_CODE_PTR
)
4394 arg
= value_ind (arg
);
4401 if (t1
->code () != TYPE_CODE_STRUCT
&& t1
->code () != TYPE_CODE_UNION
)
4405 v
= ada_search_struct_field (name
, arg
, 0, t
);
4408 int bit_offset
, bit_size
, byte_offset
;
4409 struct type
*field_type
;
4412 if (t
->code () == TYPE_CODE_PTR
)
4413 address
= value_address (ada_value_ind (arg
));
4415 address
= value_address (ada_coerce_ref (arg
));
4417 /* Check to see if this is a tagged type. We also need to handle
4418 the case where the type is a reference to a tagged type, but
4419 we have to be careful to exclude pointers to tagged types.
4420 The latter should be shown as usual (as a pointer), whereas
4421 a reference should mostly be transparent to the user. */
4423 if (ada_is_tagged_type (t1
, 0)
4424 || (t1
->code () == TYPE_CODE_REF
4425 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1
), 0)))
4427 /* We first try to find the searched field in the current type.
4428 If not found then let's look in the fixed type. */
4430 if (!find_struct_field (name
, t1
, 0,
4431 nullptr, nullptr, nullptr,
4440 /* Convert to fixed type in all cases, so that we have proper
4441 offsets to each field in unconstrained record types. */
4442 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
,
4443 address
, NULL
, check_tag
);
4445 /* Resolve the dynamic type as well. */
4446 arg
= value_from_contents_and_address (t1
, nullptr, address
);
4447 t1
= value_type (arg
);
4449 if (find_struct_field (name
, t1
, 0,
4450 &field_type
, &byte_offset
, &bit_offset
,
4455 if (t
->code () == TYPE_CODE_REF
)
4456 arg
= ada_coerce_ref (arg
);
4458 arg
= ada_value_ind (arg
);
4459 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
4460 bit_offset
, bit_size
,
4464 v
= value_at_lazy (field_type
, address
+ byte_offset
);
4468 if (v
!= NULL
|| no_err
)
4471 error (_("There is no member named %s."), name
);
4477 error (_("Attempt to extract a component of "
4478 "a value that is not a record."));
4481 /* Return the value ACTUAL, converted to be an appropriate value for a
4482 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4483 allocating any necessary descriptors (fat pointers), or copies of
4484 values not residing in memory, updating it as needed. */
4487 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4489 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4490 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4491 struct type
*formal_target
=
4492 formal_type
->code () == TYPE_CODE_PTR
4493 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4494 struct type
*actual_target
=
4495 actual_type
->code () == TYPE_CODE_PTR
4496 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4498 if (ada_is_array_descriptor_type (formal_target
)
4499 && actual_target
->code () == TYPE_CODE_ARRAY
)
4500 return make_array_descriptor (formal_type
, actual
);
4501 else if (formal_type
->code () == TYPE_CODE_PTR
4502 || formal_type
->code () == TYPE_CODE_REF
)
4504 struct value
*result
;
4506 if (formal_target
->code () == TYPE_CODE_ARRAY
4507 && ada_is_array_descriptor_type (actual_target
))
4508 result
= desc_data (actual
);
4509 else if (formal_type
->code () != TYPE_CODE_PTR
)
4511 if (VALUE_LVAL (actual
) != lval_memory
)
4515 actual_type
= ada_check_typedef (value_type (actual
));
4516 val
= allocate_value (actual_type
);
4517 copy (value_contents (actual
), value_contents_raw (val
));
4518 actual
= ensure_lval (val
);
4520 result
= value_addr (actual
);
4524 return value_cast_pointers (formal_type
, result
, 0);
4526 else if (actual_type
->code () == TYPE_CODE_PTR
)
4527 return ada_value_ind (actual
);
4528 else if (ada_is_aligner_type (formal_type
))
4530 /* We need to turn this parameter into an aligner type
4532 struct value
*aligner
= allocate_value (formal_type
);
4533 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4535 value_assign_to_component (aligner
, component
, actual
);
4542 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4543 type TYPE. This is usually an inefficient no-op except on some targets
4544 (such as AVR) where the representation of a pointer and an address
4548 value_pointer (struct value
*value
, struct type
*type
)
4550 unsigned len
= TYPE_LENGTH (type
);
4551 gdb_byte
*buf
= (gdb_byte
*) alloca (len
);
4554 addr
= value_address (value
);
4555 gdbarch_address_to_pointer (type
->arch (), type
, buf
, addr
);
4556 addr
= extract_unsigned_integer (buf
, len
, type_byte_order (type
));
4561 /* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
4567 static struct value
*
4568 make_array_descriptor (struct type
*type
, struct value
*arr
)
4570 struct type
*bounds_type
= desc_bounds_type (type
);
4571 struct type
*desc_type
= desc_base_type (type
);
4572 struct value
*descriptor
= allocate_value (desc_type
);
4573 struct value
*bounds
= allocate_value (bounds_type
);
4576 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4579 modify_field (value_type (bounds
),
4580 value_contents_writeable (bounds
).data (),
4581 ada_array_bound (arr
, i
, 0),
4582 desc_bound_bitpos (bounds_type
, i
, 0),
4583 desc_bound_bitsize (bounds_type
, i
, 0));
4584 modify_field (value_type (bounds
),
4585 value_contents_writeable (bounds
).data (),
4586 ada_array_bound (arr
, i
, 1),
4587 desc_bound_bitpos (bounds_type
, i
, 1),
4588 desc_bound_bitsize (bounds_type
, i
, 1));
4591 bounds
= ensure_lval (bounds
);
4593 modify_field (value_type (descriptor
),
4594 value_contents_writeable (descriptor
).data (),
4595 value_pointer (ensure_lval (arr
),
4596 desc_type
->field (0).type ()),
4597 fat_pntr_data_bitpos (desc_type
),
4598 fat_pntr_data_bitsize (desc_type
));
4600 modify_field (value_type (descriptor
),
4601 value_contents_writeable (descriptor
).data (),
4602 value_pointer (bounds
,
4603 desc_type
->field (1).type ()),
4604 fat_pntr_bounds_bitpos (desc_type
),
4605 fat_pntr_bounds_bitsize (desc_type
));
4607 descriptor
= ensure_lval (descriptor
);
4609 if (type
->code () == TYPE_CODE_PTR
)
4610 return value_addr (descriptor
);
4615 /* Symbol Cache Module */
4617 /* Performance measurements made as of 2010-01-15 indicate that
4618 this cache does bring some noticeable improvements. Depending
4619 on the type of entity being printed, the cache can make it as much
4620 as an order of magnitude faster than without it.
4622 The descriptive type DWARF extension has significantly reduced
4623 the need for this cache, at least when DWARF is being used. However,
4624 even in this case, some expensive name-based symbol searches are still
4625 sometimes necessary - to find an XVZ variable, mostly. */
4627 /* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
4630 static struct ada_symbol_cache
*
4631 ada_get_symbol_cache (struct program_space
*pspace
)
4633 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4635 if (pspace_data
->sym_cache
== nullptr)
4636 pspace_data
->sym_cache
.reset (new ada_symbol_cache
);
4638 return pspace_data
->sym_cache
.get ();
4641 /* Clear all entries from the symbol cache. */
4644 ada_clear_symbol_cache ()
4646 struct ada_pspace_data
*pspace_data
4647 = get_ada_pspace_data (current_program_space
);
4649 if (pspace_data
->sym_cache
!= nullptr)
4650 pspace_data
->sym_cache
.reset ();
4653 /* Search our cache for an entry matching NAME and DOMAIN.
4654 Return it if found, or NULL otherwise. */
4656 static struct cache_entry
**
4657 find_entry (const char *name
, domain_enum domain
)
4659 struct ada_symbol_cache
*sym_cache
4660 = ada_get_symbol_cache (current_program_space
);
4661 int h
= msymbol_hash (name
) % HASH_SIZE
;
4662 struct cache_entry
**e
;
4664 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4666 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4672 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4673 Return 1 if found, 0 otherwise.
4675 If an entry was found and SYM is not NULL, set *SYM to the entry's
4676 SYM. Same principle for BLOCK if not NULL. */
4679 lookup_cached_symbol (const char *name
, domain_enum domain
,
4680 struct symbol
**sym
, const struct block
**block
)
4682 struct cache_entry
**e
= find_entry (name
, domain
);
4689 *block
= (*e
)->block
;
4693 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4694 in domain DOMAIN, save this result in our symbol cache. */
4697 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4698 const struct block
*block
)
4700 struct ada_symbol_cache
*sym_cache
4701 = ada_get_symbol_cache (current_program_space
);
4703 struct cache_entry
*e
;
4705 /* Symbols for builtin types don't have a block.
4706 For now don't cache such symbols. */
4707 if (sym
!= NULL
&& !sym
->is_objfile_owned ())
4710 /* If the symbol is a local symbol, then do not cache it, as a search
4711 for that symbol depends on the context. To determine whether
4712 the symbol is local or not, we check the block where we found it
4713 against the global and static blocks of its associated symtab. */
4716 const blockvector
&bv
= *sym
->symtab ()->compunit ()->blockvector ();
4718 if (bv
.global_block () != block
&& bv
.static_block () != block
)
4722 h
= msymbol_hash (name
) % HASH_SIZE
;
4723 e
= XOBNEW (&sym_cache
->cache_space
, cache_entry
);
4724 e
->next
= sym_cache
->root
[h
];
4725 sym_cache
->root
[h
] = e
;
4726 e
->name
= obstack_strdup (&sym_cache
->cache_space
, name
);
4734 /* Return the symbol name match type that should be used used when
4735 searching for all symbols matching LOOKUP_NAME.
4737 LOOKUP_NAME is expected to be a symbol name after transformation
4740 static symbol_name_match_type
4741 name_match_type_from_name (const char *lookup_name
)
4743 return (strstr (lookup_name
, "__") == NULL
4744 ? symbol_name_match_type::WILD
4745 : symbol_name_match_type::FULL
);
4748 /* Return the result of a standard (literal, C-like) lookup of NAME in
4749 given DOMAIN, visible from lexical block BLOCK. */
4751 static struct symbol
*
4752 standard_lookup (const char *name
, const struct block
*block
,
4755 /* Initialize it just to avoid a GCC false warning. */
4756 struct block_symbol sym
= {};
4758 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4760 ada_lookup_encoded_symbol (name
, block
, domain
, &sym
);
4761 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4766 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4767 in the symbol fields of SYMS. We treat enumerals as functions,
4768 since they contend in overloading in the same way. */
4770 is_nonfunction (const std::vector
<struct block_symbol
> &syms
)
4772 for (const block_symbol
&sym
: syms
)
4773 if (sym
.symbol
->type ()->code () != TYPE_CODE_FUNC
4774 && (sym
.symbol
->type ()->code () != TYPE_CODE_ENUM
4775 || sym
.symbol
->aclass () != LOC_CONST
))
4781 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4782 struct types. Otherwise, they may not. */
4785 equiv_types (struct type
*type0
, struct type
*type1
)
4789 if (type0
== NULL
|| type1
== NULL
4790 || type0
->code () != type1
->code ())
4792 if ((type0
->code () == TYPE_CODE_STRUCT
4793 || type0
->code () == TYPE_CODE_ENUM
)
4794 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4795 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4801 /* True iff SYM0 represents the same entity as SYM1, or one that is
4802 no more defined than that of SYM1. */
4805 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4809 if (sym0
->domain () != sym1
->domain ()
4810 || sym0
->aclass () != sym1
->aclass ())
4813 switch (sym0
->aclass ())
4819 struct type
*type0
= sym0
->type ();
4820 struct type
*type1
= sym1
->type ();
4821 const char *name0
= sym0
->linkage_name ();
4822 const char *name1
= sym1
->linkage_name ();
4823 int len0
= strlen (name0
);
4826 type0
->code () == type1
->code ()
4827 && (equiv_types (type0
, type1
)
4828 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4829 && startswith (name1
+ len0
, "___XV")));
4832 return sym0
->value_longest () == sym1
->value_longest ()
4833 && equiv_types (sym0
->type (), sym1
->type ());
4837 const char *name0
= sym0
->linkage_name ();
4838 const char *name1
= sym1
->linkage_name ();
4839 return (strcmp (name0
, name1
) == 0
4840 && sym0
->value_address () == sym1
->value_address ());
4848 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4849 records in RESULT. Do nothing if SYM is a duplicate. */
4852 add_defn_to_vec (std::vector
<struct block_symbol
> &result
,
4854 const struct block
*block
)
4856 /* Do not try to complete stub types, as the debugger is probably
4857 already scanning all symbols matching a certain name at the
4858 time when this function is called. Trying to replace the stub
4859 type by its associated full type will cause us to restart a scan
4860 which may lead to an infinite recursion. Instead, the client
4861 collecting the matching symbols will end up collecting several
4862 matches, with at least one of them complete. It can then filter
4863 out the stub ones if needed. */
4865 for (int i
= result
.size () - 1; i
>= 0; i
-= 1)
4867 if (lesseq_defined_than (sym
, result
[i
].symbol
))
4869 else if (lesseq_defined_than (result
[i
].symbol
, sym
))
4871 result
[i
].symbol
= sym
;
4872 result
[i
].block
= block
;
4877 struct block_symbol info
;
4880 result
.push_back (info
);
4883 /* Return a bound minimal symbol matching NAME according to Ada
4884 decoding rules. Returns an invalid symbol if there is no such
4885 minimal symbol. Names prefixed with "standard__" are handled
4886 specially: "standard__" is first stripped off, and only static and
4887 global symbols are searched. */
4889 struct bound_minimal_symbol
4890 ada_lookup_simple_minsym (const char *name
)
4892 struct bound_minimal_symbol result
;
4894 symbol_name_match_type match_type
= name_match_type_from_name (name
);
4895 lookup_name_info
lookup_name (name
, match_type
);
4897 symbol_name_matcher_ftype
*match_name
4898 = ada_get_symbol_name_matcher (lookup_name
);
4900 for (objfile
*objfile
: current_program_space
->objfiles ())
4902 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4904 if (match_name (msymbol
->linkage_name (), lookup_name
, NULL
)
4905 && msymbol
->type () != mst_solib_trampoline
)
4907 result
.minsym
= msymbol
;
4908 result
.objfile
= objfile
;
4917 /* True if TYPE is definitely an artificial type supplied to a symbol
4918 for which no debugging information was given in the symbol file. */
4921 is_nondebugging_type (struct type
*type
)
4923 const char *name
= ada_type_name (type
);
4925 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4928 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4929 that are deemed "identical" for practical purposes.
4931 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4932 types and that their number of enumerals is identical (in other
4933 words, type1->num_fields () == type2->num_fields ()). */
4936 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4940 /* The heuristic we use here is fairly conservative. We consider
4941 that 2 enumerate types are identical if they have the same
4942 number of enumerals and that all enumerals have the same
4943 underlying value and name. */
4945 /* All enums in the type should have an identical underlying value. */
4946 for (i
= 0; i
< type1
->num_fields (); i
++)
4947 if (type1
->field (i
).loc_enumval () != type2
->field (i
).loc_enumval ())
4950 /* All enumerals should also have the same name (modulo any numerical
4952 for (i
= 0; i
< type1
->num_fields (); i
++)
4954 const char *name_1
= type1
->field (i
).name ();
4955 const char *name_2
= type2
->field (i
).name ();
4956 int len_1
= strlen (name_1
);
4957 int len_2
= strlen (name_2
);
4959 ada_remove_trailing_digits (type1
->field (i
).name (), &len_1
);
4960 ada_remove_trailing_digits (type2
->field (i
).name (), &len_2
);
4962 || strncmp (type1
->field (i
).name (),
4963 type2
->field (i
).name (),
4971 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4972 that are deemed "identical" for practical purposes. Sometimes,
4973 enumerals are not strictly identical, but their types are so similar
4974 that they can be considered identical.
4976 For instance, consider the following code:
4978 type Color is (Black, Red, Green, Blue, White);
4979 type RGB_Color is new Color range Red .. Blue;
4981 Type RGB_Color is a subrange of an implicit type which is a copy
4982 of type Color. If we call that implicit type RGB_ColorB ("B" is
4983 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4984 As a result, when an expression references any of the enumeral
4985 by name (Eg. "print green"), the expression is technically
4986 ambiguous and the user should be asked to disambiguate. But
4987 doing so would only hinder the user, since it wouldn't matter
4988 what choice he makes, the outcome would always be the same.
4989 So, for practical purposes, we consider them as the same. */
4992 symbols_are_identical_enums (const std::vector
<struct block_symbol
> &syms
)
4996 /* Before performing a thorough comparison check of each type,
4997 we perform a series of inexpensive checks. We expect that these
4998 checks will quickly fail in the vast majority of cases, and thus
4999 help prevent the unnecessary use of a more expensive comparison.
5000 Said comparison also expects us to make some of these checks
5001 (see ada_identical_enum_types_p). */
5003 /* Quick check: All symbols should have an enum type. */
5004 for (i
= 0; i
< syms
.size (); i
++)
5005 if (syms
[i
].symbol
->type ()->code () != TYPE_CODE_ENUM
)
5008 /* Quick check: They should all have the same value. */
5009 for (i
= 1; i
< syms
.size (); i
++)
5010 if (syms
[i
].symbol
->value_longest () != syms
[0].symbol
->value_longest ())
5013 /* Quick check: They should all have the same number of enumerals. */
5014 for (i
= 1; i
< syms
.size (); i
++)
5015 if (syms
[i
].symbol
->type ()->num_fields ()
5016 != syms
[0].symbol
->type ()->num_fields ())
5019 /* All the sanity checks passed, so we might have a set of
5020 identical enumeration types. Perform a more complete
5021 comparison of the type of each symbol. */
5022 for (i
= 1; i
< syms
.size (); i
++)
5023 if (!ada_identical_enum_types_p (syms
[i
].symbol
->type (),
5024 syms
[0].symbol
->type ()))
5030 /* Remove any non-debugging symbols in SYMS that definitely
5031 duplicate other symbols in the list (The only case I know of where
5032 this happens is when object files containing stabs-in-ecoff are
5033 linked with files containing ordinary ecoff debugging symbols (or no
5034 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5037 remove_extra_symbols (std::vector
<struct block_symbol
> *syms
)
5041 /* We should never be called with less than 2 symbols, as there
5042 cannot be any extra symbol in that case. But it's easy to
5043 handle, since we have nothing to do in that case. */
5044 if (syms
->size () < 2)
5048 while (i
< syms
->size ())
5052 /* If two symbols have the same name and one of them is a stub type,
5053 the get rid of the stub. */
5055 if ((*syms
)[i
].symbol
->type ()->is_stub ()
5056 && (*syms
)[i
].symbol
->linkage_name () != NULL
)
5058 for (j
= 0; j
< syms
->size (); j
++)
5061 && !(*syms
)[j
].symbol
->type ()->is_stub ()
5062 && (*syms
)[j
].symbol
->linkage_name () != NULL
5063 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5064 (*syms
)[j
].symbol
->linkage_name ()) == 0)
5069 /* Two symbols with the same name, same class and same address
5070 should be identical. */
5072 else if ((*syms
)[i
].symbol
->linkage_name () != NULL
5073 && (*syms
)[i
].symbol
->aclass () == LOC_STATIC
5074 && is_nondebugging_type ((*syms
)[i
].symbol
->type ()))
5076 for (j
= 0; j
< syms
->size (); j
+= 1)
5079 && (*syms
)[j
].symbol
->linkage_name () != NULL
5080 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5081 (*syms
)[j
].symbol
->linkage_name ()) == 0
5082 && ((*syms
)[i
].symbol
->aclass ()
5083 == (*syms
)[j
].symbol
->aclass ())
5084 && (*syms
)[i
].symbol
->value_address ()
5085 == (*syms
)[j
].symbol
->value_address ())
5091 syms
->erase (syms
->begin () + i
);
5096 /* If all the remaining symbols are identical enumerals, then
5097 just keep the first one and discard the rest.
5099 Unlike what we did previously, we do not discard any entry
5100 unless they are ALL identical. This is because the symbol
5101 comparison is not a strict comparison, but rather a practical
5102 comparison. If all symbols are considered identical, then
5103 we can just go ahead and use the first one and discard the rest.
5104 But if we cannot reduce the list to a single element, we have
5105 to ask the user to disambiguate anyways. And if we have to
5106 present a multiple-choice menu, it's less confusing if the list
5107 isn't missing some choices that were identical and yet distinct. */
5108 if (symbols_are_identical_enums (*syms
))
5112 /* Given a type that corresponds to a renaming entity, use the type name
5113 to extract the scope (package name or function name, fully qualified,
5114 and following the GNAT encoding convention) where this renaming has been
5118 xget_renaming_scope (struct type
*renaming_type
)
5120 /* The renaming types adhere to the following convention:
5121 <scope>__<rename>___<XR extension>.
5122 So, to extract the scope, we search for the "___XR" extension,
5123 and then backtrack until we find the first "__". */
5125 const char *name
= renaming_type
->name ();
5126 const char *suffix
= strstr (name
, "___XR");
5129 /* Now, backtrack a bit until we find the first "__". Start looking
5130 at suffix - 3, as the <rename> part is at least one character long. */
5132 for (last
= suffix
- 3; last
> name
; last
--)
5133 if (last
[0] == '_' && last
[1] == '_')
5136 /* Make a copy of scope and return it. */
5137 return std::string (name
, last
);
5140 /* Return nonzero if NAME corresponds to a package name. */
5143 is_package_name (const char *name
)
5145 /* Here, We take advantage of the fact that no symbols are generated
5146 for packages, while symbols are generated for each function.
5147 So the condition for NAME represent a package becomes equivalent
5148 to NAME not existing in our list of symbols. There is only one
5149 small complication with library-level functions (see below). */
5151 /* If it is a function that has not been defined at library level,
5152 then we should be able to look it up in the symbols. */
5153 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5156 /* Library-level function names start with "_ada_". See if function
5157 "_ada_" followed by NAME can be found. */
5159 /* Do a quick check that NAME does not contain "__", since library-level
5160 functions names cannot contain "__" in them. */
5161 if (strstr (name
, "__") != NULL
)
5164 std::string fun_name
= string_printf ("_ada_%s", name
);
5166 return (standard_lookup (fun_name
.c_str (), NULL
, VAR_DOMAIN
) == NULL
);
5169 /* Return nonzero if SYM corresponds to a renaming entity that is
5170 not visible from FUNCTION_NAME. */
5173 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5175 if (sym
->aclass () != LOC_TYPEDEF
)
5178 std::string scope
= xget_renaming_scope (sym
->type ());
5180 /* If the rename has been defined in a package, then it is visible. */
5181 if (is_package_name (scope
.c_str ()))
5184 /* Check that the rename is in the current function scope by checking
5185 that its name starts with SCOPE. */
5187 /* If the function name starts with "_ada_", it means that it is
5188 a library-level function. Strip this prefix before doing the
5189 comparison, as the encoding for the renaming does not contain
5191 if (startswith (function_name
, "_ada_"))
5194 return !startswith (function_name
, scope
.c_str ());
5197 /* Remove entries from SYMS that corresponds to a renaming entity that
5198 is not visible from the function associated with CURRENT_BLOCK or
5199 that is superfluous due to the presence of more specific renaming
5200 information. Places surviving symbols in the initial entries of
5204 First, in cases where an object renaming is implemented as a
5205 reference variable, GNAT may produce both the actual reference
5206 variable and the renaming encoding. In this case, we discard the
5209 Second, GNAT emits a type following a specified encoding for each renaming
5210 entity. Unfortunately, STABS currently does not support the definition
5211 of types that are local to a given lexical block, so all renamings types
5212 are emitted at library level. As a consequence, if an application
5213 contains two renaming entities using the same name, and a user tries to
5214 print the value of one of these entities, the result of the ada symbol
5215 lookup will also contain the wrong renaming type.
5217 This function partially covers for this limitation by attempting to
5218 remove from the SYMS list renaming symbols that should be visible
5219 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5220 method with the current information available. The implementation
5221 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5223 - When the user tries to print a rename in a function while there
5224 is another rename entity defined in a package: Normally, the
5225 rename in the function has precedence over the rename in the
5226 package, so the latter should be removed from the list. This is
5227 currently not the case.
5229 - This function will incorrectly remove valid renames if
5230 the CURRENT_BLOCK corresponds to a function which symbol name
5231 has been changed by an "Export" pragma. As a consequence,
5232 the user will be unable to print such rename entities. */
5235 remove_irrelevant_renamings (std::vector
<struct block_symbol
> *syms
,
5236 const struct block
*current_block
)
5238 struct symbol
*current_function
;
5239 const char *current_function_name
;
5241 int is_new_style_renaming
;
5243 /* If there is both a renaming foo___XR... encoded as a variable and
5244 a simple variable foo in the same block, discard the latter.
5245 First, zero out such symbols, then compress. */
5246 is_new_style_renaming
= 0;
5247 for (i
= 0; i
< syms
->size (); i
+= 1)
5249 struct symbol
*sym
= (*syms
)[i
].symbol
;
5250 const struct block
*block
= (*syms
)[i
].block
;
5254 if (sym
== NULL
|| sym
->aclass () == LOC_TYPEDEF
)
5256 name
= sym
->linkage_name ();
5257 suffix
= strstr (name
, "___XR");
5261 int name_len
= suffix
- name
;
5264 is_new_style_renaming
= 1;
5265 for (j
= 0; j
< syms
->size (); j
+= 1)
5266 if (i
!= j
&& (*syms
)[j
].symbol
!= NULL
5267 && strncmp (name
, (*syms
)[j
].symbol
->linkage_name (),
5269 && block
== (*syms
)[j
].block
)
5270 (*syms
)[j
].symbol
= NULL
;
5273 if (is_new_style_renaming
)
5277 for (j
= k
= 0; j
< syms
->size (); j
+= 1)
5278 if ((*syms
)[j
].symbol
!= NULL
)
5280 (*syms
)[k
] = (*syms
)[j
];
5287 /* Extract the function name associated to CURRENT_BLOCK.
5288 Abort if unable to do so. */
5290 if (current_block
== NULL
)
5293 current_function
= block_linkage_function (current_block
);
5294 if (current_function
== NULL
)
5297 current_function_name
= current_function
->linkage_name ();
5298 if (current_function_name
== NULL
)
5301 /* Check each of the symbols, and remove it from the list if it is
5302 a type corresponding to a renaming that is out of the scope of
5303 the current block. */
5306 while (i
< syms
->size ())
5308 if (ada_parse_renaming ((*syms
)[i
].symbol
, NULL
, NULL
, NULL
)
5309 == ADA_OBJECT_RENAMING
5310 && old_renaming_is_invisible ((*syms
)[i
].symbol
,
5311 current_function_name
))
5312 syms
->erase (syms
->begin () + i
);
5318 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5319 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5321 Note: This function assumes that RESULT is empty. */
5324 ada_add_local_symbols (std::vector
<struct block_symbol
> &result
,
5325 const lookup_name_info
&lookup_name
,
5326 const struct block
*block
, domain_enum domain
)
5328 while (block
!= NULL
)
5330 ada_add_block_symbols (result
, block
, lookup_name
, domain
, NULL
);
5332 /* If we found a non-function match, assume that's the one. We
5333 only check this when finding a function boundary, so that we
5334 can accumulate all results from intervening blocks first. */
5335 if (block
->function () != nullptr && is_nonfunction (result
))
5338 block
= block
->superblock ();
5342 /* An object of this type is used as the callback argument when
5343 calling the map_matching_symbols method. */
5347 explicit match_data (std::vector
<struct block_symbol
> *rp
)
5351 DISABLE_COPY_AND_ASSIGN (match_data
);
5353 bool operator() (struct block_symbol
*bsym
);
5355 struct objfile
*objfile
= nullptr;
5356 std::vector
<struct block_symbol
> *resultp
;
5357 struct symbol
*arg_sym
= nullptr;
5358 bool found_sym
= false;
5361 /* A callback for add_nonlocal_symbols that adds symbol, found in
5362 BSYM, to a list of symbols. */
5365 match_data::operator() (struct block_symbol
*bsym
)
5367 const struct block
*block
= bsym
->block
;
5368 struct symbol
*sym
= bsym
->symbol
;
5372 if (!found_sym
&& arg_sym
!= NULL
)
5373 add_defn_to_vec (*resultp
,
5374 fixup_symbol_section (arg_sym
, objfile
),
5381 if (sym
->aclass () == LOC_UNRESOLVED
)
5383 else if (sym
->is_argument ())
5388 add_defn_to_vec (*resultp
,
5389 fixup_symbol_section (sym
, objfile
),
5396 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5397 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5398 symbols to RESULT. Return whether we found such symbols. */
5401 ada_add_block_renamings (std::vector
<struct block_symbol
> &result
,
5402 const struct block
*block
,
5403 const lookup_name_info
&lookup_name
,
5406 struct using_direct
*renaming
;
5407 int defns_mark
= result
.size ();
5409 symbol_name_matcher_ftype
*name_match
5410 = ada_get_symbol_name_matcher (lookup_name
);
5412 for (renaming
= block_using (block
);
5414 renaming
= renaming
->next
)
5418 /* Avoid infinite recursions: skip this renaming if we are actually
5419 already traversing it.
5421 Currently, symbol lookup in Ada don't use the namespace machinery from
5422 C++/Fortran support: skip namespace imports that use them. */
5423 if (renaming
->searched
5424 || (renaming
->import_src
!= NULL
5425 && renaming
->import_src
[0] != '\0')
5426 || (renaming
->import_dest
!= NULL
5427 && renaming
->import_dest
[0] != '\0'))
5429 renaming
->searched
= 1;
5431 /* TODO: here, we perform another name-based symbol lookup, which can
5432 pull its own multiple overloads. In theory, we should be able to do
5433 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5434 not a simple name. But in order to do this, we would need to enhance
5435 the DWARF reader to associate a symbol to this renaming, instead of a
5436 name. So, for now, we do something simpler: re-use the C++/Fortran
5437 namespace machinery. */
5438 r_name
= (renaming
->alias
!= NULL
5440 : renaming
->declaration
);
5441 if (name_match (r_name
, lookup_name
, NULL
))
5443 lookup_name_info
decl_lookup_name (renaming
->declaration
,
5444 lookup_name
.match_type ());
5445 ada_add_all_symbols (result
, block
, decl_lookup_name
, domain
,
5448 renaming
->searched
= 0;
5450 return result
.size () != defns_mark
;
5453 /* Implements compare_names, but only applying the comparision using
5454 the given CASING. */
5457 compare_names_with_case (const char *string1
, const char *string2
,
5458 enum case_sensitivity casing
)
5460 while (*string1
!= '\0' && *string2
!= '\0')
5464 if (isspace (*string1
) || isspace (*string2
))
5465 return strcmp_iw_ordered (string1
, string2
);
5467 if (casing
== case_sensitive_off
)
5469 c1
= tolower (*string1
);
5470 c2
= tolower (*string2
);
5487 return strcmp_iw_ordered (string1
, string2
);
5489 if (*string2
== '\0')
5491 if (is_name_suffix (string1
))
5498 if (*string2
== '(')
5499 return strcmp_iw_ordered (string1
, string2
);
5502 if (casing
== case_sensitive_off
)
5503 return tolower (*string1
) - tolower (*string2
);
5505 return *string1
- *string2
;
5510 /* Compare STRING1 to STRING2, with results as for strcmp.
