1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
9 This file is part of GAS, the GNU Assembler.
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
38 #include "dw2gencfi.h"
41 #include "dwarf2dbg.h"
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
47 /* This structure holds the unwinding state. */
52 symbolS
* table_entry
;
53 symbolS
* personality_routine
;
54 int personality_index
;
55 /* The segment containing the function. */
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes
;
62 /* The number of bytes pushed to the stack. */
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset
;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
72 /* Nonzero if an unwind_setfp directive has been seen. */
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored
:1;
78 /* Whether --fdpic was given. */
83 /* Results from operand parsing worker functions. */
87 PARSE_OPERAND_SUCCESS
,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result
;
99 /* Types of processor to assemble for. */
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
125 #endif /* ifndef FPU_DEFAULT */
127 #define streq(a, b) (strcmp (a, b) == 0)
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant
;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used
;
136 static arm_feature_set thumb_arch_used
;
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26
= FALSE
;
140 static int atpcs
= FALSE
;
141 static int support_interwork
= FALSE
;
142 static int uses_apcs_float
= FALSE
;
143 static int pic_code
= FALSE
;
144 static int fix_v4bx
= FALSE
;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated
= TRUE
;
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax
= FALSE
;
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set
*legacy_cpu
= NULL
;
158 static const arm_feature_set
*legacy_fpu
= NULL
;
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
162 static arm_feature_set
*mcpu_ext_opt
= NULL
;
163 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set
*march_cpu_opt
= NULL
;
167 static arm_feature_set
*march_ext_opt
= NULL
;
168 static const arm_feature_set
*march_fpu_opt
= NULL
;
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set
*mfpu_opt
= NULL
;
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V1
;
176 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V3
;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_NEON_V1
;
179 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
180 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
182 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
184 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
187 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
190 static const arm_feature_set arm_ext_v1
= ARM_FEATURE_CORE_LOW (ARM_EXT_V1
);
191 static const arm_feature_set arm_ext_v2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2
);
192 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2S
);
193 static const arm_feature_set arm_ext_v3
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3
);
194 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3M
);
195 static const arm_feature_set arm_ext_v4
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4
);
196 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
);
197 static const arm_feature_set arm_ext_v5
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5
);
198 static const arm_feature_set arm_ext_v4t_5
=
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
| ARM_EXT_V5
);
200 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5T
);
201 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
);
202 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
);
203 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5J
);
204 static const arm_feature_set arm_ext_v6
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6
);
205 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
);
206 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2
);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2
=
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
| ARM_EXT_V6T2
);
210 static const arm_feature_set arm_ext_v6_notm
=
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM
);
212 static const arm_feature_set arm_ext_v6_dsp
=
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP
);
214 static const arm_feature_set arm_ext_barrier
=
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER
);
216 static const arm_feature_set arm_ext_msr
=
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR
);
218 static const arm_feature_set arm_ext_div
= ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
);
219 static const arm_feature_set arm_ext_v7
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7
);
220 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
);
221 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
);
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7M
);
225 static const arm_feature_set arm_ext_v8
= ARM_FEATURE_CORE_LOW (ARM_EXT_V8
);
226 static const arm_feature_set arm_ext_m
=
227 ARM_FEATURE_CORE (ARM_EXT_V6M
| ARM_EXT_V7M
,
228 ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
229 static const arm_feature_set arm_ext_mp
= ARM_FEATURE_CORE_LOW (ARM_EXT_MP
);
230 static const arm_feature_set arm_ext_sec
= ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
);
231 static const arm_feature_set arm_ext_os
= ARM_FEATURE_CORE_LOW (ARM_EXT_OS
);
232 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
);
233 static const arm_feature_set arm_ext_virt
= ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
);
234 static const arm_feature_set arm_ext_pan
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
);
235 static const arm_feature_set arm_ext_v8m
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
);
236 static const arm_feature_set arm_ext_v8m_main
=
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN
);
238 static const arm_feature_set arm_ext_v8_1m_main
=
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN
);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only
=
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
243 static const arm_feature_set arm_ext_v6t2_v8m
=
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M
);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics
=
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS
);
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp
=
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
| ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
);
253 static const arm_feature_set arm_ext_ras
=
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16
=
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
);
258 static const arm_feature_set arm_ext_fp16_fml
=
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML
);
260 static const arm_feature_set arm_ext_v8_2
=
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A
);
262 static const arm_feature_set arm_ext_v8_3
=
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A
);
264 static const arm_feature_set arm_ext_sb
=
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
);
266 static const arm_feature_set arm_ext_predres
=
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
);
269 static const arm_feature_set arm_arch_any
= ARM_ANY
;
271 static const arm_feature_set fpu_any
= FPU_ANY
;
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED
= ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
275 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
277 static const arm_feature_set arm_cext_iwmmxt2
=
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
);
279 static const arm_feature_set arm_cext_iwmmxt
=
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
);
281 static const arm_feature_set arm_cext_xscale
=
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
);
283 static const arm_feature_set arm_cext_maverick
=
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
);
285 static const arm_feature_set fpu_fpa_ext_v1
=
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1
);
287 static const arm_feature_set fpu_fpa_ext_v2
=
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2
);
289 static const arm_feature_set fpu_vfp_ext_v1xd
=
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD
);
291 static const arm_feature_set fpu_vfp_ext_v1
=
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1
);
293 static const arm_feature_set fpu_vfp_ext_v2
=
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2
);
295 static const arm_feature_set fpu_vfp_ext_v3xd
=
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD
);
297 static const arm_feature_set fpu_vfp_ext_v3
=
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3
);
299 static const arm_feature_set fpu_vfp_ext_d32
=
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32
);
301 static const arm_feature_set fpu_neon_ext_v1
=
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
305 static const arm_feature_set mve_ext
=
306 ARM_FEATURE_COPROC (FPU_MVE
);
307 static const arm_feature_set mve_fp_ext
=
308 ARM_FEATURE_COPROC (FPU_MVE_FP
);
310 static const arm_feature_set fpu_vfp_fp16
=
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16
);
312 static const arm_feature_set fpu_neon_ext_fma
=
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA
);
315 static const arm_feature_set fpu_vfp_ext_fma
=
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA
);
317 static const arm_feature_set fpu_vfp_ext_armv8
=
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8
);
319 static const arm_feature_set fpu_vfp_ext_armv8xd
=
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD
);
321 static const arm_feature_set fpu_neon_ext_armv8
=
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8
);
323 static const arm_feature_set fpu_crypto_ext_armv8
=
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8
);
325 static const arm_feature_set crc_ext_armv8
=
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
);
327 static const arm_feature_set fpu_neon_ext_v8_1
=
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA
);
329 static const arm_feature_set fpu_neon_ext_dotprod
=
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
);
332 static int mfloat_abi_opt
= -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
335 static arm_feature_set selected_arch
= ARM_ARCH_NONE
;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
338 static arm_feature_set selected_ext
= ARM_ARCH_NONE
;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
342 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu
= FPU_NONE
;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch
= ARM_ARCH_NONE
;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name
[20];
350 extern FLONUM_TYPE generic_floating_point_number
;
352 /* Return if no cpu was selected on command-line. */
354 no_cpu_selected (void)
356 return ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_none
);
361 static int meabi_flags
= EABI_DEFAULT
;
363 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
366 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
371 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS
* GOT_symbol
;
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
384 static int thumb_mode
= 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
393 IMPLICIT_IT_MODE_NEVER
= 0x00,
394 IMPLICIT_IT_MODE_ARM
= 0x01,
395 IMPLICIT_IT_MODE_THUMB
= 0x02,
396 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
398 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
412 Important differences from the old Thumb mode:
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
423 static bfd_boolean unified_syntax
= FALSE
;
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars
[] = "#[]{}";
444 enum neon_el_type type
;
448 #define NEON_MAX_TYPE_ELS 4
452 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
456 enum pred_instruction_type
462 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN
, /* The IT insn has been parsed. */
467 VPT_INSN
, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN
, /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN
/* MVE instruction that is non-predicable. */
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
480 unsigned long instruction
;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
488 struct neon_type vectype
;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
497 bfd_reloc_code_real_type type
;
500 } relocs
[ARM_IT_MAX_RELOCS
];
502 enum pred_instruction_type pred_insn_type
;
508 struct neon_type_el vectype
;
509 unsigned present
: 1; /* Operand present. */
510 unsigned isreg
: 1; /* Operand was a register. */
511 unsigned immisreg
: 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar
: 2; /* Operand is a (SIMD) scalar:
517 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad
: 1; /* Operand is SIMD quad register. */
524 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
525 unsigned iszr
: 1; /* Operand is ZR register. */
526 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
527 unsigned writeback
: 1; /* Operand has trailing ! */
528 unsigned preind
: 1; /* Preindexed address. */
529 unsigned postind
: 1; /* Postindexed address. */
530 unsigned negative
: 1; /* Index register was negated. */
531 unsigned shifted
: 1; /* Shift applied to operation. */
532 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
533 } operands
[ARM_IT_MAX_OPERANDS
];
536 static struct arm_it inst
;
538 #define NUM_FLOAT_VALS 8
540 const char * fp_const
[] =
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
545 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
561 #define DOUBLE_LOAD_FLAG 0x00000001
565 const char * template_name
;
569 #define COND_ALWAYS 0xE
573 const char * template_name
;
577 struct asm_barrier_opt
579 const char * template_name
;
581 const arm_feature_set arch
;
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
596 bfd_reloc_code_real_type reloc
;
601 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
602 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
607 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
614 struct neon_typed_alias
616 unsigned char defined
;
618 struct neon_type_el eltype
;
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
662 unsigned char builtin
;
663 struct neon_typed_alias
* neon
;
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs
[] =
669 [REG_TYPE_RN
] = N_("ARM register expected"),
670 [REG_TYPE_CP
] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN
] = N_("co-processor register expected"),
672 [REG_TYPE_FN
] = N_("FPA register expected"),
673 [REG_TYPE_VFS
] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD
] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ
] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD
] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ
] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD
] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ
] = N_("VFP single, double or Neon quad precision register"
681 [REG_TYPE_VFC
] = N_("VFP system register expected"),
682 [REG_TYPE_MVF
] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD
] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX
] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX
] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX
] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC
] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR
] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC
] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG
] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE
] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ
] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB
] = N_("")
696 /* Some well known registers that we refer to directly elsewhere. */
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
708 /* Basic string to match. */
709 const char * template_name
;
711 /* Parameters to instruction. */
712 unsigned int operands
[8];
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag
: 4;
717 /* Basic instruction code. */
720 /* Thumb-format instruction code. */
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set
* avariant
;
725 const arm_feature_set
* tvariant
;
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode
) (void);
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode
) (void);
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred
: 1;
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
753 #define T2_SUBS_PC_LR 0xf3de8f00
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
770 /* Codes to distinguish the arithmetic instructions. */
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
850 #define T_OPCODE_BRANCH 0xe000
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
905 static struct hash_control
* arm_ops_hsh
;
906 static struct hash_control
* arm_cond_hsh
;
907 static struct hash_control
* arm_vcond_hsh
;
908 static struct hash_control
* arm_shift_hsh
;
909 static struct hash_control
* arm_psr_hsh
;
910 static struct hash_control
* arm_v7m_psr_hsh
;
911 static struct hash_control
* arm_reg_hsh
;
912 static struct hash_control
* arm_reloc_hsh
;
913 static struct hash_control
* arm_barrier_opt_hsh
;
915 /* Stuff needed to resolve the label ambiguity
924 symbolS
* last_label_seen
;
925 static int label_is_thumb_function_name
= FALSE
;
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
933 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
934 unsigned int next_free_entry
;
940 struct dwarf2_line_info locs
[MAX_LITERAL_POOL_SIZE
];
942 struct literal_pool
* next
;
943 unsigned int alignment
;
946 /* Pointer to a linked list of literal pools. */
947 literal_pool
* list_of_pools
= NULL
;
949 typedef enum asmfunc_states
952 WAITING_ASMFUNC_NAME
,
956 static asmfunc_states asmfunc_state
= OUTSIDE_ASMFUNC
;
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
961 static struct current_pred now_pred
;
965 now_pred_compatible (int cond
)
967 return (cond
& ~1) == (now_pred
.cc
& ~1);
971 conditional_insn (void)
973 return inst
.cond
!= COND_ALWAYS
;
976 static int in_pred_block (void);
978 static int handle_pred_state (void);
980 static void force_automatic_it_block_close (void);
982 static void it_fsm_post_encode (void);
984 #define set_pred_insn_type(type) \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
993 #define set_pred_insn_type_nonvoid(type, failret) \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
1002 #define set_pred_insn_type_last() \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars
[] = "@";
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars
[] = "#";
1027 char arm_line_separator_chars
[] = ";";
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS
[] = "eE";
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1037 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
1039 /* Prefix characters that indicate the start of an immediate
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1043 /* Separator character handling. */
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1048 skip_past_char (char ** str
, char c
)
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str
);
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1064 /* Arithmetic expressions (possibly involving symbols). */
1066 /* Return TRUE if anything in the expression is a bignum. */
1069 walk_no_bignums (symbolS
* sp
)
1071 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
1074 if (symbol_get_value_expression (sp
)->X_add_symbol
)
1076 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
1077 || (symbol_get_value_expression (sp
)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
1084 static bfd_boolean in_my_get_expression
= FALSE
;
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1095 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
1099 /* In unified syntax, all prefixes are optional. */
1101 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
1104 switch (prefix_mode
)
1106 case GE_NO_PREFIX
: break;
1108 if (!is_immediate_prefix (**str
))
1110 inst
.error
= _("immediate expression requires a # prefix");
1116 case GE_OPT_PREFIX_BIG
:
1117 if (is_immediate_prefix (**str
))
1124 memset (ep
, 0, sizeof (expressionS
));
1126 save_in
= input_line_pointer
;
1127 input_line_pointer
= *str
;
1128 in_my_get_expression
= TRUE
;
1130 in_my_get_expression
= FALSE
;
1132 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str
= input_line_pointer
;
1136 input_line_pointer
= save_in
;
1137 if (inst
.error
== NULL
)
1138 inst
.error
= (ep
->X_op
== O_absent
1139 ? _("missing expression") :_("bad expression"));
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode
!= GE_OPT_PREFIX_BIG
1147 && (ep
->X_op
== O_big
1148 || (ep
->X_add_symbol
1149 && (walk_no_bignums (ep
->X_add_symbol
)
1151 && walk_no_bignums (ep
->X_op_symbol
))))))
1153 inst
.error
= _("invalid constant");
1154 *str
= input_line_pointer
;
1155 input_line_pointer
= save_in
;
1159 *str
= input_line_pointer
;
1160 input_line_pointer
= save_in
;
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1179 md_atof (int type
, char * litP
, int * sizeP
)
1182 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1214 return _("Unrecognized or unsupported floating point constant");
1217 t
= atof_ieee (input_line_pointer
, type
, words
);
1219 input_line_pointer
= t
;
1220 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1222 if (target_big_endian
)
1224 for (i
= 0; i
< prec
; i
++)
1226 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1227 litP
+= sizeof (LITTLENUM_TYPE
);
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1233 for (i
= prec
- 1; i
>= 0; i
--)
1235 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1236 litP
+= sizeof (LITTLENUM_TYPE
);
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i
= 0; i
< prec
; i
+= 2)
1243 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1244 sizeof (LITTLENUM_TYPE
));
1245 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1246 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1247 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1258 md_operand (expressionS
* exp
)
1260 if (in_my_get_expression
)
1261 exp
->X_op
= O_illegal
;
1264 /* Immediate values. */
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1272 immediate_for_directive (int *val
)
1275 exp
.X_op
= O_illegal
;
1277 if (is_immediate_prefix (*input_line_pointer
))
1279 input_line_pointer
++;
1283 if (exp
.X_op
!= O_constant
)
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1289 *val
= exp
.X_add_number
;
1294 /* Register parsing. */
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1301 static struct reg_entry
*
1302 arm_reg_parse_multi (char **ccp
)
1306 struct reg_entry
*reg
;
1308 skip_whitespace (start
);
1310 #ifdef REGISTER_PREFIX
1311 if (*start
!= REGISTER_PREFIX
)
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1321 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1326 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1328 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1338 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1339 enum arm_reg_type type
)
1341 /* Alternative syntaxes are accepted for a few register classes. */
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg
&& reg
->type
== REG_TYPE_CN
)
1354 /* For backward compatibility, a bare number is valid here. */
1356 unsigned long processor
= strtoul (start
, ccp
, 10);
1357 if (*ccp
!= start
&& processor
<= 15)
1362 case REG_TYPE_MMXWC
:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1380 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1383 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1390 if (reg
&& reg
->type
== type
)
1393 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1408 Can all be legally parsed by this function.