5511 Compatible with strcmp_iw_ordered in that...
5513 strcmp_iw_ordered (STRING1, STRING2) <= 0
5517 compare_names (STRING1, STRING2) <= 0
5519 (they may differ as to what symbols compare equal). */
5522 compare_names (const char *string1
, const char *string2
)
5526 /* Similar to what strcmp_iw_ordered does, we need to perform
5527 a case-insensitive comparison first, and only resort to
5528 a second, case-sensitive, comparison if the first one was
5529 not sufficient to differentiate the two strings. */
5531 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5533 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5538 /* Convenience function to get at the Ada encoded lookup name for
5539 LOOKUP_NAME, as a C string. */
5542 ada_lookup_name (const lookup_name_info
&lookup_name
)
5544 return lookup_name
.ada ().lookup_name ().c_str ();
5547 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5548 for OBJFILE, then walk the objfile's symtabs and update the
5552 map_matching_symbols (struct objfile
*objfile
,
5553 const lookup_name_info
&lookup_name
,
5559 data
.objfile
= objfile
;
5560 objfile
->expand_matching_symbols (lookup_name
, domain
, global
,
5561 is_wild_match
? nullptr : compare_names
);
5563 const int block_kind
= global
? GLOBAL_BLOCK
: STATIC_BLOCK
;
5564 for (compunit_symtab
*symtab
: objfile
->compunits ())
5566 const struct block
*block
5567 = symtab
->blockvector ()->block (block_kind
);
5568 if (!iterate_over_symbols_terminated (block
, lookup_name
,
5574 /* Add to RESULT all non-local symbols whose name and domain match
5575 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5576 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5577 symbols otherwise. */
5580 add_nonlocal_symbols (std::vector
<struct block_symbol
> &result
,
5581 const lookup_name_info
&lookup_name
,
5582 domain_enum domain
, int global
)
5584 struct match_data
data (&result
);
5586 bool is_wild_match
= lookup_name
.ada ().wild_match_p ();
5588 for (objfile
*objfile
: current_program_space
->objfiles ())
5590 map_matching_symbols (objfile
, lookup_name
, is_wild_match
, domain
,
5593 for (compunit_symtab
*cu
: objfile
->compunits ())
5595 const struct block
*global_block
5596 = cu
->blockvector ()->global_block ();
5598 if (ada_add_block_renamings (result
, global_block
, lookup_name
,
5600 data
.found_sym
= true;
5604 if (result
.empty () && global
&& !is_wild_match
)
5606 const char *name
= ada_lookup_name (lookup_name
);
5607 std::string bracket_name
= std::string ("<_ada_") + name
+ '>';
5608 lookup_name_info
name1 (bracket_name
, symbol_name_match_type::FULL
);
5610 for (objfile
*objfile
: current_program_space
->objfiles ())
5611 map_matching_symbols (objfile
, name1
, false, domain
, global
, data
);
5615 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5616 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5617 returning the number of matches. Add these to RESULT.
5619 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5620 symbol match within the nest of blocks whose innermost member is BLOCK,
5621 is the one match returned (no other matches in that or
5622 enclosing blocks is returned). If there are any matches in or
5623 surrounding BLOCK, then these alone are returned.
5625 Names prefixed with "standard__" are handled specially:
5626 "standard__" is first stripped off (by the lookup_name
5627 constructor), and only static and global symbols are searched.
5629 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5630 to lookup global symbols. */
5633 ada_add_all_symbols (std::vector
<struct block_symbol
> &result
,
5634 const struct block
*block
,
5635 const lookup_name_info
&lookup_name
,
5638 int *made_global_lookup_p
)
5642 if (made_global_lookup_p
)
5643 *made_global_lookup_p
= 0;
5645 /* Special case: If the user specifies a symbol name inside package
5646 Standard, do a non-wild matching of the symbol name without
5647 the "standard__" prefix. This was primarily introduced in order
5648 to allow the user to specifically access the standard exceptions
5649 using, for instance, Standard.Constraint_Error when Constraint_Error
5650 is ambiguous (due to the user defining its own Constraint_Error
5651 entity inside its program). */
5652 if (lookup_name
.ada ().standard_p ())
5655 /* Check the non-global symbols. If we have ANY match, then we're done. */
5660 ada_add_local_symbols (result
, lookup_name
, block
, domain
);
5663 /* In the !full_search case we're are being called by
5664 iterate_over_symbols, and we don't want to search
5666 ada_add_block_symbols (result
, block
, lookup_name
, domain
, NULL
);
5668 if (!result
.empty () || !full_search
)
5672 /* No non-global symbols found. Check our cache to see if we have
5673 already performed this search before. If we have, then return
5676 if (lookup_cached_symbol (ada_lookup_name (lookup_name
),
5677 domain
, &sym
, &block
))
5680 add_defn_to_vec (result
, sym
, block
);
5684 if (made_global_lookup_p
)
5685 *made_global_lookup_p
= 1;
5687 /* Search symbols from all global blocks. */
5689 add_nonlocal_symbols (result
, lookup_name
, domain
, 1);
5691 /* Now add symbols from all per-file blocks if we've gotten no hits
5692 (not strictly correct, but perhaps better than an error). */
5694 if (result
.empty ())
5695 add_nonlocal_symbols (result
, lookup_name
, domain
, 0);
5698 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5699 is non-zero, enclosing scope and in global scopes.
5701 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5702 blocks and symbol tables (if any) in which they were found.
5704 When full_search is non-zero, any non-function/non-enumeral
5705 symbol match within the nest of blocks whose innermost member is BLOCK,
5706 is the one match returned (no other matches in that or
5707 enclosing blocks is returned). If there are any matches in or
5708 surrounding BLOCK, then these alone are returned.
5710 Names prefixed with "standard__" are handled specially: "standard__"
5711 is first stripped off, and only static and global symbols are searched. */
5713 static std::vector
<struct block_symbol
>
5714 ada_lookup_symbol_list_worker (const lookup_name_info
&lookup_name
,
5715 const struct block
*block
,
5719 int syms_from_global_search
;
5720 std::vector
<struct block_symbol
> results
;
5722 ada_add_all_symbols (results
, block
, lookup_name
,
5723 domain
, full_search
, &syms_from_global_search
);
5725 remove_extra_symbols (&results
);
5727 if (results
.empty () && full_search
&& syms_from_global_search
)
5728 cache_symbol (ada_lookup_name (lookup_name
), domain
, NULL
, NULL
);
5730 if (results
.size () == 1 && full_search
&& syms_from_global_search
)
5731 cache_symbol (ada_lookup_name (lookup_name
), domain
,
5732 results
[0].symbol
, results
[0].block
);
5734 remove_irrelevant_renamings (&results
, block
);
5738 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5739 in global scopes, returning (SYM,BLOCK) tuples.
5741 See ada_lookup_symbol_list_worker for further details. */
5743 std::vector
<struct block_symbol
>
5744 ada_lookup_symbol_list (const char *name
, const struct block
*block
,
5747 symbol_name_match_type name_match_type
= name_match_type_from_name (name
);
5748 lookup_name_info
lookup_name (name
, name_match_type
);
5750 return ada_lookup_symbol_list_worker (lookup_name
, block
, domain
, 1);
5753 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5754 to 1, but choosing the first symbol found if there are multiple
5757 The result is stored in *INFO, which must be non-NULL.
5758 If no match is found, INFO->SYM is set to NULL. */
5761 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5763 struct block_symbol
*info
)
5765 /* Since we already have an encoded name, wrap it in '<>' to force a
5766 verbatim match. Otherwise, if the name happens to not look like
5767 an encoded name (because it doesn't include a "__"),
5768 ada_lookup_name_info would re-encode/fold it again, and that
5769 would e.g., incorrectly lowercase object renaming names like
5770 "R28b" -> "r28b". */
5771 std::string verbatim
= add_angle_brackets (name
);
5773 gdb_assert (info
!= NULL
);
5774 *info
= ada_lookup_symbol (verbatim
.c_str (), block
, domain
);
5777 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5778 scope and in global scopes, or NULL if none. NAME is folded and
5779 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5780 choosing the first symbol if there are multiple choices. */
5783 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5786 std::vector
<struct block_symbol
> candidates
5787 = ada_lookup_symbol_list (name
, block0
, domain
);
5789 if (candidates
.empty ())
5792 block_symbol info
= candidates
[0];
5793 info
.symbol
= fixup_symbol_section (info
.symbol
, NULL
);
5798 /* True iff STR is a possible encoded suffix of a normal Ada name
5799 that is to be ignored for matching purposes. Suffixes of parallel
5800 names (e.g., XVE) are not included here. Currently, the possible suffixes
5801 are given by any of the regular expressions:
5803 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5804 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5805 TKB [subprogram suffix for task bodies]
5806 _E[0-9]+[bs]$ [protected object entry suffixes]
5807 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5809 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5810 match is performed. This sequence is used to differentiate homonyms,
5811 is an optional part of a valid name suffix. */
5814 is_name_suffix (const char *str
)
5817 const char *matching
;
5818 const int len
= strlen (str
);
5820 /* Skip optional leading __[0-9]+. */
5822 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5825 while (isdigit (str
[0]))
5831 if (str
[0] == '.' || str
[0] == '$')
5834 while (isdigit (matching
[0]))
5836 if (matching
[0] == '\0')
5842 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5845 while (isdigit (matching
[0]))
5847 if (matching
[0] == '\0')
5851 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5853 if (strcmp (str
, "TKB") == 0)
5857 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5858 with a N at the end. Unfortunately, the compiler uses the same
5859 convention for other internal types it creates. So treating
5860 all entity names that end with an "N" as a name suffix causes
5861 some regressions. For instance, consider the case of an enumerated
5862 type. To support the 'Image attribute, it creates an array whose
5864 Having a single character like this as a suffix carrying some
5865 information is a bit risky. Perhaps we should change the encoding
5866 to be something like "_N" instead. In the meantime, do not do
5867 the following check. */
5868 /* Protected Object Subprograms */
5869 if (len
== 1 && str
[0] == 'N')
5874 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5877 while (isdigit (matching
[0]))
5879 if ((matching
[0] == 'b' || matching
[0] == 's')
5880 && matching
[1] == '\0')
5884 /* ??? We should not modify STR directly, as we are doing below. This
5885 is fine in this case, but may become problematic later if we find
5886 that this alternative did not work, and want to try matching
5887 another one from the begining of STR. Since we modified it, we
5888 won't be able to find the begining of the string anymore! */
5892 while (str
[0] != '_' && str
[0] != '\0')
5894 if (str
[0] != 'n' && str
[0] != 'b')
5900 if (str
[0] == '\000')
5905 if (str
[1] != '_' || str
[2] == '\000')
5909 if (strcmp (str
+ 3, "JM") == 0)
5911 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5912 the LJM suffix in favor of the JM one. But we will
5913 still accept LJM as a valid suffix for a reasonable
5914 amount of time, just to allow ourselves to debug programs
5915 compiled using an older version of GNAT. */
5916 if (strcmp (str
+ 3, "LJM") == 0)
5920 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
5921 || str
[4] == 'U' || str
[4] == 'P')
5923 if (str
[4] == 'R' && str
[5] != 'T')
5927 if (!isdigit (str
[2]))
5929 for (k
= 3; str
[k
] != '\0'; k
+= 1)
5930 if (!isdigit (str
[k
]) && str
[k
] != '_')
5934 if (str
[0] == '$' && isdigit (str
[1]))
5936 for (k
= 2; str
[k
] != '\0'; k
+= 1)
5937 if (!isdigit (str
[k
]) && str
[k
] != '_')
5944 /* Return non-zero if the string starting at NAME and ending before
5945 NAME_END contains no capital letters. */
5948 is_valid_name_for_wild_match (const char *name0
)
5950 std::string decoded_name
= ada_decode (name0
);
5953 /* If the decoded name starts with an angle bracket, it means that
5954 NAME0 does not follow the GNAT encoding format. It should then
5955 not be allowed as a possible wild match. */
5956 if (decoded_name
[0] == '<')
5959 for (i
=0; decoded_name
[i
] != '\0'; i
++)
5960 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
5966 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5967 character which could start a simple name. Assumes that *NAMEP points
5968 somewhere inside the string beginning at NAME0. */
5971 advance_wild_match (const char **namep
, const char *name0
, char target0
)
5973 const char *name
= *namep
;
5983 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
5986 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
5991 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
5992 || name
[2] == target0
))
5997 else if (t1
== '_' && name
[2] == 'B' && name
[3] == '_')
5999 /* Names like "pkg__B_N__name", where N is a number, are
6000 block-local. We can handle these by simply skipping
6007 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
6017 /* Return true iff NAME encodes a name of the form prefix.PATN.
6018 Ignores any informational suffixes of NAME (i.e., for which
6019 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6023 wild_match (const char *name
, const char *patn
)
6026 const char *name0
= name
;
6028 if (startswith (name
, "___ghost_"))
6033 const char *match
= name
;
6037 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
6040 if (*p
== '\0' && is_name_suffix (name
))
6041 return match
== name0
|| is_valid_name_for_wild_match (name0
);
6043 if (name
[-1] == '_')
6046 if (!advance_wild_match (&name
, name0
, *patn
))
6051 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6052 necessary). OBJFILE is the section containing BLOCK. */
6055 ada_add_block_symbols (std::vector
<struct block_symbol
> &result
,
6056 const struct block
*block
,
6057 const lookup_name_info
&lookup_name
,
6058 domain_enum domain
, struct objfile
*objfile
)
6060 struct block_iterator iter
;
6061 /* A matching argument symbol, if any. */
6062 struct symbol
*arg_sym
;
6063 /* Set true when we find a matching non-argument symbol. */
6069 for (sym
= block_iter_match_first (block
, lookup_name
, &iter
);
6071 sym
= block_iter_match_next (lookup_name
, &iter
))
6073 if (symbol_matches_domain (sym
->language (), sym
->domain (), domain
))
6075 if (sym
->aclass () != LOC_UNRESOLVED
)
6077 if (sym
->is_argument ())
6082 add_defn_to_vec (result
,
6083 fixup_symbol_section (sym
, objfile
),
6090 /* Handle renamings. */
6092 if (ada_add_block_renamings (result
, block
, lookup_name
, domain
))
6095 if (!found_sym
&& arg_sym
!= NULL
)
6097 add_defn_to_vec (result
,
6098 fixup_symbol_section (arg_sym
, objfile
),
6102 if (!lookup_name
.ada ().wild_match_p ())
6106 const std::string
&ada_lookup_name
= lookup_name
.ada ().lookup_name ();
6107 const char *name
= ada_lookup_name
.c_str ();
6108 size_t name_len
= ada_lookup_name
.size ();
6110 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6112 if (symbol_matches_domain (sym
->language (),
6113 sym
->domain (), domain
))
6117 cmp
= (int) '_' - (int) sym
->linkage_name ()[0];
6120 cmp
= !startswith (sym
->linkage_name (), "_ada_");
6122 cmp
= strncmp (name
, sym
->linkage_name () + 5,
6127 && is_name_suffix (sym
->linkage_name () + name_len
+ 5))
6129 if (sym
->aclass () != LOC_UNRESOLVED
)
6131 if (sym
->is_argument ())
6136 add_defn_to_vec (result
,
6137 fixup_symbol_section (sym
, objfile
),
6145 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6146 They aren't parameters, right? */
6147 if (!found_sym
&& arg_sym
!= NULL
)
6149 add_defn_to_vec (result
,
6150 fixup_symbol_section (arg_sym
, objfile
),
6157 /* Symbol Completion */
6162 ada_lookup_name_info::matches
6163 (const char *sym_name
,
6164 symbol_name_match_type match_type
,
6165 completion_match_result
*comp_match_res
) const
6168 const char *text
= m_encoded_name
.c_str ();
6169 size_t text_len
= m_encoded_name
.size ();
6171 /* First, test against the fully qualified name of the symbol. */
6173 if (strncmp (sym_name
, text
, text_len
) == 0)
6176 std::string decoded_name
= ada_decode (sym_name
);
6177 if (match
&& !m_encoded_p
)
6179 /* One needed check before declaring a positive match is to verify
6180 that iff we are doing a verbatim match, the decoded version
6181 of the symbol name starts with '<'. Otherwise, this symbol name
6182 is not a suitable completion. */
6184 bool has_angle_bracket
= (decoded_name
[0] == '<');
6185 match
= (has_angle_bracket
== m_verbatim_p
);
6188 if (match
&& !m_verbatim_p
)
6190 /* When doing non-verbatim match, another check that needs to
6191 be done is to verify that the potentially matching symbol name
6192 does not include capital letters, because the ada-mode would
6193 not be able to understand these symbol names without the
6194 angle bracket notation. */
6197 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6202 /* Second: Try wild matching... */
6204 if (!match
&& m_wild_match_p
)
6206 /* Since we are doing wild matching, this means that TEXT
6207 may represent an unqualified symbol name. We therefore must
6208 also compare TEXT against the unqualified name of the symbol. */
6209 sym_name
= ada_unqualified_name (decoded_name
.c_str ());
6211 if (strncmp (sym_name
, text
, text_len
) == 0)
6215 /* Finally: If we found a match, prepare the result to return. */
6220 if (comp_match_res
!= NULL
)
6222 std::string
&match_str
= comp_match_res
->match
.storage ();
6225 match_str
= ada_decode (sym_name
);
6229 match_str
= add_angle_brackets (sym_name
);
6231 match_str
= sym_name
;
6235 comp_match_res
->set_match (match_str
.c_str ());
6243 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6244 for tagged types. */
6247 ada_is_dispatch_table_ptr_type (struct type
*type
)
6251 if (type
->code () != TYPE_CODE_PTR
)
6254 name
= TYPE_TARGET_TYPE (type
)->name ();
6258 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6261 /* Return non-zero if TYPE is an interface tag. */
6264 ada_is_interface_tag (struct type
*type
)
6266 const char *name
= type
->name ();
6271 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6274 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6275 to be invisible to users. */
6278 ada_is_ignored_field (struct type
*type
, int field_num
)
6280 if (field_num
< 0 || field_num
> type
->num_fields ())
6283 /* Check the name of that field. */
6285 const char *name
= type
->field (field_num
).name ();
6287 /* Anonymous field names should not be printed.
6288 brobecker/2007-02-20: I don't think this can actually happen
6289 but we don't want to print the value of anonymous fields anyway. */
6293 /* Normally, fields whose name start with an underscore ("_")
6294 are fields that have been internally generated by the compiler,
6295 and thus should not be printed. The "_parent" field is special,
6296 however: This is a field internally generated by the compiler
6297 for tagged types, and it contains the components inherited from
6298 the parent type. This field should not be printed as is, but
6299 should not be ignored either. */
6300 if (name
[0] == '_' && !startswith (name
, "_parent"))
6303 /* The compiler doesn't document this, but sometimes it emits
6304 a field whose name starts with a capital letter, like 'V148s'.
6305 These aren't marked as artificial in any way, but we know they
6306 should be ignored. However, wrapper fields should not be
6308 if (name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O')
6310 /* Wrapper field. */
6312 else if (isupper (name
[0]))
6316 /* If this is the dispatch table of a tagged type or an interface tag,
6318 if (ada_is_tagged_type (type
, 1)
6319 && (ada_is_dispatch_table_ptr_type (type
->field (field_num
).type ())
6320 || ada_is_interface_tag (type
->field (field_num
).type ())))
6323 /* Not a special field, so it should not be ignored. */
6327 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6328 pointer or reference type whose ultimate target has a tag field. */
6331 ada_is_tagged_type (struct type
*type
, int refok
)
6333 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1) != NULL
);
6336 /* True iff TYPE represents the type of X'Tag */
6339 ada_is_tag_type (struct type
*type
)
6341 type
= ada_check_typedef (type
);
6343 if (type
== NULL
|| type
->code () != TYPE_CODE_PTR
)
6347 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6349 return (name
!= NULL
6350 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6354 /* The type of the tag on VAL. */
6356 static struct type
*
6357 ada_tag_type (struct value
*val
)
6359 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0);
6362 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6363 retired at Ada 05). */
6366 is_ada95_tag (struct value
*tag
)
6368 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6371 /* The value of the tag on VAL. */
6373 static struct value
*
6374 ada_value_tag (struct value
*val
)
6376 return ada_value_struct_elt (val
, "_tag", 0);
6379 /* The value of the tag on the object of type TYPE whose contents are
6380 saved at VALADDR, if it is non-null, or is at memory address
6383 static struct value
*
6384 value_tag_from_contents_and_address (struct type
*type
,
6385 const gdb_byte
*valaddr
,
6388 int tag_byte_offset
;
6389 struct type
*tag_type
;
6391 gdb::array_view
<const gdb_byte
> contents
;
6392 if (valaddr
!= nullptr)
6393 contents
= gdb::make_array_view (valaddr
, TYPE_LENGTH (type
));
6394 struct type
*resolved_type
= resolve_dynamic_type (type
, contents
, address
);
6395 if (find_struct_field ("_tag", resolved_type
, 0, &tag_type
, &tag_byte_offset
,
6398 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6400 : valaddr
+ tag_byte_offset
);
6401 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6403 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6408 static struct type
*
6409 type_from_tag (struct value
*tag
)
6411 gdb::unique_xmalloc_ptr
<char> type_name
= ada_tag_name (tag
);
6413 if (type_name
!= NULL
)
6414 return ada_find_any_type (ada_encode (type_name
.get ()).c_str ());
6418 /* Given a value OBJ of a tagged type, return a value of this
6419 type at the base address of the object. The base address, as
6420 defined in Ada.Tags, it is the address of the primary tag of
6421 the object, and therefore where the field values of its full
6422 view can be fetched. */
6425 ada_tag_value_at_base_address (struct value
*obj
)
6428 LONGEST offset_to_top
= 0;
6429 struct type
*ptr_type
, *obj_type
;
6431 CORE_ADDR base_address
;
6433 obj_type
= value_type (obj
);
6435 /* It is the responsability of the caller to deref pointers. */
6437 if (obj_type
->code () == TYPE_CODE_PTR
|| obj_type
->code () == TYPE_CODE_REF
)
6440 tag
= ada_value_tag (obj
);
6444 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6446 if (is_ada95_tag (tag
))
6449 struct type
*offset_type
6450 = language_lookup_primitive_type (language_def (language_ada
),
6451 target_gdbarch(), "storage_offset");
6452 ptr_type
= lookup_pointer_type (offset_type
);
6453 val
= value_cast (ptr_type
, tag
);
6457 /* It is perfectly possible that an exception be raised while
6458 trying to determine the base address, just like for the tag;
6459 see ada_tag_name for more details. We do not print the error
6460 message for the same reason. */
6464 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6467 catch (const gdb_exception_error
&e
)
6472 /* If offset is null, nothing to do. */
6474 if (offset_to_top
== 0)
6477 /* -1 is a special case in Ada.Tags; however, what should be done
6478 is not quite clear from the documentation. So do nothing for
6481 if (offset_to_top
== -1)
6484 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6485 top is used. In this situation the offset is stored just after
6486 the tag, in the object itself. */
6487 ULONGEST last
= (((ULONGEST
) 1) << (8 * TYPE_LENGTH (offset_type
) - 1)) - 1;
6488 if (offset_to_top
== last
)
6490 struct value
*tem
= value_addr (tag
);
6491 tem
= value_ptradd (tem
, 1);
6492 tem
= value_cast (ptr_type
, tem
);
6493 offset_to_top
= value_as_long (value_ind (tem
));
6496 if (offset_to_top
> 0)
6498 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6499 from the base address. This was however incompatible with
6500 C++ dispatch table: C++ uses a *negative* value to *add*
6501 to the base address. Ada's convention has therefore been
6502 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6503 use the same convention. Here, we support both cases by
6504 checking the sign of OFFSET_TO_TOP. */
6505 offset_to_top
= -offset_to_top
;
6508 base_address
= value_address (obj
) + offset_to_top
;
6509 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6511 /* Make sure that we have a proper tag at the new address.
6512 Otherwise, offset_to_top is bogus (which can happen when
6513 the object is not initialized yet). */
6518 obj_type
= type_from_tag (tag
);
6523 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6526 /* Return the "ada__tags__type_specific_data" type. */
6528 static struct type
*
6529 ada_get_tsd_type (struct inferior
*inf
)
6531 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6533 if (data
->tsd_type
== 0)
6534 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6535 return data
->tsd_type
;
6538 /* Return the TSD (type-specific data) associated to the given TAG.
6539 TAG is assumed to be the tag of a tagged-type entity.
6541 May return NULL if we are unable to get the TSD. */
6543 static struct value
*
6544 ada_get_tsd_from_tag (struct value
*tag
)
6549 /* First option: The TSD is simply stored as a field of our TAG.
6550 Only older versions of GNAT would use this format, but we have
6551 to test it first, because there are no visible markers for
6552 the current approach except the absence of that field. */
6554 val
= ada_value_struct_elt (tag
, "tsd", 1);
6558 /* Try the second representation for the dispatch table (in which
6559 there is no explicit 'tsd' field in the referent of the tag pointer,
6560 and instead the tsd pointer is stored just before the dispatch
6563 type
= ada_get_tsd_type (current_inferior());
6566 type
= lookup_pointer_type (lookup_pointer_type (type
));
6567 val
= value_cast (type
, tag
);
6570 return value_ind (value_ptradd (val
, -1));
6573 /* Given the TSD of a tag (type-specific data), return a string
6574 containing the name of the associated type.
6576 May return NULL if we are unable to determine the tag name. */
6578 static gdb::unique_xmalloc_ptr
<char>
6579 ada_tag_name_from_tsd (struct value
*tsd
)
6583 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6586 gdb::unique_xmalloc_ptr
<char> buffer
6587 = target_read_string (value_as_address (val
), INT_MAX
);
6588 if (buffer
== nullptr)
6593 /* Let this throw an exception on error. If the data is
6594 uninitialized, we'd rather not have the user see a
6596 const char *folded
= ada_fold_name (buffer
.get (), true);
6597 return make_unique_xstrdup (folded
);
6599 catch (const gdb_exception
&)
6605 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6608 Return NULL if the TAG is not an Ada tag, or if we were unable to
6609 determine the name of that tag. */
6611 gdb::unique_xmalloc_ptr
<char>
6612 ada_tag_name (struct value
*tag
)
6614 gdb::unique_xmalloc_ptr
<char> name
;
6616 if (!ada_is_tag_type (value_type (tag
)))
6619 /* It is perfectly possible that an exception be raised while trying
6620 to determine the TAG's name, even under normal circumstances:
6621 The associated variable may be uninitialized or corrupted, for
6622 instance. We do not let any exception propagate past this point.
6623 instead we return NULL.
6625 We also do not print the error message either (which often is very
6626 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6627 the caller print a more meaningful message if necessary. */
6630 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6633 name
= ada_tag_name_from_tsd (tsd
);
6635 catch (const gdb_exception_error
&e
)
6642 /* The parent type of TYPE, or NULL if none. */
6645 ada_parent_type (struct type
*type
)
6649 type
= ada_check_typedef (type
);
6651 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
)
6654 for (i
= 0; i
< type
->num_fields (); i
+= 1)
6655 if (ada_is_parent_field (type
, i
))
6657 struct type
*parent_type
= type
->field (i
).type ();
6659 /* If the _parent field is a pointer, then dereference it. */
6660 if (parent_type
->code () == TYPE_CODE_PTR
)
6661 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6662 /* If there is a parallel XVS type, get the actual base type. */
6663 parent_type
= ada_get_base_type (parent_type
);
6665 return ada_check_typedef (parent_type
);
6671 /* True iff field number FIELD_NUM of structure type TYPE contains the
6672 parent-type (inherited) fields of a derived type. Assumes TYPE is
6673 a structure type with at least FIELD_NUM+1 fields. */
6676 ada_is_parent_field (struct type
*type
, int field_num
)
6678 const char *name
= ada_check_typedef (type
)->field (field_num
).name ();
6680 return (name
!= NULL
6681 && (startswith (name
, "PARENT")
6682 || startswith (name
, "_parent")));
6685 /* True iff field number FIELD_NUM of structure type TYPE is a
6686 transparent wrapper field (which should be silently traversed when doing
6687 field selection and flattened when printing). Assumes TYPE is a
6688 structure type with at least FIELD_NUM+1 fields. Such fields are always
6692 ada_is_wrapper_field (struct type
*type
, int field_num
)
6694 const char *name
= type
->field (field_num
).name ();
6696 if (name
!= NULL
&& strcmp (name
, "RETVAL") == 0)
6698 /* This happens in functions with "out" or "in out" parameters
6699 which are passed by copy. For such functions, GNAT describes
6700 the function's return type as being a struct where the return
6701 value is in a field called RETVAL, and where the other "out"
6702 or "in out" parameters are fields of that struct. This is not
6707 return (name
!= NULL
6708 && (startswith (name
, "PARENT")
6709 || strcmp (name
, "REP") == 0
6710 || startswith (name
, "_parent")
6711 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6714 /* True iff field number FIELD_NUM of structure or union type TYPE
6715 is a variant wrapper. Assumes TYPE is a structure type with at least
6716 FIELD_NUM+1 fields. */
6719 ada_is_variant_part (struct type
*type
, int field_num
)
6721 /* Only Ada types are eligible. */
6722 if (!ADA_TYPE_P (type
))
6725 struct type
*field_type
= type
->field (field_num
).type ();
6727 return (field_type
->code () == TYPE_CODE_UNION
6728 || (is_dynamic_field (type
, field_num
)
6729 && (TYPE_TARGET_TYPE (field_type
)->code ()
6730 == TYPE_CODE_UNION
)));
6733 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6734 whose discriminants are contained in the record type OUTER_TYPE,
6735 returns the type of the controlling discriminant for the variant.
6736 May return NULL if the type could not be found. */
6739 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6741 const char *name
= ada_variant_discrim_name (var_type
);
6743 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1);
6746 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6747 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6748 represents a 'when others' clause; otherwise 0. */
6751 ada_is_others_clause (struct type
*type
, int field_num
)
6753 const char *name
= type
->field (field_num
).name ();
6755 return (name
!= NULL
&& name
[0] == 'O');
6758 /* Assuming that TYPE0 is the type of the variant part of a record,
6759 returns the name of the discriminant controlling the variant.
6760 The value is valid until the next call to ada_variant_discrim_name. */
6763 ada_variant_discrim_name (struct type
*type0
)
6765 static std::string result
;
6768 const char *discrim_end
;
6769 const char *discrim_start
;
6771 if (type0
->code () == TYPE_CODE_PTR
)
6772 type
= TYPE_TARGET_TYPE (type0
);
6776 name
= ada_type_name (type
);
6778 if (name
== NULL
|| name
[0] == '\000')
6781 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
6784 if (startswith (discrim_end
, "___XVN"))
6787 if (discrim_end
== name
)
6790 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
6793 if (discrim_start
== name
+ 1)
6795 if ((discrim_start
> name
+ 3
6796 && startswith (discrim_start
- 3, "___"))
6797 || discrim_start
[-1] == '.')
6801 result
= std::string (discrim_start
, discrim_end
- discrim_start
);
6802 return result
.c_str ();
6805 /* Scan STR for a subtype-encoded number, beginning at position K.
6806 Put the position of the character just past the number scanned in
6807 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6808 Return 1 if there was a valid number at the given position, and 0
6809 otherwise. A "subtype-encoded" number consists of the absolute value
6810 in decimal, followed by the letter 'm' to indicate a negative number.
6811 Assumes 0m does not occur. */
6814 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
6818 if (!isdigit (str
[k
]))
6821 /* Do it the hard way so as not to make any assumption about
6822 the relationship of unsigned long (%lu scan format code) and
6825 while (isdigit (str
[k
]))
6827 RU
= RU
* 10 + (str
[k
] - '0');
6834 *R
= (-(LONGEST
) (RU
- 1)) - 1;
6840 /* NOTE on the above: Technically, C does not say what the results of
6841 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6842 number representable as a LONGEST (although either would probably work
6843 in most implementations). When RU>0, the locution in the then branch
6844 above is always equivalent to the negative of RU. */
6851 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6852 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6853 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6856 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
6858 const char *name
= type
->field (field_num
).name ();
6872 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
6882 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
6883 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
6885 if (val
>= L
&& val
<= U
)
6897 /* FIXME: Lots of redundancy below. Try to consolidate. */
6899 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6900 ARG_TYPE, extract and return the value of one of its (non-static)
6901 fields. FIELDNO says which field. Differs from value_primitive_field
6902 only in that it can handle packed values of arbitrary type. */
6905 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
6906 struct type
*arg_type
)
6910 arg_type
= ada_check_typedef (arg_type
);
6911 type
= arg_type
->field (fieldno
).type ();
6913 /* Handle packed fields. It might be that the field is not packed
6914 relative to its containing structure, but the structure itself is
6915 packed; in this case we must take the bit-field path. */
6916 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0 || value_bitpos (arg1
) != 0)
6918 int bit_pos
= arg_type
->field (fieldno
).loc_bitpos ();
6919 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
6921 return ada_value_primitive_packed_val (arg1
,
6922 value_contents (arg1
).data (),
6923 offset
+ bit_pos
/ 8,
6924 bit_pos
% 8, bit_size
, type
);
6927 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
6930 /* Find field with name NAME in object of type TYPE. If found,
6931 set the following for each argument that is non-null:
6932 - *FIELD_TYPE_P to the field's type;
6933 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6934 an object of that type;
6935 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6936 - *BIT_SIZE_P to its size in bits if the field is packed, and
6938 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6939 fields up to but not including the desired field, or by the total
6940 number of fields if not found. A NULL value of NAME never
6941 matches; the function just counts visible fields in this case.
6943 Notice that we need to handle when a tagged record hierarchy
6944 has some components with the same name, like in this scenario:
6946 type Top_T is tagged record
6952 type Middle_T is new Top.Top_T with record
6953 N : Character := 'a';
6957 type Bottom_T is new Middle.Middle_T with record
6959 C : Character := '5';
6961 A : Character := 'J';
6964 Let's say we now have a variable declared and initialized as follow:
6966 TC : Top_A := new Bottom_T;
6968 And then we use this variable to call this function
6970 procedure Assign (Obj: in out Top_T; TV : Integer);
6974 Assign (Top_T (B), 12);
6976 Now, we're in the debugger, and we're inside that procedure
6977 then and we want to print the value of obj.c:
6979 Usually, the tagged record or one of the parent type owns the
6980 component to print and there's no issue but in this particular
6981 case, what does it mean to ask for Obj.C? Since the actual
6982 type for object is type Bottom_T, it could mean two things: type
6983 component C from the Middle_T view, but also component C from
6984 Bottom_T. So in that "undefined" case, when the component is
6985 not found in the non-resolved type (which includes all the
6986 components of the parent type), then resolve it and see if we
6987 get better luck once expanded.
6989 In the case of homonyms in the derived tagged type, we don't
6990 guaranty anything, and pick the one that's easiest for us
6993 Returns 1 if found, 0 otherwise. */
6996 find_struct_field (const char *name
, struct type
*type
, int offset
,
6997 struct type
**field_type_p
,
6998 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
7002 int parent_offset
= -1;
7004 type
= ada_check_typedef (type
);
7006 if (field_type_p
!= NULL
)
7007 *field_type_p
= NULL
;
7008 if (byte_offset_p
!= NULL
)
7010 if (bit_offset_p
!= NULL
)
7012 if (bit_size_p
!= NULL
)
7015 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7017 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7018 type. However, we only need the values to be correct when
7019 the caller asks for them. */
7020 int bit_pos
= 0, fld_offset
= 0;
7021 if (byte_offset_p
!= nullptr || bit_offset_p
!= nullptr)
7023 bit_pos
= type
->field (i
).loc_bitpos ();
7024 fld_offset
= offset
+ bit_pos
/ 8;
7027 const char *t_field_name
= type
->field (i
).name ();
7029 if (t_field_name
== NULL
)
7032 else if (ada_is_parent_field (type
, i
))
7034 /* This is a field pointing us to the parent type of a tagged
7035 type. As hinted in this function's documentation, we give
7036 preference to fields in the current record first, so what
7037 we do here is just record the index of this field before
7038 we skip it. If it turns out we couldn't find our field
7039 in the current record, then we'll get back to it and search
7040 inside it whether the field might exist in the parent. */
7046 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
7048 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
7050 if (field_type_p
!= NULL
)
7051 *field_type_p
= type
->field (i
).type ();
7052 if (byte_offset_p
!= NULL
)
7053 *byte_offset_p
= fld_offset
;
7054 if (bit_offset_p
!= NULL
)
7055 *bit_offset_p
= bit_pos
% 8;
7056 if (bit_size_p
!= NULL
)
7057 *bit_size_p
= bit_size
;
7060 else if (ada_is_wrapper_field (type
, i
))
7062 if (find_struct_field (name
, type
->field (i
).type (), fld_offset
,
7063 field_type_p
, byte_offset_p
, bit_offset_p
,
7064 bit_size_p
, index_p
))
7067 else if (ada_is_variant_part (type
, i
))
7069 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7072 struct type
*field_type
7073 = ada_check_typedef (type
->field (i
).type ());
7075 for (j
= 0; j
< field_type
->num_fields (); j
+= 1)
7077 if (find_struct_field (name
, field_type
->field (j
).type (),
7079 + field_type
->field (j
).loc_bitpos () / 8,
7080 field_type_p
, byte_offset_p
,
7081 bit_offset_p
, bit_size_p
, index_p
))
7085 else if (index_p
!= NULL
)
7089 /* Field not found so far. If this is a tagged type which
7090 has a parent, try finding that field in the parent now. */
7092 if (parent_offset
!= -1)
7094 /* As above, only compute the offset when truly needed. */
7095 int fld_offset
= offset
;
7096 if (byte_offset_p
!= nullptr || bit_offset_p
!= nullptr)
7098 int bit_pos
= type
->field (parent_offset
).loc_bitpos ();
7099 fld_offset
+= bit_pos
/ 8;
7102 if (find_struct_field (name
, type
->field (parent_offset
).type (),
7103 fld_offset
, field_type_p
, byte_offset_p
,
7104 bit_offset_p
, bit_size_p
, index_p
))
7111 /* Number of user-visible fields in record type TYPE. */
7114 num_visible_fields (struct type
*type
)
7119 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7123 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7124 and search in it assuming it has (class) type TYPE.
7125 If found, return value, else return NULL.
7127 Searches recursively through wrapper fields (e.g., '_parent').
7129 In the case of homonyms in the tagged types, please refer to the
7130 long explanation in find_struct_field's function documentation. */
7132 static struct value
*
7133 ada_search_struct_field (const char *name
, struct value
*arg
, int offset
,
7137 int parent_offset
= -1;
7139 type
= ada_check_typedef (type
);
7140 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7142 const char *t_field_name
= type
->field (i
).name ();
7144 if (t_field_name
== NULL
)
7147 else if (ada_is_parent_field (type
, i
))
7149 /* This is a field pointing us to the parent type of a tagged
7150 type. As hinted in this function's documentation, we give
7151 preference to fields in the current record first, so what
7152 we do here is just record the index of this field before
7153 we skip it. If it turns out we couldn't find our field
7154 in the current record, then we'll get back to it and search
7155 inside it whether the field might exist in the parent. */
7161 else if (field_name_match (t_field_name
, name
))
7162 return ada_value_primitive_field (arg
, offset
, i
, type
);
7164 else if (ada_is_wrapper_field (type
, i
))
7166 struct value
*v
= /* Do not let indent join lines here. */
7167 ada_search_struct_field (name
, arg
,
7168 offset
+ type
->field (i
).loc_bitpos () / 8,
7169 type
->field (i
).type ());
7175 else if (ada_is_variant_part (type
, i
))
7177 /* PNH: Do we ever get here? See find_struct_field. */
7179 struct type
*field_type
= ada_check_typedef (type
->field (i
).type ());
7180 int var_offset
= offset
+ type
->field (i
).loc_bitpos () / 8;
7182 for (j
= 0; j
< field_type
->num_fields (); j
+= 1)
7184 struct value
*v
= ada_search_struct_field
/* Force line
7187 var_offset
+ field_type
->field (j
).loc_bitpos () / 8,
7188 field_type
->field (j
).type ());
7196 /* Field not found so far. If this is a tagged type which
7197 has a parent, try finding that field in the parent now. */
7199 if (parent_offset
!= -1)
7201 struct value
*v
= ada_search_struct_field (
7202 name
, arg
, offset
+ type
->field (parent_offset
).loc_bitpos () / 8,
7203 type
->field (parent_offset
).type ());
7212 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7213 int, struct type
*);
7216 /* Return field #INDEX in ARG, where the index is that returned by
7217 * find_struct_field through its INDEX_P argument. Adjust the address
7218 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7219 * If found, return value, else return NULL. */
7221 static struct value
*
7222 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7225 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7229 /* Auxiliary function for ada_index_struct_field. Like
7230 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7233 static struct value
*
7234 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7238 type
= ada_check_typedef (type
);
7240 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7242 if (type
->field (i
).name () == NULL
)
7244 else if (ada_is_wrapper_field (type
, i
))
7246 struct value
*v
= /* Do not let indent join lines here. */
7247 ada_index_struct_field_1 (index_p
, arg
,
7248 offset
+ type
->field (i
).loc_bitpos () / 8,
7249 type
->field (i
).type ());
7255 else if (ada_is_variant_part (type
, i
))
7257 /* PNH: Do we ever get here? See ada_search_struct_field,
7258 find_struct_field. */
7259 error (_("Cannot assign this kind of variant record"));
7261 else if (*index_p
== 0)
7262 return ada_value_primitive_field (arg
, offset
, i
, type
);
7269 /* Return a string representation of type TYPE. */
7272 type_as_string (struct type
*type
)
7274 string_file tmp_stream
;
7276 type_print (type
, "", &tmp_stream
, -1);
7278 return tmp_stream
.release ();
7281 /* Given a type TYPE, look up the type of the component of type named NAME.
7282 If DISPP is non-null, add its byte displacement from the beginning of a
7283 structure (pointed to by a value) of type TYPE to *DISPP (does not
7284 work for packed fields).
7286 Matches any field whose name has NAME as a prefix, possibly
7289 TYPE can be either a struct or union. If REFOK, TYPE may also
7290 be a (pointer or reference)+ to a struct or union, and the
7291 ultimate target type will be searched.
7293 Looks recursively into variant clauses and parent types.
7295 In the case of homonyms in the tagged types, please refer to the
7296 long explanation in find_struct_field's function documentation.
7298 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7299 TYPE is not a type of the right kind. */
7301 static struct type
*
7302 ada_lookup_struct_elt_type (struct type
*type
, const char *name
, int refok
,
7306 int parent_offset
= -1;
7311 if (refok
&& type
!= NULL
)
7314 type
= ada_check_typedef (type
);
7315 if (type
->code () != TYPE_CODE_PTR
&& type
->code () != TYPE_CODE_REF
)
7317 type
= TYPE_TARGET_TYPE (type
);
7321 || (type
->code () != TYPE_CODE_STRUCT
7322 && type
->code () != TYPE_CODE_UNION
))
7327 error (_("Type %s is not a structure or union type"),
7328 type
!= NULL
? type_as_string (type
).c_str () : _("(null)"));
7331 type
= to_static_fixed_type (type
);
7333 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7335 const char *t_field_name
= type
->field (i
).name ();
7338 if (t_field_name
== NULL
)
7341 else if (ada_is_parent_field (type
, i
))
7343 /* This is a field pointing us to the parent type of a tagged
7344 type. As hinted in this function's documentation, we give
7345 preference to fields in the current record first, so what
7346 we do here is just record the index of this field before
7347 we skip it. If it turns out we couldn't find our field
7348 in the current record, then we'll get back to it and search
7349 inside it whether the field might exist in the parent. */
7355 else if (field_name_match (t_field_name
, name
))
7356 return type
->field (i
).type ();
7358 else if (ada_is_wrapper_field (type
, i
))
7360 t
= ada_lookup_struct_elt_type (type
->field (i
).type (), name
,
7366 else if (ada_is_variant_part (type
, i
))
7369 struct type
*field_type
= ada_check_typedef (type
->field (i
).type ());
7371 for (j
= field_type
->num_fields () - 1; j
>= 0; j
-= 1)
7373 /* FIXME pnh 2008/01/26: We check for a field that is
7374 NOT wrapped in a struct, since the compiler sometimes
7375 generates these for unchecked variant types. Revisit
7376 if the compiler changes this practice. */
7377 const char *v_field_name
= field_type
->field (j
).name ();
7379 if (v_field_name
!= NULL
7380 && field_name_match (v_field_name
, name
))
7381 t
= field_type
->field (j
).type ();
7383 t
= ada_lookup_struct_elt_type (field_type
->field (j
).type (),
7393 /* Field not found so far. If this is a tagged type which
7394 has a parent, try finding that field in the parent now. */
7396 if (parent_offset
!= -1)
7400 t
= ada_lookup_struct_elt_type (type
->field (parent_offset
).type (),
7409 const char *name_str
= name
!= NULL
? name
: _("<null>");
7411 error (_("Type %s has no component named %s"),
7412 type_as_string (type
).c_str (), name_str
);
7418 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7419 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7420 represents an unchecked union (that is, the variant part of a
7421 record that is named in an Unchecked_Union pragma). */
7424 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7426 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7428 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1) == NULL
);
7432 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7433 within OUTER, determine which variant clause (field number in VAR_TYPE,
7434 numbering from 0) is applicable. Returns -1 if none are. */
7437 ada_which_variant_applies (struct type
*var_type
, struct value
*outer
)
7441 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7442 struct value
*discrim
;
7443 LONGEST discrim_val
;
7445 /* Using plain value_from_contents_and_address here causes problems
7446 because we will end up trying to resolve a type that is currently
7447 being constructed. */
7448 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7449 if (discrim
== NULL
)
7451 discrim_val
= value_as_long (discrim
);
7454 for (i
= 0; i
< var_type
->num_fields (); i
+= 1)
7456 if (ada_is_others_clause (var_type
, i
))
7458 else if (ada_in_variant (discrim_val
, var_type
, i
))
7462 return others_clause
;
7467 /* Dynamic-Sized Records */
7469 /* Strategy: The type ostensibly attached to a value with dynamic size
7470 (i.e., a size that is not statically recorded in the debugging
7471 data) does not accurately reflect the size or layout of the value.
7472 Our strategy is to convert these values to values with accurate,
7473 conventional types that are constructed on the fly. */
7475 /* There is a subtle and tricky problem here. In general, we cannot
7476 determine the size of dynamic records without its data. However,
7477 the 'struct value' data structure, which GDB uses to represent
7478 quantities in the inferior process (the target), requires the size
7479 of the type at the time of its allocation in order to reserve space
7480 for GDB's internal copy of the data. That's why the
7481 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7482 rather than struct value*s.
7484 However, GDB's internal history variables ($1, $2, etc.) are
7485 struct value*s containing internal copies of the data that are not, in
7486 general, the same as the data at their corresponding addresses in
7487 the target. Fortunately, the types we give to these values are all
7488 conventional, fixed-size types (as per the strategy described
7489 above), so that we don't usually have to perform the
7490 'to_fixed_xxx_type' conversions to look at their values.
7491 Unfortunately, there is one exception: if one of the internal
7492 history variables is an array whose elements are unconstrained
7493 records, then we will need to create distinct fixed types for each
7494 element selected. */
7496 /* The upshot of all of this is that many routines take a (type, host
7497 address, target address) triple as arguments to represent a value.
7498 The host address, if non-null, is supposed to contain an internal
7499 copy of the relevant data; otherwise, the program is to consult the
7500 target at the target address. */
7502 /* Assuming that VAL0 represents a pointer value, the result of
7503 dereferencing it. Differs from value_ind in its treatment of
7504 dynamic-sized types. */
7507 ada_value_ind (struct value
*val0
)
7509 struct value
*val
= value_ind (val0
);
7511 if (ada_is_tagged_type (value_type (val
), 0))
7512 val
= ada_tag_value_at_base_address (val
);
7514 return ada_to_fixed_value (val
);
7517 /* The value resulting from dereferencing any "reference to"
7518 qualifiers on VAL0. */
7520 static struct value
*
7521 ada_coerce_ref (struct value
*val0
)
7523 if (value_type (val0
)->code () == TYPE_CODE_REF
)
7525 struct value
*val
= val0
;
7527 val
= coerce_ref (val
);
7529 if (ada_is_tagged_type (value_type (val
), 0))
7530 val
= ada_tag_value_at_base_address (val
);
7532 return ada_to_fixed_value (val
);
7538 /* Return the bit alignment required for field #F of template type TYPE. */
7541 field_alignment (struct type
*type
, int f
)
7543 const char *name
= type
->field (f
).name ();
7547 /* The field name should never be null, unless the debugging information
7548 is somehow malformed. In this case, we assume the field does not
7549 require any alignment. */
7553 len
= strlen (name
);
7555 if (!isdigit (name
[len
- 1]))
7558 if (isdigit (name
[len
- 2]))
7559 align_offset
= len
- 2;
7561 align_offset
= len
- 1;
7563 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7564 return TARGET_CHAR_BIT
;
7566 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7569 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7571 static struct symbol
*
7572 ada_find_any_type_symbol (const char *name
)
7576 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7577 if (sym
!= NULL
&& sym
->aclass () == LOC_TYPEDEF
)
7580 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7584 /* Find a type named NAME. Ignores ambiguity. This routine will look
7585 solely for types defined by debug info, it will not search the GDB
7588 static struct type
*
7589 ada_find_any_type (const char *name
)
7591 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7594 return sym
->type ();
7599 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7600 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7601 symbol, in which case it is returned. Otherwise, this looks for
7602 symbols whose name is that of NAME_SYM suffixed with "___XR".
7603 Return symbol if found, and NULL otherwise. */
7606 ada_is_renaming_symbol (struct symbol
*name_sym
)
7608 const char *name
= name_sym
->linkage_name ();
7609 return strstr (name
, "___XR") != NULL
;
7612 /* Because of GNAT encoding conventions, several GDB symbols may match a
7613 given type name. If the type denoted by TYPE0 is to be preferred to
7614 that of TYPE1 for purposes of type printing, return non-zero;
7615 otherwise return 0. */
7618 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7622 else if (type0
== NULL
)
7624 else if (type1
->code () == TYPE_CODE_VOID
)
7626 else if (type0
->code () == TYPE_CODE_VOID
)
7628 else if (type1
->name () == NULL
&& type0
->name () != NULL
)
7630 else if (ada_is_constrained_packed_array_type (type0
))
7632 else if (ada_is_array_descriptor_type (type0
)
7633 && !ada_is_array_descriptor_type (type1
))
7637 const char *type0_name
= type0
->name ();
7638 const char *type1_name
= type1
->name ();
7640 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7641 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7647 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7651 ada_type_name (struct type
*type
)
7655 return type
->name ();
7658 /* Search the list of "descriptive" types associated to TYPE for a type
7659 whose name is NAME. */
7661 static struct type
*
7662 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
7664 struct type
*result
, *tmp
;
7666 if (ada_ignore_descriptive_types_p
)
7669 /* If there no descriptive-type info, then there is no parallel type
7671 if (!HAVE_GNAT_AUX_INFO (type
))
7674 result
= TYPE_DESCRIPTIVE_TYPE (type
);
7675 while (result
!= NULL
)
7677 const char *result_name
= ada_type_name (result
);
7679 if (result_name
== NULL
)
7681 warning (_("unexpected null name on descriptive type"));
7685 /* If the names match, stop. */
7686 if (strcmp (result_name
, name
) == 0)
7689 /* Otherwise, look at the next item on the list, if any. */
7690 if (HAVE_GNAT_AUX_INFO (result
))
7691 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
7695 /* If not found either, try after having resolved the typedef. */
7700 result
= check_typedef (result
);
7701 if (HAVE_GNAT_AUX_INFO (result
))
7702 result
= TYPE_DESCRIPTIVE_TYPE (result
);
7708 /* If we didn't find a match, see whether this is a packed array. With
7709 older compilers, the descriptive type information is either absent or
7710 irrelevant when it comes to packed arrays so the above lookup fails.
7711 Fall back to using a parallel lookup by name in this case. */
7712 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
7713 return ada_find_any_type (name
);
7718 /* Find a parallel type to TYPE with the specified NAME, using the
7719 descriptive type taken from the debugging information, if available,
7720 and otherwise using the (slower) name-based method. */
7722 static struct type
*
7723 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
7725 struct type
*result
= NULL
;
7727 if (HAVE_GNAT_AUX_INFO (type
))
7728 result
= find_parallel_type_by_descriptive_type (type
, name
);
7730 result
= ada_find_any_type (name
);
7735 /* Same as above, but specify the name of the parallel type by appending
7736 SUFFIX to the name of TYPE. */
7739 ada_find_parallel_type (struct type
*type
, const char *suffix
)
7742 const char *type_name
= ada_type_name (type
);
7745 if (type_name
== NULL
)
7748 len
= strlen (type_name
);
7750 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
7752 strcpy (name
, type_name
);
7753 strcpy (name
+ len
, suffix
);
7755 return ada_find_parallel_type_with_name (type
, name
);
7758 /* If TYPE is a variable-size record type, return the corresponding template
7759 type describing its fields. Otherwise, return NULL. */
7761 static struct type
*
7762 dynamic_template_type (struct type
*type
)
7764 type
= ada_check_typedef (type
);
7766 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
7767 || ada_type_name (type
) == NULL
)
7771 int len
= strlen (ada_type_name (type
));
7773 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
7776 return ada_find_parallel_type (type
, "___XVE");
7780 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7781 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7784 is_dynamic_field (struct type
*templ_type
, int field_num
)
7786 const char *name
= templ_type
->field (field_num
).name ();
7789 && templ_type
->field (field_num
).type ()->code () == TYPE_CODE_PTR
7790 && strstr (name
, "___XVL") != NULL
;
7793 /* The index of the variant field of TYPE, or -1 if TYPE does not
7794 represent a variant record type. */
7797 variant_field_index (struct type
*type
)
7801 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
)
7804 for (f
= 0; f
< type
->num_fields (); f
+= 1)
7806 if (ada_is_variant_part (type
, f
))
7812 /* A record type with no fields. */
7814 static struct type
*
7815 empty_record (struct type
*templ
)
7817 struct type
*type
= alloc_type_copy (templ
);
7819 type
->set_code (TYPE_CODE_STRUCT
);
7820 INIT_NONE_SPECIFIC (type
);
7821 type
->set_name ("<empty>");
7822 TYPE_LENGTH (type
) = 0;
7826 /* An ordinary record type (with fixed-length fields) that describes
7827 the value of type TYPE at VALADDR or ADDRESS (see comments at
7828 the beginning of this section) VAL according to GNAT conventions.
7829 DVAL0 should describe the (portion of a) record that contains any
7830 necessary discriminants. It should be NULL if value_type (VAL) is
7831 an outer-level type (i.e., as opposed to a branch of a variant.) A
7832 variant field (unless unchecked) is replaced by a particular branch
7835 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7836 length are not statically known are discarded. As a consequence,
7837 VALADDR, ADDRESS and DVAL0 are ignored.
7839 NOTE: Limitations: For now, we assume that dynamic fields and
7840 variants occupy whole numbers of bytes. However, they need not be
7844 ada_template_to_fixed_record_type_1 (struct type
*type
,
7845 const gdb_byte
*valaddr
,
7846 CORE_ADDR address
, struct value
*dval0
,
7847 int keep_dynamic_fields
)
7849 struct value
*mark
= value_mark ();
7852 int nfields
, bit_len
;
7858 /* Compute the number of fields in this record type that are going
7859 to be processed: unless keep_dynamic_fields, this includes only
7860 fields whose position and length are static will be processed. */
7861 if (keep_dynamic_fields
)
7862 nfields
= type
->num_fields ();
7866 while (nfields
< type
->num_fields ()
7867 && !ada_is_variant_part (type
, nfields
)
7868 && !is_dynamic_field (type
, nfields
))
7872 rtype
= alloc_type_copy (type
);
7873 rtype
->set_code (TYPE_CODE_STRUCT
);
7874 INIT_NONE_SPECIFIC (rtype
);
7875 rtype
->set_num_fields (nfields
);
7877 ((struct field
*) TYPE_ZALLOC (rtype
, nfields
* sizeof (struct field
)));
7878 rtype
->set_name (ada_type_name (type
));
7879 rtype
->set_is_fixed_instance (true);
7885 for (f
= 0; f
< nfields
; f
+= 1)
7887 off
= align_up (off
, field_alignment (type
, f
))
7888 + type
->field (f
).loc_bitpos ();
7889 rtype
->field (f
).set_loc_bitpos (off
);
7890 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
7892 if (ada_is_variant_part (type
, f
))
7897 else if (is_dynamic_field (type
, f
))
7899 const gdb_byte
*field_valaddr
= valaddr
;
7900 CORE_ADDR field_address
= address
;
7901 struct type
*field_type
=
7902 TYPE_TARGET_TYPE (type
->field (f
).type ());
7906 /* Using plain value_from_contents_and_address here
7907 causes problems because we will end up trying to
7908 resolve a type that is currently being
7910 dval
= value_from_contents_and_address_unresolved (rtype
,
7913 rtype
= value_type (dval
);
7918 /* If the type referenced by this field is an aligner type, we need
7919 to unwrap that aligner type, because its size might not be set.
7920 Keeping the aligner type would cause us to compute the wrong
7921 size for this field, impacting the offset of the all the fields
7922 that follow this one. */
7923 if (ada_is_aligner_type (field_type
))
7925 long field_offset
= type
->field (f
).loc_bitpos ();
7927 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
7928 field_address
= cond_offset_target (field_address
, field_offset
);
7929 field_type
= ada_aligned_type (field_type
);
7932 field_valaddr
= cond_offset_host (field_valaddr
,
7933 off
/ TARGET_CHAR_BIT
);
7934 field_address
= cond_offset_target (field_address
,
7935 off
/ TARGET_CHAR_BIT
);
7937 /* Get the fixed type of the field. Note that, in this case,
7938 we do not want to get the real type out of the tag: if
7939 the current field is the parent part of a tagged record,
7940 we will get the tag of the object. Clearly wrong: the real
7941 type of the parent is not the real type of the child. We
7942 would end up in an infinite loop. */
7943 field_type
= ada_get_base_type (field_type
);
7944 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
7945 field_address
, dval
, 0);
7947 rtype
->field (f
).set_type (field_type
);
7948 rtype
->field (f
).set_name (type
->field (f
).name ());
7949 /* The multiplication can potentially overflow. But because
7950 the field length has been size-checked just above, and
7951 assuming that the maximum size is a reasonable value,
7952 an overflow should not happen in practice. So rather than
7953 adding overflow recovery code to this already complex code,
7954 we just assume that it's not going to happen. */
7956 TYPE_LENGTH (rtype
->field (f
).type ()) * TARGET_CHAR_BIT
;
7960 /* Note: If this field's type is a typedef, it is important
7961 to preserve the typedef layer.
7963 Otherwise, we might be transforming a typedef to a fat
7964 pointer (encoding a pointer to an unconstrained array),
7965 into a basic fat pointer (encoding an unconstrained
7966 array). As both types are implemented using the same
7967 structure, the typedef is the only clue which allows us
7968 to distinguish between the two options. Stripping it
7969 would prevent us from printing this field appropriately. */
7970 rtype
->field (f
).set_type (type
->field (f
).type ());
7971 rtype
->field (f
).set_name (type
->field (f
).name ());
7972 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
7974 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
7977 struct type
*field_type
= type
->field (f
).type ();
7979 /* We need to be careful of typedefs when computing
7980 the length of our field. If this is a typedef,
7981 get the length of the target type, not the length
7983 if (field_type
->code () == TYPE_CODE_TYPEDEF
)
7984 field_type
= ada_typedef_target_type (field_type
);
7987 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
7990 if (off
+ fld_bit_len
> bit_len
)
7991 bit_len
= off
+ fld_bit_len
;
7993 TYPE_LENGTH (rtype
) =
7994 align_up (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7997 /* We handle the variant part, if any, at the end because of certain
7998 odd cases in which it is re-ordered so as NOT to be the last field of
7999 the record. This can happen in the presence of representation
8001 if (variant_field
>= 0)
8003 struct type
*branch_type
;
8005 off
= rtype
->field (variant_field
).loc_bitpos ();
8009 /* Using plain value_from_contents_and_address here causes
8010 problems because we will end up trying to resolve a type
8011 that is currently being constructed. */
8012 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
8014 rtype
= value_type (dval
);
8020 to_fixed_variant_branch_type
8021 (type
->field (variant_field
).type (),
8022 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
8023 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
8024 if (branch_type
== NULL
)
8026 for (f
= variant_field
+ 1; f
< rtype
->num_fields (); f
+= 1)
8027 rtype
->field (f
- 1) = rtype
->field (f
);
8028 rtype
->set_num_fields (rtype
->num_fields () - 1);
8032 rtype
->field (variant_field
).set_type (branch_type
);
8033 rtype
->field (variant_field
).set_name ("S");
8035 TYPE_LENGTH (rtype
->field (variant_field
).type ()) *
8037 if (off
+ fld_bit_len
> bit_len
)
8038 bit_len
= off
+ fld_bit_len
;
8039 TYPE_LENGTH (rtype
) =
8040 align_up (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8044 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8045 should contain the alignment of that record, which should be a strictly
8046 positive value. If null or negative, then something is wrong, most
8047 probably in the debug info. In that case, we don't round up the size
8048 of the resulting type. If this record is not part of another structure,
8049 the current RTYPE length might be good enough for our purposes. */
8050 if (TYPE_LENGTH (type
) <= 0)
8053 warning (_("Invalid type size for `%s' detected: %s."),
8054 rtype
->name (), pulongest (TYPE_LENGTH (type
)));
8056 warning (_("Invalid type size for <unnamed> detected: %s."),
8057 pulongest (TYPE_LENGTH (type
)));
8061 TYPE_LENGTH (rtype
) = align_up (TYPE_LENGTH (rtype
),
8062 TYPE_LENGTH (type
));
8065 value_free_to_mark (mark
);
8069 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8072 static struct type
*
8073 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8074 CORE_ADDR address
, struct value
*dval0
)
8076 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8080 /* An ordinary record type in which ___XVL-convention fields and
8081 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8082 static approximations, containing all possible fields. Uses
8083 no runtime values. Useless for use in values, but that's OK,
8084 since the results are used only for type determinations. Works on both
8085 structs and unions. Representation note: to save space, we memorize
8086 the result of this function in the TYPE_TARGET_TYPE of the
8089 static struct type
*
8090 template_to_static_fixed_type (struct type
*type0
)
8096 /* No need no do anything if the input type is already fixed. */
8097 if (type0
->is_fixed_instance ())
8100 /* Likewise if we already have computed the static approximation. */
8101 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8102 return TYPE_TARGET_TYPE (type0
);
8104 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8106 nfields
= type0
->num_fields ();
8108 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8109 recompute all over next time. */
8110 TYPE_TARGET_TYPE (type0
) = type
;
8112 for (f
= 0; f
< nfields
; f
+= 1)
8114 struct type
*field_type
= type0
->field (f
).type ();
8115 struct type
*new_type
;
8117 if (is_dynamic_field (type0
, f
))
8119 field_type
= ada_check_typedef (field_type
);
8120 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8123 new_type
= static_unwrap_type (field_type
);
8125 if (new_type
!= field_type
)
8127 /* Clone TYPE0 only the first time we get a new field type. */
8130 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8131 type
->set_code (type0
->code ());
8132 INIT_NONE_SPECIFIC (type
);
8133 type
->set_num_fields (nfields
);
8137 TYPE_ALLOC (type
, nfields
* sizeof (struct field
)));
8138 memcpy (fields
, type0
->fields (),
8139 sizeof (struct field
) * nfields
);
8140 type
->set_fields (fields
);
8142 type
->set_name (ada_type_name (type0
));
8143 type
->set_is_fixed_instance (true);
8144 TYPE_LENGTH (type
) = 0;
8146 type
->field (f
).set_type (new_type
);
8147 type
->field (f
).set_name (type0
->field (f
).name ());
8154 /* Given an object of type TYPE whose contents are at VALADDR and
8155 whose address in memory is ADDRESS, returns a revision of TYPE,
8156 which should be a non-dynamic-sized record, in which the variant
8157 part, if any, is replaced with the appropriate branch. Looks
8158 for discriminant values in DVAL0, which can be NULL if the record
8159 contains the necessary discriminant values. */
8161 static struct type
*
8162 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8163 CORE_ADDR address
, struct value
*dval0
)
8165 struct value
*mark
= value_mark ();
8168 struct type
*branch_type
;
8169 int nfields
= type
->num_fields ();
8170 int variant_field
= variant_field_index (type
);
8172 if (variant_field
== -1)
8177 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8178 type
= value_type (dval
);
8183 rtype
= alloc_type_copy (type
);
8184 rtype
->set_code (TYPE_CODE_STRUCT
);
8185 INIT_NONE_SPECIFIC (rtype
);
8186 rtype
->set_num_fields (nfields
);
8189 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8190 memcpy (fields
, type
->fields (), sizeof (struct field
) * nfields
);
8191 rtype
->set_fields (fields
);
8193 rtype
->set_name (ada_type_name (type
));
8194 rtype
->set_is_fixed_instance (true);
8195 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8197 branch_type
= to_fixed_variant_branch_type
8198 (type
->field (variant_field
).type (),
8199 cond_offset_host (valaddr
,
8200 type
->field (variant_field
).loc_bitpos ()
8202 cond_offset_target (address
,
8203 type
->field (variant_field
).loc_bitpos ()
8204 / TARGET_CHAR_BIT
), dval
);
8205 if (branch_type
== NULL
)
8209 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8210 rtype
->field (f
- 1) = rtype
->field (f
);
8211 rtype
->set_num_fields (rtype
->num_fields () - 1);
8215 rtype
->field (variant_field
).set_type (branch_type
);
8216 rtype
->field (variant_field
).set_name ("S");
8217 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8218 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8220 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (type
->field (variant_field
).type ());
8222 value_free_to_mark (mark
);
8226 /* An ordinary record type (with fixed-length fields) that describes
8227 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8228 beginning of this section]. Any necessary discriminants' values
8229 should be in DVAL, a record value; it may be NULL if the object
8230 at ADDR itself contains any necessary discriminant values.
8231 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8232 values from the record are needed. Except in the case that DVAL,
8233 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8234 unchecked) is replaced by a particular branch of the variant.