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1415 parse_neon_type (struct neon_type
*type
, char **str
)
1422 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1424 enum neon_el_type thistype
= NT_untyped
;
1425 unsigned thissize
= -1u;
1432 /* Just a size without an explicit type. */
1436 switch (TOLOWER (*ptr
))
1438 case 'i': thistype
= NT_integer
; break;
1439 case 'f': thistype
= NT_float
; break;
1440 case 'p': thistype
= NT_poly
; break;
1441 case 's': thistype
= NT_signed
; break;
1442 case 'u': thistype
= NT_unsigned
; break;
1444 thistype
= NT_float
;
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1461 thissize
= strtoul (ptr
, &ptr
, 10);
1463 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1466 as_bad (_("bad size %d in type specifier"), thissize
);
1474 type
->el
[type
->elems
].type
= thistype
;
1475 type
->el
[type
->elems
].size
= thissize
;
1480 /* Empty/missing type is not a successful parse. */
1481 if (type
->elems
== 0)
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1495 first_error (const char *err
)
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1503 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1506 struct neon_type optype
;
1510 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1512 if (optype
.elems
== 1)
1513 *vectype
= optype
.el
[0];
1516 first_error (_("only one type should be specified for operand"));
1522 first_error (_("vector type expected"));
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1540 /* Record a use of the given feature. */
1542 record_feature_use (const arm_feature_set
*feature
)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, *feature
);
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, *feature
);
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1553 mark_feature_used (const arm_feature_set
*feature
)
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1558 if (((feature
== &mve_ext
) || (feature
== &mve_fp_ext
))
1559 && ARM_CPU_IS_ANY (cpu_variant
))
1561 first_error (BAD_MVE_AUTO
);
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
1568 /* Add the appropriate architecture feature for the barrier option used.
1570 record_feature_use (feature
);
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1581 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1582 enum arm_reg_type
*rtype
,
1583 struct neon_typed_alias
*typeinfo
)
1586 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1587 struct neon_typed_alias atype
;
1588 struct neon_type_el parsetype
;
1592 atype
.eltype
.type
= NT_invtype
;
1593 atype
.eltype
.size
= -1;
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1599 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type
== REG_TYPE_NDQ
1609 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1610 || (type
== REG_TYPE_VFSD
1611 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1612 || (type
== REG_TYPE_NSDQ
1613 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1614 || reg
->type
== REG_TYPE_NQ
))
1615 || (type
== REG_TYPE_NSD
1616 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1617 || (type
== REG_TYPE_MMXWC
1618 && (reg
->type
== REG_TYPE_MMXWCG
)))
1619 type
= (enum arm_reg_type
) reg
->type
;
1621 if (type
== REG_TYPE_MQ
)
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1626 if (!reg
|| reg
->type
!= REG_TYPE_NQ
)
1629 if (reg
->number
> 14 && !mark_feature_used (&fpu_vfp_ext_d32
))
1631 first_error (_("expected MVE register [q0..q7]"));
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
1637 && (type
== REG_TYPE_NQ
))
1641 if (type
!= reg
->type
)
1647 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1649 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1651 first_error (_("can't redefine type for operand"));
1654 atype
.defined
|= NTA_HASTYPE
;
1655 atype
.eltype
= parsetype
;
1658 if (skip_past_char (&str
, '[') == SUCCESS
)
1660 if (type
!= REG_TYPE_VFD
1661 && !(type
== REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_2
))
1663 && !(type
== REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)))
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1667 first_error (_("only D and Q registers may be indexed"));
1669 first_error (_("only D registers may be indexed"));
1673 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1675 first_error (_("can't change index for operand"));
1679 atype
.defined
|= NTA_HASINDEX
;
1681 if (skip_past_char (&str
, ']') == SUCCESS
)
1682 atype
.index
= NEON_ALL_LANES
;
1687 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1689 if (exp
.X_op
!= O_constant
)
1691 first_error (_("constant expression required"));
1695 if (skip_past_char (&str
, ']') == FAIL
)
1698 atype
.index
= exp
.X_add_number
;
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1721 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1722 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1724 struct neon_typed_alias atype
;
1726 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1731 /* Do not allow regname(... to parse as a register. */
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1738 first_error (_("register operand expected, but got scalar"));
1743 *vectype
= atype
.eltype
;
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1758 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
, enum
1759 arm_reg_type reg_type
)
1763 struct neon_typed_alias atype
;
1766 reg
= parse_typed_reg_or_scalar (&str
, reg_type
, NULL
, &atype
);
1784 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1787 if (reg_type
!= REG_TYPE_MQ
&& atype
.index
== NEON_ALL_LANES
)
1789 first_error (_("scalar must have an index"));
1792 else if (atype
.index
>= reg_size
/ elsize
)
1794 first_error (_("scalar index out of range"));
1799 *type
= atype
.eltype
;
1803 return reg
* 16 + atype
.index
;
1806 /* Types of registers in a list. */
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1822 parse_reg_list (char ** strp
, enum reg_list_els etype
)
1828 gas_assert (etype
== REGLIST_RN
|| etype
== REGLIST_CLRM
);
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1833 skip_whitespace (str
);
1846 const char apsr_str
[] = "apsr";
1847 int apsr_str_len
= strlen (apsr_str
);
1849 reg
= arm_reg_parse (&str
, REGLIST_RN
);
1850 if (etype
== REGLIST_CLRM
)
1852 if (reg
== REG_SP
|| reg
== REG_PC
)
1854 else if (reg
== FAIL
1855 && !strncasecmp (str
, apsr_str
, apsr_str_len
)
1856 && !ISALPHA (*(str
+ apsr_str_len
)))
1859 str
+= apsr_str_len
;
1864 first_error (_("r0-r12, lr or APSR expected"));
1868 else /* etype == REGLIST_RN. */
1872 first_error (_(reg_expected_msgs
[REGLIST_RN
]));
1883 first_error (_("bad range in register list"));
1887 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1889 if (range
& (1 << i
))
1891 (_("Warning: duplicated register (r%d) in register list"),
1899 if (range
& (1 << reg
))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1902 else if (reg
<= cur_reg
)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1908 while (skip_past_comma (&str
) != FAIL
1909 || (in_range
= 1, *str
++ == '-'));
1912 if (skip_past_char (&str
, '}') == FAIL
)
1914 first_error (_("missing `}'"));
1918 else if (etype
== REGLIST_RN
)
1922 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1925 if (exp
.X_op
== O_constant
)
1927 if (exp
.X_add_number
1928 != (exp
.X_add_number
& 0x0000ffff))
1930 inst
.error
= _("invalid register mask");
1934 if ((range
& exp
.X_add_number
) != 0)
1936 int regno
= range
& exp
.X_add_number
;
1939 regno
= (1 << regno
) - 1;
1941 (_("Warning: duplicated register (r%d) in register list"),
1945 range
|= exp
.X_add_number
;
1949 if (inst
.relocs
[0].type
!= 0)
1951 inst
.error
= _("expression too complex");
1955 memcpy (&inst
.relocs
[0].exp
, &exp
, sizeof (expressionS
));
1956 inst
.relocs
[0].type
= BFD_RELOC_ARM_MULTI
;
1957 inst
.relocs
[0].pc_rel
= 0;
1961 if (*str
== '|' || *str
== '+')
1967 while (another_range
);
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1989 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
,
1990 bfd_boolean
*partial_match
)
1995 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1999 unsigned long mask
= 0;
2001 bfd_boolean vpr_seen
= FALSE
;
2002 bfd_boolean expect_vpr
=
2003 (etype
== REGLIST_VFP_S_VPR
) || (etype
== REGLIST_VFP_D_VPR
);
2005 if (skip_past_char (&str
, '{') == FAIL
)
2007 inst
.error
= _("expecting {");
2014 case REGLIST_VFP_S_VPR
:
2015 regtype
= REG_TYPE_VFS
;
2020 case REGLIST_VFP_D_VPR
:
2021 regtype
= REG_TYPE_VFD
;
2024 case REGLIST_NEON_D
:
2025 regtype
= REG_TYPE_NDQ
;
2032 if (etype
!= REGLIST_VFP_S
&& etype
!= REGLIST_VFP_S_VPR
)
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
2049 base_reg
= max_regs
;
2050 *partial_match
= FALSE
;
2054 int setmask
= 1, addregs
= 1;
2055 const char vpr_str
[] = "vpr";
2056 int vpr_str_len
= strlen (vpr_str
);
2058 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
2062 if (new_base
== FAIL
2063 && !strncasecmp (str
, vpr_str
, vpr_str_len
)
2064 && !ISALPHA (*(str
+ vpr_str_len
))
2070 base_reg
= 0; /* Canonicalize VPR only on d0 with 0 regs. */
2074 first_error (_("VPR expected last"));
2077 else if (new_base
== FAIL
)
2079 if (regtype
== REG_TYPE_VFS
)
2080 first_error (_("VFP single precision register or VPR "
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2088 else if (new_base
== FAIL
)
2090 first_error (_(reg_expected_msgs
[regtype
]));
2094 *partial_match
= TRUE
;
2098 if (new_base
>= max_regs
)
2100 first_error (_("register out of range in list"));
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype
== REG_TYPE_NQ
)
2111 if (new_base
< base_reg
)
2112 base_reg
= new_base
;
2114 if (mask
& (setmask
<< new_base
))
2116 first_error (_("invalid register list"));
2120 if ((mask
>> new_base
) != 0 && ! warned
&& !vpr_seen
)
2122 as_tsktsk (_("register list not in ascending order"));
2126 mask
|= setmask
<< new_base
;
2129 if (*str
== '-') /* We have the start of a range expression */
2135 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
2138 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
2142 if (high_range
>= max_regs
)
2144 first_error (_("register out of range in list"));
2148 if (regtype
== REG_TYPE_NQ
)
2149 high_range
= high_range
+ 1;
2151 if (high_range
<= new_base
)
2153 inst
.error
= _("register range not in ascending order");
2157 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
2159 if (mask
& (setmask
<< new_base
))
2161 inst
.error
= _("invalid register list");
2165 mask
|= setmask
<< new_base
;
2170 while (skip_past_comma (&str
) != FAIL
);
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen
&& count
== 0) || count
> max_regs
)
2180 if (expect_vpr
&& !vpr_seen
)
2182 first_error (_("VPR expected last"));
2186 /* Final test -- the registers must be consecutive. */
2188 for (i
= 0; i
< count
; i
++)
2190 if ((mask
& (1u << i
)) == 0)
2192 inst
.error
= _("non-contiguous register range");
2202 /* True if two alias types are the same. */
2205 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
2213 if (a
->defined
!= b
->defined
)
2216 if ((a
->defined
& NTA_HASTYPE
) != 0
2217 && (a
->eltype
.type
!= b
->eltype
.type
2218 || a
->eltype
.size
!= b
->eltype
.size
))
2221 if ((a
->defined
& NTA_HASINDEX
) != 0
2222 && (a
->index
!= b
->index
))
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2241 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
2243 struct neon_type_el
*eltype
)
2250 int leading_brace
= 0;
2251 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
2252 const char *const incr_error
= mve
? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error
= _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype
;
2256 firsttype
.defined
= 0;
2257 firsttype
.eltype
.type
= NT_invtype
;
2258 firsttype
.eltype
.size
= -1;
2259 firsttype
.index
= -1;
2261 if (skip_past_char (&ptr
, '{') == SUCCESS
)
2266 struct neon_typed_alias atype
;
2268 rtype
= REG_TYPE_MQ
;
2269 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
2273 first_error (_(reg_expected_msgs
[rtype
]));
2280 if (rtype
== REG_TYPE_NQ
)
2286 else if (reg_incr
== -1)
2288 reg_incr
= getreg
- base_reg
;
2289 if (reg_incr
< 1 || reg_incr
> 2)
2291 first_error (_(incr_error
));
2295 else if (getreg
!= base_reg
+ reg_incr
* count
)
2297 first_error (_(incr_error
));
2301 if (! neon_alias_types_same (&atype
, &firsttype
))
2303 first_error (_(type_error
));
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2311 struct neon_typed_alias htype
;
2312 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
2314 lane
= NEON_INTERLEAVE_LANES
;
2315 else if (lane
!= NEON_INTERLEAVE_LANES
)
2317 first_error (_(type_error
));
2322 else if (reg_incr
!= 1)
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2328 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
2331 first_error (_(reg_expected_msgs
[rtype
]));
2334 if (! neon_alias_types_same (&htype
, &firsttype
))
2336 first_error (_(type_error
));
2339 count
+= hireg
+ dregs
- getreg
;
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype
== REG_TYPE_NQ
)
2350 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2354 else if (lane
!= atype
.index
)
2356 first_error (_(type_error
));
2360 else if (lane
== -1)
2361 lane
= NEON_INTERLEAVE_LANES
;
2362 else if (lane
!= NEON_INTERLEAVE_LANES
)
2364 first_error (_(type_error
));
2369 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2371 /* No lane set by [x]. We must be interleaving structures. */
2373 lane
= NEON_INTERLEAVE_LANES
;
2376 if (lane
== -1 || base_reg
== -1 || count
< 1 || (!mve
&& count
> 4)
2377 || (count
> 1 && reg_incr
== -1))
2379 first_error (_("error parsing element/structure list"));
2383 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2385 first_error (_("expected }"));
2393 *eltype
= firsttype
.eltype
;
2398 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2408 parse_reloc (char **str
)
2410 struct reloc_entry
*r
;
2414 return BFD_RELOC_UNUSED
;
2419 while (*q
&& *q
!= ')' && *q
!= ',')
2424 if ((r
= (struct reloc_entry
*)
2425 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2432 /* Directives: register aliases. */
2434 static struct reg_entry
*
2435 insert_reg_alias (char *str
, unsigned number
, int type
)
2437 struct reg_entry
*new_reg
;
2440 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2442 if (new_reg
->builtin
)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2445 /* Only warn about a redefinition if it's not defined as the
2447 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2453 name
= xstrdup (str
);
2454 new_reg
= XNEW (struct reg_entry
);
2456 new_reg
->name
= name
;
2457 new_reg
->number
= number
;
2458 new_reg
->type
= type
;
2459 new_reg
->builtin
= FALSE
;
2460 new_reg
->neon
= NULL
;
2462 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2469 insert_neon_reg_alias (char *str
, int number
, int type
,
2470 struct neon_typed_alias
*atype
)
2472 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2476 first_error (_("attempt to redefine typed alias"));
2482 reg
->neon
= XNEW (struct neon_typed_alias
);
2483 *reg
->neon
= *atype
;
2487 /* Look for the .req directive. This is of the form:
2489 new_register_name .req existing_register_name
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2495 create_register_alias (char * newname
, char *p
)
2497 struct reg_entry
*old
;
2498 char *oldname
, *nbuf
;
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2504 if (strncmp (oldname
, " .req ", 6) != 0)
2508 if (*oldname
== '\0')
2511 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2524 newname
= original_case_string
;
2525 nlen
= strlen (newname
);
2528 nbuf
= xmemdup0 (newname
, nlen
);
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2533 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2535 for (p
= nbuf
; *p
; p
++)
2538 if (strncmp (nbuf
, newname
, nlen
))
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2549 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2556 for (p
= nbuf
; *p
; p
++)
2559 if (strncmp (nbuf
, newname
, nlen
))
2560 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2578 create_neon_reg_alias (char *newname
, char *p
)
2580 enum arm_reg_type basetype
;
2581 struct reg_entry
*basereg
;
2582 struct reg_entry mybasereg
;
2583 struct neon_type ntype
;
2584 struct neon_typed_alias typeinfo
;
2585 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2588 typeinfo
.defined
= 0;
2589 typeinfo
.eltype
.type
= NT_invtype
;
2590 typeinfo
.eltype
.size
= -1;
2591 typeinfo
.index
= -1;
2595 if (strncmp (p
, " .dn ", 5) == 0)
2596 basetype
= REG_TYPE_VFD
;
2597 else if (strncmp (p
, " .qn ", 5) == 0)
2598 basetype
= REG_TYPE_NQ
;
2607 basereg
= arm_reg_parse_multi (&p
);
2609 if (basereg
&& basereg
->type
!= basetype
)
2611 as_bad (_("bad type for register"));
2615 if (basereg
== NULL
)
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2620 if (exp
.X_op
!= O_constant
)
2622 as_bad (_("expression must be constant"));
2625 basereg
= &mybasereg
;
2626 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2632 typeinfo
= *basereg
->neon
;
2634 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2636 /* We got a type. */
2637 if (typeinfo
.defined
& NTA_HASTYPE
)
2639 as_bad (_("can't redefine the type of a register alias"));
2643 typeinfo
.defined
|= NTA_HASTYPE
;
2644 if (ntype
.elems
!= 1)
2646 as_bad (_("you must specify a single type only"));
2649 typeinfo
.eltype
= ntype
.el
[0];
2652 if (skip_past_char (&p
, '[') == SUCCESS
)
2655 /* We got a scalar index. */
2657 if (typeinfo
.defined
& NTA_HASINDEX
)
2659 as_bad (_("can't redefine the index of a scalar alias"));
2663 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2665 if (exp
.X_op
!= O_constant
)
2667 as_bad (_("scalar index must be constant"));
2671 typeinfo
.defined
|= NTA_HASINDEX
;
2672 typeinfo
.index
= exp
.X_add_number
;
2674 if (skip_past_char (&p
, ']') == FAIL
)
2676 as_bad (_("expecting ]"));
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen
= nameend
- newname
;
2687 newname
= original_case_string
;
2688 namelen
= strlen (newname
);
2691 namebuf
= xmemdup0 (newname
, namelen
);
2693 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2694 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2696 /* Insert name in all uppercase. */
2697 for (p
= namebuf
; *p
; p
++)
2700 if (strncmp (namebuf
, newname
, namelen
))
2701 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2702 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2704 /* Insert name in all lowercase. */
2705 for (p
= namebuf
; *p
; p
++)
2708 if (strncmp (namebuf
, newname
, namelen
))
2709 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2710 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2720 s_req (int a ATTRIBUTE_UNUSED
)
2722 as_bad (_("invalid syntax for .req directive"));
2726 s_dn (int a ATTRIBUTE_UNUSED
)
2728 as_bad (_("invalid syntax for .dn directive"));
2732 s_qn (int a ATTRIBUTE_UNUSED
)
2734 as_bad (_("invalid syntax for .qn directive"));
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2744 s_unreq (int a ATTRIBUTE_UNUSED
)
2749 name
= input_line_pointer
;
2751 while (*input_line_pointer
!= 0
2752 && *input_line_pointer
!= ' '
2753 && *input_line_pointer
!= '\n')
2754 ++input_line_pointer
;
2756 saved_char
= *input_line_pointer
;
2757 *input_line_pointer
= 0;
2760 as_bad (_("invalid syntax for .unreq directive"));
2763 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2767 as_bad (_("unknown register alias '%s'"), name
);
2768 else if (reg
->builtin
)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2776 hash_delete (arm_reg_hsh
, name
, FALSE
);
2777 free ((char *) reg
->name
);
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2786 nbuf
= strdup (name
);
2787 for (p
= nbuf
; *p
; p
++)
2789 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2792 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2793 free ((char *) reg
->name
);
2799 for (p
= nbuf
; *p
; p
++)
2801 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2804 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2805 free ((char *) reg
->name
);
2815 *input_line_pointer
= saved_char
;
2816 demand_empty_rest_of_line ();
2819 /* Directives: Instruction set selection. */
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2827 /* Create a new mapping symbol for the transition to STATE. */
2830 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2833 const char * symname
;
2840 type
= BSF_NO_FLAGS
;
2844 type
= BSF_NO_FLAGS
;
2848 type
= BSF_NO_FLAGS
;
2854 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2855 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2860 THUMB_SET_FUNC (symbolP
, 0);
2861 ARM_SET_THUMB (symbolP
, 0);
2862 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2866 THUMB_SET_FUNC (symbolP
, 1);
2867 ARM_SET_THUMB (symbolP
, 1);
2868 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2887 if (frag
->tc_frag_data
.first_map
!= NULL
)
2889 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
2890 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
2892 frag
->tc_frag_data
.first_map
= symbolP
;
2894 if (frag
->tc_frag_data
.last_map
!= NULL
)
2896 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
2897 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
2898 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
2900 frag
->tc_frag_data
.last_map
= symbolP
;
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2908 insert_data_mapping_symbol (enum mstate state
,
2909 valueT value
, fragS
*frag
, offsetT bytes
)
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag
->tc_frag_data
.last_map
!= NULL
2913 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2915 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2919 know (frag
->tc_frag_data
.first_map
== symp
);
2920 frag
->tc_frag_data
.first_map
= NULL
;
2922 frag
->tc_frag_data
.last_map
= NULL
;
2923 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2926 make_mapping_symbol (MAP_DATA
, value
, frag
);
2927 make_mapping_symbol (state
, value
+ bytes
, frag
);
2930 static void mapping_state_2 (enum mstate state
, int max_chars
);
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2937 mapping_state (enum mstate state
)
2939 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2941 if (mapstate
== state
)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2946 if (state
== MAP_ARM
|| state
== MAP_THUMB
)
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2951 When emitting instructions into any section, mark the section
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg
, state
== MAP_ARM
? 2 : 1);
2962 if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2963 /* This case will be evaluated later. */
2966 mapping_state_2 (state
, 0);
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2973 mapping_state_2 (enum mstate state
, int max_chars
)
2975 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2977 if (!SEG_NORMAL (now_seg
))
2980 if (mapstate
== state
)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2985 if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2986 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2988 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2989 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2992 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2995 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2996 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3008 find_real_start (symbolS
* symbolP
)
3011 const char * name
= S_GET_NAME (symbolP
);
3012 symbolS
* new_target
;
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
3028 real_start
= concat (STUB_NAME
, name
, NULL
);
3029 new_target
= symbol_find (real_start
);
3032 if (new_target
== NULL
)
3034 as_warn (_("Failed to find real start of function: %s\n"), name
);
3035 new_target
= symbolP
;
3043 opcode_select (int width
)
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg
, 1);
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3069 frag_align (2, 0, 0);
3071 record_alignment (now_seg
, 1);
3076 as_bad (_("invalid instruction size selected (%d)"), width
);
3081 s_arm (int ignore ATTRIBUTE_UNUSED
)
3084 demand_empty_rest_of_line ();
3088 s_thumb (int ignore ATTRIBUTE_UNUSED
)
3091 demand_empty_rest_of_line ();
3095 s_code (int unused ATTRIBUTE_UNUSED
)
3099 temp
= get_absolute_expression ();
3104 opcode_select (temp
);
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3123 record_alignment (now_seg
, 1);
3126 demand_empty_rest_of_line ();
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name
= TRUE
;
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3143 s_thumb_set (int equiv
)
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3156 delim
= get_symbol_name (& name
);
3157 end_name
= input_line_pointer
;
3158 (void) restore_line_pointer (delim
);
3160 if (*input_line_pointer
!= ',')
3163 as_bad (_("expected comma after name \"%s\""), name
);
3165 ignore_rest_of_line ();
3169 input_line_pointer
++;
3172 if (name
[0] == '.' && name
[1] == '\0')
3174 /* XXX - this should not happen to .thumb_set. */
3178 if ((symbolP
= symbol_find (name
)) == NULL
3179 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3185 if (listing
& LISTING_SYMBOLS
)
3187 extern struct list_info_struct
* listing_tail
;
3188 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
3190 memset (dummy_frag
, 0, sizeof (fragS
));
3191 dummy_frag
->fr_type
= rs_fill
;
3192 dummy_frag
->line
= listing_tail
;
3193 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
3194 dummy_frag
->fr_symbol
= symbolP
;
3198 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP
);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3206 symbol_table_insert (symbolP
);
3211 && S_IS_DEFINED (symbolP
)
3212 && S_GET_SEGMENT (symbolP
) != reg_section
)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
3215 pseudo_set (symbolP
);
3217 demand_empty_rest_of_line ();
3219 /* XXX Now we come to the Thumb specific bit of code. */
3221 THUMB_SET_FUNC (symbolP
, 1);
3222 ARM_SET_THUMB (symbolP
, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP
, support_interwork
);
3228 /* Directives: Mode selection. */
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3234 s_syntax (int unused ATTRIBUTE_UNUSED
)
3238 delim
= get_symbol_name (& name
);
3240 if (!strcasecmp (name
, "unified"))
3241 unified_syntax
= TRUE
;
3242 else if (!strcasecmp (name
, "divided"))
3243 unified_syntax
= FALSE
;
3246 as_bad (_("unrecognized syntax mode \"%s\""), name
);
3249 (void) restore_line_pointer (delim
);
3250 demand_empty_rest_of_line ();
3253 /* Directives: sectioning and alignment. */
3256 s_bss (int ignore ATTRIBUTE_UNUSED
)
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section
, 0);
3261 demand_empty_rest_of_line ();
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3269 s_even (int ignore ATTRIBUTE_UNUSED
)
3271 /* Never make frag if expect extra pass. */
3273 frag_align (1, 0, 0);
3275 record_alignment (now_seg
, 1);
3277 demand_empty_rest_of_line ();
3280 /* Directives: CodeComposer Studio. */
3282 /* .ref (for CodeComposer Studio syntax only). */
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED
)
3286 if (codecomposer_syntax
)
3287 ignore_rest_of_line ();
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3295 asmfunc_debug (const char * name
)
3297 static const char * last_name
= NULL
;
3301 gas_assert (last_name
== NULL
);
3304 if (debug_type
== DEBUG_STABS
)
3305 stabs_generate_asm_func (name
, name
);
3309 gas_assert (last_name
!= NULL
);
3311 if (debug_type
== DEBUG_STABS
)
3312 stabs_generate_asm_endfunc (last_name
, last_name
);
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED
)
3321 if (codecomposer_syntax
)
3323 switch (asmfunc_state
)
3325 case OUTSIDE_ASMFUNC
:
3326 asmfunc_state
= WAITING_ASMFUNC_NAME
;
3329 case WAITING_ASMFUNC_NAME
:
3330 as_bad (_(".asmfunc repeated."));
3333 case WAITING_ENDASMFUNC
:
3334 as_bad (_(".asmfunc without function."));
3337 demand_empty_rest_of_line ();
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED
)
3346 if (codecomposer_syntax
)
3348 switch (asmfunc_state
)
3350 case OUTSIDE_ASMFUNC
:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3354 case WAITING_ASMFUNC_NAME
:
3355 as_bad (_(".endasmfunc without function."));
3358 case WAITING_ENDASMFUNC
:
3359 asmfunc_state
= OUTSIDE_ASMFUNC
;
3360 asmfunc_debug (NULL
);
3363 demand_empty_rest_of_line ();
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3370 s_ccs_def (int name
)
3372 if (codecomposer_syntax
)
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3378 /* Directives: Literal pools. */
3380 static literal_pool
*
3381 find_literal_pool (void)
3383 literal_pool
* pool
;
3385 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
3387 if (pool
->section
== now_seg
3388 && pool
->sub_section
== now_subseg
)
3395 static literal_pool
*
3396 find_or_make_literal_pool (void)
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num
= 1;
3400 literal_pool
* pool
;
3402 pool
= find_literal_pool ();
3406 /* Create a new pool. */
3407 pool
= XNEW (literal_pool
);
3411 pool
->next_free_entry
= 0;
3412 pool
->section
= now_seg
;
3413 pool
->sub_section
= now_subseg
;
3414 pool
->next
= list_of_pools
;
3415 pool
->symbol
= NULL
;
3416 pool
->alignment
= 2;
3418 /* Add it to the list. */
3419 list_of_pools
= pool
;
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool
->symbol