8236 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8237 is questionable and may be removed. It can arise during the
8238 processing of an unconstrained-array-of-record type where all the
8239 variant branches have exactly the same size. This is because in
8240 such cases, the compiler does not bother to use the XVS convention
8241 when encoding the record. I am currently dubious of this
8242 shortcut and suspect the compiler should be altered. FIXME. */
8244 static struct type
*
8245 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8246 CORE_ADDR address
, struct value
*dval
)
8248 struct type
*templ_type
;
8250 if (type0
->is_fixed_instance ())
8253 templ_type
= dynamic_template_type (type0
);
8255 if (templ_type
!= NULL
)
8256 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8257 else if (variant_field_index (type0
) >= 0)
8259 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8261 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8266 type0
->set_is_fixed_instance (true);
8272 /* An ordinary record type (with fixed-length fields) that describes
8273 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8274 union type. Any necessary discriminants' values should be in DVAL,
8275 a record value. That is, this routine selects the appropriate
8276 branch of the union at ADDR according to the discriminant value
8277 indicated in the union's type name. Returns VAR_TYPE0 itself if
8278 it represents a variant subject to a pragma Unchecked_Union. */
8280 static struct type
*
8281 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8282 CORE_ADDR address
, struct value
*dval
)
8285 struct type
*templ_type
;
8286 struct type
*var_type
;
8288 if (var_type0
->code () == TYPE_CODE_PTR
)
8289 var_type
= TYPE_TARGET_TYPE (var_type0
);
8291 var_type
= var_type0
;
8293 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8295 if (templ_type
!= NULL
)
8296 var_type
= templ_type
;
8298 if (is_unchecked_variant (var_type
, value_type (dval
)))
8300 which
= ada_which_variant_applies (var_type
, dval
);
8303 return empty_record (var_type
);
8304 else if (is_dynamic_field (var_type
, which
))
8305 return to_fixed_record_type
8306 (TYPE_TARGET_TYPE (var_type
->field (which
).type ()),
8307 valaddr
, address
, dval
);
8308 else if (variant_field_index (var_type
->field (which
).type ()) >= 0)
8310 to_fixed_record_type
8311 (var_type
->field (which
).type (), valaddr
, address
, dval
);
8313 return var_type
->field (which
).type ();
8316 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8317 ENCODING_TYPE, a type following the GNAT conventions for discrete
8318 type encodings, only carries redundant information. */
8321 ada_is_redundant_range_encoding (struct type
*range_type
,
8322 struct type
*encoding_type
)
8324 const char *bounds_str
;
8328 gdb_assert (range_type
->code () == TYPE_CODE_RANGE
);
8330 if (get_base_type (range_type
)->code ()
8331 != get_base_type (encoding_type
)->code ())
8333 /* The compiler probably used a simple base type to describe
8334 the range type instead of the range's actual base type,
8335 expecting us to get the real base type from the encoding
8336 anyway. In this situation, the encoding cannot be ignored
8341 if (is_dynamic_type (range_type
))
8344 if (encoding_type
->name () == NULL
)
8347 bounds_str
= strstr (encoding_type
->name (), "___XDLU_");
8348 if (bounds_str
== NULL
)
8351 n
= 8; /* Skip "___XDLU_". */
8352 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8354 if (range_type
->bounds ()->low
.const_val () != lo
)
8357 n
+= 2; /* Skip the "__" separator between the two bounds. */
8358 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8360 if (range_type
->bounds ()->high
.const_val () != hi
)
8366 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8367 a type following the GNAT encoding for describing array type
8368 indices, only carries redundant information. */
8371 ada_is_redundant_index_type_desc (struct type
*array_type
,
8372 struct type
*desc_type
)
8374 struct type
*this_layer
= check_typedef (array_type
);
8377 for (i
= 0; i
< desc_type
->num_fields (); i
++)
8379 if (!ada_is_redundant_range_encoding (this_layer
->index_type (),
8380 desc_type
->field (i
).type ()))
8382 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8388 /* Assuming that TYPE0 is an array type describing the type of a value
8389 at ADDR, and that DVAL describes a record containing any
8390 discriminants used in TYPE0, returns a type for the value that
8391 contains no dynamic components (that is, no components whose sizes
8392 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8393 true, gives an error message if the resulting type's size is over
8396 static struct type
*
8397 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8400 struct type
*index_type_desc
;
8401 struct type
*result
;
8402 int constrained_packed_array_p
;
8403 static const char *xa_suffix
= "___XA";
8405 type0
= ada_check_typedef (type0
);
8406 if (type0
->is_fixed_instance ())
8409 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8410 if (constrained_packed_array_p
)
8412 type0
= decode_constrained_packed_array_type (type0
);
8413 if (type0
== nullptr)
8414 error (_("could not decode constrained packed array type"));
8417 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8419 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8420 encoding suffixed with 'P' may still be generated. If so,
8421 it should be used to find the XA type. */
8423 if (index_type_desc
== NULL
)
8425 const char *type_name
= ada_type_name (type0
);
8427 if (type_name
!= NULL
)
8429 const int len
= strlen (type_name
);
8430 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8432 if (type_name
[len
- 1] == 'P')
8434 strcpy (name
, type_name
);
8435 strcpy (name
+ len
- 1, xa_suffix
);
8436 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8441 ada_fixup_array_indexes_type (index_type_desc
);
8442 if (index_type_desc
!= NULL
8443 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8445 /* Ignore this ___XA parallel type, as it does not bring any
8446 useful information. This allows us to avoid creating fixed
8447 versions of the array's index types, which would be identical
8448 to the original ones. This, in turn, can also help avoid
8449 the creation of fixed versions of the array itself. */
8450 index_type_desc
= NULL
;
8453 if (index_type_desc
== NULL
)
8455 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8457 /* NOTE: elt_type---the fixed version of elt_type0---should never
8458 depend on the contents of the array in properly constructed
8460 /* Create a fixed version of the array element type.
8461 We're not providing the address of an element here,
8462 and thus the actual object value cannot be inspected to do
8463 the conversion. This should not be a problem, since arrays of
8464 unconstrained objects are not allowed. In particular, all
8465 the elements of an array of a tagged type should all be of
8466 the same type specified in the debugging info. No need to
8467 consult the object tag. */
8468 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8470 /* Make sure we always create a new array type when dealing with
8471 packed array types, since we're going to fix-up the array
8472 type length and element bitsize a little further down. */
8473 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8476 result
= create_array_type (alloc_type_copy (type0
),
8477 elt_type
, type0
->index_type ());
8482 struct type
*elt_type0
;
8485 for (i
= index_type_desc
->num_fields (); i
> 0; i
-= 1)
8486 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8488 /* NOTE: result---the fixed version of elt_type0---should never
8489 depend on the contents of the array in properly constructed
8491 /* Create a fixed version of the array element type.
8492 We're not providing the address of an element here,
8493 and thus the actual object value cannot be inspected to do
8494 the conversion. This should not be a problem, since arrays of
8495 unconstrained objects are not allowed. In particular, all
8496 the elements of an array of a tagged type should all be of
8497 the same type specified in the debugging info. No need to
8498 consult the object tag. */
8500 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8503 for (i
= index_type_desc
->num_fields () - 1; i
>= 0; i
-= 1)
8505 struct type
*range_type
=
8506 to_fixed_range_type (index_type_desc
->field (i
).type (), dval
);
8508 result
= create_array_type (alloc_type_copy (elt_type0
),
8509 result
, range_type
);
8510 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8514 /* We want to preserve the type name. This can be useful when
8515 trying to get the type name of a value that has already been
8516 printed (for instance, if the user did "print VAR; whatis $". */
8517 result
->set_name (type0
->name ());
8519 if (constrained_packed_array_p
)
8521 /* So far, the resulting type has been created as if the original
8522 type was a regular (non-packed) array type. As a result, the
8523 bitsize of the array elements needs to be set again, and the array
8524 length needs to be recomputed based on that bitsize. */
8525 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8526 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8528 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8529 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8530 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8531 TYPE_LENGTH (result
)++;
8534 result
->set_is_fixed_instance (true);
8539 /* A standard type (containing no dynamically sized components)
8540 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8541 DVAL describes a record containing any discriminants used in TYPE0,
8542 and may be NULL if there are none, or if the object of type TYPE at
8543 ADDRESS or in VALADDR contains these discriminants.
8545 If CHECK_TAG is not null, in the case of tagged types, this function
8546 attempts to locate the object's tag and use it to compute the actual
8547 type. However, when ADDRESS is null, we cannot use it to determine the
8548 location of the tag, and therefore compute the tagged type's actual type.
8549 So we return the tagged type without consulting the tag. */
8551 static struct type
*
8552 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8553 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8555 type
= ada_check_typedef (type
);
8557 /* Only un-fixed types need to be handled here. */
8558 if (!HAVE_GNAT_AUX_INFO (type
))
8561 switch (type
->code ())
8565 case TYPE_CODE_STRUCT
:
8567 struct type
*static_type
= to_static_fixed_type (type
);
8568 struct type
*fixed_record_type
=
8569 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8571 /* If STATIC_TYPE is a tagged type and we know the object's address,
8572 then we can determine its tag, and compute the object's actual
8573 type from there. Note that we have to use the fixed record
8574 type (the parent part of the record may have dynamic fields
8575 and the way the location of _tag is expressed may depend on
8578 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8581 value_tag_from_contents_and_address
8585 struct type
*real_type
= type_from_tag (tag
);
8587 value_from_contents_and_address (fixed_record_type
,
8590 fixed_record_type
= value_type (obj
);
8591 if (real_type
!= NULL
)
8592 return to_fixed_record_type
8594 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8597 /* Check to see if there is a parallel ___XVZ variable.
8598 If there is, then it provides the actual size of our type. */
8599 else if (ada_type_name (fixed_record_type
) != NULL
)
8601 const char *name
= ada_type_name (fixed_record_type
);
8603 = (char *) alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8604 bool xvz_found
= false;
8607 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8610 xvz_found
= get_int_var_value (xvz_name
, size
);
8612 catch (const gdb_exception_error
&except
)
8614 /* We found the variable, but somehow failed to read
8615 its value. Rethrow the same error, but with a little
8616 bit more information, to help the user understand
8617 what went wrong (Eg: the variable might have been
8619 throw_error (except
.error
,
8620 _("unable to read value of %s (%s)"),
8621 xvz_name
, except
.what ());
8624 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8626 fixed_record_type
= copy_type (fixed_record_type
);
8627 TYPE_LENGTH (fixed_record_type
) = size
;
8629 /* The FIXED_RECORD_TYPE may have be a stub. We have
8630 observed this when the debugging info is STABS, and
8631 apparently it is something that is hard to fix.
8633 In practice, we don't need the actual type definition
8634 at all, because the presence of the XVZ variable allows us
8635 to assume that there must be a XVS type as well, which we
8636 should be able to use later, when we need the actual type
8639 In the meantime, pretend that the "fixed" type we are
8640 returning is NOT a stub, because this can cause trouble
8641 when using this type to create new types targeting it.
8642 Indeed, the associated creation routines often check
8643 whether the target type is a stub and will try to replace
8644 it, thus using a type with the wrong size. This, in turn,
8645 might cause the new type to have the wrong size too.
8646 Consider the case of an array, for instance, where the size
8647 of the array is computed from the number of elements in
8648 our array multiplied by the size of its element. */
8649 fixed_record_type
->set_is_stub (false);
8652 return fixed_record_type
;
8654 case TYPE_CODE_ARRAY
:
8655 return to_fixed_array_type (type
, dval
, 1);
8656 case TYPE_CODE_UNION
:
8660 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
8664 /* The same as ada_to_fixed_type_1, except that it preserves the type
8665 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8667 The typedef layer needs be preserved in order to differentiate between
8668 arrays and array pointers when both types are implemented using the same
8669 fat pointer. In the array pointer case, the pointer is encoded as
8670 a typedef of the pointer type. For instance, considering:
8672 type String_Access is access String;
8673 S1 : String_Access := null;
8675 To the debugger, S1 is defined as a typedef of type String. But
8676 to the user, it is a pointer. So if the user tries to print S1,
8677 we should not dereference the array, but print the array address
8680 If we didn't preserve the typedef layer, we would lose the fact that
8681 the type is to be presented as a pointer (needs de-reference before
8682 being printed). And we would also use the source-level type name. */
8685 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
8686 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8689 struct type
*fixed_type
=
8690 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
8692 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8693 then preserve the typedef layer.
8695 Implementation note: We can only check the main-type portion of
8696 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8697 from TYPE now returns a type that has the same instance flags
8698 as TYPE. For instance, if TYPE is a "typedef const", and its
8699 target type is a "struct", then the typedef elimination will return
8700 a "const" version of the target type. See check_typedef for more
8701 details about how the typedef layer elimination is done.
8703 brobecker/2010-11-19: It seems to me that the only case where it is
8704 useful to preserve the typedef layer is when dealing with fat pointers.
8705 Perhaps, we could add a check for that and preserve the typedef layer
8706 only in that situation. But this seems unnecessary so far, probably
8707 because we call check_typedef/ada_check_typedef pretty much everywhere.
8709 if (type
->code () == TYPE_CODE_TYPEDEF
8710 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
8711 == TYPE_MAIN_TYPE (fixed_type
)))
8717 /* A standard (static-sized) type corresponding as well as possible to
8718 TYPE0, but based on no runtime data. */
8720 static struct type
*
8721 to_static_fixed_type (struct type
*type0
)
8728 if (type0
->is_fixed_instance ())
8731 type0
= ada_check_typedef (type0
);
8733 switch (type0
->code ())
8737 case TYPE_CODE_STRUCT
:
8738 type
= dynamic_template_type (type0
);
8740 return template_to_static_fixed_type (type
);
8742 return template_to_static_fixed_type (type0
);
8743 case TYPE_CODE_UNION
:
8744 type
= ada_find_parallel_type (type0
, "___XVU");
8746 return template_to_static_fixed_type (type
);
8748 return template_to_static_fixed_type (type0
);
8752 /* A static approximation of TYPE with all type wrappers removed. */
8754 static struct type
*
8755 static_unwrap_type (struct type
*type
)
8757 if (ada_is_aligner_type (type
))
8759 struct type
*type1
= ada_check_typedef (type
)->field (0).type ();
8760 if (ada_type_name (type1
) == NULL
)
8761 type1
->set_name (ada_type_name (type
));
8763 return static_unwrap_type (type1
);
8767 struct type
*raw_real_type
= ada_get_base_type (type
);
8769 if (raw_real_type
== type
)
8772 return to_static_fixed_type (raw_real_type
);
8776 /* In some cases, incomplete and private types require
8777 cross-references that are not resolved as records (for example,
8779 type FooP is access Foo;
8781 type Foo is array ...;
8782 ). In these cases, since there is no mechanism for producing
8783 cross-references to such types, we instead substitute for FooP a
8784 stub enumeration type that is nowhere resolved, and whose tag is
8785 the name of the actual type. Call these types "non-record stubs". */
8787 /* A type equivalent to TYPE that is not a non-record stub, if one
8788 exists, otherwise TYPE. */
8791 ada_check_typedef (struct type
*type
)
8796 /* If our type is an access to an unconstrained array, which is encoded
8797 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8798 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8799 what allows us to distinguish between fat pointers that represent
8800 array types, and fat pointers that represent array access types
8801 (in both cases, the compiler implements them as fat pointers). */
8802 if (ada_is_access_to_unconstrained_array (type
))
8805 type
= check_typedef (type
);
8806 if (type
== NULL
|| type
->code () != TYPE_CODE_ENUM
8807 || !type
->is_stub ()
8808 || type
->name () == NULL
)
8812 const char *name
= type
->name ();
8813 struct type
*type1
= ada_find_any_type (name
);
8818 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8819 stubs pointing to arrays, as we don't create symbols for array
8820 types, only for the typedef-to-array types). If that's the case,
8821 strip the typedef layer. */
8822 if (type1
->code () == TYPE_CODE_TYPEDEF
)
8823 type1
= ada_check_typedef (type1
);
8829 /* A value representing the data at VALADDR/ADDRESS as described by
8830 type TYPE0, but with a standard (static-sized) type that correctly
8831 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8832 type, then return VAL0 [this feature is simply to avoid redundant
8833 creation of struct values]. */
8835 static struct value
*
8836 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
8839 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
8841 if (type
== type0
&& val0
!= NULL
)
8844 if (VALUE_LVAL (val0
) != lval_memory
)
8846 /* Our value does not live in memory; it could be a convenience
8847 variable, for instance. Create a not_lval value using val0's
8849 return value_from_contents (type
, value_contents (val0
).data ());
8852 return value_from_contents_and_address (type
, 0, address
);
8855 /* A value representing VAL, but with a standard (static-sized) type
8856 that correctly describes it. Does not necessarily create a new
8860 ada_to_fixed_value (struct value
*val
)
8862 val
= unwrap_value (val
);
8863 val
= ada_to_fixed_value_create (value_type (val
), value_address (val
), val
);
8870 /* Table mapping attribute numbers to names.
8871 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8873 static const char * const attribute_names
[] = {
8891 ada_attribute_name (enum exp_opcode n
)
8893 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
8894 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
8896 return attribute_names
[0];
8899 /* Evaluate the 'POS attribute applied to ARG. */
8902 pos_atr (struct value
*arg
)
8904 struct value
*val
= coerce_ref (arg
);
8905 struct type
*type
= value_type (val
);
8907 if (!discrete_type_p (type
))
8908 error (_("'POS only defined on discrete types"));
8910 gdb::optional
<LONGEST
> result
= discrete_position (type
, value_as_long (val
));
8911 if (!result
.has_value ())
8912 error (_("enumeration value is invalid: can't find 'POS"));
8918 ada_pos_atr (struct type
*expect_type
,
8919 struct expression
*exp
,
8920 enum noside noside
, enum exp_opcode op
,
8923 struct type
*type
= builtin_type (exp
->gdbarch
)->builtin_int
;
8924 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8925 return value_zero (type
, not_lval
);
8926 return value_from_longest (type
, pos_atr (arg
));
8929 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8931 static struct value
*
8932 val_atr (struct type
*type
, LONGEST val
)
8934 gdb_assert (discrete_type_p (type
));
8935 if (type
->code () == TYPE_CODE_RANGE
)
8936 type
= TYPE_TARGET_TYPE (type
);
8937 if (type
->code () == TYPE_CODE_ENUM
)
8939 if (val
< 0 || val
>= type
->num_fields ())
8940 error (_("argument to 'VAL out of range"));
8941 val
= type
->field (val
).loc_enumval ();
8943 return value_from_longest (type
, val
);
8947 ada_val_atr (enum noside noside
, struct type
*type
, struct value
*arg
)
8949 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8950 return value_zero (type
, not_lval
);
8952 if (!discrete_type_p (type
))
8953 error (_("'VAL only defined on discrete types"));
8954 if (!integer_type_p (value_type (arg
)))
8955 error (_("'VAL requires integral argument"));
8957 return val_atr (type
, value_as_long (arg
));
8963 /* True if TYPE appears to be an Ada character type.
8964 [At the moment, this is true only for Character and Wide_Character;
8965 It is a heuristic test that could stand improvement]. */
8968 ada_is_character_type (struct type
*type
)
8972 /* If the type code says it's a character, then assume it really is,
8973 and don't check any further. */
8974 if (type
->code () == TYPE_CODE_CHAR
)
8977 /* Otherwise, assume it's a character type iff it is a discrete type
8978 with a known character type name. */
8979 name
= ada_type_name (type
);
8980 return (name
!= NULL
8981 && (type
->code () == TYPE_CODE_INT
8982 || type
->code () == TYPE_CODE_RANGE
)
8983 && (strcmp (name
, "character") == 0
8984 || strcmp (name
, "wide_character") == 0
8985 || strcmp (name
, "wide_wide_character") == 0
8986 || strcmp (name
, "unsigned char") == 0));
8989 /* True if TYPE appears to be an Ada string type. */
8992 ada_is_string_type (struct type
*type
)
8994 type
= ada_check_typedef (type
);
8996 && type
->code () != TYPE_CODE_PTR
8997 && (ada_is_simple_array_type (type
)
8998 || ada_is_array_descriptor_type (type
))
8999 && ada_array_arity (type
) == 1)
9001 struct type
*elttype
= ada_array_element_type (type
, 1);
9003 return ada_is_character_type (elttype
);
9009 /* The compiler sometimes provides a parallel XVS type for a given
9010 PAD type. Normally, it is safe to follow the PAD type directly,
9011 but older versions of the compiler have a bug that causes the offset
9012 of its "F" field to be wrong. Following that field in that case
9013 would lead to incorrect results, but this can be worked around
9014 by ignoring the PAD type and using the associated XVS type instead.
9016 Set to True if the debugger should trust the contents of PAD types.
9017 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9018 static bool trust_pad_over_xvs
= true;
9020 /* True if TYPE is a struct type introduced by the compiler to force the
9021 alignment of a value. Such types have a single field with a
9022 distinctive name. */
9025 ada_is_aligner_type (struct type
*type
)
9027 type
= ada_check_typedef (type
);
9029 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
9032 return (type
->code () == TYPE_CODE_STRUCT
9033 && type
->num_fields () == 1
9034 && strcmp (type
->field (0).name (), "F") == 0);
9037 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9038 the parallel type. */
9041 ada_get_base_type (struct type
*raw_type
)
9043 struct type
*real_type_namer
;
9044 struct type
*raw_real_type
;
9046 if (raw_type
== NULL
|| raw_type
->code () != TYPE_CODE_STRUCT
)
9049 if (ada_is_aligner_type (raw_type
))
9050 /* The encoding specifies that we should always use the aligner type.
9051 So, even if this aligner type has an associated XVS type, we should
9054 According to the compiler gurus, an XVS type parallel to an aligner
9055 type may exist because of a stabs limitation. In stabs, aligner
9056 types are empty because the field has a variable-sized type, and
9057 thus cannot actually be used as an aligner type. As a result,
9058 we need the associated parallel XVS type to decode the type.
9059 Since the policy in the compiler is to not change the internal
9060 representation based on the debugging info format, we sometimes
9061 end up having a redundant XVS type parallel to the aligner type. */
9064 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9065 if (real_type_namer
== NULL
9066 || real_type_namer
->code () != TYPE_CODE_STRUCT
9067 || real_type_namer
->num_fields () != 1)
9070 if (real_type_namer
->field (0).type ()->code () != TYPE_CODE_REF
)
9072 /* This is an older encoding form where the base type needs to be
9073 looked up by name. We prefer the newer encoding because it is
9075 raw_real_type
= ada_find_any_type (real_type_namer
->field (0).name ());
9076 if (raw_real_type
== NULL
)
9079 return raw_real_type
;
9082 /* The field in our XVS type is a reference to the base type. */
9083 return TYPE_TARGET_TYPE (real_type_namer
->field (0).type ());
9086 /* The type of value designated by TYPE, with all aligners removed. */
9089 ada_aligned_type (struct type
*type
)
9091 if (ada_is_aligner_type (type
))
9092 return ada_aligned_type (type
->field (0).type ());
9094 return ada_get_base_type (type
);
9098 /* The address of the aligned value in an object at address VALADDR
9099 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9102 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9104 if (ada_is_aligner_type (type
))
9105 return ada_aligned_value_addr
9106 (type
->field (0).type (),
9107 valaddr
+ type
->field (0).loc_bitpos () / TARGET_CHAR_BIT
);
9114 /* The printed representation of an enumeration literal with encoded
9115 name NAME. The value is good to the next call of ada_enum_name. */
9117 ada_enum_name (const char *name
)
9119 static std::string storage
;
9122 /* First, unqualify the enumeration name:
9123 1. Search for the last '.' character. If we find one, then skip
9124 all the preceding characters, the unqualified name starts
9125 right after that dot.
9126 2. Otherwise, we may be debugging on a target where the compiler
9127 translates dots into "__". Search forward for double underscores,
9128 but stop searching when we hit an overloading suffix, which is
9129 of the form "__" followed by digits. */
9131 tmp
= strrchr (name
, '.');
9136 while ((tmp
= strstr (name
, "__")) != NULL
)
9138 if (isdigit (tmp
[2]))
9149 if (name
[1] == 'U' || name
[1] == 'W')
9152 if (name
[1] == 'W' && name
[2] == 'W')
9154 /* Also handle the QWW case. */
9157 if (sscanf (name
+ offset
, "%x", &v
) != 1)
9160 else if (((name
[1] >= '0' && name
[1] <= '9')
9161 || (name
[1] >= 'a' && name
[1] <= 'z'))
9164 storage
= string_printf ("'%c'", name
[1]);
9165 return storage
.c_str ();
9170 if (isascii (v
) && isprint (v
))
9171 storage
= string_printf ("'%c'", v
);
9172 else if (name
[1] == 'U')
9173 storage
= string_printf ("'[\"%02x\"]'", v
);
9174 else if (name
[2] != 'W')
9175 storage
= string_printf ("'[\"%04x\"]'", v
);
9177 storage
= string_printf ("'[\"%06x\"]'", v
);
9179 return storage
.c_str ();
9183 tmp
= strstr (name
, "__");
9185 tmp
= strstr (name
, "$");
9188 storage
= std::string (name
, tmp
- name
);
9189 return storage
.c_str ();
9196 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9199 static struct value
*
9200 unwrap_value (struct value
*val
)
9202 struct type
*type
= ada_check_typedef (value_type (val
));
9204 if (ada_is_aligner_type (type
))
9206 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9207 struct type
*val_type
= ada_check_typedef (value_type (v
));
9209 if (ada_type_name (val_type
) == NULL
)
9210 val_type
->set_name (ada_type_name (type
));
9212 return unwrap_value (v
);
9216 struct type
*raw_real_type
=
9217 ada_check_typedef (ada_get_base_type (type
));
9219 /* If there is no parallel XVS or XVE type, then the value is
9220 already unwrapped. Return it without further modification. */
9221 if ((type
== raw_real_type
)
9222 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9226 coerce_unspec_val_to_type
9227 (val
, ada_to_fixed_type (raw_real_type
, 0,
9228 value_address (val
),
9233 /* Given two array types T1 and T2, return nonzero iff both arrays
9234 contain the same number of elements. */
9237 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9239 LONGEST lo1
, hi1
, lo2
, hi2
;
9241 /* Get the array bounds in order to verify that the size of
9242 the two arrays match. */
9243 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9244 || !get_array_bounds (t2
, &lo2
, &hi2
))
9245 error (_("unable to determine array bounds"));
9247 /* To make things easier for size comparison, normalize a bit
9248 the case of empty arrays by making sure that the difference
9249 between upper bound and lower bound is always -1. */
9255 return (hi1
- lo1
== hi2
- lo2
);
9258 /* Assuming that VAL is an array of integrals, and TYPE represents
9259 an array with the same number of elements, but with wider integral
9260 elements, return an array "casted" to TYPE. In practice, this
9261 means that the returned array is built by casting each element
9262 of the original array into TYPE's (wider) element type. */
9264 static struct value
*
9265 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9267 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9271 /* Verify that both val and type are arrays of scalars, and
9272 that the size of val's elements is smaller than the size
9273 of type's element. */
9274 gdb_assert (type
->code () == TYPE_CODE_ARRAY
);
9275 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9276 gdb_assert (value_type (val
)->code () == TYPE_CODE_ARRAY
);
9277 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9278 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9279 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9281 if (!get_array_bounds (type
, &lo
, &hi
))
9282 error (_("unable to determine array bounds"));
9284 value
*res
= allocate_value (type
);
9285 gdb::array_view
<gdb_byte
> res_contents
= value_contents_writeable (res
);
9287 /* Promote each array element. */
9288 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9290 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9291 int elt_len
= TYPE_LENGTH (elt_type
);
9293 copy (value_contents_all (elt
), res_contents
.slice (elt_len
* i
, elt_len
));
9299 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9300 return the converted value. */
9302 static struct value
*
9303 coerce_for_assign (struct type
*type
, struct value
*val
)
9305 struct type
*type2
= value_type (val
);
9310 type2
= ada_check_typedef (type2
);
9311 type
= ada_check_typedef (type
);
9313 if (type2
->code () == TYPE_CODE_PTR
9314 && type
->code () == TYPE_CODE_ARRAY
)
9316 val
= ada_value_ind (val
);
9317 type2
= value_type (val
);
9320 if (type2
->code () == TYPE_CODE_ARRAY
9321 && type
->code () == TYPE_CODE_ARRAY
)
9323 if (!ada_same_array_size_p (type
, type2
))
9324 error (_("cannot assign arrays of different length"));
9326 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9327 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9328 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9329 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9331 /* Allow implicit promotion of the array elements to
9333 return ada_promote_array_of_integrals (type
, val
);
9336 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9337 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9338 error (_("Incompatible types in assignment"));
9339 deprecated_set_value_type (val
, type
);
9344 static struct value
*
9345 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9348 struct type
*type1
, *type2
;
9351 arg1
= coerce_ref (arg1
);
9352 arg2
= coerce_ref (arg2
);
9353 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9354 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9356 if (type1
->code () != TYPE_CODE_INT
9357 || type2
->code () != TYPE_CODE_INT
)
9358 return value_binop (arg1
, arg2
, op
);
9367 return value_binop (arg1
, arg2
, op
);
9370 v2
= value_as_long (arg2
);
9374 if (op
== BINOP_MOD
)
9376 else if (op
== BINOP_DIV
)
9380 gdb_assert (op
== BINOP_REM
);
9384 error (_("second operand of %s must not be zero."), name
);
9387 if (type1
->is_unsigned () || op
== BINOP_MOD
)
9388 return value_binop (arg1
, arg2
, op
);
9390 v1
= value_as_long (arg1
);
9395 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9396 v
+= v
> 0 ? -1 : 1;
9404 /* Should not reach this point. */
9408 val
= allocate_value (type1
);
9409 store_unsigned_integer (value_contents_raw (val
).data (),
9410 TYPE_LENGTH (value_type (val
)),
9411 type_byte_order (type1
), v
);
9416 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9418 if (ada_is_direct_array_type (value_type (arg1
))
9419 || ada_is_direct_array_type (value_type (arg2
)))
9421 struct type
*arg1_type
, *arg2_type
;
9423 /* Automatically dereference any array reference before
9424 we attempt to perform the comparison. */
9425 arg1
= ada_coerce_ref (arg1
);
9426 arg2
= ada_coerce_ref (arg2
);
9428 arg1
= ada_coerce_to_simple_array (arg1
);
9429 arg2
= ada_coerce_to_simple_array (arg2
);
9431 arg1_type
= ada_check_typedef (value_type (arg1
));
9432 arg2_type
= ada_check_typedef (value_type (arg2
));
9434 if (arg1_type
->code () != TYPE_CODE_ARRAY
9435 || arg2_type
->code () != TYPE_CODE_ARRAY
)
9436 error (_("Attempt to compare array with non-array"));
9437 /* FIXME: The following works only for types whose
9438 representations use all bits (no padding or undefined bits)
9439 and do not have user-defined equality. */
9440 return (TYPE_LENGTH (arg1_type
) == TYPE_LENGTH (arg2_type
)
9441 && memcmp (value_contents (arg1
).data (),
9442 value_contents (arg2
).data (),
9443 TYPE_LENGTH (arg1_type
)) == 0);
9445 return value_equal (arg1
, arg2
);
9452 check_objfile (const std::unique_ptr
<ada_component
> &comp
,
9453 struct objfile
*objfile
)
9455 return comp
->uses_objfile (objfile
);
9458 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9459 component of LHS (a simple array or a record). Does not modify the
9460 inferior's memory, nor does it modify LHS (unless LHS ==
9464 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9465 struct expression
*exp
, operation_up
&arg
)
9467 scoped_value_mark mark
;
9470 struct type
*lhs_type
= check_typedef (value_type (lhs
));
9472 if (lhs_type
->code () == TYPE_CODE_ARRAY
)
9474 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9475 struct value
*index_val
= value_from_longest (index_type
, index
);
9477 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9481 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9482 elt
= ada_to_fixed_value (elt
);
9485 ada_aggregate_operation
*ag_op
9486 = dynamic_cast<ada_aggregate_operation
*> (arg
.get ());
9487 if (ag_op
!= nullptr)
9488 ag_op
->assign_aggregate (container
, elt
, exp
);
9490 value_assign_to_component (container
, elt
,
9491 arg
->evaluate (nullptr, exp
,
9496 ada_aggregate_component::uses_objfile (struct objfile
*objfile
)
9498 for (const auto &item
: m_components
)
9499 if (item
->uses_objfile (objfile
))
9505 ada_aggregate_component::dump (ui_file
*stream
, int depth
)
9507 gdb_printf (stream
, _("%*sAggregate\n"), depth
, "");
9508 for (const auto &item
: m_components
)
9509 item
->dump (stream
, depth
+ 1);
9513 ada_aggregate_component::assign (struct value
*container
,
9514 struct value
*lhs
, struct expression
*exp
,
9515 std::vector
<LONGEST
> &indices
,
9516 LONGEST low
, LONGEST high
)
9518 for (auto &item
: m_components
)
9519 item
->assign (container
, lhs
, exp
, indices
, low
, high
);
9522 /* See ada-exp.h. */
9525 ada_aggregate_operation::assign_aggregate (struct value
*container
,
9527 struct expression
*exp
)
9529 struct type
*lhs_type
;
9530 LONGEST low_index
, high_index
;
9532 container
= ada_coerce_ref (container
);
9533 if (ada_is_direct_array_type (value_type (container
)))
9534 container
= ada_coerce_to_simple_array (container
);
9535 lhs
= ada_coerce_ref (lhs
);
9536 if (!deprecated_value_modifiable (lhs
))
9537 error (_("Left operand of assignment is not a modifiable lvalue."));
9539 lhs_type
= check_typedef (value_type (lhs
));
9540 if (ada_is_direct_array_type (lhs_type
))
9542 lhs
= ada_coerce_to_simple_array (lhs
);
9543 lhs_type
= check_typedef (value_type (lhs
));
9544 low_index
= lhs_type
->bounds ()->low
.const_val ();
9545 high_index
= lhs_type
->bounds ()->high
.const_val ();
9547 else if (lhs_type
->code () == TYPE_CODE_STRUCT
)
9550 high_index
= num_visible_fields (lhs_type
) - 1;
9553 error (_("Left-hand side must be array or record."));
9555 std::vector
<LONGEST
> indices (4);
9556 indices
[0] = indices
[1] = low_index
- 1;
9557 indices
[2] = indices
[3] = high_index
+ 1;
9559 std::get
<0> (m_storage
)->assign (container
, lhs
, exp
, indices
,
9560 low_index
, high_index
);
9566 ada_positional_component::uses_objfile (struct objfile
*objfile
)
9568 return m_op
->uses_objfile (objfile
);
9572 ada_positional_component::dump (ui_file
*stream
, int depth
)
9574 gdb_printf (stream
, _("%*sPositional, index = %d\n"),
9575 depth
, "", m_index
);
9576 m_op
->dump (stream
, depth
+ 1);
9579 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9580 construct, given that the positions are relative to lower bound
9581 LOW, where HIGH is the upper bound. Record the position in
9582 INDICES. CONTAINER is as for assign_aggregate. */
9584 ada_positional_component::assign (struct value
*container
,
9585 struct value
*lhs
, struct expression
*exp
,
9586 std::vector
<LONGEST
> &indices
,
9587 LONGEST low
, LONGEST high
)
9589 LONGEST ind
= m_index
+ low
;
9591 if (ind
- 1 == high
)
9592 warning (_("Extra components in aggregate ignored."));
9595 add_component_interval (ind
, ind
, indices
);
9596 assign_component (container
, lhs
, ind
, exp
, m_op
);
9601 ada_discrete_range_association::uses_objfile (struct objfile
*objfile
)
9603 return m_low
->uses_objfile (objfile
) || m_high
->uses_objfile (objfile
);
9607 ada_discrete_range_association::dump (ui_file
*stream
, int depth
)
9609 gdb_printf (stream
, _("%*sDiscrete range:\n"), depth
, "");
9610 m_low
->dump (stream
, depth
+ 1);
9611 m_high
->dump (stream
, depth
+ 1);
9615 ada_discrete_range_association::assign (struct value
*container
,
9617 struct expression
*exp
,
9618 std::vector
<LONGEST
> &indices
,
9619 LONGEST low
, LONGEST high
,
9622 LONGEST lower
= value_as_long (m_low
->evaluate (nullptr, exp
, EVAL_NORMAL
));
9623 LONGEST upper
= value_as_long (m_high
->evaluate (nullptr, exp
, EVAL_NORMAL
));
9625 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
9626 error (_("Index in component association out of bounds."));
9628 add_component_interval (lower
, upper
, indices
);
9629 while (lower
<= upper
)
9631 assign_component (container
, lhs
, lower
, exp
, op
);
9637 ada_name_association::uses_objfile (struct objfile
*objfile
)
9639 return m_val
->uses_objfile (objfile
);
9643 ada_name_association::dump (ui_file
*stream
, int depth
)
9645 gdb_printf (stream
, _("%*sName:\n"), depth
, "");
9646 m_val
->dump (stream
, depth
+ 1);
9650 ada_name_association::assign (struct value
*container
,
9652 struct expression
*exp
,
9653 std::vector
<LONGEST
> &indices
,
9654 LONGEST low
, LONGEST high
,
9659 if (ada_is_direct_array_type (value_type (lhs
)))
9660 index
= longest_to_int (value_as_long (m_val
->evaluate (nullptr, exp
,
9664 ada_string_operation
*strop
9665 = dynamic_cast<ada_string_operation
*> (m_val
.get ());
9668 if (strop
!= nullptr)
9669 name
= strop
->get_name ();
9672 ada_var_value_operation
*vvo
9673 = dynamic_cast<ada_var_value_operation
*> (m_val
.get ());
9675 error (_("Invalid record component association."));
9676 name
= vvo
->get_symbol ()->natural_name ();
9680 if (! find_struct_field (name
, value_type (lhs
), 0,
9681 NULL
, NULL
, NULL
, NULL
, &index
))
9682 error (_("Unknown component name: %s."), name
);
9685 add_component_interval (index
, index
, indices
);
9686 assign_component (container
, lhs
, index
, exp
, op
);
9690 ada_choices_component::uses_objfile (struct objfile
*objfile
)
9692 if (m_op
->uses_objfile (objfile
))
9694 for (const auto &item
: m_assocs
)
9695 if (item
->uses_objfile (objfile
))
9701 ada_choices_component::dump (ui_file
*stream
, int depth
)
9703 gdb_printf (stream
, _("%*sChoices:\n"), depth
, "");
9704 m_op
->dump (stream
, depth
+ 1);
9705 for (const auto &item
: m_assocs
)
9706 item
->dump (stream
, depth
+ 1);
9709 /* Assign into the components of LHS indexed by the OP_CHOICES
9710 construct at *POS, updating *POS past the construct, given that
9711 the allowable indices are LOW..HIGH. Record the indices assigned
9712 to in INDICES. CONTAINER is as for assign_aggregate. */
9714 ada_choices_component::assign (struct value
*container
,
9715 struct value
*lhs
, struct expression
*exp
,
9716 std::vector
<LONGEST
> &indices
,
9717 LONGEST low
, LONGEST high
)
9719 for (auto &item
: m_assocs
)
9720 item
->assign (container
, lhs
, exp
, indices
, low
, high
, m_op
);
9724 ada_others_component::uses_objfile (struct objfile
*objfile
)
9726 return m_op
->uses_objfile (objfile
);
9730 ada_others_component::dump (ui_file
*stream
, int depth
)
9732 gdb_printf (stream
, _("%*sOthers:\n"), depth
, "");
9733 m_op
->dump (stream
, depth
+ 1);
9736 /* Assign the value of the expression in the OP_OTHERS construct in
9737 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9738 have not been previously assigned. The index intervals already assigned
9739 are in INDICES. CONTAINER is as for assign_aggregate. */
9741 ada_others_component::assign (struct value
*container
,
9742 struct value
*lhs
, struct expression
*exp
,
9743 std::vector
<LONGEST
> &indices
,
9744 LONGEST low
, LONGEST high
)
9746 int num_indices
= indices
.size ();
9747 for (int i
= 0; i
< num_indices
- 2; i
+= 2)
9749 for (LONGEST ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
9750 assign_component (container
, lhs
, ind
, exp
, m_op
);
9755 ada_assign_operation::evaluate (struct type
*expect_type
,
9756 struct expression
*exp
,
9759 value
*arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
9761 ada_aggregate_operation
*ag_op
9762 = dynamic_cast<ada_aggregate_operation
*> (std::get
<1> (m_storage
).get ());
9763 if (ag_op
!= nullptr)
9765 if (noside
!= EVAL_NORMAL
)
9768 arg1
= ag_op
->assign_aggregate (arg1
, arg1
, exp
);
9769 return ada_value_assign (arg1
, arg1
);
9771 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9772 except if the lhs of our assignment is a convenience variable.
9773 In the case of assigning to a convenience variable, the lhs
9774 should be exactly the result of the evaluation of the rhs. */
9775 struct type
*type
= value_type (arg1
);
9776 if (VALUE_LVAL (arg1
) == lval_internalvar
)
9778 value
*arg2
= std::get
<1> (m_storage
)->evaluate (type
, exp
, noside
);
9779 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9781 if (VALUE_LVAL (arg1
) == lval_internalvar
)
9786 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
9787 return ada_value_assign (arg1
, arg2
);
9790 } /* namespace expr */
9792 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9793 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9796 add_component_interval (LONGEST low
, LONGEST high
,
9797 std::vector
<LONGEST
> &indices
)
9801 int size
= indices
.size ();
9802 for (i
= 0; i
< size
; i
+= 2) {
9803 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
9807 for (kh
= i
+ 2; kh
< size
; kh
+= 2)
9808 if (high
< indices
[kh
])
9810 if (low
< indices
[i
])
9812 indices
[i
+ 1] = indices
[kh
- 1];
9813 if (high
> indices
[i
+ 1])
9814 indices
[i
+ 1] = high
;
9815 memcpy (indices
.data () + i
+ 2, indices
.data () + kh
, size
- kh
);
9816 indices
.resize (kh
- i
- 2);
9819 else if (high
< indices
[i
])
9823 indices
.resize (indices
.size () + 2);
9824 for (j
= indices
.size () - 1; j
>= i
+ 2; j
-= 1)
9825 indices
[j
] = indices
[j
- 2];
9827 indices
[i
+ 1] = high
;
9830 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9833 static struct value
*
9834 ada_value_cast (struct type
*type
, struct value
*arg2
)
9836 if (type
== ada_check_typedef (value_type (arg2
)))
9839 return value_cast (type
, arg2
);
9842 /* Evaluating Ada expressions, and printing their result.
9843 ------------------------------------------------------
9848 We usually evaluate an Ada expression in order to print its value.
9849 We also evaluate an expression in order to print its type, which
9850 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9851 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9852 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9853 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9856 Evaluating expressions is a little more complicated for Ada entities
9857 than it is for entities in languages such as C. The main reason for
9858 this is that Ada provides types whose definition might be dynamic.
9859 One example of such types is variant records. Or another example
9860 would be an array whose bounds can only be known at run time.
9862 The following description is a general guide as to what should be
9863 done (and what should NOT be done) in order to evaluate an expression
9864 involving such types, and when. This does not cover how the semantic
9865 information is encoded by GNAT as this is covered separatly. For the
9866 document used as the reference for the GNAT encoding, see exp_dbug.ads
9867 in the GNAT sources.
9869 Ideally, we should embed each part of this description next to its
9870 associated code. Unfortunately, the amount of code is so vast right
9871 now that it's hard to see whether the code handling a particular
9872 situation might be duplicated or not. One day, when the code is
9873 cleaned up, this guide might become redundant with the comments
9874 inserted in the code, and we might want to remove it.
9876 2. ``Fixing'' an Entity, the Simple Case:
9877 -----------------------------------------
9879 When evaluating Ada expressions, the tricky issue is that they may
9880 reference entities whose type contents and size are not statically
9881 known. Consider for instance a variant record:
9883 type Rec (Empty : Boolean := True) is record
9886 when False => Value : Integer;
9889 Yes : Rec := (Empty => False, Value => 1);
9890 No : Rec := (empty => True);
9892 The size and contents of that record depends on the value of the
9893 descriminant (Rec.Empty). At this point, neither the debugging
9894 information nor the associated type structure in GDB are able to
9895 express such dynamic types. So what the debugger does is to create
9896 "fixed" versions of the type that applies to the specific object.
9897 We also informally refer to this operation as "fixing" an object,
9898 which means creating its associated fixed type.
9900 Example: when printing the value of variable "Yes" above, its fixed
9901 type would look like this:
9908 On the other hand, if we printed the value of "No", its fixed type
9915 Things become a little more complicated when trying to fix an entity
9916 with a dynamic type that directly contains another dynamic type,
9917 such as an array of variant records, for instance. There are
9918 two possible cases: Arrays, and records.
9920 3. ``Fixing'' Arrays:
9921 ---------------------
9923 The type structure in GDB describes an array in terms of its bounds,
9924 and the type of its elements. By design, all elements in the array
9925 have the same type and we cannot represent an array of variant elements
9926 using the current type structure in GDB. When fixing an array,
9927 we cannot fix the array element, as we would potentially need one
9928 fixed type per element of the array. As a result, the best we can do
9929 when fixing an array is to produce an array whose bounds and size
9930 are correct (allowing us to read it from memory), but without having
9931 touched its element type. Fixing each element will be done later,
9932 when (if) necessary.
9934 Arrays are a little simpler to handle than records, because the same
9935 amount of memory is allocated for each element of the array, even if
9936 the amount of space actually used by each element differs from element
9937 to element. Consider for instance the following array of type Rec:
9939 type Rec_Array is array (1 .. 2) of Rec;
9941 The actual amount of memory occupied by each element might be different
9942 from element to element, depending on the value of their discriminant.
9943 But the amount of space reserved for each element in the array remains
9944 fixed regardless. So we simply need to compute that size using
9945 the debugging information available, from which we can then determine
9946 the array size (we multiply the number of elements of the array by
9947 the size of each element).
9949 The simplest case is when we have an array of a constrained element
9950 type. For instance, consider the following type declarations:
9952 type Bounded_String (Max_Size : Integer) is
9954 Buffer : String (1 .. Max_Size);
9956 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9958 In this case, the compiler describes the array as an array of
9959 variable-size elements (identified by its XVS suffix) for which
9960 the size can be read in the parallel XVZ variable.
9962 In the case of an array of an unconstrained element type, the compiler
9963 wraps the array element inside a private PAD type. This type should not
9964 be shown to the user, and must be "unwrap"'ed before printing. Note
9965 that we also use the adjective "aligner" in our code to designate
9966 these wrapper types.
9968 In some cases, the size allocated for each element is statically
9969 known. In that case, the PAD type already has the correct size,
9970 and the array element should remain unfixed.
9972 But there are cases when this size is not statically known.
9973 For instance, assuming that "Five" is an integer variable:
9975 type Dynamic is array (1 .. Five) of Integer;
9976 type Wrapper (Has_Length : Boolean := False) is record
9979 when True => Length : Integer;
9983 type Wrapper_Array is array (1 .. 2) of Wrapper;
9985 Hello : Wrapper_Array := (others => (Has_Length => True,
9986 Data => (others => 17),
9990 The debugging info would describe variable Hello as being an
9991 array of a PAD type. The size of that PAD type is not statically
9992 known, but can be determined using a parallel XVZ variable.
9993 In that case, a copy of the PAD type with the correct size should
9994 be used for the fixed array.
9996 3. ``Fixing'' record type objects:
9997 ----------------------------------
9999 Things are slightly different from arrays in the case of dynamic
10000 record types. In this case, in order to compute the associated
10001 fixed type, we need to determine the size and offset of each of
10002 its components. This, in turn, requires us to compute the fixed
10003 type of each of these components.
10005 Consider for instance the example:
10007 type Bounded_String (Max_Size : Natural) is record
10008 Str : String (1 .. Max_Size);
10011 My_String : Bounded_String (Max_Size => 10);
10013 In that case, the position of field "Length" depends on the size
10014 of field Str, which itself depends on the value of the Max_Size
10015 discriminant. In order to fix the type of variable My_String,
10016 we need to fix the type of field Str. Therefore, fixing a variant
10017 record requires us to fix each of its components.
10019 However, if a component does not have a dynamic size, the component
10020 should not be fixed. In particular, fields that use a PAD type
10021 should not fixed. Here is an example where this might happen
10022 (assuming type Rec above):
10024 type Container (Big : Boolean) is record
10028 when True => Another : Integer;
10029 when False => null;
10032 My_Container : Container := (Big => False,
10033 First => (Empty => True),
10036 In that example, the compiler creates a PAD type for component First,
10037 whose size is constant, and then positions the component After just
10038 right after it. The offset of component After is therefore constant
10041 The debugger computes the position of each field based on an algorithm
10042 that uses, among other things, the actual position and size of the field
10043 preceding it. Let's now imagine that the user is trying to print
10044 the value of My_Container. If the type fixing was recursive, we would
10045 end up computing the offset of field After based on the size of the
10046 fixed version of field First. And since in our example First has
10047 only one actual field, the size of the fixed type is actually smaller
10048 than the amount of space allocated to that field, and thus we would
10049 compute the wrong offset of field After.
10051 To make things more complicated, we need to watch out for dynamic
10052 components of variant records (identified by the ___XVL suffix in
10053 the component name). Even if the target type is a PAD type, the size
10054 of that type might not be statically known. So the PAD type needs
10055 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10056 we might end up with the wrong size for our component. This can be
10057 observed with the following type declarations:
10059 type Octal is new Integer range 0 .. 7;
10060 type Octal_Array is array (Positive range <>) of Octal;
10061 pragma Pack (Octal_Array);
10063 type Octal_Buffer (Size : Positive) is record
10064 Buffer : Octal_Array (1 .. Size);
10068 In that case, Buffer is a PAD type whose size is unset and needs
10069 to be computed by fixing the unwrapped type.
10071 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10072 ----------------------------------------------------------
10074 Lastly, when should the sub-elements of an entity that remained unfixed
10075 thus far, be actually fixed?
10077 The answer is: Only when referencing that element. For instance
10078 when selecting one component of a record, this specific component
10079 should be fixed at that point in time. Or when printing the value
10080 of a record, each component should be fixed before its value gets
10081 printed. Similarly for arrays, the element of the array should be
10082 fixed when printing each element of the array, or when extracting
10083 one element out of that array. On the other hand, fixing should
10084 not be performed on the elements when taking a slice of an array!
10086 Note that one of the side effects of miscomputing the offset and
10087 size of each field is that we end up also miscomputing the size
10088 of the containing type. This can have adverse results when computing
10089 the value of an entity. GDB fetches the value of an entity based
10090 on the size of its type, and thus a wrong size causes GDB to fetch
10091 the wrong amount of memory. In the case where the computed size is
10092 too small, GDB fetches too little data to print the value of our
10093 entity. Results in this case are unpredictable, as we usually read
10094 past the buffer containing the data =:-o. */
10096 /* A helper function for TERNOP_IN_RANGE. */
10099 eval_ternop_in_range (struct type
*expect_type
, struct expression
*exp
,
10100 enum noside noside
,
10101 value
*arg1
, value
*arg2
, value
*arg3
)
10103 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10104 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10105 struct type
*type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10107 value_from_longest (type
,
10108 (value_less (arg1
, arg3
)
10109 || value_equal (arg1
, arg3
))
10110 && (value_less (arg2
, arg1
)
10111 || value_equal (arg2
, arg1
)));
10114 /* A helper function for UNOP_NEG. */
10117 ada_unop_neg (struct type
*expect_type
,
10118 struct expression
*exp
,
10119 enum noside noside
, enum exp_opcode op
,
10120 struct value
*arg1
)
10122 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10123 return value_neg (arg1
);
10126 /* A helper function for UNOP_IN_RANGE. */
10129 ada_unop_in_range (struct type
*expect_type
,
10130 struct expression
*exp
,
10131 enum noside noside
, enum exp_opcode op
,
10132 struct value
*arg1
, struct type
*type
)
10134 struct value
*arg2
, *arg3
;
10135 switch (type
->code ())
10138 lim_warning (_("Membership test incompletely implemented; "
10139 "always returns true"));
10140 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10141 return value_from_longest (type
, (LONGEST
) 1);
10143 case TYPE_CODE_RANGE
:
10144 arg2
= value_from_longest (type
,
10145 type
->bounds ()->low
.const_val ());
10146 arg3
= value_from_longest (type
,
10147 type
->bounds ()->high
.const_val ());
10148 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10149 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10150 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10152 value_from_longest (type
,
10153 (value_less (arg1
, arg3
)
10154 || value_equal (arg1
, arg3
))
10155 && (value_less (arg2
, arg1
)
10156 || value_equal (arg2
, arg1
)));
10160 /* A helper function for OP_ATR_TAG. */
10163 ada_atr_tag (struct type
*expect_type
,
10164 struct expression
*exp
,
10165 enum noside noside
, enum exp_opcode op
,
10166 struct value
*arg1
)
10168 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10169 return value_zero (ada_tag_type (arg1
), not_lval
);
10171 return ada_value_tag (arg1
);
10174 /* A helper function for OP_ATR_SIZE. */
10177 ada_atr_size (struct type
*expect_type
,
10178 struct expression
*exp
,
10179 enum noside noside
, enum exp_opcode op
,
10180 struct value
*arg1
)
10182 struct type
*type
= value_type (arg1
);
10184 /* If the argument is a reference, then dereference its type, since
10185 the user is really asking for the size of the actual object,
10186 not the size of the pointer. */
10187 if (type
->code () == TYPE_CODE_REF
)
10188 type
= TYPE_TARGET_TYPE (type
);
10190 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10191 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
10193 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
10194 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
10197 /* A helper function for UNOP_ABS. */
10200 ada_abs (struct type
*expect_type
,
10201 struct expression
*exp
,
10202 enum noside noside
, enum exp_opcode op
,
10203 struct value
*arg1
)
10205 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10206 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
10207 return value_neg (arg1
);
10212 /* A helper function for BINOP_MUL. */
10215 ada_mult_binop (struct type
*expect_type
,
10216 struct expression
*exp
,
10217 enum noside noside
, enum exp_opcode op
,
10218 struct value
*arg1
, struct value
*arg2
)
10220 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10222 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10223 return value_zero (value_type (arg1
), not_lval
);
10227 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10228 return ada_value_binop (arg1
, arg2
, op
);
10232 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10235 ada_equal_binop (struct type
*expect_type
,
10236 struct expression
*exp
,
10237 enum noside noside
, enum exp_opcode op
,
10238 struct value
*arg1
, struct value
*arg2
)
10241 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10245 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10246 tem
= ada_value_equal (arg1
, arg2
);
10248 if (op
== BINOP_NOTEQUAL
)
10250 struct type
*type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10251 return value_from_longest (type
, (LONGEST
) tem
);
10254 /* A helper function for TERNOP_SLICE. */
10257 ada_ternop_slice (struct expression
*exp
,
10258 enum noside noside
,
10259 struct value
*array
, struct value
*low_bound_val
,
10260 struct value
*high_bound_val
)
10263 LONGEST high_bound
;
10265 low_bound_val
= coerce_ref (low_bound_val
);
10266 high_bound_val
= coerce_ref (high_bound_val
);
10267 low_bound
= value_as_long (low_bound_val
);
10268 high_bound
= value_as_long (high_bound_val
);
10270 /* If this is a reference to an aligner type, then remove all
10272 if (value_type (array
)->code () == TYPE_CODE_REF
10273 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10274 TYPE_TARGET_TYPE (value_type (array
)) =
10275 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10277 if (ada_is_any_packed_array_type (value_type (array
)))
10278 error (_("cannot slice a packed array"));
10280 /* If this is a reference to an array or an array lvalue,
10281 convert to a pointer. */
10282 if (value_type (array
)->code () == TYPE_CODE_REF
10283 || (value_type (array
)->code () == TYPE_CODE_ARRAY
10284 && VALUE_LVAL (array
) == lval_memory
))
10285 array
= value_addr (array
);
10287 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10288 && ada_is_array_descriptor_type (ada_check_typedef
10289 (value_type (array
))))
10290 return empty_array (ada_type_of_array (array
, 0), low_bound
,
10293 array
= ada_coerce_to_simple_array_ptr (array
);
10295 /* If we have more than one level of pointer indirection,
10296 dereference the value until we get only one level. */
10297 while (value_type (array
)->code () == TYPE_CODE_PTR
10298 && (TYPE_TARGET_TYPE (value_type (array
))->code ()
10300 array
= value_ind (array
);
10302 /* Make sure we really do have an array type before going further,
10303 to avoid a SEGV when trying to get the index type or the target
10304 type later down the road if the debug info generated by
10305 the compiler is incorrect or incomplete. */
10306 if (!ada_is_simple_array_type (value_type (array
)))
10307 error (_("cannot take slice of non-array"));
10309 if (ada_check_typedef (value_type (array
))->code ()
10312 struct type
*type0
= ada_check_typedef (value_type (array
));
10314 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10315 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
, high_bound
);
10318 struct type
*arr_type0
=
10319 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10321 return ada_value_slice_from_ptr (array
, arr_type0
,
10322 longest_to_int (low_bound
),
10323 longest_to_int (high_bound
));
10326 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10328 else if (high_bound
< low_bound
)
10329 return empty_array (value_type (array
), low_bound
, high_bound
);
10331 return ada_value_slice (array
, longest_to_int (low_bound
),
10332 longest_to_int (high_bound
));
10335 /* A helper function for BINOP_IN_BOUNDS. */
10338 ada_binop_in_bounds (struct expression
*exp
, enum noside noside
,
10339 struct value
*arg1
, struct value
*arg2
, int n
)
10341 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10343 struct type
*type
= language_bool_type (exp
->language_defn
,
10345 return value_zero (type
, not_lval
);
10348 struct type
*type
= ada_index_type (value_type (arg2
), n
, "range");
10350 type
= value_type (arg1
);
10352 value
*arg3
= value_from_longest (type
, ada_array_bound (arg2
, n
, 1));
10353 arg2
= value_from_longest (type
, ada_array_bound (arg2
, n
, 0));
10355 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10356 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10357 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10358 return value_from_longest (type
,
10359 (value_less (arg1
, arg3
)
10360 || value_equal (arg1
, arg3
))
10361 && (value_less (arg2
, arg1
)
10362 || value_equal (arg2
, arg1
)));
10365 /* A helper function for some attribute operations. */
10368 ada_unop_atr (struct expression
*exp
, enum noside noside
, enum exp_opcode op
,
10369 struct value
*arg1
, struct type
*type_arg
, int tem
)
10371 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10373 if (type_arg
== NULL
)
10374 type_arg
= value_type (arg1
);
10376 if (ada_is_constrained_packed_array_type (type_arg
))
10377 type_arg
= decode_constrained_packed_array_type (type_arg
);
10379 if (!discrete_type_p (type_arg
))
10383 default: /* Should never happen. */
10384 error (_("unexpected attribute encountered"));
10387 type_arg
= ada_index_type (type_arg
, tem
,
10388 ada_attribute_name (op
));
10390 case OP_ATR_LENGTH
:
10391 type_arg
= builtin_type (exp
->gdbarch
)->builtin_int
;
10396 return value_zero (type_arg
, not_lval
);
10398 else if (type_arg
== NULL
)
10400 arg1
= ada_coerce_ref (arg1
);
10402 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
10403 arg1
= ada_coerce_to_simple_array (arg1
);
10406 if (op
== OP_ATR_LENGTH
)
10407 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10410 type
= ada_index_type (value_type (arg1
), tem
,
10411 ada_attribute_name (op
));
10413 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10418 default: /* Should never happen. */
10419 error (_("unexpected attribute encountered"));
10421 return value_from_longest
10422 (type
, ada_array_bound (arg1
, tem
, 0));
10424 return value_from_longest
10425 (type
, ada_array_bound (arg1
, tem
, 1));
10426 case OP_ATR_LENGTH
:
10427 return value_from_longest
10428 (type
, ada_array_length (arg1
, tem
));
10431 else if (discrete_type_p (type_arg
))
10433 struct type
*range_type
;
10434 const char *name
= ada_type_name (type_arg
);
10437 if (name
!= NULL
&& type_arg
->code () != TYPE_CODE_ENUM
)
10438 range_type
= to_fixed_range_type (type_arg
, NULL
);
10439 if (range_type
== NULL
)
10440 range_type
= type_arg
;
10444 error (_("unexpected attribute encountered"));
10446 return value_from_longest
10447 (range_type
, ada_discrete_type_low_bound (range_type
));
10449 return value_from_longest
10450 (range_type
, ada_discrete_type_high_bound (range_type
));
10451 case OP_ATR_LENGTH
:
10452 error (_("the 'length attribute applies only to array types"));
10455 else if (type_arg
->code () == TYPE_CODE_FLT
)
10456 error (_("unimplemented type attribute"));
10461 if (ada_is_constrained_packed_array_type (type_arg
))
10462 type_arg
= decode_constrained_packed_array_type (type_arg
);
10465 if (op
== OP_ATR_LENGTH
)
10466 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10469 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
10471 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10477 error (_("unexpected attribute encountered"));
10479 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10480 return value_from_longest (type
, low
);
10482 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10483 return value_from_longest (type
, high
);
10484 case OP_ATR_LENGTH
:
10485 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10486 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10487 return value_from_longest (type
, high
- low
+ 1);
10492 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10495 ada_binop_minmax (struct type
*expect_type
,
10496 struct expression
*exp
,
10497 enum noside noside
, enum exp_opcode op
,
10498 struct value
*arg1
, struct value
*arg2
)
10500 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10501 return value_zero (value_type (arg1
), not_lval
);
10504 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10505 return value_binop (arg1
, arg2
, op
);
10509 /* A helper function for BINOP_EXP. */
10512 ada_binop_exp (struct type
*expect_type
,
10513 struct expression
*exp
,
10514 enum noside noside
, enum exp_opcode op
,
10515 struct value
*arg1
, struct value
*arg2
)
10517 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10518 return value_zero (value_type (arg1
), not_lval
);
10521 /* For integer exponentiation operations,
10522 only promote the first argument. */
10523 if (is_integral_type (value_type (arg2
)))
10524 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10526 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10528 return value_binop (arg1
, arg2
, op
);
10535 /* See ada-exp.h. */
10538 ada_resolvable::replace (operation_up
&&owner
,
10539 struct expression
*exp
,
10540 bool deprocedure_p
,
10541 bool parse_completion
,
10542 innermost_block_tracker
*tracker
,
10543 struct type
*context_type
)
10545 if (resolve (exp
, deprocedure_p
, parse_completion
, tracker
, context_type
))
10546 return (make_operation
<ada_funcall_operation
>
10547 (std::move (owner
),
10548 std::vector
<operation_up
> ()));
10549 return std::move (owner
);
10552 /* Convert the character literal whose value would be VAL to the
10553 appropriate value of type TYPE, if there is a translation.
10554 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10555 the literal 'A' (VAL == 65), returns 0. */
10558 convert_char_literal (struct type
*type
, LONGEST val
)
10565 type
= check_typedef (type
);
10566 if (type
->code () != TYPE_CODE_ENUM
)
10569 if ((val
>= 'a' && val
<= 'z') || (val
>= '0' && val
<= '9'))
10570 xsnprintf (name
, sizeof (name
), "Q%c", (int) val
);
10571 else if (val
>= 0 && val
< 256)
10572 xsnprintf (name
, sizeof (name
), "QU%02x", (unsigned) val
);
10573 else if (val
>= 0 && val
< 0x10000)
10574 xsnprintf (name
, sizeof (name
), "QW%04x", (unsigned) val
);
10576 xsnprintf (name
, sizeof (name
), "QWW%08lx", (unsigned long) val
);
10577 size_t len
= strlen (name
);
10578 for (f
= 0; f
< type
->num_fields (); f
+= 1)
10580 /* Check the suffix because an enum constant in a package will
10581 have a name like "pkg__QUxx". This is safe enough because we
10582 already have the correct type, and because mangling means
10583 there can't be clashes. */
10584 const char *ename
= type
->field (f
).name ();
10585 size_t elen
= strlen (ename
);
10587 if (elen
>= len
&& strcmp (name
, ename
+ elen
- len
) == 0)
10588 return type
->field (f
).loc_enumval ();
10594 ada_char_operation::evaluate (struct type
*expect_type
,
10595 struct expression
*exp
,
10596 enum noside noside
)
10598 value
*result
= long_const_operation::evaluate (expect_type
, exp
, noside
);
10599 if (expect_type
!= nullptr)
10600 result
= ada_value_cast (expect_type
, result
);
10604 /* See ada-exp.h. */
10607 ada_char_operation::replace (operation_up
&&owner
,
10608 struct expression
*exp
,
10609 bool deprocedure_p
,
10610 bool parse_completion
,
10611 innermost_block_tracker
*tracker
,
10612 struct type
*context_type
)
10614 operation_up result
= std::move (owner
);
10616 if (context_type
!= nullptr && context_type
->code () == TYPE_CODE_ENUM
)
10618 gdb_assert (result
.get () == this);
10619 std::get
<0> (m_storage
) = context_type
;
10620 std::get
<1> (m_storage
)
10621 = convert_char_literal (context_type
, std::get
<1> (m_storage
));
10628 ada_wrapped_operation::evaluate (struct type
*expect_type
,
10629 struct expression
*exp
,
10630 enum noside noside
)
10632 value
*result
= std::get
<0> (m_storage
)->evaluate (expect_type
, exp
, noside
);
10633 if (noside
== EVAL_NORMAL
)
10634 result
= unwrap_value (result
);
10636 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10637 then we need to perform the conversion manually, because
10638 evaluate_subexp_standard doesn't do it. This conversion is
10639 necessary in Ada because the different kinds of float/fixed
10640 types in Ada have different representations.