== NULL
)
3425 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3426 (valueT
) 0, &zero_address_frag
);
3427 pool
->id
= latest_pool_num
++;
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3438 add_to_lit_pool (unsigned int nbytes
)
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool
* pool
;
3443 unsigned int entry
, pool_size
= 0;
3444 bfd_boolean padding_slot_p
= FALSE
;
3450 imm1
= inst
.operands
[1].imm
;
3451 imm2
= (inst
.operands
[1].regisimm
? inst
.operands
[1].reg
3452 : inst
.relocs
[0].exp
.X_unsigned
? 0
3453 : ((bfd_int64_t
) inst
.operands
[1].imm
) >> 32);
3454 if (target_big_endian
)
3457 imm2
= inst
.operands
[1].imm
;
3461 pool
= find_or_make_literal_pool ();
3463 /* Check if this literal value is already in the pool. */
3464 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3468 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3469 && (inst
.relocs
[0].exp
.X_op
== O_constant
)
3470 && (pool
->literals
[entry
].X_add_number
3471 == inst
.relocs
[0].exp
.X_add_number
)
3472 && (pool
->literals
[entry
].X_md
== nbytes
)
3473 && (pool
->literals
[entry
].X_unsigned
3474 == inst
.relocs
[0].exp
.X_unsigned
))
3477 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3478 && (inst
.relocs
[0].exp
.X_op
== O_symbol
)
3479 && (pool
->literals
[entry
].X_add_number
3480 == inst
.relocs
[0].exp
.X_add_number
)
3481 && (pool
->literals
[entry
].X_add_symbol
3482 == inst
.relocs
[0].exp
.X_add_symbol
)
3483 && (pool
->literals
[entry
].X_op_symbol
3484 == inst
.relocs
[0].exp
.X_op_symbol
)
3485 && (pool
->literals
[entry
].X_md
== nbytes
))
3488 else if ((nbytes
== 8)
3489 && !(pool_size
& 0x7)
3490 && ((entry
+ 1) != pool
->next_free_entry
)
3491 && (pool
->literals
[entry
].X_op
== O_constant
)
3492 && (pool
->literals
[entry
].X_add_number
== (offsetT
) imm1
)
3493 && (pool
->literals
[entry
].X_unsigned
3494 == inst
.relocs
[0].exp
.X_unsigned
)
3495 && (pool
->literals
[entry
+ 1].X_op
== O_constant
)
3496 && (pool
->literals
[entry
+ 1].X_add_number
== (offsetT
) imm2
)
3497 && (pool
->literals
[entry
+ 1].X_unsigned
3498 == inst
.relocs
[0].exp
.X_unsigned
))
3501 padding_slot_p
= ((pool
->literals
[entry
].X_md
>> 8) == PADDING_SLOT
);
3502 if (padding_slot_p
&& (nbytes
== 4))
3508 /* Do we need to create a new entry? */
3509 if (entry
== pool
->next_free_entry
)
3511 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3513 inst
.error
= _("literal pool overflow");
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3525 We also need to make sure there is enough space for
3528 We also check to make sure the literal operand is a
3530 if (!(inst
.relocs
[0].exp
.X_op
== O_constant
3531 || inst
.relocs
[0].exp
.X_op
== O_big
))
3533 inst
.error
= _("invalid type for literal pool");
3536 else if (pool_size
& 0x7)
3538 if ((entry
+ 2) >= MAX_LITERAL_POOL_SIZE
)
3540 inst
.error
= _("literal pool overflow");
3544 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3545 pool
->literals
[entry
].X_op
= O_constant
;
3546 pool
->literals
[entry
].X_add_number
= 0;
3547 pool
->literals
[entry
++].X_md
= (PADDING_SLOT
<< 8) | 4;
3548 pool
->next_free_entry
+= 1;
3551 else if ((entry
+ 1) >= MAX_LITERAL_POOL_SIZE
)
3553 inst
.error
= _("literal pool overflow");
3557 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3558 pool
->literals
[entry
].X_op
= O_constant
;
3559 pool
->literals
[entry
].X_add_number
= imm1
;
3560 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3561 pool
->literals
[entry
++].X_md
= 4;
3562 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3563 pool
->literals
[entry
].X_op
= O_constant
;
3564 pool
->literals
[entry
].X_add_number
= imm2
;
3565 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3566 pool
->literals
[entry
].X_md
= 4;
3567 pool
->alignment
= 3;
3568 pool
->next_free_entry
+= 1;
3572 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3573 pool
->literals
[entry
].X_md
= 4;
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type
== DEBUG_DWARF2
)
3582 dwarf2_where (pool
->locs
+ entry
);
3584 pool
->next_free_entry
+= 1;
3586 else if (padding_slot_p
)
3588 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3589 pool
->literals
[entry
].X_md
= nbytes
;
3592 inst
.relocs
[0].exp
.X_op
= O_symbol
;
3593 inst
.relocs
[0].exp
.X_add_number
= pool_size
;
3594 inst
.relocs
[0].exp
.X_add_symbol
= pool
->symbol
;
3600 tc_start_label_without_colon (void)
3602 bfd_boolean ret
= TRUE
;
3604 if (codecomposer_syntax
&& asmfunc_state
== WAITING_ASMFUNC_NAME
)
3606 const char *label
= input_line_pointer
;
3608 while (!is_end_of_line
[(int) label
[-1]])
3613 as_bad (_("Invalid label '%s'"), label
);
3617 asmfunc_debug (label
);
3619 asmfunc_state
= WAITING_ENDASMFUNC
;
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3629 symbol_locate (symbolS
* symbolP
,
3630 const char * name
, /* It is copied, the caller can modify. */
3631 segT segment
, /* Segment identifier (SEG_<something>). */
3632 valueT valu
, /* Symbol value. */
3633 fragS
* frag
) /* Associated fragment. */
3636 char * preserved_copy_of_name
;
3638 name_length
= strlen (name
) + 1; /* +1 for \0. */
3639 obstack_grow (¬es
, name
, name_length
);
3640 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name
=
3644 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3647 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3649 S_SET_SEGMENT (symbolP
, segment
);
3650 S_SET_VALUE (symbolP
, valu
);
3651 symbol_clear_list_pointers (symbolP
);
3653 symbol_set_frag (symbolP
, frag
);
3655 /* Link to end of symbol chain. */
3657 extern int symbol_table_frozen
;
3659 if (symbol_table_frozen
)
3663 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3665 obj_symbol_new_hook (symbolP
);
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP
);
3672 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3673 #endif /* DEBUG_SYMS */
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3680 literal_pool
* pool
;
3683 pool
= find_literal_pool ();
3685 || pool
->symbol
== NULL
3686 || pool
->next_free_entry
== 0)
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3692 frag_align (pool
->alignment
, 0, 0);
3694 record_alignment (now_seg
, 2);
3697 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= MAP_DATA
;
3698 make_mapping_symbol (MAP_DATA
, (valueT
) frag_now_fix (), frag_now
);
3700 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3702 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3703 (valueT
) frag_now_fix (), frag_now
);
3704 symbol_table_insert (pool
->symbol
);
3706 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3712 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3715 if (debug_type
== DEBUG_DWARF2
)
3716 dwarf2_gen_line_info (frag_now_fix (), pool
->locs
+ entry
);
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool
->literals
[entry
]),
3720 pool
->literals
[entry
].X_md
& LIT_ENTRY_SIZE_MASK
);
3723 /* Mark the pool as empty. */
3724 pool
->next_free_entry
= 0;
3725 pool
->symbol
= NULL
;
3729 /* Forward declarations for functions below, in the MD interface
3731 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3732 static valueT
create_unwind_entry (int);
3733 static void start_unwind_section (const segT
, int);
3734 static void add_unwind_opcode (valueT
, int);
3735 static void flush_pending_unwind (void);
3737 /* Directives: Data. */
3740 s_arm_elf_cons (int nbytes
)
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3748 if (is_it_end_of_statement ())
3750 demand_empty_rest_of_line ();
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes
);
3758 mapping_state (MAP_DATA
);
3762 char *base
= input_line_pointer
;
3766 if (exp
.X_op
!= O_symbol
)
3767 emit_expr (&exp
, (unsigned int) nbytes
);
3770 char *before_reloc
= input_line_pointer
;
3771 reloc
= parse_reloc (&input_line_pointer
);
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3778 else if (reloc
== BFD_RELOC_UNUSED
)
3779 emit_expr (&exp
, (unsigned int) nbytes
);
3782 reloc_howto_type
*howto
= (reloc_howto_type
*)
3783 bfd_reloc_type_lookup (stdoutput
,
3784 (bfd_reloc_code_real_type
) reloc
);
3785 int size
= bfd_get_reloc_size (howto
);
3787 if (reloc
== BFD_RELOC_ARM_PLT32
)
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc
= BFD_RELOC_UNUSED
;
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3798 howto
->name
, nbytes
);
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p
= input_line_pointer
;
3807 char *save_buf
= XNEWVEC (char, input_line_pointer
- base
);
3809 memcpy (save_buf
, base
, input_line_pointer
- base
);
3810 memmove (base
+ (input_line_pointer
- before_reloc
),
3811 base
, before_reloc
- base
);
3813 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3815 memcpy (base
, save_buf
, p
- base
);
3817 offset
= nbytes
- size
;
3818 p
= frag_more (nbytes
);
3819 memset (p
, 0, nbytes
);
3820 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3821 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3827 while (*input_line_pointer
++ == ',');
3829 /* Put terminator back into stream. */
3830 input_line_pointer
--;
3831 demand_empty_rest_of_line ();
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3838 emit_thumb32_expr (expressionS
* exp
)
3840 expressionS exp_high
= *exp
;
3842 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3843 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3844 exp
->X_add_number
&= 0xffff;
3845 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3848 /* Guess the instruction size based on the opcode. */
3851 thumb_insn_size (int opcode
)
3853 if ((unsigned int) opcode
< 0xe800u
)
3855 else if ((unsigned int) opcode
>= 0xe8000000u
)
3862 emit_insn (expressionS
*exp
, int nbytes
)
3866 if (exp
->X_op
== O_constant
)
3871 size
= thumb_insn_size (exp
->X_add_number
);
3875 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3883 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN
, 0);
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3888 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3889 emit_thumb32_expr (exp
);
3891 emit_expr (exp
, (unsigned int) size
);
3893 it_fsm_post_encode ();
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3901 as_bad (_("constant expression required"));
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3910 s_arm_elf_inst (int nbytes
)
3912 if (is_it_end_of_statement ())
3914 demand_empty_rest_of_line ();
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3922 mapping_state (MAP_THUMB
);
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3934 mapping_state (MAP_ARM
);
3943 if (! emit_insn (& exp
, nbytes
))
3945 ignore_rest_of_line ();
3949 while (*input_line_pointer
++ == ',');
3951 /* Put terminator back into stream. */
3952 input_line_pointer
--;
3953 demand_empty_rest_of_line ();
3956 /* Parse a .rel31 directive. */
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3966 if (*input_line_pointer
== '1')
3967 highbit
= 0x80000000;
3968 else if (*input_line_pointer
!= '0')
3969 as_bad (_("expected 0 or 1"));
3971 input_line_pointer
++;
3972 if (*input_line_pointer
!= ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer
++;
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3980 #ifdef md_cons_align
3984 mapping_state (MAP_DATA
);
3989 md_number_to_chars (p
, highbit
, 4);
3990 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3991 BFD_RELOC_ARM_PREL31
);
3993 demand_empty_rest_of_line ();
3996 /* Directives: AEABI stack-unwind tables. */
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
4003 demand_empty_rest_of_line ();
4004 if (unwind
.proc_start
)
4006 as_bad (_("duplicate .fnstart directive"));
4010 /* Mark the start of the function. */
4011 unwind
.proc_start
= expr_build_dot ();
4013 /* Reset the rest of the unwind info. */
4014 unwind
.opcode_count
= 0;
4015 unwind
.table_entry
= NULL
;
4016 unwind
.personality_routine
= NULL
;
4017 unwind
.personality_index
= -1;
4018 unwind
.frame_size
= 0;
4019 unwind
.fp_offset
= 0;
4020 unwind
.fp_reg
= REG_SP
;
4022 unwind
.sp_restored
= 0;
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
4032 demand_empty_rest_of_line ();
4033 if (!unwind
.proc_start
)
4034 as_bad (MISSING_FNSTART
);
4036 if (unwind
.table_entry
)
4037 as_bad (_("duplicate .handlerdata directive"));
4039 create_unwind_entry (1);
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
4050 unsigned int marked_pr_dependency
;
4052 demand_empty_rest_of_line ();
4054 if (!unwind
.proc_start
)
4056 as_bad (_(".fnend directive without .fnstart"));
4060 /* Add eh table entry. */
4061 if (unwind
.table_entry
== NULL
)
4062 val
= create_unwind_entry (0);
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind
.saved_seg
, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg
, 2);
4071 ptr
= frag_more (8);
4073 where
= frag_now_fix () - 8;
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
4077 BFD_RELOC_ARM_PREL31
);
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
4083 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
4084 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
4086 static const char *const name
[] =
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4092 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
4093 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
4094 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
4095 |= 1 << unwind
.personality_index
;
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr
+ 4, val
, 4);
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
4104 BFD_RELOC_ARM_PREL31
);
4106 /* Restore the original section. */
4107 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
4109 unwind
.proc_start
= NULL
;
4113 /* Parse an unwind_cantunwind directive. */
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
4118 demand_empty_rest_of_line ();
4119 if (!unwind
.proc_start
)
4120 as_bad (MISSING_FNSTART
);
4122 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4125 unwind
.personality_index
= -2;
4129 /* Parse a personalityindex directive. */
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
4136 if (!unwind
.proc_start
)
4137 as_bad (MISSING_FNSTART
);
4139 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4144 if (exp
.X_op
!= O_constant
4145 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4152 unwind
.personality_index
= exp
.X_add_number
;
4154 demand_empty_rest_of_line ();
4158 /* Parse a personality directive. */
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
4165 if (!unwind
.proc_start
)
4166 as_bad (MISSING_FNSTART
);
4168 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4169 as_bad (_("duplicate .personality directive"));
4171 c
= get_symbol_name (& name
);
4172 p
= input_line_pointer
;
4174 ++ input_line_pointer
;
4175 unwind
.personality_routine
= symbol_find_or_make (name
);
4177 demand_empty_rest_of_line ();
4181 /* Parse a directive saving core registers. */
4184 s_arm_unwind_save_core (void)
4190 range
= parse_reg_list (&input_line_pointer
, REGLIST_RN
);
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4198 demand_empty_rest_of_line ();
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
4204 && (range
& 0x3000) == 0x1000)
4206 unwind
.opcode_count
--;
4207 unwind
.sp_restored
= 0;
4208 range
= (range
| 0x2000) & ~0x1000;
4209 unwind
.pending_offset
= 0;
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n
= 0; n
< 8; n
++)
4219 /* Break at the first non-saved register. */
4220 if ((range
& (1 << (n
+ 4))) == 0)
4223 /* See if there are any other bits set. */
4224 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
4226 /* Use the long form. */
4227 op
= 0x8000 | ((range
>> 4) & 0xfff);
4228 add_unwind_opcode (op
, 2);
4232 /* Use the short form. */
4234 op
= 0xa8; /* Pop r14. */
4236 op
= 0xa0; /* Do not pop r14. */
4238 add_unwind_opcode (op
, 1);
4245 op
= 0xb100 | (range
& 0xf);
4246 add_unwind_opcode (op
, 2);
4249 /* Record the number of bytes pushed. */
4250 for (n
= 0; n
< 16; n
++)
4252 if (range
& (1 << n
))
4253 unwind
.frame_size
+= 4;
4258 /* Parse a directive saving FPA registers. */
4261 s_arm_unwind_save_fpa (int reg
)
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4271 exp
.X_op
= O_illegal
;
4273 if (exp
.X_op
!= O_constant
)
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4280 num_regs
= exp
.X_add_number
;
4282 if (num_regs
< 1 || num_regs
> 4)
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4289 demand_empty_rest_of_line ();
4294 op
= 0xb4 | (num_regs
- 1);
4295 add_unwind_opcode (op
, 1);
4300 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
4301 add_unwind_opcode (op
, 2);
4303 unwind
.frame_size
+= num_regs
* 12;
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4310 s_arm_unwind_save_vfp_armv6 (void)
4315 int num_vfpv3_regs
= 0;
4316 int num_regs_below_16
;
4317 bfd_boolean partial_match
;
4319 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
,
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4328 demand_empty_rest_of_line ();
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4335 num_vfpv3_regs
= count
;
4336 else if (start
+ count
> 16)
4337 num_vfpv3_regs
= start
+ count
- 16;
4339 if (num_vfpv3_regs
> 0)
4341 int start_offset
= start
> 16 ? start
- 16 : 0;
4342 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
4343 add_unwind_opcode (op
, 2);
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
4348 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
4349 if (num_regs_below_16
> 0)
4351 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
4352 add_unwind_opcode (op
, 2);
4355 unwind
.frame_size
+= count
* 8;
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4362 s_arm_unwind_save_vfp (void)
4367 bfd_boolean partial_match
;
4369 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
,
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4378 demand_empty_rest_of_line ();
4383 op
= 0xb8 | (count
- 1);
4384 add_unwind_opcode (op
, 1);
4389 op
= 0xb300 | (reg
<< 4) | (count
- 1);
4390 add_unwind_opcode (op
, 2);
4392 unwind
.frame_size
+= count
* 8 + 4;
4396 /* Parse a directive saving iWMMXt data registers. */
4399 s_arm_unwind_save_mmxwr (void)
4407 if (*input_line_pointer
== '{')
4408 input_line_pointer
++;
4412 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4416 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4421 as_tsktsk (_("register list not in ascending order"));
4424 if (*input_line_pointer
== '-')
4426 input_line_pointer
++;
4427 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4430 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4433 else if (reg
>= hi_reg
)
4435 as_bad (_("bad register range"));
4438 for (; reg
< hi_reg
; reg
++)
4442 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4444 skip_past_char (&input_line_pointer
, '}');
4446 demand_empty_rest_of_line ();
4448 /* Generate any deferred opcodes because we're going to be looking at
4450 flush_pending_unwind ();
4452 for (i
= 0; i
< 16; i
++)
4454 if (mask
& (1 << i
))
4455 unwind
.frame_size
+= 8;
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4461 if (unwind
.opcode_count
> 0)
4463 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
4464 if ((i
& 0xf8) == 0xc0)
4467 /* Only merge if the blocks are contiguous. */
4470 if ((mask
& 0xfe00) == (1 << 9))
4472 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
4473 unwind
.opcode_count
--;
4476 else if (i
== 6 && unwind
.opcode_count
>= 2)
4478 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
4482 op
= 0xffff << (reg
- 1);
4484 && ((mask
& op
) == (1u << (reg
- 1))))
4486 op
= (1 << (reg
+ i
+ 1)) - 1;
4487 op
&= ~((1 << reg
) - 1);
4489 unwind
.opcode_count
-= 2;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg
= 15; reg
>= -1; reg
--)
4500 /* Save registers in blocks. */
4502 || !(mask
& (1 << reg
)))
4504 /* We found an unsaved reg. Generate opcodes to save the
4511 op
= 0xc0 | (hi_reg
- 10);
4512 add_unwind_opcode (op
, 1);
4517 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
4518 add_unwind_opcode (op
, 2);
4527 ignore_rest_of_line ();
4531 s_arm_unwind_save_mmxwcg (void)
4538 if (*input_line_pointer
== '{')
4539 input_line_pointer
++;
4541 skip_whitespace (input_line_pointer
);
4545 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4549 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4555 as_tsktsk (_("register list not in ascending order"));
4558 if (*input_line_pointer
== '-')
4560 input_line_pointer
++;
4561 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4564 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4567 else if (reg
>= hi_reg
)
4569 as_bad (_("bad register range"));
4572 for (; reg
< hi_reg
; reg
++)
4576 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4578 skip_past_char (&input_line_pointer
, '}');
4580 demand_empty_rest_of_line ();
4582 /* Generate any deferred opcodes because we're going to be looking at
4584 flush_pending_unwind ();
4586 for (reg
= 0; reg
< 16; reg
++)
4588 if (mask
& (1 << reg
))
4589 unwind
.frame_size
+= 4;
4592 add_unwind_opcode (op
, 2);
4595 ignore_rest_of_line ();
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4603 s_arm_unwind_save (int arch_v6
)
4606 struct reg_entry
*reg
;
4607 bfd_boolean had_brace
= FALSE
;
4609 if (!unwind
.proc_start
)
4610 as_bad (MISSING_FNSTART
);
4612 /* Figure out what sort of save we have. */
4613 peek
= input_line_pointer
;
4621 reg
= arm_reg_parse_multi (&peek
);
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4639 input_line_pointer
= peek
;
4640 s_arm_unwind_save_fpa (reg
->number
);
4644 s_arm_unwind_save_core ();
4649 s_arm_unwind_save_vfp_armv6 ();
4651 s_arm_unwind_save_vfp ();
4654 case REG_TYPE_MMXWR
:
4655 s_arm_unwind_save_mmxwr ();
4658 case REG_TYPE_MMXWCG
:
4659 s_arm_unwind_save_mmxwcg ();
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4669 /* Parse an unwind_movsp directive. */
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4678 if (!unwind
.proc_start
)
4679 as_bad (MISSING_FNSTART
);
4681 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4684 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4685 ignore_rest_of_line ();
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4692 if (immediate_for_directive (&offset
) == FAIL
)
4698 demand_empty_rest_of_line ();
4700 if (reg
== REG_SP
|| reg
== REG_PC
)
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4706 if (unwind
.fp_reg
!= REG_SP
)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4709 /* Generate opcode to restore the value. */
4711 add_unwind_opcode (op
, 1);
4713 /* Record the information for later. */
4714 unwind
.fp_reg
= reg
;
4715 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4716 unwind
.sp_restored
= 1;
4719 /* Parse an unwind_pad directive. */
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4726 if (!unwind
.proc_start
)
4727 as_bad (MISSING_FNSTART
);
4729 if (immediate_for_directive (&offset
) == FAIL
)
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind
.frame_size
+= offset
;
4741 unwind
.pending_offset
+= offset
;
4743 demand_empty_rest_of_line ();
4746 /* Parse an unwind_setfp directive. */
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4755 if (!unwind
.proc_start
)
4756 as_bad (MISSING_FNSTART
);
4758 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4759 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4762 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4764 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4774 if (immediate_for_directive (&offset
) == FAIL
)
4780 demand_empty_rest_of_line ();
4782 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind
.fp_reg
= fp_reg
;
4792 if (sp_reg
== REG_SP
)
4793 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4795 unwind
.fp_offset
-= offset
;
4798 /* Parse an unwind_raw directive. */
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4804 /* This is an arbitrary limit. */
4805 unsigned char op
[16];
4808 if (!unwind
.proc_start
)
4809 as_bad (MISSING_FNSTART
);
4812 if (exp
.X_op
== O_constant
4813 && skip_past_comma (&input_line_pointer
) != FAIL
)
4815 unwind
.frame_size
+= exp
.X_add_number
;
4819 exp
.X_op
= O_illegal
;
4821 if (exp
.X_op
!= O_constant
)
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4830 /* Parse the opcode. */
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4838 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4844 op
[count
++] = exp
.X_add_number
;
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4853 /* Add the opcode bytes in reverse order. */
4855 add_unwind_opcode (op
[count
], 1);
4857 demand_empty_rest_of_line ();
4861 /* Parse a .eabi_attribute directive. */
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4866 int tag
= obj_elf_vendor_attribute (OBJ_ATTR_PROC
);
4868 if (tag
>= 0 && tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4869 attributes_set_explicitly
[tag
] = 1;
4872 /* Emit a tls fix for the symbol. */
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4883 #ifdef md_cons_align
4887 /* Since we're just labelling the code, there's no need to define a
4890 p
= obstack_next_free (&frchain_now
->frch_obstack
);
4891 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
4892 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ
);
4895 #endif /* OBJ_ELF */
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4913 if (exp
.X_op
== O_symbol
)
4914 exp
.X_op
= O_secrel
;
4916 emit_expr (&exp
, 4);
4918 while (*input_line_pointer
++ == ',');
4920 input_line_pointer
--;
4921 demand_empty_rest_of_line ();
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4931 const pseudo_typeS md_pseudo_table
[] =
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req
, 0 },
4935 /* Following two are likewise never called. */
4938 { "unreq", s_unreq
, 0 },
4939 { "bss", s_bss
, 0 },
4940 { "align", s_align_ptwo
, 2 },
4941 { "arm", s_arm
, 0 },
4942 { "thumb", s_thumb
, 0 },
4943 { "code", s_code
, 0 },
4944 { "force_thumb", s_force_thumb
, 0 },
4945 { "thumb_func", s_thumb_func
, 0 },
4946 { "thumb_set", s_thumb_set
, 0 },
4947 { "even", s_even
, 0 },
4948 { "ltorg", s_ltorg
, 0 },
4949 { "pool", s_ltorg
, 0 },
4950 { "syntax", s_syntax
, 0 },
4951 { "cpu", s_arm_cpu
, 0 },
4952 { "arch", s_arm_arch
, 0 },
4953 { "object_arch", s_arm_object_arch
, 0 },
4954 { "fpu", s_arm_fpu
, 0 },
4955 { "arch_extension", s_arm_arch_extension
, 0 },
4957 { "word", s_arm_elf_cons
, 4 },
4958 { "long", s_arm_elf_cons
, 4 },
4959 { "inst.n", s_arm_elf_inst
, 2 },
4960 { "inst.w", s_arm_elf_inst
, 4 },
4961 { "inst", s_arm_elf_inst
, 0 },
4962 { "rel31", s_arm_rel31
, 0 },
4963 { "fnstart", s_arm_unwind_fnstart
, 0 },
4964 { "fnend", s_arm_unwind_fnend
, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4966 { "personality", s_arm_unwind_personality
, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4969 { "save", s_arm_unwind_save
, 0 },
4970 { "vsave", s_arm_unwind_save
, 1 },
4971 { "movsp", s_arm_unwind_movsp
, 0 },
4972 { "pad", s_arm_unwind_pad
, 0 },
4973 { "setfp", s_arm_unwind_setfp
, 0 },
4974 { "unwind_raw", s_arm_unwind_raw
, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq
, 0 },
4980 /* These are used for dwarf. */
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file
, 0 },
4986 { "loc", dwarf2_directive_loc
, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4989 { "extend", float_cons
, 'x' },
4990 { "ldouble", float_cons
, 'x' },
4991 { "packed", float_cons
, 'p' },
4993 {"secrel32", pe_directive_secrel
, 0},
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref
, 0},
4998 {"def", s_ccs_def
, 0},
4999 {"asmfunc", s_ccs_asmfunc
, 0},
5000 {"endasmfunc", s_ccs_endasmfunc
, 0},
5005 /* Parser functions used exclusively in instruction operands. */
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5014 parse_immediate (char **str
, int *val
, int min
, int max
,
5015 bfd_boolean prefix_opt
)
5019 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
5020 if (exp
.X_op
!= O_constant
)
5022 inst
.error
= _("constant expression required");
5026 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
5028 inst
.error
= _("immediate value out of range");
5032 *val
= exp
.X_add_number
;
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5041 parse_big_immediate (char **str
, int i
, expressionS
*in_exp
,
5042 bfd_boolean allow_symbol_p
)
5045 expressionS
*exp_p
= in_exp
? in_exp
: &exp
;
5048 my_get_expression (exp_p
, &ptr
, GE_OPT_PREFIX_BIG
);
5050 if (exp_p
->X_op
== O_constant
)
5052 inst
.operands
[i
].imm
= exp_p
->X_add_number
& 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p
->X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst
.operands
[i
].reg
= (((exp_p
->X_add_number
>> 16) >> 16)
5061 inst
.operands
[i
].regisimm
= 1;
5064 else if (exp_p
->X_op
== O_big
5065 && LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 32)
5067 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts
!= 0);
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 64)
5080 LITTLENUM_TYPE m
= -1;
5082 if (generic_bignum
[parts
* 2] != 0
5083 && generic_bignum
[parts
* 2] != m
)
5086 for (j
= parts
* 2 + 1; j
< (unsigned) exp_p
->X_add_number
; j
++)
5087 if (generic_bignum
[j
] != generic_bignum
[j
-1])
5091 inst
.operands
[i
].imm
= 0;
5092 for (j
= 0; j
< parts
; j
++, idx
++)
5093 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
5094 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5095 inst
.operands
[i
].reg
= 0;
5096 for (j
= 0; j
< parts
; j