10642 Similarly, we need to perform the conversion from OP_LONG
10644 if ((opcode () == OP_FLOAT
|| opcode () == OP_LONG
) && expect_type
!= NULL
)
10645 result
= ada_value_cast (expect_type
, result
);
10651 ada_string_operation::evaluate (struct type
*expect_type
,
10652 struct expression
*exp
,
10653 enum noside noside
)
10655 struct type
*char_type
;
10656 if (expect_type
!= nullptr && ada_is_string_type (expect_type
))
10657 char_type
= ada_array_element_type (expect_type
, 1);
10659 char_type
= language_string_char_type (exp
->language_defn
, exp
->gdbarch
);
10661 const std::string
&str
= std::get
<0> (m_storage
);
10662 const char *encoding
;
10663 switch (TYPE_LENGTH (char_type
))
10667 /* Simply copy over the data -- this isn't perhaps strictly
10668 correct according to the encodings, but it is gdb's
10669 historical behavior. */
10670 struct type
*stringtype
10671 = lookup_array_range_type (char_type
, 1, str
.length ());
10672 struct value
*val
= allocate_value (stringtype
);
10673 memcpy (value_contents_raw (val
).data (), str
.c_str (),
10679 if (gdbarch_byte_order (exp
->gdbarch
) == BFD_ENDIAN_BIG
)
10680 encoding
= "UTF-16BE";
10682 encoding
= "UTF-16LE";
10686 if (gdbarch_byte_order (exp
->gdbarch
) == BFD_ENDIAN_BIG
)
10687 encoding
= "UTF-32BE";
10689 encoding
= "UTF-32LE";
10693 error (_("unexpected character type size %s"),
10694 pulongest (TYPE_LENGTH (char_type
)));
10697 auto_obstack converted
;
10698 convert_between_encodings (host_charset (), encoding
,
10699 (const gdb_byte
*) str
.c_str (),
10701 &converted
, translit_none
);
10703 struct type
*stringtype
10704 = lookup_array_range_type (char_type
, 1,
10705 obstack_object_size (&converted
)
10706 / TYPE_LENGTH (char_type
));
10707 struct value
*val
= allocate_value (stringtype
);
10708 memcpy (value_contents_raw (val
).data (),
10709 obstack_base (&converted
),
10710 obstack_object_size (&converted
));
10715 ada_concat_operation::evaluate (struct type
*expect_type
,
10716 struct expression
*exp
,
10717 enum noside noside
)
10719 /* If one side is a literal, evaluate the other side first so that
10720 the expected type can be set properly. */
10721 const operation_up
&lhs_expr
= std::get
<0> (m_storage
);
10722 const operation_up
&rhs_expr
= std::get
<1> (m_storage
);
10725 if (dynamic_cast<ada_string_operation
*> (lhs_expr
.get ()) != nullptr)
10727 rhs
= rhs_expr
->evaluate (nullptr, exp
, noside
);
10728 lhs
= lhs_expr
->evaluate (value_type (rhs
), exp
, noside
);
10730 else if (dynamic_cast<ada_char_operation
*> (lhs_expr
.get ()) != nullptr)
10732 rhs
= rhs_expr
->evaluate (nullptr, exp
, noside
);
10733 struct type
*rhs_type
= check_typedef (value_type (rhs
));
10734 struct type
*elt_type
= nullptr;
10735 if (rhs_type
->code () == TYPE_CODE_ARRAY
)
10736 elt_type
= TYPE_TARGET_TYPE (rhs_type
);
10737 lhs
= lhs_expr
->evaluate (elt_type
, exp
, noside
);
10739 else if (dynamic_cast<ada_string_operation
*> (rhs_expr
.get ()) != nullptr)
10741 lhs
= lhs_expr
->evaluate (nullptr, exp
, noside
);
10742 rhs
= rhs_expr
->evaluate (value_type (lhs
), exp
, noside
);
10744 else if (dynamic_cast<ada_char_operation
*> (rhs_expr
.get ()) != nullptr)
10746 lhs
= lhs_expr
->evaluate (nullptr, exp
, noside
);
10747 struct type
*lhs_type
= check_typedef (value_type (lhs
));
10748 struct type
*elt_type
= nullptr;
10749 if (lhs_type
->code () == TYPE_CODE_ARRAY
)
10750 elt_type
= TYPE_TARGET_TYPE (lhs_type
);
10751 rhs
= rhs_expr
->evaluate (elt_type
, exp
, noside
);
10754 return concat_operation::evaluate (expect_type
, exp
, noside
);
10756 return value_concat (lhs
, rhs
);
10760 ada_qual_operation::evaluate (struct type
*expect_type
,
10761 struct expression
*exp
,
10762 enum noside noside
)
10764 struct type
*type
= std::get
<1> (m_storage
);
10765 return std::get
<0> (m_storage
)->evaluate (type
, exp
, noside
);
10769 ada_ternop_range_operation::evaluate (struct type
*expect_type
,
10770 struct expression
*exp
,
10771 enum noside noside
)
10773 value
*arg0
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
10774 value
*arg1
= std::get
<1> (m_storage
)->evaluate (nullptr, exp
, noside
);
10775 value
*arg2
= std::get
<2> (m_storage
)->evaluate (nullptr, exp
, noside
);
10776 return eval_ternop_in_range (expect_type
, exp
, noside
, arg0
, arg1
, arg2
);
10780 ada_binop_addsub_operation::evaluate (struct type
*expect_type
,
10781 struct expression
*exp
,
10782 enum noside noside
)
10784 value
*arg1
= std::get
<1> (m_storage
)->evaluate_with_coercion (exp
, noside
);
10785 value
*arg2
= std::get
<2> (m_storage
)->evaluate_with_coercion (exp
, noside
);
10787 auto do_op
= [=] (LONGEST x
, LONGEST y
)
10789 if (std::get
<0> (m_storage
) == BINOP_ADD
)
10794 if (value_type (arg1
)->code () == TYPE_CODE_PTR
)
10795 return (value_from_longest
10796 (value_type (arg1
),
10797 do_op (value_as_long (arg1
), value_as_long (arg2
))));
10798 if (value_type (arg2
)->code () == TYPE_CODE_PTR
)
10799 return (value_from_longest
10800 (value_type (arg2
),
10801 do_op (value_as_long (arg1
), value_as_long (arg2
))));
10802 /* Preserve the original type for use by the range case below.
10803 We cannot cast the result to a reference type, so if ARG1 is
10804 a reference type, find its underlying type. */
10805 struct type
*type
= value_type (arg1
);
10806 while (type
->code () == TYPE_CODE_REF
)
10807 type
= TYPE_TARGET_TYPE (type
);
10808 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10809 arg1
= value_binop (arg1
, arg2
, std::get
<0> (m_storage
));
10810 /* We need to special-case the result with a range.
10811 This is done for the benefit of "ptype". gdb's Ada support
10812 historically used the LHS to set the result type here, so
10813 preserve this behavior. */
10814 if (type
->code () == TYPE_CODE_RANGE
)
10815 arg1
= value_cast (type
, arg1
);
10820 ada_unop_atr_operation::evaluate (struct type
*expect_type
,
10821 struct expression
*exp
,
10822 enum noside noside
)
10824 struct type
*type_arg
= nullptr;
10825 value
*val
= nullptr;
10827 if (std::get
<0> (m_storage
)->opcode () == OP_TYPE
)
10829 value
*tem
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
,
10830 EVAL_AVOID_SIDE_EFFECTS
);
10831 type_arg
= value_type (tem
);
10834 val
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
10836 return ada_unop_atr (exp
, noside
, std::get
<1> (m_storage
),
10837 val
, type_arg
, std::get
<2> (m_storage
));
10841 ada_var_msym_value_operation::evaluate_for_cast (struct type
*expect_type
,
10842 struct expression
*exp
,
10843 enum noside noside
)
10845 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10846 return value_zero (expect_type
, not_lval
);
10848 const bound_minimal_symbol
&b
= std::get
<0> (m_storage
);
10849 value
*val
= evaluate_var_msym_value (noside
, b
.objfile
, b
.minsym
);
10851 val
= ada_value_cast (expect_type
, val
);
10853 /* Follow the Ada language semantics that do not allow taking
10854 an address of the result of a cast (view conversion in Ada). */
10855 if (VALUE_LVAL (val
) == lval_memory
)
10857 if (value_lazy (val
))
10858 value_fetch_lazy (val
);
10859 VALUE_LVAL (val
) = not_lval
;
10865 ada_var_value_operation::evaluate_for_cast (struct type
*expect_type
,
10866 struct expression
*exp
,
10867 enum noside noside
)
10869 value
*val
= evaluate_var_value (noside
,
10870 std::get
<0> (m_storage
).block
,
10871 std::get
<0> (m_storage
).symbol
);
10873 val
= ada_value_cast (expect_type
, val
);
10875 /* Follow the Ada language semantics that do not allow taking
10876 an address of the result of a cast (view conversion in Ada). */
10877 if (VALUE_LVAL (val
) == lval_memory
)
10879 if (value_lazy (val
))
10880 value_fetch_lazy (val
);
10881 VALUE_LVAL (val
) = not_lval
;
10887 ada_var_value_operation::evaluate (struct type
*expect_type
,
10888 struct expression
*exp
,
10889 enum noside noside
)
10891 symbol
*sym
= std::get
<0> (m_storage
).symbol
;
10893 if (sym
->domain () == UNDEF_DOMAIN
)
10894 /* Only encountered when an unresolved symbol occurs in a
10895 context other than a function call, in which case, it is
10897 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10898 sym
->print_name ());
10900 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10902 struct type
*type
= static_unwrap_type (sym
->type ());
10903 /* Check to see if this is a tagged type. We also need to handle
10904 the case where the type is a reference to a tagged type, but
10905 we have to be careful to exclude pointers to tagged types.
10906 The latter should be shown as usual (as a pointer), whereas
10907 a reference should mostly be transparent to the user. */
10908 if (ada_is_tagged_type (type
, 0)
10909 || (type
->code () == TYPE_CODE_REF
10910 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10912 /* Tagged types are a little special in the fact that the real
10913 type is dynamic and can only be determined by inspecting the
10914 object's tag. This means that we need to get the object's
10915 value first (EVAL_NORMAL) and then extract the actual object
10918 Note that we cannot skip the final step where we extract
10919 the object type from its tag, because the EVAL_NORMAL phase
10920 results in dynamic components being resolved into fixed ones.
10921 This can cause problems when trying to print the type
10922 description of tagged types whose parent has a dynamic size:
10923 We use the type name of the "_parent" component in order
10924 to print the name of the ancestor type in the type description.
10925 If that component had a dynamic size, the resolution into
10926 a fixed type would result in the loss of that type name,
10927 thus preventing us from printing the name of the ancestor
10928 type in the type description. */
10929 value
*arg1
= evaluate (nullptr, exp
, EVAL_NORMAL
);
10931 if (type
->code () != TYPE_CODE_REF
)
10933 struct type
*actual_type
;
10935 actual_type
= type_from_tag (ada_value_tag (arg1
));
10936 if (actual_type
== NULL
)
10937 /* If, for some reason, we were unable to determine
10938 the actual type from the tag, then use the static
10939 approximation that we just computed as a fallback.
10940 This can happen if the debugging information is
10941 incomplete, for instance. */
10942 actual_type
= type
;
10943 return value_zero (actual_type
, not_lval
);
10947 /* In the case of a ref, ada_coerce_ref takes care
10948 of determining the actual type. But the evaluation
10949 should return a ref as it should be valid to ask
10950 for its address; so rebuild a ref after coerce. */
10951 arg1
= ada_coerce_ref (arg1
);
10952 return value_ref (arg1
, TYPE_CODE_REF
);
10956 /* Records and unions for which GNAT encodings have been
10957 generated need to be statically fixed as well.
10958 Otherwise, non-static fixing produces a type where
10959 all dynamic properties are removed, which prevents "ptype"
10960 from being able to completely describe the type.
10961 For instance, a case statement in a variant record would be
10962 replaced by the relevant components based on the actual
10963 value of the discriminants. */
10964 if ((type
->code () == TYPE_CODE_STRUCT
10965 && dynamic_template_type (type
) != NULL
)
10966 || (type
->code () == TYPE_CODE_UNION
10967 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10968 return value_zero (to_static_fixed_type (type
), not_lval
);
10971 value
*arg1
= var_value_operation::evaluate (expect_type
, exp
, noside
);
10972 return ada_to_fixed_value (arg1
);
10976 ada_var_value_operation::resolve (struct expression
*exp
,
10977 bool deprocedure_p
,
10978 bool parse_completion
,
10979 innermost_block_tracker
*tracker
,
10980 struct type
*context_type
)
10982 symbol
*sym
= std::get
<0> (m_storage
).symbol
;
10983 if (sym
->domain () == UNDEF_DOMAIN
)
10985 block_symbol resolved
10986 = ada_resolve_variable (sym
, std::get
<0> (m_storage
).block
,
10987 context_type
, parse_completion
,
10988 deprocedure_p
, tracker
);
10989 std::get
<0> (m_storage
) = resolved
;
10993 && (std::get
<0> (m_storage
).symbol
->type ()->code ()
10994 == TYPE_CODE_FUNC
))
11001 ada_atr_val_operation::evaluate (struct type
*expect_type
,
11002 struct expression
*exp
,
11003 enum noside noside
)
11005 value
*arg
= std::get
<1> (m_storage
)->evaluate (nullptr, exp
, noside
);
11006 return ada_val_atr (noside
, std::get
<0> (m_storage
), arg
);
11010 ada_unop_ind_operation::evaluate (struct type
*expect_type
,
11011 struct expression
*exp
,
11012 enum noside noside
)
11014 value
*arg1
= std::get
<0> (m_storage
)->evaluate (expect_type
, exp
, noside
);
11016 struct type
*type
= ada_check_typedef (value_type (arg1
));
11017 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11019 if (ada_is_array_descriptor_type (type
))
11020 /* GDB allows dereferencing GNAT array descriptors. */
11022 struct type
*arrType
= ada_type_of_array (arg1
, 0);
11024 if (arrType
== NULL
)
11025 error (_("Attempt to dereference null array pointer."));
11026 return value_at_lazy (arrType
, 0);
11028 else if (type
->code () == TYPE_CODE_PTR
11029 || type
->code () == TYPE_CODE_REF
11030 /* In C you can dereference an array to get the 1st elt. */
11031 || type
->code () == TYPE_CODE_ARRAY
)
11033 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11034 only be determined by inspecting the object's tag.
11035 This means that we need to evaluate completely the
11036 expression in order to get its type. */
11038 if ((type
->code () == TYPE_CODE_REF
11039 || type
->code () == TYPE_CODE_PTR
)
11040 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
11042 arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
,
11044 type
= value_type (ada_value_ind (arg1
));
11048 type
= to_static_fixed_type
11050 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11052 return value_zero (type
, lval_memory
);
11054 else if (type
->code () == TYPE_CODE_INT
)
11056 /* GDB allows dereferencing an int. */
11057 if (expect_type
== NULL
)
11058 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11063 to_static_fixed_type (ada_aligned_type (expect_type
));
11064 return value_zero (expect_type
, lval_memory
);
11068 error (_("Attempt to take contents of a non-pointer value."));
11070 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11071 type
= ada_check_typedef (value_type (arg1
));
11073 if (type
->code () == TYPE_CODE_INT
)
11074 /* GDB allows dereferencing an int. If we were given
11075 the expect_type, then use that as the target type.
11076 Otherwise, assume that the target type is an int. */
11078 if (expect_type
!= NULL
)
11079 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11082 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11083 (CORE_ADDR
) value_as_address (arg1
));
11086 if (ada_is_array_descriptor_type (type
))
11087 /* GDB allows dereferencing GNAT array descriptors. */
11088 return ada_coerce_to_simple_array (arg1
);
11090 return ada_value_ind (arg1
);
11094 ada_structop_operation::evaluate (struct type
*expect_type
,
11095 struct expression
*exp
,
11096 enum noside noside
)
11098 value
*arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
11099 const char *str
= std::get
<1> (m_storage
).c_str ();
11100 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11103 struct type
*type1
= value_type (arg1
);
11105 if (ada_is_tagged_type (type1
, 1))
11107 type
= ada_lookup_struct_elt_type (type1
, str
, 1, 1);
11109 /* If the field is not found, check if it exists in the
11110 extension of this object's type. This means that we
11111 need to evaluate completely the expression. */
11115 arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
,
11117 arg1
= ada_value_struct_elt (arg1
, str
, 0);
11118 arg1
= unwrap_value (arg1
);
11119 type
= value_type (ada_to_fixed_value (arg1
));
11123 type
= ada_lookup_struct_elt_type (type1
, str
, 1, 0);
11125 return value_zero (ada_aligned_type (type
), lval_memory
);
11129 arg1
= ada_value_struct_elt (arg1
, str
, 0);
11130 arg1
= unwrap_value (arg1
);
11131 return ada_to_fixed_value (arg1
);
11136 ada_funcall_operation::evaluate (struct type
*expect_type
,
11137 struct expression
*exp
,
11138 enum noside noside
)
11140 const std::vector
<operation_up
> &args_up
= std::get
<1> (m_storage
);
11141 int nargs
= args_up
.size ();
11142 std::vector
<value
*> argvec (nargs
);
11143 operation_up
&callee_op
= std::get
<0> (m_storage
);
11145 ada_var_value_operation
*avv
11146 = dynamic_cast<ada_var_value_operation
*> (callee_op
.get ());
11148 && avv
->get_symbol ()->domain () == UNDEF_DOMAIN
)
11149 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11150 avv
->get_symbol ()->print_name ());
11152 value
*callee
= callee_op
->evaluate (nullptr, exp
, noside
);
11153 for (int i
= 0; i
< args_up
.size (); ++i
)
11154 argvec
[i
] = args_up
[i
]->evaluate (nullptr, exp
, noside
);
11156 if (ada_is_constrained_packed_array_type
11157 (desc_base_type (value_type (callee
))))
11158 callee
= ada_coerce_to_simple_array (callee
);
11159 else if (value_type (callee
)->code () == TYPE_CODE_ARRAY
11160 && TYPE_FIELD_BITSIZE (value_type (callee
), 0) != 0)
11161 /* This is a packed array that has already been fixed, and
11162 therefore already coerced to a simple array. Nothing further
11165 else if (value_type (callee
)->code () == TYPE_CODE_REF
)
11167 /* Make sure we dereference references so that all the code below
11168 feels like it's really handling the referenced value. Wrapping
11169 types (for alignment) may be there, so make sure we strip them as
11171 callee
= ada_to_fixed_value (coerce_ref (callee
));
11173 else if (value_type (callee
)->code () == TYPE_CODE_ARRAY
11174 && VALUE_LVAL (callee
) == lval_memory
)
11175 callee
= value_addr (callee
);
11177 struct type
*type
= ada_check_typedef (value_type (callee
));
11179 /* Ada allows us to implicitly dereference arrays when subscripting
11180 them. So, if this is an array typedef (encoding use for array
11181 access types encoded as fat pointers), strip it now. */
11182 if (type
->code () == TYPE_CODE_TYPEDEF
)
11183 type
= ada_typedef_target_type (type
);
11185 if (type
->code () == TYPE_CODE_PTR
)
11187 switch (ada_check_typedef (TYPE_TARGET_TYPE (type
))->code ())
11189 case TYPE_CODE_FUNC
:
11190 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
11192 case TYPE_CODE_ARRAY
:
11194 case TYPE_CODE_STRUCT
:
11195 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
11196 callee
= ada_value_ind (callee
);
11197 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
11200 error (_("cannot subscript or call something of type `%s'"),
11201 ada_type_name (value_type (callee
)));
11206 switch (type
->code ())
11208 case TYPE_CODE_FUNC
:
11209 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11211 if (TYPE_TARGET_TYPE (type
) == NULL
)
11212 error_call_unknown_return_type (NULL
);
11213 return allocate_value (TYPE_TARGET_TYPE (type
));
11215 return call_function_by_hand (callee
, NULL
, argvec
);
11216 case TYPE_CODE_INTERNAL_FUNCTION
:
11217 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11218 /* We don't know anything about what the internal
11219 function might return, but we have to return
11221 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11224 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
11228 case TYPE_CODE_STRUCT
:
11232 arity
= ada_array_arity (type
);
11233 type
= ada_array_element_type (type
, nargs
);
11235 error (_("cannot subscript or call a record"));
11236 if (arity
!= nargs
)
11237 error (_("wrong number of subscripts; expecting %d"), arity
);
11238 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11239 return value_zero (ada_aligned_type (type
), lval_memory
);
11241 unwrap_value (ada_value_subscript
11242 (callee
, nargs
, argvec
.data ()));
11244 case TYPE_CODE_ARRAY
:
11245 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11247 type
= ada_array_element_type (type
, nargs
);
11249 error (_("element type of array unknown"));
11251 return value_zero (ada_aligned_type (type
), lval_memory
);
11254 unwrap_value (ada_value_subscript
11255 (ada_coerce_to_simple_array (callee
),
11256 nargs
, argvec
.data ()));
11257 case TYPE_CODE_PTR
: /* Pointer to array */
11258 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11260 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
11261 type
= ada_array_element_type (type
, nargs
);
11263 error (_("element type of array unknown"));
11265 return value_zero (ada_aligned_type (type
), lval_memory
);
11268 unwrap_value (ada_value_ptr_subscript (callee
, nargs
,
11272 error (_("Attempt to index or call something other than an "
11273 "array or function"));
11278 ada_funcall_operation::resolve (struct expression
*exp
,
11279 bool deprocedure_p
,
11280 bool parse_completion
,
11281 innermost_block_tracker
*tracker
,
11282 struct type
*context_type
)
11284 operation_up
&callee_op
= std::get
<0> (m_storage
);
11286 ada_var_value_operation
*avv
11287 = dynamic_cast<ada_var_value_operation
*> (callee_op
.get ());
11288 if (avv
== nullptr)
11291 symbol
*sym
= avv
->get_symbol ();
11292 if (sym
->domain () != UNDEF_DOMAIN
)
11295 const std::vector
<operation_up
> &args_up
= std::get
<1> (m_storage
);
11296 int nargs
= args_up
.size ();
11297 std::vector
<value
*> argvec (nargs
);
11299 for (int i
= 0; i
< args_up
.size (); ++i
)
11300 argvec
[i
] = args_up
[i
]->evaluate (nullptr, exp
, EVAL_AVOID_SIDE_EFFECTS
);
11302 const block
*block
= avv
->get_block ();
11303 block_symbol resolved
11304 = ada_resolve_funcall (sym
, block
,
11305 context_type
, parse_completion
,
11306 nargs
, argvec
.data (),
11309 std::get
<0> (m_storage
)
11310 = make_operation
<ada_var_value_operation
> (resolved
);
11315 ada_ternop_slice_operation::resolve (struct expression
*exp
,
11316 bool deprocedure_p
,
11317 bool parse_completion
,
11318 innermost_block_tracker
*tracker
,
11319 struct type
*context_type
)
11321 /* Historically this check was done during resolution, so we
11322 continue that here. */
11323 value
*v
= std::get
<0> (m_storage
)->evaluate (context_type
, exp
,
11324 EVAL_AVOID_SIDE_EFFECTS
);
11325 if (ada_is_any_packed_array_type (value_type (v
)))
11326 error (_("cannot slice a packed array"));
11334 /* Return non-zero iff TYPE represents a System.Address type. */
11337 ada_is_system_address_type (struct type
*type
)
11339 return (type
->name () && strcmp (type
->name (), "system__address") == 0);
11346 /* Scan STR beginning at position K for a discriminant name, and
11347 return the value of that discriminant field of DVAL in *PX. If
11348 PNEW_K is not null, put the position of the character beyond the
11349 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11350 not alter *PX and *PNEW_K if unsuccessful. */
11353 scan_discrim_bound (const char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11356 static std::string storage
;
11357 const char *pstart
, *pend
, *bound
;
11358 struct value
*bound_val
;
11360 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11364 pend
= strstr (pstart
, "__");
11368 k
+= strlen (bound
);
11372 int len
= pend
- pstart
;
11374 /* Strip __ and beyond. */
11375 storage
= std::string (pstart
, len
);
11376 bound
= storage
.c_str ();
11380 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11381 if (bound_val
== NULL
)
11384 *px
= value_as_long (bound_val
);
11385 if (pnew_k
!= NULL
)
11390 /* Value of variable named NAME. Only exact matches are considered.
11391 If no such variable found, then if ERR_MSG is null, returns 0, and
11392 otherwise causes an error with message ERR_MSG. */
11394 static struct value
*
11395 get_var_value (const char *name
, const char *err_msg
)
11397 std::string quoted_name
= add_angle_brackets (name
);
11399 lookup_name_info
lookup_name (quoted_name
, symbol_name_match_type::FULL
);
11401 std::vector
<struct block_symbol
> syms
11402 = ada_lookup_symbol_list_worker (lookup_name
,
11403 get_selected_block (0),
11406 if (syms
.size () != 1)
11408 if (err_msg
== NULL
)
11411 error (("%s"), err_msg
);
11414 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11417 /* Value of integer variable named NAME in the current environment.
11418 If no such variable is found, returns false. Otherwise, sets VALUE
11419 to the variable's value and returns true. */
11422 get_int_var_value (const char *name
, LONGEST
&value
)
11424 struct value
*var_val
= get_var_value (name
, 0);
11429 value
= value_as_long (var_val
);
11434 /* Return a range type whose base type is that of the range type named
11435 NAME in the current environment, and whose bounds are calculated
11436 from NAME according to the GNAT range encoding conventions.
11437 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11438 corresponding range type from debug information; fall back to using it
11439 if symbol lookup fails. If a new type must be created, allocate it
11440 like ORIG_TYPE was. The bounds information, in general, is encoded
11441 in NAME, the base type given in the named range type. */
11443 static struct type
*
11444 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11447 struct type
*base_type
;
11448 const char *subtype_info
;
11450 gdb_assert (raw_type
!= NULL
);
11451 gdb_assert (raw_type
->name () != NULL
);
11453 if (raw_type
->code () == TYPE_CODE_RANGE
)
11454 base_type
= TYPE_TARGET_TYPE (raw_type
);
11456 base_type
= raw_type
;
11458 name
= raw_type
->name ();
11459 subtype_info
= strstr (name
, "___XD");
11460 if (subtype_info
== NULL
)
11462 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11463 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11465 if (L
< INT_MIN
|| U
> INT_MAX
)
11468 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11473 int prefix_len
= subtype_info
- name
;
11476 const char *bounds_str
;
11480 bounds_str
= strchr (subtype_info
, '_');
11483 if (*subtype_info
== 'L')
11485 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11486 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11488 if (bounds_str
[n
] == '_')
11490 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11496 std::string name_buf
= std::string (name
, prefix_len
) + "___L";
11497 if (!get_int_var_value (name_buf
.c_str (), L
))
11499 lim_warning (_("Unknown lower bound, using 1."));
11504 if (*subtype_info
== 'U')
11506 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11507 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11512 std::string name_buf
= std::string (name
, prefix_len
) + "___U";
11513 if (!get_int_var_value (name_buf
.c_str (), U
))
11515 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11520 type
= create_static_range_type (alloc_type_copy (raw_type
),
11522 /* create_static_range_type alters the resulting type's length
11523 to match the size of the base_type, which is not what we want.
11524 Set it back to the original range type's length. */
11525 TYPE_LENGTH (type
) = TYPE_LENGTH (raw_type
);
11526 type
->set_name (name
);
11531 /* True iff NAME is the name of a range type. */
11534 ada_is_range_type_name (const char *name
)
11536 return (name
!= NULL
&& strstr (name
, "___XD"));
11540 /* Modular types */
11542 /* True iff TYPE is an Ada modular type. */
11545 ada_is_modular_type (struct type
*type
)
11547 struct type
*subranged_type
= get_base_type (type
);
11549 return (subranged_type
!= NULL
&& type
->code () == TYPE_CODE_RANGE
11550 && subranged_type
->code () == TYPE_CODE_INT
11551 && subranged_type
->is_unsigned ());
11554 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11557 ada_modulus (struct type
*type
)
11559 const dynamic_prop
&high
= type
->bounds ()->high
;
11561 if (high
.kind () == PROP_CONST
)
11562 return (ULONGEST
) high
.const_val () + 1;
11564 /* If TYPE is unresolved, the high bound might be a location list. Return
11565 0, for lack of a better value to return. */
11570 /* Ada exception catchpoint support:
11571 ---------------------------------
11573 We support 3 kinds of exception catchpoints:
11574 . catchpoints on Ada exceptions
11575 . catchpoints on unhandled Ada exceptions
11576 . catchpoints on failed assertions
11578 Exceptions raised during failed assertions, or unhandled exceptions
11579 could perfectly be caught with the general catchpoint on Ada exceptions.
11580 However, we can easily differentiate these two special cases, and having
11581 the option to distinguish these two cases from the rest can be useful
11582 to zero-in on certain situations.
11584 Exception catchpoints are a specialized form of breakpoint,
11585 since they rely on inserting breakpoints inside known routines
11586 of the GNAT runtime. The implementation therefore uses a standard
11587 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11590 Support in the runtime for exception catchpoints have been changed
11591 a few times already, and these changes affect the implementation
11592 of these catchpoints. In order to be able to support several
11593 variants of the runtime, we use a sniffer that will determine
11594 the runtime variant used by the program being debugged. */
11596 /* Ada's standard exceptions.
11598 The Ada 83 standard also defined Numeric_Error. But there so many
11599 situations where it was unclear from the Ada 83 Reference Manual
11600 (RM) whether Constraint_Error or Numeric_Error should be raised,
11601 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11602 Interpretation saying that anytime the RM says that Numeric_Error
11603 should be raised, the implementation may raise Constraint_Error.
11604 Ada 95 went one step further and pretty much removed Numeric_Error
11605 from the list of standard exceptions (it made it a renaming of
11606 Constraint_Error, to help preserve compatibility when compiling
11607 an Ada83 compiler). As such, we do not include Numeric_Error from
11608 this list of standard exceptions. */
11610 static const char * const standard_exc
[] = {
11611 "constraint_error",
11617 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11619 /* A structure that describes how to support exception catchpoints
11620 for a given executable. */
11622 struct exception_support_info
11624 /* The name of the symbol to break on in order to insert
11625 a catchpoint on exceptions. */
11626 const char *catch_exception_sym
;
11628 /* The name of the symbol to break on in order to insert
11629 a catchpoint on unhandled exceptions. */
11630 const char *catch_exception_unhandled_sym
;
11632 /* The name of the symbol to break on in order to insert
11633 a catchpoint on failed assertions. */
11634 const char *catch_assert_sym
;
11636 /* The name of the symbol to break on in order to insert
11637 a catchpoint on exception handling. */
11638 const char *catch_handlers_sym
;
11640 /* Assuming that the inferior just triggered an unhandled exception
11641 catchpoint, this function is responsible for returning the address
11642 in inferior memory where the name of that exception is stored.
11643 Return zero if the address could not be computed. */
11644 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11647 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11648 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11650 /* The following exception support info structure describes how to
11651 implement exception catchpoints with the latest version of the
11652 Ada runtime (as of 2019-08-??). */
11654 static const struct exception_support_info default_exception_support_info
=
11656 "__gnat_debug_raise_exception", /* catch_exception_sym */
11657 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11658 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11659 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11660 ada_unhandled_exception_name_addr
11663 /* The following exception support info structure describes how to
11664 implement exception catchpoints with an earlier version of the
11665 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11667 static const struct exception_support_info exception_support_info_v0
=
11669 "__gnat_debug_raise_exception", /* catch_exception_sym */
11670 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11671 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11672 "__gnat_begin_handler", /* catch_handlers_sym */
11673 ada_unhandled_exception_name_addr
11676 /* The following exception support info structure describes how to
11677 implement exception catchpoints with a slightly older version
11678 of the Ada runtime. */
11680 static const struct exception_support_info exception_support_info_fallback
=
11682 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11683 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11684 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11685 "__gnat_begin_handler", /* catch_handlers_sym */
11686 ada_unhandled_exception_name_addr_from_raise
11689 /* Return nonzero if we can detect the exception support routines
11690 described in EINFO.