++, idx
++)
5097 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
5098 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5099 inst
.operands
[i
].regisimm
= 1;
5101 else if (!(exp_p
->X_op
== O_symbol
&& allow_symbol_p
))
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5113 parse_fpa_immediate (char ** str
)
5115 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5124 for (i
= 0; fp_const
[i
]; i
++)
5126 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
5130 *str
+= strlen (fp_const
[i
]);
5131 if (is_end_of_line
[(unsigned char) **str
])
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5142 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
5144 /* Look for a raw floating point number. */
5145 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
5146 && is_end_of_line
[(unsigned char) *save_in
])
5148 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5150 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5152 if (words
[j
] != fp_values
[i
][j
])
5156 if (j
== MAX_LITTLENUMS
)
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in
= input_line_pointer
;
5167 input_line_pointer
= *str
;
5168 if (expression (&exp
) == absolute_section
5169 && exp
.X_op
== O_big
5170 && exp
.X_add_number
< 0)
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words
, X_PRECISION
, E_PRECISION
) == 0)
5178 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5180 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5182 if (words
[j
] != fp_values
[i
][j
])
5186 if (j
== MAX_LITTLENUMS
)
5188 *str
= input_line_pointer
;
5189 input_line_pointer
= save_in
;
5196 *str
= input_line_pointer
;
5197 input_line_pointer
= save_in
;
5198 inst
.error
= _("invalid FPA immediate expression");
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5206 is_quarter_float (unsigned imm
)
5208 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
5213 /* Detect the presence of a floating point or integer zero constant,
5217 parse_ifimm_zero (char **in
)
5221 if (!is_immediate_prefix (**in
))
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax
)
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in
, "0x", 2) == 0)
5234 if (parse_immediate (in
, &val
, 0, 0, TRUE
) == FAIL
)
5239 error_code
= atof_generic (in
, ".", EXP_CHARS
,
5240 &generic_floating_point_number
);
5243 && generic_floating_point_number
.sign
== '+'
5244 && (generic_floating_point_number
.low
5245 > generic_floating_point_number
.leader
))
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5258 parse_qfloat_immediate (char **ccp
, int *immed
)
5262 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5263 int found_fpchar
= 0;
5265 skip_past_char (&str
, '#');
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5273 skip_whitespace (fpnum
);
5275 if (strncmp (fpnum
, "0x", 2) == 0)
5279 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
5280 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
5290 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
5292 unsigned fpword
= 0;
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
5298 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
5302 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
5315 /* Shift operands. */
5318 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
, SHIFT_UXTW
5321 struct asm_shift_name
5324 enum shift_kind kind
;
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5330 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE
/* Shift must be UXTW immediate. */
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5349 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
5351 const struct asm_shift_name
*shift_name
;
5352 enum shift_kind shift
;
5357 for (p
= *str
; ISALPHA (*p
); p
++)
5362 inst
.error
= _("shift expression expected");
5366 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
5369 if (shift_name
== NULL
)
5371 inst
.error
= _("shift expression expected");
5375 shift
= shift_name
->kind
;
5379 case NO_SHIFT_RESTRICT
:
5380 case SHIFT_IMMEDIATE
:
5381 if (shift
== SHIFT_UXTW
)
5383 inst
.error
= _("'UXTW' not allowed here");
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
5389 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
5391 inst
.error
= _("'LSL' or 'ASR' required");
5396 case SHIFT_LSL_IMMEDIATE
:
5397 if (shift
!= SHIFT_LSL
)
5399 inst
.error
= _("'LSL' required");
5404 case SHIFT_ASR_IMMEDIATE
:
5405 if (shift
!= SHIFT_ASR
)
5407 inst
.error
= _("'ASR' required");
5411 case SHIFT_UXTW_IMMEDIATE
:
5412 if (shift
!= SHIFT_UXTW
)
5414 inst
.error
= _("'UXTW' required");
5422 if (shift
!= SHIFT_RRX
)
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p
);
5427 if (mode
== NO_SHIFT_RESTRICT
5428 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5430 inst
.operands
[i
].imm
= reg
;
5431 inst
.operands
[i
].immisreg
= 1;
5433 else if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5436 inst
.operands
[i
].shift_kind
= shift
;
5437 inst
.operands
[i
].shifted
= 1;
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5445 #<immediate>, <rotate>
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5454 parse_shifter_operand (char **str
, int i
)
5459 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
5461 inst
.operands
[i
].reg
= value
;
5462 inst
.operands
[i
].isreg
= 1;
5464 /* parse_shift will override this if appropriate */
5465 inst
.relocs
[0].exp
.X_op
= O_constant
;
5466 inst
.relocs
[0].exp
.X_add_number
= 0;
5468 if (skip_past_comma (str
) == FAIL
)
5471 /* Shift operation on register. */
5472 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
5475 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_IMM_PREFIX
))
5478 if (skip_past_comma (str
) == SUCCESS
)
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
5484 if (exp
.X_op
!= O_constant
|| inst
.relocs
[0].exp
.X_op
!= O_constant
)
5486 inst
.error
= _("constant expression expected");
5490 value
= exp
.X_add_number
;
5491 if (value
< 0 || value
> 30 || value
% 2 != 0)
5493 inst
.error
= _("invalid rotation");
5496 if (inst
.relocs
[0].exp
.X_add_number
< 0
5497 || inst
.relocs
[0].exp
.X_add_number
> 255)
5499 inst
.error
= _("invalid constant");
5503 /* Encode as specified. */
5504 inst
.operands
[i
].imm
= inst
.relocs
[0].exp
.X_add_number
| value
<< 7;
5508 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
5509 inst
.relocs
[0].pc_rel
= 0;
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5520 struct group_reloc_table_entry
5531 /* Varieties of non-ALU group relocation. */
5539 static struct group_reloc_table_entry group_reloc_table
[] =
5540 { /* Program counter relative: */
5542 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
5547 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
5552 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
5557 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
5562 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
5566 /* Section base relative */
5568 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
5573 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
5578 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
5583 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
5588 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2
}, /* LDC */
5592 /* Absolute thumb alu relocations. */
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
,/* ALU. */
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
,/* ALU. */
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
,/* ALU. */
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,/* ALU. */
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5622 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
5625 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
5627 int length
= strlen (group_reloc_table
[i
].name
);
5629 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
5630 && (*str
)[length
] == ':')
5632 *out
= &group_reloc_table
[i
];
5633 *str
+= (length
+ 1);
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5653 Everything else is as for parse_shifter_operand. */
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str
, int i
)
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5662 if (((*str
)[0] == '#' && (*str
)[1] == ':')
5663 || (*str
)[0] == ':')
5665 struct group_reloc_table_entry
*entry
;
5667 if ((*str
)[0] == '#')
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5675 inst
.error
= _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_NO_PREFIX
))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5686 gas_assert (inst
.relocs
[0].type
!= 0);
5688 return PARSE_OPERAND_SUCCESS
;
5691 return parse_shifter_operand (str
, i
) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5694 /* Never reached. */
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str
, int i
)
5707 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5709 if (exp
.X_op
!= O_constant
)
5711 inst
.error
= _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL
;
5715 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5716 inst
.operands
[i
].immisalign
= 1;
5717 /* Alignments are not pre-indexes. */
5718 inst
.operands
[i
].preind
= 0;
5721 return PARSE_OPERAND_SUCCESS
;
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5727 Preindexed addressing (.preind=1):
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5734 These three may have a trailing ! which causes .writeback to be set also.
5736 Postindexed addressing (.postind=1, .writeback=1):
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5743 Unindexed addressing (.preind=0, .postind=0):
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5756 static parse_operand_result
5757 parse_address_main (char **str
, int i
, int group_relocations
,
5758 group_reloc_type group_type
)
5763 if (skip_past_char (&p
, '[') == FAIL
)
5765 if (skip_past_char (&p
, '=') == FAIL
)
5767 /* Bare address - translate to PC-relative offset. */
5768 inst
.relocs
[0].pc_rel
= 1;
5769 inst
.operands
[i
].reg
= REG_PC
;
5770 inst
.operands
[i
].isreg
= 1;
5771 inst
.operands
[i
].preind
= 1;
5773 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_OPT_PREFIX_BIG
))
5774 return PARSE_OPERAND_FAIL
;
5776 else if (parse_big_immediate (&p
, i
, &inst
.relocs
[0].exp
,
5777 /*allow_symbol_p=*/TRUE
))
5778 return PARSE_OPERAND_FAIL
;
5781 return PARSE_OPERAND_SUCCESS
;
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p
);
5787 if (group_type
== GROUP_MVE
)
5789 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5790 struct neon_type_el et
;
5791 if ((reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5793 inst
.operands
[i
].isquad
= 1;
5795 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5797 inst
.error
= BAD_ADDR_MODE
;
5798 return PARSE_OPERAND_FAIL
;
5801 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5803 if (group_type
== GROUP_MVE
)
5804 inst
.error
= BAD_ADDR_MODE
;
5806 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5807 return PARSE_OPERAND_FAIL
;
5809 inst
.operands
[i
].reg
= reg
;
5810 inst
.operands
[i
].isreg
= 1;
5812 if (skip_past_comma (&p
) == SUCCESS
)
5814 inst
.operands
[i
].preind
= 1;
5817 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5819 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5820 struct neon_type_el et
;
5821 if (group_type
== GROUP_MVE
5822 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5824 inst
.operands
[i
].immisreg
= 2;
5825 inst
.operands
[i
].imm
= reg
;
5827 if (skip_past_comma (&p
) == SUCCESS
)
5829 if (parse_shift (&p
, i
, SHIFT_UXTW_IMMEDIATE
) == SUCCESS
)
5831 inst
.operands
[i
].imm
|= inst
.relocs
[0].exp
.X_add_number
<< 5;
5832 inst
.relocs
[0].exp
.X_add_number
= 0;
5835 return PARSE_OPERAND_FAIL
;
5838 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5840 inst
.operands
[i
].imm
= reg
;
5841 inst
.operands
[i
].immisreg
= 1;
5843 if (skip_past_comma (&p
) == SUCCESS
)
5844 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5845 return PARSE_OPERAND_FAIL
;
5847 else if (skip_past_char (&p
, ':') == SUCCESS
)
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5852 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5854 if (result
!= PARSE_OPERAND_SUCCESS
)
5859 if (inst
.operands
[i
].negative
)
5861 inst
.operands
[i
].negative
= 0;
5865 if (group_relocations
5866 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5868 struct group_reloc_table_entry
*entry
;
5870 /* Skip over the #: or : sequence. */
5876 /* Try to parse a group relocation. Anything else is an
5878 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5880 inst
.error
= _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5887 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5890 /* Record the relocation type. */
5895 = (bfd_reloc_code_real_type
) entry
->ldr_code
;
5900 = (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5905 = (bfd_reloc_code_real_type
) entry
->ldc_code
;
5912 if (inst
.relocs
[0].type
== 0)
5914 inst
.error
= _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5922 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5923 return PARSE_OPERAND_FAIL
;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst
.relocs
[0].exp
.X_op
== O_constant
5926 && inst
.relocs
[0].exp
.X_add_number
== 0)
5928 skip_whitespace (q
);
5932 skip_whitespace (q
);
5935 inst
.operands
[i
].negative
= 1;
5940 else if (skip_past_char (&p
, ':') == SUCCESS
)
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5946 if (result
!= PARSE_OPERAND_SUCCESS
)
5950 if (skip_past_char (&p
, ']') == FAIL
)
5952 inst
.error
= _("']' expected");
5953 return PARSE_OPERAND_FAIL
;
5956 if (skip_past_char (&p
, '!') == SUCCESS
)
5957 inst
.operands
[i
].writeback
= 1;
5959 else if (skip_past_comma (&p
) == SUCCESS
)
5961 if (skip_past_char (&p
, '{') == SUCCESS
)
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5965 0, 255, TRUE
) == FAIL
)
5966 return PARSE_OPERAND_FAIL
;
5968 if (skip_past_char (&p
, '}') == FAIL
)
5970 inst
.error
= _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL
;
5973 if (inst
.operands
[i
].preind
)
5975 inst
.error
= _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL
;
5979 return PARSE_OPERAND_SUCCESS
;
5983 inst
.operands
[i
].postind
= 1;
5984 inst
.operands
[i
].writeback
= 1;
5986 if (inst
.operands
[i
].preind
)
5988 inst
.error
= _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL
;
5993 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5995 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5996 struct neon_type_el et
;
5997 if (group_type
== GROUP_MVE
5998 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
6000 inst
.operands
[i
].immisreg
= 2;
6001 inst
.operands
[i
].imm
= reg
;
6003 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst
.operands
[i
].immisalign
)
6008 inst
.operands
[i
].imm
|= reg
;
6010 inst
.operands
[i
].imm
= reg
;
6011 inst
.operands
[i
].immisreg
= 1;
6013 if (skip_past_comma (&p
) == SUCCESS
)
6014 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
6015 return PARSE_OPERAND_FAIL
;
6021 if (inst
.operands
[i
].negative
)
6023 inst
.operands
[i
].negative
= 0;
6026 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
6027 return PARSE_OPERAND_FAIL
;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst
.relocs
[0].exp
.X_op
== O_constant
6030 && inst
.relocs
[0].exp
.X_add_number
== 0)
6032 skip_whitespace (q
);
6036 skip_whitespace (q
);
6039 inst
.operands
[i
].negative
= 1;
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
6049 inst
.operands
[i
].preind
= 1;
6050 inst
.relocs
[0].exp
.X_op
= O_constant
;
6051 inst
.relocs
[0].exp
.X_add_number
= 0;
6054 return PARSE_OPERAND_SUCCESS
;
6058 parse_address (char **str
, int i
)
6060 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
6067 return parse_address_main (str
, i
, 1, type
);
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6072 parse_half (char **str
)
6077 skip_past_char (&p
, '#');
6078 if (strncasecmp (p
, ":lower16:", 9) == 0)
6079 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVW
;
6080 else if (strncasecmp (p
, ":upper16:", 9) == 0)
6081 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVT
;
6083 if (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
)
6086 skip_whitespace (p
);
6089 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
6092 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
6094 if (inst
.relocs
[0].exp
.X_op
!= O_constant
)
6096 inst
.error
= _("constant expression expected");
6099 if (inst
.relocs
[0].exp
.X_add_number
< 0
6100 || inst
.relocs
[0].exp
.X_add_number
> 0xffff)
6102 inst
.error
= _("immediate value out of range");
6110 /* Miscellaneous. */
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6115 parse_psr (char **str
, bfd_boolean lhs
)
6118 unsigned long psr_field
;
6119 const struct asm_psr
*psr
;
6121 bfd_boolean is_apsr
= FALSE
;
6122 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
))
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6133 if (strncasecmp (p
, "SPSR", 4) == 0)
6136 goto unsupported_psr
;
6138 psr_field
= SPSR_BIT
;
6140 else if (strncasecmp (p
, "CPSR", 4) == 0)
6143 goto unsupported_psr
;
6147 else if (strncasecmp (p
, "APSR", 4) == 0)
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6159 while (ISALNUM (*p
) || *p
== '_');
6161 if (strncasecmp (start
, "iapsr", 5) == 0
6162 || strncasecmp (start
, "eapsr", 5) == 0
6163 || strncasecmp (start
, "xpsr", 4) == 0
6164 || strncasecmp (start
, "psr", 3) == 0)
6165 p
= start
+ strcspn (start
, "rR") + 1;
6167 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr
->field
<= 3)
6177 psr_field
= psr
->field
;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6187 return psr
->field
| (lhs
? PSR_f
: 0);
6190 goto unsupported_psr
;
6196 /* A suffix follows. */
6202 while (ISALNUM (*p
) || *p
== '_');
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits
= 0;
6208 unsigned int g_bit
= 0;
6211 for (bit
= start
; bit
!= p
; bit
++)
6213 switch (TOLOWER (*bit
))
6216 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
6220 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
6224 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
6228 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
6232 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
6236 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
6240 inst
.error
= _("unexpected bit specified after APSR");
6245 if (nzcvq_bits
== 0x1f)
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
6252 inst
.error
= _("selected processor does not "
6253 "support DSP extension");
6260 if ((nzcvq_bits
& 0x20) != 0
6261 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
6262 || (g_bit
& 0x2) != 0)
6264 inst
.error
= _("bad bitmask specified after APSR");
6270 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
6275 psr_field
|= psr
->field
;
6281 goto error
; /* Garbage after "[CS]PSR". */
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6291 else if (!m_profile
)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field
|= (PSR_c
| PSR_f
);
6300 inst
.error
= _("selected processor does not support requested special "
6301 "purpose register");
6305 inst
.error
= _("flag for {c}psr instruction expected");
6310 parse_sys_vldr_vstr (char **str
)
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6326 char *op_end
= strchr (*str
, ',');
6327 size_t op_strlen
= op_end
- *str
;
6329 for (i
= 0; i
< sizeof (sysregs
) / sizeof (sysregs
[0]); i
++)
6331 if (!strncmp (*str
, sysregs
[i
].name
, op_strlen
))
6333 val
= sysregs
[i
].regl
| (sysregs
[i
].regh
<< 3);
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6346 parse_cps_flags (char **str
)
6355 case '\0': case ',':
6358 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
6359 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
6360 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
6363 inst
.error
= _("unrecognized CPS flag");
6368 if (saw_a_flag
== 0)
6370 inst
.error
= _("missing CPS flags");
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6382 parse_endian_specifier (char **str
)
6387 if (strncasecmp (s
, "BE", 2))
6389 else if (strncasecmp (s
, "LE", 2))
6393 inst
.error
= _("valid endian specifiers are be or le");
6397 if (ISALNUM (s
[2]) || s
[2] == '_')
6399 inst
.error
= _("valid endian specifiers are be or le");
6404 return little_endian
;
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6412 parse_ror (char **str
)
6417 if (strncasecmp (s
, "ROR", 3) == 0)
6421 inst
.error
= _("missing rotation field after comma");
6425 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
6430 case 0: *str
= s
; return 0x0;
6431 case 8: *str
= s
; return 0x1;
6432 case 16: *str
= s
; return 0x2;
6433 case 24: *str
= s
; return 0x3;
6436 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6444 parse_cond (char **str
)
6447 const struct asm_cond
*c
;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6455 while (ISALPHA (*q
) && n
< 3)
6457 cond
[n
] = TOLOWER (*q
);
6462 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
6465 inst
.error
= _("condition required");
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6476 parse_barrier (char **str
)
6479 const struct asm_barrier_opt
*o
;
6482 while (ISALPHA (*q
))
6485 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
6490 if (!mark_feature_used (&o
->arch
))
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6500 parse_tb (char **str
)
6505 if (skip_past_char (&p
, '[') == FAIL
)
6507 inst
.error
= _("'[' expected");
6511 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6513 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6516 inst
.operands
[0].reg
= reg
;
6518 if (skip_past_comma (&p
) == FAIL
)
6520 inst
.error
= _("',' expected");
6524 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6526 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6529 inst
.operands
[0].imm
= reg
;
6531 if (skip_past_comma (&p
) == SUCCESS
)
6533 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
6535 if (inst
.relocs
[0].exp
.X_add_number
!= 1)
6537 inst
.error
= _("invalid shift");
6540 inst
.operands
[0].shifted
= 1;
6543 if (skip_past_char (&p
, ']') == FAIL
)
6545 inst
.error
= _("']' expected");
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6560 parse_neon_mov (char **str
, int *which_operand
)
6562 int i
= *which_operand
, val
;
6563 enum arm_reg_type rtype
;
6565 struct neon_type_el optype
;
6567 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6569 /* Cases 17 or 19. */
6570 inst
.operands
[i
].reg
= val
;
6571 inst
.operands
[i
].isvec
= 1;
6572 inst
.operands
[i
].isscalar
= 2;
6573 inst
.operands
[i
].vectype
= optype
;
6574 inst
.operands
[i
++].present
= 1;
6576 if (skip_past_comma (&ptr
) == FAIL
)
6579 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst
.operands
[i
].reg
= val
;
6583 inst
.operands
[i
].isreg
= 1;
6584 inst
.operands
[i
].present
= 1;
6586 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst
.operands
[i
].reg
= val
;
6590 inst
.operands
[i
].isvec
= 1;
6591 inst
.operands
[i
].isscalar
= 2;
6592 inst
.operands
[i
].vectype
= optype
;
6593 inst
.operands
[i
++].present
= 1;
6595 if (skip_past_comma (&ptr
) == FAIL
)
6598 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6601 inst
.operands
[i
].reg
= val
;
6602 inst
.operands
[i
].isreg
= 1;
6603 inst
.operands
[i
++].present
= 1;
6605 if (skip_past_comma (&ptr
) == FAIL
)
6608 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6611 inst
.operands
[i
].reg
= val
;
6612 inst
.operands
[i
].isreg
= 1;
6613 inst
.operands
[i
].present
= 1;
6617 first_error (_("expected ARM or MVE vector register"));
6621 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst
.operands
[i
].reg
= val
;
6625 inst
.operands
[i
].isscalar
= 1;
6626 inst
.operands
[i
].vectype
= optype
;
6627 inst
.operands
[i
++].present
= 1;
6629 if (skip_past_comma (&ptr
) == FAIL
)
6632 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6635 inst
.operands
[i
].reg
= val
;
6636 inst
.operands
[i
].isreg
= 1;
6637 inst
.operands
[i
].present
= 1;
6639 else if (((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
6641 || ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_MQ
, &rtype
, &optype
))
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr
) == FAIL
)
6648 inst
.operands
[i
].reg
= val
;
6649 inst
.operands
[i
].isreg
= 1;
6650 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6651 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6652 inst
.operands
[i
].isvec
= 1;
6653 inst
.operands
[i
].vectype
= optype
;
6654 inst
.operands
[i
++].present
= 1;
6656 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst
.operands
[i
].reg
= val
;
6661 inst
.operands
[i
].isreg
= 1;
6662 inst
.operands
[i
].present
= 1;
6664 if (rtype
== REG_TYPE_NQ
)
6666 first_error (_("can't use Neon quad register here"));
6669 else if (rtype
!= REG_TYPE_VFS
)
6672 if (skip_past_comma (&ptr
) == FAIL
)
6674 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6676 inst
.operands
[i
].reg
= val
;
6677 inst
.operands
[i
].isreg
= 1;
6678 inst
.operands
[i
].present
= 1;
6681 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6689 inst
.operands
[i
].reg
= val
;
6690 inst
.operands
[i
].isreg
= 1;
6691 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6692 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6693 inst
.operands
[i
].isvec
= 1;
6694 inst
.operands
[i
].vectype
= optype
;
6695 inst
.operands
[i
].present
= 1;
6697 if (skip_past_comma (&ptr
) == SUCCESS
)
6702 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6705 inst
.operands
[i
].reg
= val
;
6706 inst
.operands
[i
].isreg
= 1;
6707 inst
.operands
[i
++].present
= 1;
6709 if (skip_past_comma (&ptr
) == FAIL
)
6712 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6715 inst
.operands
[i
].reg
= val
;
6716 inst
.operands
[i
].isreg
= 1;
6717 inst
.operands
[i
].present
= 1;
6720 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst
.operands
[i
].immisfloat
= 1;
6726 else if (parse_big_immediate (&ptr
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6737 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6739 /* Cases 6, 7, 16, 18. */
6740 inst
.operands
[i
].reg
= val
;
6741 inst
.operands
[i
].isreg
= 1;
6742 inst
.operands
[i
++].present
= 1;
6744 if (skip_past_comma (&ptr
) == FAIL
)
6747 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst
.operands
[i
].reg
= val
;
6751 inst
.operands
[i
].isscalar
= 2;
6752 inst
.operands
[i
].present
= 1;
6753 inst
.operands
[i
].vectype
= optype
;
6755 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst
.operands
[i
].reg
= val
;
6759 inst
.operands
[i
].isscalar
= 1;
6760 inst
.operands
[i
].present
= 1;
6761 inst
.operands
[i
].vectype
= optype
;
6763 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6765 inst
.operands
[i
].reg
= val
;
6766 inst
.operands
[i
].isreg
= 1;
6767 inst
.operands
[i
++].present
= 1;
6769 if (skip_past_comma (&ptr
) == FAIL
)
6772 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6777 inst
.operands
[i
].reg
= val
;
6778 inst
.operands
[i
].isreg
= 1;
6779 inst
.operands
[i
].isvec
= 1;
6780 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6781 inst
.operands
[i
].vectype
= optype
;
6782 inst
.operands
[i
].present
= 1;
6784 if (rtype
== REG_TYPE_VFS
)
6788 if (skip_past_comma (&ptr
) == FAIL
)
6790 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
6793 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
6796 inst
.operands
[i
].reg
= val
;
6797 inst
.operands
[i
].isreg
= 1;
6798 inst
.operands
[i
].isvec
= 1;
6799 inst
.operands
[i
].issingle
= 1;
6800 inst
.operands
[i
].vectype
= optype
;
6801 inst
.operands
[i
].present
= 1;
6806 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst
.operands
[i
].reg
= val
;
6811 inst
.operands
[i
].isvec
= 1;
6812 inst
.operands
[i
].isscalar
= 2;
6813 inst
.operands
[i
].vectype
= optype
;
6814 inst
.operands
[i
++].present
= 1;
6816 if (skip_past_comma (&ptr
) == FAIL
)
6819 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6822 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
6825 inst
.operands
[i
].reg
= val
;
6826 inst
.operands
[i
].isvec
= 1;
6827 inst
.operands
[i
].isscalar
= 2;
6828 inst
.operands
[i
].vectype
= optype
;
6829 inst
.operands
[i
].present
= 1;
6833 first_error (_("VFP single, double or MVE vector register"
6839 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
6843 inst
.operands
[i
].reg
= val
;
6844 inst
.operands
[i
].isreg
= 1;
6845 inst
.operands
[i
].isvec
= 1;
6846 inst
.operands
[i
].issingle
= 1;
6847 inst
.operands
[i
].vectype
= optype
;
6848 inst
.operands
[i
].present
= 1;
6853 first_error (_("parse error"));
6857 /* Successfully parsed the operands. Update args. */
6863 first_error (_("expected comma"));
6867 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6879 OP_stop
, /* end of line */
6881 OP_RR
, /* ARM register */
6882 OP_RRnpc
, /* ARM register, not r15 */
6883 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw
, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP
, /* Coprocessor number */
6889 OP_RCN
, /* Coprocessor register */
6890 OP_RF
, /* FPA register */
6891 OP_RVS
, /* VFP single precision register */
6892 OP_RVD
, /* VFP double precision register (0..15) */
6893 OP_RND
, /* Neon double precision register (0..31) */
6894 OP_RNDMQ
, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR
, /* Neon double precision (0..31), MVE vector or ARM register.