11692 This function errors out if an abnormal situation is detected
11693 (for instance, if we find the exception support routines, but
11694 that support is found to be incomplete). */
11697 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11699 struct symbol
*sym
;
11701 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11702 that should be compiled with debugging information. As a result, we
11703 expect to find that symbol in the symtabs. */
11705 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11708 /* Perhaps we did not find our symbol because the Ada runtime was
11709 compiled without debugging info, or simply stripped of it.
11710 It happens on some GNU/Linux distributions for instance, where
11711 users have to install a separate debug package in order to get
11712 the runtime's debugging info. In that situation, let the user
11713 know why we cannot insert an Ada exception catchpoint.
11715 Note: Just for the purpose of inserting our Ada exception
11716 catchpoint, we could rely purely on the associated minimal symbol.
11717 But we would be operating in degraded mode anyway, since we are
11718 still lacking the debugging info needed later on to extract
11719 the name of the exception being raised (this name is printed in
11720 the catchpoint message, and is also used when trying to catch
11721 a specific exception). We do not handle this case for now. */
11722 struct bound_minimal_symbol msym
11723 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11725 if (msym
.minsym
&& msym
.minsym
->type () != mst_solib_trampoline
)
11726 error (_("Your Ada runtime appears to be missing some debugging "
11727 "information.\nCannot insert Ada exception catchpoint "
11728 "in this configuration."));
11733 /* Make sure that the symbol we found corresponds to a function. */
11735 if (sym
->aclass () != LOC_BLOCK
)
11737 error (_("Symbol \"%s\" is not a function (class = %d)"),
11738 sym
->linkage_name (), sym
->aclass ());
11742 sym
= standard_lookup (einfo
->catch_handlers_sym
, NULL
, VAR_DOMAIN
);
11745 struct bound_minimal_symbol msym
11746 = lookup_minimal_symbol (einfo
->catch_handlers_sym
, NULL
, NULL
);
11748 if (msym
.minsym
&& msym
.minsym
->type () != mst_solib_trampoline
)
11749 error (_("Your Ada runtime appears to be missing some debugging "
11750 "information.\nCannot insert Ada exception catchpoint "
11751 "in this configuration."));
11756 /* Make sure that the symbol we found corresponds to a function. */
11758 if (sym
->aclass () != LOC_BLOCK
)
11760 error (_("Symbol \"%s\" is not a function (class = %d)"),
11761 sym
->linkage_name (), sym
->aclass ());
11768 /* Inspect the Ada runtime and determine which exception info structure
11769 should be used to provide support for exception catchpoints.
11771 This function will always set the per-inferior exception_info,
11772 or raise an error. */
11775 ada_exception_support_info_sniffer (void)
11777 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11779 /* If the exception info is already known, then no need to recompute it. */
11780 if (data
->exception_info
!= NULL
)
11783 /* Check the latest (default) exception support info. */
11784 if (ada_has_this_exception_support (&default_exception_support_info
))
11786 data
->exception_info
= &default_exception_support_info
;
11790 /* Try the v0 exception suport info. */
11791 if (ada_has_this_exception_support (&exception_support_info_v0
))
11793 data
->exception_info
= &exception_support_info_v0
;
11797 /* Try our fallback exception suport info. */
11798 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11800 data
->exception_info
= &exception_support_info_fallback
;
11804 /* Sometimes, it is normal for us to not be able to find the routine
11805 we are looking for. This happens when the program is linked with
11806 the shared version of the GNAT runtime, and the program has not been
11807 started yet. Inform the user of these two possible causes if
11810 if (ada_update_initial_language (language_unknown
) != language_ada
)
11811 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11813 /* If the symbol does not exist, then check that the program is
11814 already started, to make sure that shared libraries have been
11815 loaded. If it is not started, this may mean that the symbol is
11816 in a shared library. */
11818 if (inferior_ptid
.pid () == 0)
11819 error (_("Unable to insert catchpoint. Try to start the program first."));
11821 /* At this point, we know that we are debugging an Ada program and
11822 that the inferior has been started, but we still are not able to
11823 find the run-time symbols. That can mean that we are in
11824 configurable run time mode, or that a-except as been optimized
11825 out by the linker... In any case, at this point it is not worth
11826 supporting this feature. */
11828 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11831 /* True iff FRAME is very likely to be that of a function that is
11832 part of the runtime system. This is all very heuristic, but is
11833 intended to be used as advice as to what frames are uninteresting
11837 is_known_support_routine (struct frame_info
*frame
)
11839 enum language func_lang
;
11841 const char *fullname
;
11843 /* If this code does not have any debugging information (no symtab),
11844 This cannot be any user code. */
11846 symtab_and_line sal
= find_frame_sal (frame
);
11847 if (sal
.symtab
== NULL
)
11850 /* If there is a symtab, but the associated source file cannot be
11851 located, then assume this is not user code: Selecting a frame
11852 for which we cannot display the code would not be very helpful
11853 for the user. This should also take care of case such as VxWorks
11854 where the kernel has some debugging info provided for a few units. */
11856 fullname
= symtab_to_fullname (sal
.symtab
);
11857 if (access (fullname
, R_OK
) != 0)
11860 /* Check the unit filename against the Ada runtime file naming.
11861 We also check the name of the objfile against the name of some
11862 known system libraries that sometimes come with debugging info
11865 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
11867 re_comp (known_runtime_file_name_patterns
[i
]);
11868 if (re_exec (lbasename (sal
.symtab
->filename
)))
11870 if (sal
.symtab
->compunit ()->objfile () != NULL
11871 && re_exec (objfile_name (sal
.symtab
->compunit ()->objfile ())))
11875 /* Check whether the function is a GNAT-generated entity. */
11877 gdb::unique_xmalloc_ptr
<char> func_name
11878 = find_frame_funname (frame
, &func_lang
, NULL
);
11879 if (func_name
== NULL
)
11882 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
11884 re_comp (known_auxiliary_function_name_patterns
[i
]);
11885 if (re_exec (func_name
.get ()))
11892 /* Find the first frame that contains debugging information and that is not
11893 part of the Ada run-time, starting from FI and moving upward. */
11896 ada_find_printable_frame (struct frame_info
*fi
)
11898 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
11900 if (!is_known_support_routine (fi
))
11909 /* Assuming that the inferior just triggered an unhandled exception
11910 catchpoint, return the address in inferior memory where the name
11911 of the exception is stored.
11913 Return zero if the address could not be computed. */
11916 ada_unhandled_exception_name_addr (void)
11918 return parse_and_eval_address ("e.full_name");
11921 /* Same as ada_unhandled_exception_name_addr, except that this function
11922 should be used when the inferior uses an older version of the runtime,
11923 where the exception name needs to be extracted from a specific frame
11924 several frames up in the callstack. */
11927 ada_unhandled_exception_name_addr_from_raise (void)
11930 struct frame_info
*fi
;
11931 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11933 /* To determine the name of this exception, we need to select
11934 the frame corresponding to RAISE_SYM_NAME. This frame is
11935 at least 3 levels up, so we simply skip the first 3 frames
11936 without checking the name of their associated function. */
11937 fi
= get_current_frame ();
11938 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
11940 fi
= get_prev_frame (fi
);
11944 enum language func_lang
;
11946 gdb::unique_xmalloc_ptr
<char> func_name
11947 = find_frame_funname (fi
, &func_lang
, NULL
);
11948 if (func_name
!= NULL
)
11950 if (strcmp (func_name
.get (),
11951 data
->exception_info
->catch_exception_sym
) == 0)
11952 break; /* We found the frame we were looking for... */
11954 fi
= get_prev_frame (fi
);
11961 return parse_and_eval_address ("id.full_name");
11964 /* Assuming the inferior just triggered an Ada exception catchpoint
11965 (of any type), return the address in inferior memory where the name
11966 of the exception is stored, if applicable.
11968 Assumes the selected frame is the current frame.
11970 Return zero if the address could not be computed, or if not relevant. */
11973 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
)
11975 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11979 case ada_catch_exception
:
11980 return (parse_and_eval_address ("e.full_name"));
11983 case ada_catch_exception_unhandled
:
11984 return data
->exception_info
->unhandled_exception_name_addr ();
11987 case ada_catch_handlers
:
11988 return 0; /* The runtimes does not provide access to the exception
11992 case ada_catch_assert
:
11993 return 0; /* Exception name is not relevant in this case. */
11997 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12001 return 0; /* Should never be reached. */
12004 /* Assuming the inferior is stopped at an exception catchpoint,
12005 return the message which was associated to the exception, if
12006 available. Return NULL if the message could not be retrieved.
12008 Note: The exception message can be associated to an exception
12009 either through the use of the Raise_Exception function, or
12010 more simply (Ada 2005 and later), via:
12012 raise Exception_Name with "exception message";
12016 static gdb::unique_xmalloc_ptr
<char>
12017 ada_exception_message_1 (void)
12019 struct value
*e_msg_val
;
12022 /* For runtimes that support this feature, the exception message
12023 is passed as an unbounded string argument called "message". */
12024 e_msg_val
= parse_and_eval ("message");
12025 if (e_msg_val
== NULL
)
12026 return NULL
; /* Exception message not supported. */
12028 e_msg_val
= ada_coerce_to_simple_array (e_msg_val
);
12029 gdb_assert (e_msg_val
!= NULL
);
12030 e_msg_len
= TYPE_LENGTH (value_type (e_msg_val
));
12032 /* If the message string is empty, then treat it as if there was
12033 no exception message. */
12034 if (e_msg_len
<= 0)
12037 gdb::unique_xmalloc_ptr
<char> e_msg ((char *) xmalloc (e_msg_len
+ 1));
12038 read_memory (value_address (e_msg_val
), (gdb_byte
*) e_msg
.get (),
12040 e_msg
.get ()[e_msg_len
] = '\0';
12045 /* Same as ada_exception_message_1, except that all exceptions are
12046 contained here (returning NULL instead). */
12048 static gdb::unique_xmalloc_ptr
<char>
12049 ada_exception_message (void)
12051 gdb::unique_xmalloc_ptr
<char> e_msg
;
12055 e_msg
= ada_exception_message_1 ();
12057 catch (const gdb_exception_error
&e
)
12059 e_msg
.reset (nullptr);
12065 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12066 any error that ada_exception_name_addr_1 might cause to be thrown.
12067 When an error is intercepted, a warning with the error message is printed,
12068 and zero is returned. */
12071 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
)
12073 CORE_ADDR result
= 0;
12077 result
= ada_exception_name_addr_1 (ex
);
12080 catch (const gdb_exception_error
&e
)
12082 warning (_("failed to get exception name: %s"), e
.what ());
12089 static std::string ada_exception_catchpoint_cond_string
12090 (const char *excep_string
,
12091 enum ada_exception_catchpoint_kind ex
);
12093 /* Ada catchpoints.
12095 In the case of catchpoints on Ada exceptions, the catchpoint will
12096 stop the target on every exception the program throws. When a user
12097 specifies the name of a specific exception, we translate this
12098 request into a condition expression (in text form), and then parse
12099 it into an expression stored in each of the catchpoint's locations.
12100 We then use this condition to check whether the exception that was
12101 raised is the one the user is interested in. If not, then the
12102 target is resumed again. We store the name of the requested
12103 exception, in order to be able to re-set the condition expression
12104 when symbols change. */
12106 /* An instance of this type is used to represent an Ada catchpoint. */
12108 struct ada_catchpoint
: public code_breakpoint
12110 ada_catchpoint (struct gdbarch
*gdbarch_
,
12111 enum ada_exception_catchpoint_kind kind
,
12112 struct symtab_and_line sal
,
12113 const char *addr_string_
,
12117 : code_breakpoint (gdbarch_
, bp_catchpoint
),
12120 add_location (sal
);
12122 /* Unlike most code_breakpoint types, Ada catchpoints are
12123 pspace-specific. */
12124 gdb_assert (sal
.pspace
!= nullptr);
12125 this->pspace
= sal
.pspace
;
12129 struct gdbarch
*loc_gdbarch
= get_sal_arch (sal
);
12131 loc_gdbarch
= gdbarch
;
12133 describe_other_breakpoints (loc_gdbarch
,
12134 sal
.pspace
, sal
.pc
, sal
.section
, -1);
12135 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12136 version for exception catchpoints, because two catchpoints
12137 used for different exception names will use the same address.
12138 In this case, a "breakpoint ... also set at..." warning is
12139 unproductive. Besides, the warning phrasing is also a bit
12140 inappropriate, we should use the word catchpoint, and tell
12141 the user what type of catchpoint it is. The above is good
12142 enough for now, though. */
12145 enable_state
= enabled
? bp_enabled
: bp_disabled
;
12146 disposition
= tempflag
? disp_del
: disp_donttouch
;
12147 locspec
= string_to_location_spec (&addr_string_
,
12148 language_def (language_ada
));
12149 language
= language_ada
;
12152 struct bp_location
*allocate_location () override
;
12153 void re_set () override
;
12154 void check_status (struct bpstat
*bs
) override
;
12155 enum print_stop_action
print_it (const bpstat
*bs
) const override
;
12156 bool print_one (bp_location
**) const override
;
12157 void print_mention () const override
;
12158 void print_recreate (struct ui_file
*fp
) const override
;
12160 /* The name of the specific exception the user specified. */
12161 std::string excep_string
;
12163 /* What kind of catchpoint this is. */
12164 enum ada_exception_catchpoint_kind m_kind
;
12167 /* An instance of this type is used to represent an Ada catchpoint
12168 breakpoint location. */
12170 class ada_catchpoint_location
: public bp_location
12173 explicit ada_catchpoint_location (ada_catchpoint
*owner
)
12174 : bp_location (owner
, bp_loc_software_breakpoint
)
12177 /* The condition that checks whether the exception that was raised
12178 is the specific exception the user specified on catchpoint
12180 expression_up excep_cond_expr
;
12183 /* Parse the exception condition string in the context of each of the
12184 catchpoint's locations, and store them for later evaluation. */
12187 create_excep_cond_exprs (struct ada_catchpoint
*c
,
12188 enum ada_exception_catchpoint_kind ex
)
12190 /* Nothing to do if there's no specific exception to catch. */
12191 if (c
->excep_string
.empty ())
12194 /* Same if there are no locations... */
12195 if (c
->loc
== NULL
)
12198 /* Compute the condition expression in text form, from the specific
12199 expection we want to catch. */
12200 std::string cond_string
12201 = ada_exception_catchpoint_cond_string (c
->excep_string
.c_str (), ex
);
12203 /* Iterate over all the catchpoint's locations, and parse an
12204 expression for each. */
12205 for (bp_location
*bl
: c
->locations ())
12207 struct ada_catchpoint_location
*ada_loc
12208 = (struct ada_catchpoint_location
*) bl
;
12211 if (!bl
->shlib_disabled
)
12215 s
= cond_string
.c_str ();
12218 exp
= parse_exp_1 (&s
, bl
->address
,
12219 block_for_pc (bl
->address
),
12222 catch (const gdb_exception_error
&e
)
12224 warning (_("failed to reevaluate internal exception condition "
12225 "for catchpoint %d: %s"),
12226 c
->number
, e
.what ());
12230 ada_loc
->excep_cond_expr
= std::move (exp
);
12234 /* Implement the ALLOCATE_LOCATION method in the structure for all
12235 exception catchpoint kinds. */
12237 struct bp_location
*
12238 ada_catchpoint::allocate_location ()
12240 return new ada_catchpoint_location (this);
12243 /* Implement the RE_SET method in the structure for all exception
12244 catchpoint kinds. */
12247 ada_catchpoint::re_set ()
12249 /* Call the base class's method. This updates the catchpoint's
12251 this->code_breakpoint::re_set ();
12253 /* Reparse the exception conditional expressions. One for each
12255 create_excep_cond_exprs (this, m_kind
);
12258 /* Returns true if we should stop for this breakpoint hit. If the
12259 user specified a specific exception, we only want to cause a stop
12260 if the program thrown that exception. */
12263 should_stop_exception (const struct bp_location
*bl
)
12265 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12266 const struct ada_catchpoint_location
*ada_loc
12267 = (const struct ada_catchpoint_location
*) bl
;
12270 struct internalvar
*var
= lookup_internalvar ("_ada_exception");
12271 if (c
->m_kind
== ada_catch_assert
)
12272 clear_internalvar (var
);
12279 if (c
->m_kind
== ada_catch_handlers
)
12280 expr
= ("GNAT_GCC_exception_Access(gcc_exception)"
12281 ".all.occurrence.id");
12285 struct value
*exc
= parse_and_eval (expr
);
12286 set_internalvar (var
, exc
);
12288 catch (const gdb_exception_error
&ex
)
12290 clear_internalvar (var
);
12294 /* With no specific exception, should always stop. */
12295 if (c
->excep_string
.empty ())
12298 if (ada_loc
->excep_cond_expr
== NULL
)
12300 /* We will have a NULL expression if back when we were creating
12301 the expressions, this location's had failed to parse. */
12308 struct value
*mark
;
12310 mark
= value_mark ();
12311 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
.get ()));
12312 value_free_to_mark (mark
);
12314 catch (const gdb_exception
&ex
)
12316 exception_fprintf (gdb_stderr
, ex
,
12317 _("Error in testing exception condition:\n"));
12323 /* Implement the CHECK_STATUS method in the structure for all
12324 exception catchpoint kinds. */
12327 ada_catchpoint::check_status (bpstat
*bs
)
12329 bs
->stop
= should_stop_exception (bs
->bp_location_at
.get ());
12332 /* Implement the PRINT_IT method in the structure for all exception
12333 catchpoint kinds. */
12335 enum print_stop_action
12336 ada_catchpoint::print_it (const bpstat
*bs
) const
12338 struct ui_out
*uiout
= current_uiout
;
12340 annotate_catchpoint (number
);
12342 if (uiout
->is_mi_like_p ())
12344 uiout
->field_string ("reason",
12345 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12346 uiout
->field_string ("disp", bpdisp_text (disposition
));
12349 uiout
->text (disposition
== disp_del
12350 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12351 uiout
->field_signed ("bkptno", number
);
12352 uiout
->text (", ");
12354 /* ada_exception_name_addr relies on the selected frame being the
12355 current frame. Need to do this here because this function may be
12356 called more than once when printing a stop, and below, we'll
12357 select the first frame past the Ada run-time (see
12358 ada_find_printable_frame). */
12359 select_frame (get_current_frame ());
12363 case ada_catch_exception
:
12364 case ada_catch_exception_unhandled
:
12365 case ada_catch_handlers
:
12367 const CORE_ADDR addr
= ada_exception_name_addr (m_kind
);
12368 char exception_name
[256];
12372 read_memory (addr
, (gdb_byte
*) exception_name
,
12373 sizeof (exception_name
) - 1);
12374 exception_name
[sizeof (exception_name
) - 1] = '\0';
12378 /* For some reason, we were unable to read the exception
12379 name. This could happen if the Runtime was compiled
12380 without debugging info, for instance. In that case,
12381 just replace the exception name by the generic string
12382 "exception" - it will read as "an exception" in the
12383 notification we are about to print. */
12384 memcpy (exception_name
, "exception", sizeof ("exception"));
12386 /* In the case of unhandled exception breakpoints, we print
12387 the exception name as "unhandled EXCEPTION_NAME", to make
12388 it clearer to the user which kind of catchpoint just got
12389 hit. We used ui_out_text to make sure that this extra
12390 info does not pollute the exception name in the MI case. */
12391 if (m_kind
== ada_catch_exception_unhandled
)
12392 uiout
->text ("unhandled ");
12393 uiout
->field_string ("exception-name", exception_name
);
12396 case ada_catch_assert
:
12397 /* In this case, the name of the exception is not really
12398 important. Just print "failed assertion" to make it clearer
12399 that his program just hit an assertion-failure catchpoint.
12400 We used ui_out_text because this info does not belong in
12402 uiout
->text ("failed assertion");
12406 gdb::unique_xmalloc_ptr
<char> exception_message
= ada_exception_message ();
12407 if (exception_message
!= NULL
)
12409 uiout
->text (" (");
12410 uiout
->field_string ("exception-message", exception_message
.get ());
12414 uiout
->text (" at ");
12415 ada_find_printable_frame (get_current_frame ());
12417 return PRINT_SRC_AND_LOC
;
12420 /* Implement the PRINT_ONE method in the structure for all exception
12421 catchpoint kinds. */
12424 ada_catchpoint::print_one (bp_location
**last_loc
) const
12426 struct ui_out
*uiout
= current_uiout
;
12427 struct value_print_options opts
;
12429 get_user_print_options (&opts
);
12431 if (opts
.addressprint
)
12432 uiout
->field_skip ("addr");
12434 annotate_field (5);
12437 case ada_catch_exception
:
12438 if (!excep_string
.empty ())
12440 std::string msg
= string_printf (_("`%s' Ada exception"),
12441 excep_string
.c_str ());
12443 uiout
->field_string ("what", msg
);
12446 uiout
->field_string ("what", "all Ada exceptions");
12450 case ada_catch_exception_unhandled
:
12451 uiout
->field_string ("what", "unhandled Ada exceptions");
12454 case ada_catch_handlers
:
12455 if (!excep_string
.empty ())
12457 uiout
->field_fmt ("what",
12458 _("`%s' Ada exception handlers"),
12459 excep_string
.c_str ());
12462 uiout
->field_string ("what", "all Ada exceptions handlers");
12465 case ada_catch_assert
:
12466 uiout
->field_string ("what", "failed Ada assertions");
12470 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12477 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12478 for all exception catchpoint kinds. */
12481 ada_catchpoint::print_mention () const
12483 struct ui_out
*uiout
= current_uiout
;
12485 uiout
->text (disposition
== disp_del
? _("Temporary catchpoint ")
12486 : _("Catchpoint "));
12487 uiout
->field_signed ("bkptno", number
);
12488 uiout
->text (": ");
12492 case ada_catch_exception
:
12493 if (!excep_string
.empty ())
12495 std::string info
= string_printf (_("`%s' Ada exception"),
12496 excep_string
.c_str ());
12497 uiout
->text (info
);
12500 uiout
->text (_("all Ada exceptions"));
12503 case ada_catch_exception_unhandled
:
12504 uiout
->text (_("unhandled Ada exceptions"));
12507 case ada_catch_handlers
:
12508 if (!excep_string
.empty ())
12511 = string_printf (_("`%s' Ada exception handlers"),
12512 excep_string
.c_str ());
12513 uiout
->text (info
);
12516 uiout
->text (_("all Ada exceptions handlers"));
12519 case ada_catch_assert
:
12520 uiout
->text (_("failed Ada assertions"));
12524 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12529 /* Implement the PRINT_RECREATE method in the structure for all
12530 exception catchpoint kinds. */
12533 ada_catchpoint::print_recreate (struct ui_file
*fp
) const
12537 case ada_catch_exception
:
12538 gdb_printf (fp
, "catch exception");
12539 if (!excep_string
.empty ())
12540 gdb_printf (fp
, " %s", excep_string
.c_str ());
12543 case ada_catch_exception_unhandled
:
12544 gdb_printf (fp
, "catch exception unhandled");
12547 case ada_catch_handlers
:
12548 gdb_printf (fp
, "catch handlers");
12551 case ada_catch_assert
:
12552 gdb_printf (fp
, "catch assert");
12556 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12558 print_recreate_thread (fp
);
12561 /* See ada-lang.h. */
12564 is_ada_exception_catchpoint (breakpoint
*bp
)
12566 return dynamic_cast<ada_catchpoint
*> (bp
) != nullptr;
12569 /* Split the arguments specified in a "catch exception" command.
12570 Set EX to the appropriate catchpoint type.
12571 Set EXCEP_STRING to the name of the specific exception if
12572 specified by the user.
12573 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12574 "catch handlers" command. False otherwise.
12575 If a condition is found at the end of the arguments, the condition
12576 expression is stored in COND_STRING (memory must be deallocated
12577 after use). Otherwise COND_STRING is set to NULL. */
12580 catch_ada_exception_command_split (const char *args
,
12581 bool is_catch_handlers_cmd
,
12582 enum ada_exception_catchpoint_kind
*ex
,
12583 std::string
*excep_string
,
12584 std::string
*cond_string
)
12586 std::string exception_name
;
12588 exception_name
= extract_arg (&args
);
12589 if (exception_name
== "if")
12591 /* This is not an exception name; this is the start of a condition
12592 expression for a catchpoint on all exceptions. So, "un-get"
12593 this token, and set exception_name to NULL. */
12594 exception_name
.clear ();
12598 /* Check to see if we have a condition. */
12600 args
= skip_spaces (args
);
12601 if (startswith (args
, "if")
12602 && (isspace (args
[2]) || args
[2] == '\0'))
12605 args
= skip_spaces (args
);
12607 if (args
[0] == '\0')
12608 error (_("Condition missing after `if' keyword"));
12609 *cond_string
= args
;
12611 args
+= strlen (args
);
12614 /* Check that we do not have any more arguments. Anything else
12617 if (args
[0] != '\0')
12618 error (_("Junk at end of expression"));
12620 if (is_catch_handlers_cmd
)
12622 /* Catch handling of exceptions. */
12623 *ex
= ada_catch_handlers
;
12624 *excep_string
= exception_name
;
12626 else if (exception_name
.empty ())
12628 /* Catch all exceptions. */
12629 *ex
= ada_catch_exception
;
12630 excep_string
->clear ();
12632 else if (exception_name
== "unhandled")
12634 /* Catch unhandled exceptions. */
12635 *ex
= ada_catch_exception_unhandled
;
12636 excep_string
->clear ();
12640 /* Catch a specific exception. */
12641 *ex
= ada_catch_exception
;
12642 *excep_string
= exception_name
;
12646 /* Return the name of the symbol on which we should break in order to
12647 implement a catchpoint of the EX kind. */
12649 static const char *
12650 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12652 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12654 gdb_assert (data
->exception_info
!= NULL
);
12658 case ada_catch_exception
:
12659 return (data
->exception_info
->catch_exception_sym
);
12661 case ada_catch_exception_unhandled
:
12662 return (data
->exception_info
->catch_exception_unhandled_sym
);
12664 case ada_catch_assert
:
12665 return (data
->exception_info
->catch_assert_sym
);
12667 case ada_catch_handlers
:
12668 return (data
->exception_info
->catch_handlers_sym
);
12671 internal_error (__FILE__
, __LINE__
,
12672 _("unexpected catchpoint kind (%d)"), ex
);
12676 /* Return the condition that will be used to match the current exception
12677 being raised with the exception that the user wants to catch. This
12678 assumes that this condition is used when the inferior just triggered
12679 an exception catchpoint.
12680 EX: the type of catchpoints used for catching Ada exceptions. */
12683 ada_exception_catchpoint_cond_string (const char *excep_string
,
12684 enum ada_exception_catchpoint_kind ex
)
12686 bool is_standard_exc
= false;
12687 std::string result
;
12689 if (ex
== ada_catch_handlers
)
12691 /* For exception handlers catchpoints, the condition string does
12692 not use the same parameter as for the other exceptions. */
12693 result
= ("long_integer (GNAT_GCC_exception_Access"
12694 "(gcc_exception).all.occurrence.id)");
12697 result
= "long_integer (e)";
12699 /* The standard exceptions are a special case. They are defined in
12700 runtime units that have been compiled without debugging info; if
12701 EXCEP_STRING is the not-fully-qualified name of a standard
12702 exception (e.g. "constraint_error") then, during the evaluation
12703 of the condition expression, the symbol lookup on this name would
12704 *not* return this standard exception. The catchpoint condition
12705 may then be set only on user-defined exceptions which have the
12706 same not-fully-qualified name (e.g. my_package.constraint_error).
12708 To avoid this unexcepted behavior, these standard exceptions are
12709 systematically prefixed by "standard". This means that "catch
12710 exception constraint_error" is rewritten into "catch exception
12711 standard.constraint_error".
12713 If an exception named constraint_error is defined in another package of
12714 the inferior program, then the only way to specify this exception as a
12715 breakpoint condition is to use its fully-qualified named:
12716 e.g. my_package.constraint_error. */
12718 for (const char *name
: standard_exc
)
12720 if (strcmp (name
, excep_string
) == 0)
12722 is_standard_exc
= true;
12729 if (is_standard_exc
)
12730 string_appendf (result
, "long_integer (&standard.%s)", excep_string
);
12732 string_appendf (result
, "long_integer (&%s)", excep_string
);
12737 /* Return the symtab_and_line that should be used to insert an exception
12738 catchpoint of the TYPE kind.
12740 ADDR_STRING returns the name of the function where the real
12741 breakpoint that implements the catchpoints is set, depending on the
12742 type of catchpoint we need to create. */
12744 static struct symtab_and_line
12745 ada_exception_sal (enum ada_exception_catchpoint_kind ex
,
12746 std::string
*addr_string
)
12748 const char *sym_name
;
12749 struct symbol
*sym
;
12751 /* First, find out which exception support info to use. */
12752 ada_exception_support_info_sniffer ();
12754 /* Then lookup the function on which we will break in order to catch
12755 the Ada exceptions requested by the user. */
12756 sym_name
= ada_exception_sym_name (ex
);
12757 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12760 error (_("Catchpoint symbol not found: %s"), sym_name
);
12762 if (sym
->aclass () != LOC_BLOCK
)
12763 error (_("Unable to insert catchpoint. %s is not a function."), sym_name
);
12765 /* Set ADDR_STRING. */
12766 *addr_string
= sym_name
;
12768 return find_function_start_sal (sym
, 1);
12771 /* Create an Ada exception catchpoint.
12773 EX_KIND is the kind of exception catchpoint to be created.
12775 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12776 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12777 of the exception to which this catchpoint applies.
12779 COND_STRING, if not empty, is the catchpoint condition.
12781 TEMPFLAG, if nonzero, means that the underlying breakpoint
12782 should be temporary.
12784 FROM_TTY is the usual argument passed to all commands implementations. */
12787 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
12788 enum ada_exception_catchpoint_kind ex_kind
,
12789 const std::string
&excep_string
,
12790 const std::string
&cond_string
,
12795 std::string addr_string
;
12796 struct symtab_and_line sal
= ada_exception_sal (ex_kind
, &addr_string
);
12798 std::unique_ptr
<ada_catchpoint
> c
12799 (new ada_catchpoint (gdbarch
, ex_kind
, sal
, addr_string
.c_str (),
12800 tempflag
, disabled
, from_tty
));
12801 c
->excep_string
= excep_string
;
12802 create_excep_cond_exprs (c
.get (), ex_kind
);
12803 if (!cond_string
.empty ())
12804 set_breakpoint_condition (c
.get (), cond_string
.c_str (), from_tty
, false);
12805 install_breakpoint (0, std::move (c
), 1);
12808 /* Implement the "catch exception" command. */
12811 catch_ada_exception_command (const char *arg_entry
, int from_tty
,
12812 struct cmd_list_element
*command
)
12814 const char *arg
= arg_entry
;
12815 struct gdbarch
*gdbarch
= get_current_arch ();
12817 enum ada_exception_catchpoint_kind ex_kind
;
12818 std::string excep_string
;
12819 std::string cond_string
;
12821 tempflag
= command
->context () == CATCH_TEMPORARY
;
12825 catch_ada_exception_command_split (arg
, false, &ex_kind
, &excep_string
,
12827 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12828 excep_string
, cond_string
,
12829 tempflag
, 1 /* enabled */,
12833 /* Implement the "catch handlers" command. */
12836 catch_ada_handlers_command (const char *arg_entry
, int from_tty
,
12837 struct cmd_list_element
*command
)
12839 const char *arg
= arg_entry
;
12840 struct gdbarch
*gdbarch
= get_current_arch ();
12842 enum ada_exception_catchpoint_kind ex_kind
;
12843 std::string excep_string
;
12844 std::string cond_string
;
12846 tempflag
= command
->context () == CATCH_TEMPORARY
;
12850 catch_ada_exception_command_split (arg
, true, &ex_kind
, &excep_string
,
12852 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12853 excep_string
, cond_string
,
12854 tempflag
, 1 /* enabled */,
12858 /* Completion function for the Ada "catch" commands. */
12861 catch_ada_completer (struct cmd_list_element
*cmd
, completion_tracker
&tracker
,
12862 const char *text
, const char *word
)
12864 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (NULL
);
12866 for (const ada_exc_info
&info
: exceptions
)
12868 if (startswith (info
.name
, word
))
12869 tracker
.add_completion (make_unique_xstrdup (info
.name
));
12873 /* Split the arguments specified in a "catch assert" command.
12875 ARGS contains the command's arguments (or the empty string if
12876 no arguments were passed).
12878 If ARGS contains a condition, set COND_STRING to that condition
12879 (the memory needs to be deallocated after use). */
12882 catch_ada_assert_command_split (const char *args
, std::string
&cond_string
)
12884 args
= skip_spaces (args
);
12886 /* Check whether a condition was provided. */
12887 if (startswith (args
, "if")
12888 && (isspace (args
[2]) || args
[2] == '\0'))
12891 args
= skip_spaces (args
);
12892 if (args
[0] == '\0')
12893 error (_("condition missing after `if' keyword"));
12894 cond_string
.assign (args
);
12897 /* Otherwise, there should be no other argument at the end of
12899 else if (args
[0] != '\0')
12900 error (_("Junk at end of arguments."));
12903 /* Implement the "catch assert" command. */
12906 catch_assert_command (const char *arg_entry
, int from_tty
,
12907 struct cmd_list_element
*command
)
12909 const char *arg
= arg_entry
;
12910 struct gdbarch
*gdbarch
= get_current_arch ();
12912 std::string cond_string
;
12914 tempflag
= command
->context () == CATCH_TEMPORARY
;
12918 catch_ada_assert_command_split (arg
, cond_string
);
12919 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
12921 tempflag
, 1 /* enabled */,
12925 /* Return non-zero if the symbol SYM is an Ada exception object. */
12928 ada_is_exception_sym (struct symbol
*sym
)
12930 const char *type_name
= sym
->type ()->name ();
12932 return (sym
->aclass () != LOC_TYPEDEF
12933 && sym
->aclass () != LOC_BLOCK
12934 && sym
->aclass () != LOC_CONST
12935 && sym
->aclass () != LOC_UNRESOLVED
12936 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
12939 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12940 Ada exception object. This matches all exceptions except the ones
12941 defined by the Ada language. */
12944 ada_is_non_standard_exception_sym (struct symbol
*sym
)
12946 if (!ada_is_exception_sym (sym
))
12949 for (const char *name
: standard_exc
)
12950 if (strcmp (sym
->linkage_name (), name
) == 0)
12951 return 0; /* A standard exception. */
12953 /* Numeric_Error is also a standard exception, so exclude it.
12954 See the STANDARD_EXC description for more details as to why
12955 this exception is not listed in that array. */
12956 if (strcmp (sym
->linkage_name (), "numeric_error") == 0)
12962 /* A helper function for std::sort, comparing two struct ada_exc_info
12965 The comparison is determined first by exception name, and then
12966 by exception address. */
12969 ada_exc_info::operator< (const ada_exc_info
&other
) const
12973 result
= strcmp (name
, other
.name
);
12976 if (result
== 0 && addr
< other
.addr
)
12982 ada_exc_info::operator== (const ada_exc_info
&other
) const
12984 return addr
== other
.addr
&& strcmp (name
, other
.name
) == 0;
12987 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12988 routine, but keeping the first SKIP elements untouched.
12990 All duplicates are also removed. */
12993 sort_remove_dups_ada_exceptions_list (std::vector
<ada_exc_info
> *exceptions
,
12996 std::sort (exceptions
->begin () + skip
, exceptions
->end ());
12997 exceptions
->erase (std::unique (exceptions
->begin () + skip
, exceptions
->end ()),
12998 exceptions
->end ());
13001 /* Add all exceptions defined by the Ada standard whose name match
13002 a regular expression.
13004 If PREG is not NULL, then this regexp_t object is used to
13005 perform the symbol name matching. Otherwise, no name-based
13006 filtering is performed.
13008 EXCEPTIONS is a vector of exceptions to which matching exceptions
13012 ada_add_standard_exceptions (compiled_regex
*preg
,
13013 std::vector
<ada_exc_info
> *exceptions
)
13015 for (const char *name
: standard_exc
)
13017 if (preg
== NULL
|| preg
->exec (name
, 0, NULL
, 0) == 0)
13019 struct bound_minimal_symbol msymbol
13020 = ada_lookup_simple_minsym (name
);
13022 if (msymbol
.minsym
!= NULL
)
13024 struct ada_exc_info info
13025 = {name
, msymbol
.value_address ()};
13027 exceptions
->push_back (info
);
13033 /* Add all Ada exceptions defined locally and accessible from the given
13036 If PREG is not NULL, then this regexp_t object is used to
13037 perform the symbol name matching. Otherwise, no name-based
13038 filtering is performed.
13040 EXCEPTIONS is a vector of exceptions to which matching exceptions
13044 ada_add_exceptions_from_frame (compiled_regex
*preg
,
13045 struct frame_info
*frame
,
13046 std::vector
<ada_exc_info
> *exceptions
)
13048 const struct block
*block
= get_frame_block (frame
, 0);
13052 struct block_iterator iter
;
13053 struct symbol
*sym
;
13055 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
13057 switch (sym
->aclass ())
13064 if (ada_is_exception_sym (sym
))
13066 struct ada_exc_info info
= {sym
->print_name (),
13067 sym
->value_address ()};
13069 exceptions
->push_back (info
);
13073 if (block
->function () != NULL
)
13075 block
= block
->superblock ();
13079 /* Return true if NAME matches PREG or if PREG is NULL. */
13082 name_matches_regex (const char *name
, compiled_regex
*preg
)
13084 return (preg
== NULL
13085 || preg
->exec (ada_decode (name
).c_str (), 0, NULL
, 0) == 0);
13088 /* Add all exceptions defined globally whose name name match
13089 a regular expression, excluding standard exceptions.
13091 The reason we exclude standard exceptions is that they need
13092 to be handled separately: Standard exceptions are defined inside
13093 a runtime unit which is normally not compiled with debugging info,
13094 and thus usually do not show up in our symbol search. However,
13095 if the unit was in fact built with debugging info, we need to
13096 exclude them because they would duplicate the entry we found
13097 during the special loop that specifically searches for those
13098 standard exceptions.
13100 If PREG is not NULL, then this regexp_t object is used to
13101 perform the symbol name matching. Otherwise, no name-based
13102 filtering is performed.
13104 EXCEPTIONS is a vector of exceptions to which matching exceptions
13108 ada_add_global_exceptions (compiled_regex
*preg
,
13109 std::vector
<ada_exc_info
> *exceptions
)
13111 /* In Ada, the symbol "search name" is a linkage name, whereas the
13112 regular expression used to do the matching refers to the natural
13113 name. So match against the decoded name. */
13114 expand_symtabs_matching (NULL
,
13115 lookup_name_info::match_any (),
13116 [&] (const char *search_name
)
13118 std::string decoded
= ada_decode (search_name
);
13119 return name_matches_regex (decoded
.c_str (), preg
);
13122 SEARCH_GLOBAL_BLOCK
| SEARCH_STATIC_BLOCK
,
13125 for (objfile
*objfile
: current_program_space
->objfiles ())
13127 for (compunit_symtab
*s
: objfile
->compunits ())
13129 const struct blockvector
*bv
= s
->blockvector ();
13132 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13134 const struct block
*b
= bv
->block (i
);
13135 struct block_iterator iter
;
13136 struct symbol
*sym
;
13138 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13139 if (ada_is_non_standard_exception_sym (sym
)
13140 && name_matches_regex (sym
->natural_name (), preg
))
13142 struct ada_exc_info info
13143 = {sym
->print_name (), sym
->value_address ()};
13145 exceptions
->push_back (info
);
13152 /* Implements ada_exceptions_list with the regular expression passed
13153 as a regex_t, rather than a string.
13155 If not NULL, PREG is used to filter out exceptions whose names
13156 do not match. Otherwise, all exceptions are listed. */
13158 static std::vector
<ada_exc_info
>
13159 ada_exceptions_list_1 (compiled_regex
*preg
)
13161 std::vector
<ada_exc_info
> result
;
13164 /* First, list the known standard exceptions. These exceptions
13165 need to be handled separately, as they are usually defined in
13166 runtime units that have been compiled without debugging info. */
13168 ada_add_standard_exceptions (preg
, &result
);
13170 /* Next, find all exceptions whose scope is local and accessible
13171 from the currently selected frame. */
13173 if (has_stack_frames ())
13175 prev_len
= result
.size ();
13176 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13178 if (result
.size () > prev_len
)
13179 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13182 /* Add all exceptions whose scope is global. */
13184 prev_len
= result
.size ();
13185 ada_add_global_exceptions (preg
, &result
);
13186 if (result
.size () > prev_len
)
13187 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13192 /* Return a vector of ada_exc_info.
13194 If REGEXP is NULL, all exceptions are included in the result.
13195 Otherwise, it should contain a valid regular expression,
13196 and only the exceptions whose names match that regular expression
13197 are included in the result.
13199 The exceptions are sorted in the following order:
13200 - Standard exceptions (defined by the Ada language), in
13201 alphabetical order;
13202 - Exceptions only visible from the current frame, in
13203 alphabetical order;
13204 - Exceptions whose scope is global, in alphabetical order. */
13206 std::vector
<ada_exc_info
>
13207 ada_exceptions_list (const char *regexp
)
13209 if (regexp
== NULL
)
13210 return ada_exceptions_list_1 (NULL
);
13212 compiled_regex
reg (regexp
, REG_NOSUB
, _("invalid regular expression"));
13213 return ada_exceptions_list_1 (®
);
13216 /* Implement the "info exceptions" command. */
13219 info_exceptions_command (const char *regexp
, int from_tty
)
13221 struct gdbarch
*gdbarch
= get_current_arch ();
13223 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (regexp
);
13225 if (regexp
!= NULL
)
13227 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13229 gdb_printf (_("All defined Ada exceptions:\n"));
13231 for (const ada_exc_info
&info
: exceptions
)
13232 gdb_printf ("%s: %s\n", info
.name
, paddress (gdbarch
, info
.addr
));
13236 /* Language vector */
13238 /* symbol_name_matcher_ftype adapter for wild_match. */
13241 do_wild_match (const char *symbol_search_name
,
13242 const lookup_name_info
&lookup_name
,
13243 completion_match_result
*comp_match_res
)
13245 return wild_match (symbol_search_name
, ada_lookup_name (lookup_name
));
13248 /* symbol_name_matcher_ftype adapter for full_match. */
13251 do_full_match (const char *symbol_search_name
,
13252 const lookup_name_info
&lookup_name
,
13253 completion_match_result
*comp_match_res
)
13255 const char *lname
= lookup_name
.ada ().lookup_name ().c_str ();
13257 /* If both symbols start with "_ada_", just let the loop below
13258 handle the comparison. However, if only the symbol name starts
13259 with "_ada_", skip the prefix and let the match proceed as
13261 if (startswith (symbol_search_name
, "_ada_")
13262 && !startswith (lname
, "_ada"))
13263 symbol_search_name
+= 5;
13264 /* Likewise for ghost entities. */
13265 if (startswith (symbol_search_name
, "___ghost_")
13266 && !startswith (lname
, "___ghost_"))
13267 symbol_search_name
+= 9;
13269 int uscore_count
= 0;
13270 while (*lname
!= '\0')
13272 if (*symbol_search_name
!= *lname
)
13274 if (*symbol_search_name
== 'B' && uscore_count
== 2
13275 && symbol_search_name
[1] == '_')
13277 symbol_search_name
+= 2;
13278 while (isdigit (*symbol_search_name
))
13279 ++symbol_search_name
;
13280 if (symbol_search_name
[0] == '_'
13281 && symbol_search_name
[1] == '_')
13283 symbol_search_name
+= 2;
13290 if (*symbol_search_name
== '_')
13295 ++symbol_search_name
;
13299 return is_name_suffix (symbol_search_name
);
13302 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13305 do_exact_match (const char *symbol_search_name
,
13306 const lookup_name_info
&lookup_name
,
13307 completion_match_result
*comp_match_res
)
13309 return strcmp (symbol_search_name
, ada_lookup_name (lookup_name
)) == 0;
13312 /* Build the Ada lookup name for LOOKUP_NAME. */
13314 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info
&lookup_name
)
13316 gdb::string_view user_name
= lookup_name
.name ();
13318 if (!user_name
.empty () && user_name
[0] == '<')
13320 if (user_name
.back () == '>')
13322 = gdb::to_string (user_name
.substr (1, user_name
.size () - 2));
13325 = gdb::to_string (user_name
.substr (1, user_name
.size () - 1));
13326 m_encoded_p
= true;
13327 m_verbatim_p
= true;
13328 m_wild_match_p
= false;
13329 m_standard_p
= false;
13333 m_verbatim_p
= false;
13335 m_encoded_p
= user_name
.find ("__") != gdb::string_view::npos
;
13339 const char *folded
= ada_fold_name (user_name
);
13340 m_encoded_name
= ada_encode_1 (folded
, false);
13341 if (m_encoded_name
.empty ())
13342 m_encoded_name
= gdb::to_string (user_name
);
13345 m_encoded_name
= gdb::to_string (user_name
);
13347 /* Handle the 'package Standard' special case. See description
13348 of m_standard_p. */
13349 if (startswith (m_encoded_name
.c_str (), "standard__"))
13351 m_encoded_name
= m_encoded_name
.substr (sizeof ("standard__") - 1);
13352 m_standard_p
= true;
13355 m_standard_p
= false;
13357 /* If the name contains a ".", then the user is entering a fully
13358 qualified entity name, and the match must not be done in wild
13359 mode. Similarly, if the user wants to complete what looks
13360 like an encoded name, the match must not be done in wild
13361 mode. Also, in the standard__ special case always do
13362 non-wild matching. */
13364 = (lookup_name
.match_type () != symbol_name_match_type::FULL
13367 && user_name
.find ('.') == std::string::npos
);
13371 /* symbol_name_matcher_ftype method for Ada. This only handles
13372 completion mode. */
13375 ada_symbol_name_matches (const char *symbol_search_name
,
13376 const lookup_name_info
&lookup_name
,
13377 completion_match_result
*comp_match_res
)
13379 return lookup_name
.ada ().matches (symbol_search_name
,
13380 lookup_name
.match_type (),
13384 /* A name matcher that matches the symbol name exactly, with
13388 literal_symbol_name_matcher (const char *symbol_search_name
,
13389 const lookup_name_info
&lookup_name
,
13390 completion_match_result
*comp_match_res
)
13392 gdb::string_view name_view
= lookup_name
.name ();
13394 if (lookup_name
.completion_mode ()
13395 ? (strncmp (symbol_search_name
, name_view
.data (),
13396 name_view
.size ()) == 0)
13397 : symbol_search_name
== name_view
)
13399 if (comp_match_res
!= NULL
)
13400 comp_match_res
->set_match (symbol_search_name
);
13407 /* Implement the "get_symbol_name_matcher" language_defn method for
13410 static symbol_name_matcher_ftype
*
13411 ada_get_symbol_name_matcher (const lookup_name_info
&lookup_name
)
13413 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
13414 return literal_symbol_name_matcher
;
13416 if (lookup_name
.completion_mode ())
13417 return ada_symbol_name_matches
;
13420 if (lookup_name
.ada ().wild_match_p ())
13421 return do_wild_match
;
13422 else if (lookup_name
.ada ().verbatim_p ())
13423 return do_exact_match
;
13425 return do_full_match
;
13429 /* Class representing the Ada language. */
13431 class ada_language
: public language_defn
13435 : language_defn (language_ada
)
13438 /* See language.h. */
13440 const char *name () const override
13443 /* See language.h. */
13445 const char *natural_name () const override
13448 /* See language.h. */
13450 const std::vector
<const char *> &filename_extensions () const override
13452 static const std::vector
<const char *> extensions
13453 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13457 /* Print an array element index using the Ada syntax. */
13459 void print_array_index (struct type
*index_type
,
13461 struct ui_file
*stream
,
13462 const value_print_options
*options
) const override
13464 struct value
*index_value
= val_atr (index_type
, index
);
13466 value_print (index_value
, stream
, options
);
13467 gdb_printf (stream
, " => ");
13470 /* Implement the "read_var_value" language_defn method for Ada. */
13472 struct value
*read_var_value (struct symbol
*var
,
13473 const struct block
*var_block
,
13474 struct frame_info
*frame
) const override
13476 /* The only case where default_read_var_value is not sufficient
13477 is when VAR is a renaming... */
13478 if (frame
!= nullptr)
13480 const struct block
*frame_block
= get_frame_block (frame
, NULL
);
13481 if (frame_block
!= nullptr && ada_is_renaming_symbol (var
))
13482 return ada_read_renaming_var_value (var
, frame_block
);
13485 /* This is a typical case where we expect the default_read_var_value
13486 function to work. */
13487 return language_defn::read_var_value (var
, var_block
, frame
);
13490 /* See language.h. */
13491 bool symbol_printing_suppressed (struct symbol
*symbol
) const override
13493 return symbol
->is_artificial ();
13496 /* See language.h. */
13497 void language_arch_info (struct gdbarch
*gdbarch
,
13498 struct language_arch_info
*lai
) const override
13500 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13502 /* Helper function to allow shorter lines below. */
13503 auto add
= [&] (struct type
*t
)
13505 lai
->add_primitive_type (t
);
13508 add (arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13510 add (arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13511 0, "long_integer"));
13512 add (arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13513 0, "short_integer"));
13514 struct type
*char_type
= arch_character_type (gdbarch
, TARGET_CHAR_BIT
,
13516 lai
->set_string_char_type (char_type
);
13518 add (arch_character_type (gdbarch
, 16, 1, "wide_character"));
13519 add (arch_character_type (gdbarch
, 32, 1, "wide_wide_character"));
13520 add (arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13521 "float", gdbarch_float_format (gdbarch
)));
13522 add (arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13523 "long_float", gdbarch_double_format (gdbarch
)));
13524 add (arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13525 0, "long_long_integer"));
13526 add (arch_float_type (gdbarch
, gdbarch_long_double_bit (gdbarch
),
13528 gdbarch_long_double_format (gdbarch
)));
13529 add (arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13531 add (arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13533 add (builtin
->builtin_void
);
13535 struct type
*system_addr_ptr
13536 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
,
13538 system_addr_ptr
->set_name ("system__address");
13539 add (system_addr_ptr
);
13541 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13542 type. This is a signed integral type whose size is the same as
13543 the size of addresses. */
13544 unsigned int addr_length
= TYPE_LENGTH (system_addr_ptr
);
13545 add (arch_integer_type (gdbarch
, addr_length
* HOST_CHAR_BIT
, 0,
13546 "storage_offset"));
13548 lai
->set_bool_type (builtin
->builtin_bool
);
13551 /* See language.h. */
13553 bool iterate_over_symbols
13554 (const struct block
*block
, const lookup_name_info
&name
,
13555 domain_enum domain
,
13556 gdb::function_view
<symbol_found_callback_ftype
> callback
) const override
13558 std::vector
<struct block_symbol
> results
13559 = ada_lookup_symbol_list_worker (name
, block
, domain
, 0);
13560 for (block_symbol
&sym
: results
)
13562 if (!callback (&sym
))
13569 /* See language.h. */
13570 bool sniff_from_mangled_name
13571 (const char *mangled
,
13572 gdb::unique_xmalloc_ptr
<char> *out
) const override
13574 std::string demangled
= ada_decode (mangled
);
13578 if (demangled
!= mangled
&& demangled
[0] != '<')
13580 /* Set the gsymbol language to Ada, but still return 0.
13581 Two reasons for that:
13583 1. For Ada, we prefer computing the symbol's decoded name
13584 on the fly rather than pre-compute it, in order to save
13585 memory (Ada projects are typically very large).
13587 2. There are some areas in the definition of the GNAT
13588 encoding where, with a bit of bad luck, we might be able
13589 to decode a non-Ada symbol, generating an incorrect
13590 demangled name (Eg: names ending with "TB" for instance
13591 are identified as task bodies and so stripped from
13592 the decoded name returned).
13594 Returning true, here, but not setting *DEMANGLED, helps us get
13595 a little bit of the best of both worlds. Because we're last,
13596 we should not affect any of the other languages that were
13597 able to demangle the symbol before us; we get to correctly
13598 tag Ada symbols as such; and even if we incorrectly tagged a
13599 non-Ada symbol, which should be rare, any routing through the
13600 Ada language should be transparent (Ada tries to behave much
13601 like C/C++ with non-Ada symbols). */
13608 /* See language.h. */
13610 gdb::unique_xmalloc_ptr
<char> demangle_symbol (const char *mangled
,
13611 int options
) const override
13613 return make_unique_xstrdup (ada_decode (mangled
).c_str ());
13616 /* See language.h. */
13618 void print_type (struct type
*type
, const char *varstring
,
13619 struct ui_file
*stream
, int show
, int level
,
13620 const struct type_print_options
*flags
) const override
13622 ada_print_type (type
, varstring
, stream
, show
, level
, flags
);
13625 /* See language.h. */
13627 const char *word_break_characters (void) const override
13629 return ada_completer_word_break_characters
;
13632 /* See language.h. */
13634 void collect_symbol_completion_matches (completion_tracker
&tracker
,
13635 complete_symbol_mode mode
,
13636 symbol_name_match_type name_match_type
,
13637 const char *text
, const char *word
,
13638 enum type_code code
) const override
13640 struct symbol
*sym
;
13641 const struct block
*b
, *surrounding_static_block
= 0;
13642 struct block_iterator iter
;
13644 gdb_assert (code
== TYPE_CODE_UNDEF
);
13646 lookup_name_info
lookup_name (text
, name_match_type
, true);
13648 /* First, look at the partial symtab symbols. */
13649 expand_symtabs_matching (NULL
,
13653 SEARCH_GLOBAL_BLOCK
| SEARCH_STATIC_BLOCK
,
13656 /* At this point scan through the misc symbol vectors and add each
13657 symbol you find to the list. Eventually we want to ignore
13658 anything that isn't a text symbol (everything else will be
13659 handled by the psymtab code above). */
13661 for (objfile
*objfile
: current_program_space
->objfiles ())
13663 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
13667 if (completion_skip_symbol (mode
, msymbol
))
13670 language symbol_language
= msymbol
->language ();
13672 /* Ada minimal symbols won't have their language set to Ada. If
13673 we let completion_list_add_name compare using the
13674 default/C-like matcher, then when completing e.g., symbols in a
13675 package named "pck", we'd match internal Ada symbols like
13676 "pckS", which are invalid in an Ada expression, unless you wrap
13677 them in '<' '>' to request a verbatim match.
13679 Unfortunately, some Ada encoded names successfully demangle as
13680 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13681 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13682 with the wrong language set. Paper over that issue here. */
13683 if (symbol_language
== language_auto
13684 || symbol_language
== language_cplus
)
13685 symbol_language
= language_ada
;
13687 completion_list_add_name (tracker
,
13689 msymbol
->linkage_name (),
13690 lookup_name
, text
, word
);
13694 /* Search upwards from currently selected frame (so that we can
13695 complete on local vars. */
13697 for (b
= get_selected_block (0); b
!= NULL
; b
= b
->superblock ())
13699 if (!b
->superblock ())
13700 surrounding_static_block
= b
; /* For elmin of dups */
13702 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13704 if (completion_skip_symbol (mode
, sym
))
13707 completion_list_add_name (tracker
,
13709 sym
->linkage_name (),
13710 lookup_name
, text
, word
);
13714 /* Go through the symtabs and check the externs and statics for
13715 symbols which match. */
13717 for (objfile
*objfile
: current_program_space
->objfiles ())
13719 for (compunit_symtab
*s
: objfile
->compunits ())
13722 b
= s
->blockvector ()->global_block ();
13723 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13725 if (completion_skip_symbol (mode
, sym
))
13728 completion_list_add_name (tracker
,
13730 sym
->linkage_name (),
13731 lookup_name
, text
, word
);
13736 for (objfile
*objfile
: current_program_space
->objfiles ())
13738 for (compunit_symtab
*s
: objfile
->compunits ())
13741 b
= s
->blockvector ()->static_block ();
13742 /* Don't do this block twice. */
13743 if (b
== surrounding_static_block
)
13745 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13747 if (completion_skip_symbol (mode
, sym
))
13750 completion_list_add_name (tracker
,
13752 sym
->linkage_name (),
13753 lookup_name
, text
, word
);
13759 /* See language.h. */
13761 gdb::unique_xmalloc_ptr
<char> watch_location_expression
13762 (struct type
*type
, CORE_ADDR addr
) const override
13764 type
= check_typedef (TYPE_TARGET_TYPE (check_typedef (type
)));
13765 std::string name
= type_to_string (type
);
13766 return xstrprintf ("{%s} %s", name
.c_str (), core_addr_to_string (addr
));
13769 /* See language.h. */
13771 void value_print (struct value
*val
, struct ui_file
*stream
,
13772 const struct value_print_options
*options
) const override
13774 return ada_value_print (val
, stream
, options
);
13777 /* See language.h. */
13779 void value_print_inner
13780 (struct value
*val
, struct ui_file
*stream
, int recurse
,
13781 const struct value_print_options
*options
) const override
13783 return ada_value_print_inner (val
, stream
, recurse
, options
);
13786 /* See language.h. */
13788 struct block_symbol lookup_symbol_nonlocal
13789 (const char *name
, const struct block
*block
,
13790 const domain_enum domain
) const override
13792 struct block_symbol sym
;
13794 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
);
13795 if (sym
.symbol
!= NULL
)
13798 /* If we haven't found a match at this point, try the primitive
13799 types. In other languages, this search is performed before
13800 searching for global symbols in order to short-circuit that
13801 global-symbol search if it happens that the name corresponds
13802 to a primitive type. But we cannot do the same in Ada, because
13803 it is perfectly legitimate for a program to declare a type which
13804 has the same name as a standard type. If looking up a type in
13805 that situation, we have traditionally ignored the primitive type
13806 in favor of user-defined types. This is why, unlike most other
13807 languages, we search the primitive types this late and only after
13808 having searched the global symbols without success. */
13810 if (domain
== VAR_DOMAIN
)
13812 struct gdbarch
*gdbarch
;
13815 gdbarch
= target_gdbarch ();
13817 gdbarch
= block_gdbarch (block
);
13819 = language_lookup_primitive_type_as_symbol (this, gdbarch
, name
);
13820 if (sym
.symbol
!= NULL
)
13827 /* See language.h. */
13829 int parser (struct parser_state
*ps
) const override
13831 warnings_issued
= 0;
13832 return ada_parse (ps
);
13835 /* See language.h. */
13837 void emitchar (int ch
, struct type
*chtype
,
13838 struct ui_file
*stream
, int quoter
) const override
13840 ada_emit_char (ch
, chtype
, stream
, quoter
, 1);
13843 /* See language.h. */
13845 void printchar (int ch
, struct type
*chtype
,
13846 struct ui_file
*stream
) const override
13848 ada_printchar (ch
, chtype
, stream
);
13851 /* See language.h. */
13853 void printstr (struct ui_file
*stream
, struct type
*elttype
,
13854 const gdb_byte
*string
, unsigned int length
,
13855 const char *encoding
, int force_ellipses
,
13856 const struct value_print_options
*options
) const override
13858 ada_printstr (stream
, elttype
, string
, length
, encoding
,
13859 force_ellipses
, options
);
13862 /* See language.h. */
13864 void print_typedef (struct type
*type
, struct symbol
*new_symbol
,
13865 struct ui_file
*stream
) const override
13867 ada_print_typedef (type
, new_symbol
, stream
);
13870 /* See language.h. */
13872 bool is_string_type_p (struct type
*type
) const override
13874 return ada_is_string_type (type
);
13877 /* See language.h. */
13879 const char *struct_too_deep_ellipsis () const override
13880 { return "(...)"; }
13882 /* See language.h. */
13884 bool c_style_arrays_p () const override
13887 /* See language.h. */
13889 bool store_sym_names_in_linkage_form_p () const override
13892 /* See language.h. */
13894 const struct lang_varobj_ops
*varobj_ops () const override
13895 { return &ada_varobj_ops
; }
13898 /* See language.h. */
13900 symbol_name_matcher_ftype
*get_symbol_name_matcher_inner
13901 (const lookup_name_info
&lookup_name
) const override
13903 return ada_get_symbol_name_matcher (lookup_name
);
13907 /* Single instance of the Ada language class. */
13909 static ada_language ada_language_defn
;
13911 /* Command-list for the "set/show ada" prefix command. */
13912 static struct cmd_list_element
*set_ada_list
;
13913 static struct cmd_list_element
*show_ada_list
;
13915 /* This module's 'new_objfile' observer. */
13918 ada_new_objfile_observer (struct objfile
*objfile
)
13920 ada_clear_symbol_cache ();
13923 /* This module's 'free_objfile' observer. */
13926 ada_free_objfile_observer (struct objfile
*objfile
)
13928 ada_clear_symbol_cache ();
13931 /* Charsets known to GNAT. */
13932 static const char * const gnat_source_charsets
[] =
13934 /* Note that code below assumes that the default comes first.
13935 Latin-1 is the default here, because that is also GNAT's
13945 /* Note that this value is special-cased in the encoder and
13951 void _initialize_ada_language ();
13953 _initialize_ada_language ()
13955 add_setshow_prefix_cmd
13957 _("Prefix command for changing Ada-specific settings."),
13958 _("Generic command for showing Ada-specific settings."),
13959 &set_ada_list
, &show_ada_list
,
13960 &setlist
, &showlist
);
13962 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
13963 &trust_pad_over_xvs
, _("\
13964 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13965 Show whether an optimization trusting PAD types over XVS types is activated."),
13967 This is related to the encoding used by the GNAT compiler. The debugger\n\
13968 should normally trust the contents of PAD types, but certain older versions\n\
13969 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13970 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13971 work around this bug. It is always safe to turn this option \"off\", but\n\
13972 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13973 this option to \"off\" unless necessary."),
13974 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
13976 add_setshow_boolean_cmd ("print-signatures", class_vars
,
13977 &print_signatures
, _("\
13978 Enable or disable the output of formal and return types for functions in the \
13979 overloads selection menu."), _("\
13980 Show whether the output of formal and return types for functions in the \
13981 overloads selection menu is activated."),
13982 NULL
, NULL
, NULL
, &set_ada_list
, &show_ada_list
);
13984 ada_source_charset
= gnat_source_charsets
[0];
13985 add_setshow_enum_cmd ("source-charset", class_files
,
13986 gnat_source_charsets
,
13987 &ada_source_charset
, _("\
13988 Set the Ada source character set."), _("\
13989 Show the Ada source character set."), _("\
13990 The character set used for Ada source files.\n\
13991 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13993 &set_ada_list
, &show_ada_list
);
13995 add_catch_command ("exception", _("\
13996 Catch Ada exceptions, when raised.\n\
13997 Usage: catch exception [ARG] [if CONDITION]\n\
13998 Without any argument, stop when any Ada exception is raised.\n\
13999 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14000 being raised does not have a handler (and will therefore lead to the task's\n\
14002 Otherwise, the catchpoint only stops when the name of the exception being\n\
14003 raised is the same as ARG.\n\
14004 CONDITION is a boolean expression that is evaluated to see whether the\n\
14005 exception should cause a stop."),
14006 catch_ada_exception_command
,
14007 catch_ada_completer
,
14011 add_catch_command ("handlers", _("\
14012 Catch Ada exceptions, when handled.\n\
14013 Usage: catch handlers [ARG] [if CONDITION]\n\
14014 Without any argument, stop when any Ada exception is handled.\n\
14015 With an argument, catch only exceptions with the given name.\n\
14016 CONDITION is a boolean expression that is evaluated to see whether the\n\
14017 exception should cause a stop."),
14018 catch_ada_handlers_command
,
14019 catch_ada_completer
,
14022 add_catch_command ("assert", _("\
14023 Catch failed Ada assertions, when raised.\n\
14024 Usage: catch assert [if CONDITION]\n\
14025 CONDITION is a boolean expression that is evaluated to see whether the\n\
14026 exception should cause a stop."),
14027 catch_assert_command
,
14032 add_info ("exceptions", info_exceptions_command
,
14034 List all Ada exception names.\n\
14035 Usage: info exceptions [REGEXP]\n\
14036 If a regular expression is passed as an argument, only those matching\n\
14037 the regular expression are listed."));
14039 add_setshow_prefix_cmd ("ada", class_maintenance
,
14040 _("Set Ada maintenance-related variables."),
14041 _("Show Ada maintenance-related variables."),
14042 &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
,
14043 &maintenance_set_cmdlist
, &maintenance_show_cmdlist
);
14045 add_setshow_boolean_cmd
14046 ("ignore-descriptive-types", class_maintenance
,
14047 &ada_ignore_descriptive_types_p
,
14048 _("Set whether descriptive types generated by GNAT should be ignored."),
14049 _("Show whether descriptive types generated by GNAT should be ignored."),
14051 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14052 DWARF attribute."),
14053 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
14055 decoded_names_store
= htab_create_alloc (256, htab_hash_string
,
14057 NULL
, xcalloc
, xfree
);
14059 /* The ada-lang observers. */
14060 gdb::observers::new_objfile
.attach (ada_new_objfile_observer
, "ada-lang");
14061 gdb::observers::free_objfile
.attach (ada_free_objfile_observer
, "ada-lang");
14062 gdb::observers::inferior_exit
.attach (ada_inferior_exit
, "ada-lang");