6897 OP_RNQ
, /* Neon quad precision register */
6898 OP_RNQMQ
, /* Neon quad or MVE vector register. */
6899 OP_RVSD
, /* VFP single or double precision register */
6900 OP_RVSD_COND
, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ
, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD
, /* Neon single or double precision register */
6903 OP_RNDQ
, /* Neon double or quad precision register */
6904 OP_RNDQMQ
, /* Neon double, quad or MVE vector register. */
6905 OP_RNSDQ
, /* Neon single, double or quad precision register */
6906 OP_RNSC
, /* Neon scalar D[X] */
6907 OP_RVC
, /* VFP control register */
6908 OP_RMF
, /* Maverick F register */
6909 OP_RMD
, /* Maverick D register */
6910 OP_RMFX
, /* Maverick FX register */
6911 OP_RMDX
, /* Maverick DX register */
6912 OP_RMAX
, /* Maverick AX register */
6913 OP_RMDS
, /* Maverick DSPSC register */
6914 OP_RIWR
, /* iWMMXt wR register */
6915 OP_RIWC
, /* iWMMXt wC register */
6916 OP_RIWG
, /* iWMMXt wCG register */
6917 OP_RXA
, /* XScale accumulator register */
6919 OP_RNSDQMQ
, /* Neon single, double or quad register or MVE vector register
6921 OP_RNSDQMQR
, /* Neon single, double or quad register, MVE vector register or
6923 OP_RMQ
, /* MVE vector register. */
6924 OP_RMQRZ
, /* MVE vector or ARM register including ZR. */
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR
, /* ARM LR register */
6928 OP_RRe
, /* ARM register, only even numbered. */
6929 OP_RRo
, /* ARM register, only odd numbered, not r13 or r15. */
6930 OP_RRnpcsp_I32
, /* ARM register (no BadReg) or literal 1 .. 32 */
6932 OP_REGLST
, /* ARM register list */
6933 OP_CLRMLST
, /* CLRM register list */
6934 OP_VRSLST
, /* VFP single-precision register list */
6935 OP_VRDLST
, /* VFP double-precision register list */
6936 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
6937 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST
, /* Neon element/structure list */
6939 OP_VRSDVLST
, /* VFP single or double-precision register list and VPR */
6940 OP_MSTRLST2
, /* MVE vector list with two elements. */
6941 OP_MSTRLST4
, /* MVE vector list with four elements. */
6943 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
6944 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
6945 OP_RSVD_FI0
, /* VFP S or D reg, or floating point immediate zero. */
6946 OP_RSVDMQ_FI0
, /* VFP S, D, MVE vector register or floating point immediate
6948 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
6949 OP_RNSD_RNSC
, /* Neon S or D reg, or Neon scalar. */
6950 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC_MQ
, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
6955 OP_VMOV
, /* Neon VMOV operands. */
6956 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6957 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6959 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
6960 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6961 OP_VLDR
, /* VLDR operand. */
6963 OP_I0
, /* immediate zero */
6964 OP_I7
, /* immediate value 0 .. 7 */
6965 OP_I15
, /* 0 .. 15 */
6966 OP_I16
, /* 1 .. 16 */
6967 OP_I16z
, /* 0 .. 16 */
6968 OP_I31
, /* 0 .. 31 */
6969 OP_I31w
, /* 0 .. 31, optional trailing ! */
6970 OP_I32
, /* 1 .. 32 */
6971 OP_I32z
, /* 0 .. 32 */
6972 OP_I63
, /* 0 .. 63 */
6973 OP_I63s
, /* -64 .. 63 */
6974 OP_I64
, /* 1 .. 64 */
6975 OP_I64z
, /* 0 .. 64 */
6976 OP_I255
, /* 0 .. 255 */
6978 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
6979 OP_I7b
, /* 0 .. 7 */
6980 OP_I15b
, /* 0 .. 15 */
6981 OP_I31b
, /* 0 .. 31 */
6983 OP_SH
, /* shifter operand */
6984 OP_SHG
, /* shifter operand with possible group relocation */
6985 OP_ADDR
, /* Memory address expression (any mode) */
6986 OP_ADDRMVE
, /* Memory address expression for MVE's VSTR/VLDR. */
6987 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
6988 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
6989 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
6990 OP_EXP
, /* arbitrary expression */
6991 OP_EXPi
, /* same, with optional immediate prefix */
6992 OP_EXPr
, /* same, with optional relocation suffix */
6993 OP_EXPs
, /* same, with optional non-first operand relocation suffix */
6994 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
6995 OP_IROT1
, /* VCADD rotate immediate: 90, 270. */
6996 OP_IROT2
, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6998 OP_CPSF
, /* CPS flags */
6999 OP_ENDI
, /* Endianness specifier */
7000 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
7001 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
7002 OP_COND
, /* conditional code */
7003 OP_TB
, /* Table branch. */
7005 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
7007 OP_RRnpc_I0
, /* ARM register or literal 0 */
7008 OP_RR_EXr
, /* ARM register or expression with opt. reloc stuff. */
7009 OP_RR_EXi
, /* ARM register or expression with imm prefix */
7010 OP_RF_IF
, /* FPA register or immediate */
7011 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
7012 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
7014 /* Optional operands. */
7015 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
7016 OP_oI31b
, /* 0 .. 31 */
7017 OP_oI32b
, /* 1 .. 32 */
7018 OP_oI32z
, /* 0 .. 32 */
7019 OP_oIffffb
, /* 0 .. 65535 */
7020 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
7022 OP_oRR
, /* ARM register */
7023 OP_oLR
, /* ARM LR register */
7024 OP_oRRnpc
, /* ARM register, not the PC */
7025 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7026 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
7027 OP_oRND
, /* Optional Neon double precision register */
7028 OP_oRNQ
, /* Optional Neon quad precision register */
7029 OP_oRNDQMQ
, /* Optional Neon double, quad or MVE vector register. */
7030 OP_oRNDQ
, /* Optional Neon double or quad precision register */
7031 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
7032 OP_oRNSDQMQ
, /* Optional single, double or quad register or MVE vector
7034 OP_oSHll
, /* LSL immediate */
7035 OP_oSHar
, /* ASR immediate */
7036 OP_oSHllar
, /* LSL or ASR immediate */
7037 OP_oROR
, /* ROR 0/8/16/24 */
7038 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
7040 OP_oRMQRZ
, /* optional MVE vector or ARM register including ZR. */
7042 /* Some pre-defined mixed (ARM/THUMB) operands. */
7043 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
7044 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
7045 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
7047 OP_FIRST_OPTIONAL
= OP_oI7b
7050 /* Generic instruction operand parser. This does no encoding and no
7051 semantic validation; it merely squirrels values away in the inst
7052 structure. Returns SUCCESS or FAIL depending on whether the
7053 specified grammar matched. */
7055 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
7057 unsigned const int *upat
= pattern
;
7058 char *backtrack_pos
= 0;
7059 const char *backtrack_error
= 0;
7060 int i
, val
= 0, backtrack_index
= 0;
7061 enum arm_reg_type rtype
;
7062 parse_operand_result result
;
7063 unsigned int op_parse_code
;
7064 bfd_boolean partial_match
;
7066 #define po_char_or_fail(chr) \
7069 if (skip_past_char (&str, chr) == FAIL) \
7074 #define po_reg_or_fail(regtype) \
7077 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7078 & inst.operands[i].vectype); \
7081 first_error (_(reg_expected_msgs[regtype])); \
7084 inst.operands[i].reg = val; \
7085 inst.operands[i].isreg = 1; \
7086 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7087 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7088 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7089 || rtype == REG_TYPE_VFD \
7090 || rtype == REG_TYPE_NQ); \
7091 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7095 #define po_reg_or_goto(regtype, label) \
7098 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7099 & inst.operands[i].vectype); \
7103 inst.operands[i].reg = val; \
7104 inst.operands[i].isreg = 1; \
7105 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7106 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7107 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7108 || rtype == REG_TYPE_VFD \
7109 || rtype == REG_TYPE_NQ); \
7110 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7114 #define po_imm_or_fail(min, max, popt) \
7117 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7119 inst.operands[i].imm = val; \
7123 #define po_scalar_or_goto(elsz, label, reg_type) \
7126 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7130 inst.operands[i].reg = val; \
7131 inst.operands[i].isscalar = 1; \
7135 #define po_misc_or_fail(expr) \
7143 #define po_misc_or_fail_no_backtrack(expr) \
7147 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7148 backtrack_pos = 0; \
7149 if (result != PARSE_OPERAND_SUCCESS) \
7154 #define po_barrier_or_imm(str) \
7157 val = parse_barrier (&str); \
7158 if (val == FAIL && ! ISALPHA (*str)) \
7161 /* ISB can only take SY as an option. */ \
7162 || ((inst.instruction & 0xf0) == 0x60 \
7165 inst.error = _("invalid barrier type"); \
7166 backtrack_pos = 0; \
7172 skip_whitespace (str
);
7174 for (i
= 0; upat
[i
] != OP_stop
; i
++)
7176 op_parse_code
= upat
[i
];
7177 if (op_parse_code
>= 1<<16)
7178 op_parse_code
= thumb
? (op_parse_code
>> 16)
7179 : (op_parse_code
& ((1<<16)-1));
7181 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
7183 /* Remember where we are in case we need to backtrack. */
7184 backtrack_pos
= str
;
7185 backtrack_error
= inst
.error
;
7186 backtrack_index
= i
;
7189 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
7190 po_char_or_fail (',');
7192 switch (op_parse_code
)
7204 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
7205 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
7206 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
7207 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
7208 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
7209 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
7212 po_reg_or_goto (REG_TYPE_RN
, try_rndmq
);
7216 po_reg_or_goto (REG_TYPE_MQ
, try_rnd
);
7219 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
7221 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
7223 /* Also accept generic coprocessor regs for unknown registers. */
7225 po_reg_or_fail (REG_TYPE_CN
);
7227 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
7228 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
7229 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
7230 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
7231 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
7232 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
7233 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
7234 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
7235 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
7236 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
7239 po_reg_or_goto (REG_TYPE_MQ
, try_nq
);
7242 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
7243 case OP_RNSD
: po_reg_or_fail (REG_TYPE_NSD
); break;
7246 po_reg_or_goto (REG_TYPE_MQ
, try_rndq
);
7250 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
7252 po_reg_or_goto (REG_TYPE_MQ
, try_rvsd
);
7255 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
7257 po_reg_or_goto (REG_TYPE_VFSD
, try_cond
);
7260 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
7262 po_reg_or_goto (REG_TYPE_RN
, try_mq
);
7267 po_reg_or_goto (REG_TYPE_MQ
, try_nsdq2
);
7270 po_reg_or_fail (REG_TYPE_NSDQ
);
7274 po_reg_or_fail (REG_TYPE_MQ
);
7276 /* Neon scalar. Using an element size of 8 means that some invalid
7277 scalars are accepted here, so deal with those in later code. */
7278 case OP_RNSC
: po_scalar_or_goto (8, failure
, REG_TYPE_VFD
); break;
7282 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
7285 po_imm_or_fail (0, 0, TRUE
);
7290 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
7294 po_reg_or_goto (REG_TYPE_MQ
, try_rsvd_fi0
);
7299 po_reg_or_goto (REG_TYPE_VFSD
, try_ifimm0
);
7302 if (parse_ifimm_zero (&str
))
7303 inst
.operands
[i
].imm
= 0;
7307 = _("only floating point zero is allowed as immediate value");
7315 po_scalar_or_goto (8, try_rr
, REG_TYPE_VFD
);
7318 po_reg_or_fail (REG_TYPE_RN
);
7322 case OP_RNSDQ_RNSC_MQ
:
7323 po_reg_or_goto (REG_TYPE_MQ
, try_rnsdq_rnsc
);
7328 po_scalar_or_goto (8, try_nsdq
, REG_TYPE_VFD
);
7332 po_reg_or_fail (REG_TYPE_NSDQ
);
7339 po_scalar_or_goto (8, try_s_scalar
, REG_TYPE_VFD
);
7342 po_scalar_or_goto (4, try_nsd
, REG_TYPE_VFS
);
7345 po_reg_or_fail (REG_TYPE_NSD
);
7351 po_scalar_or_goto (8, try_ndq
, REG_TYPE_VFD
);
7354 po_reg_or_fail (REG_TYPE_NDQ
);
7360 po_scalar_or_goto (8, try_vfd
, REG_TYPE_VFD
);
7363 po_reg_or_fail (REG_TYPE_VFD
);
7368 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7369 not careful then bad things might happen. */
7370 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
7373 case OP_RNDQMQ_Ibig
:
7374 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_ibig
);
7379 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
7382 /* There's a possibility of getting a 64-bit immediate here, so
7383 we need special handling. */
7384 if (parse_big_immediate (&str
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
7387 inst
.error
= _("immediate value is out of range");
7395 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
7398 po_imm_or_fail (0, 63, TRUE
);
7403 po_char_or_fail ('[');
7404 po_reg_or_fail (REG_TYPE_RN
);
7405 po_char_or_fail (']');
7411 po_reg_or_fail (REG_TYPE_RN
);
7412 if (skip_past_char (&str
, '!') == SUCCESS
)
7413 inst
.operands
[i
].writeback
= 1;
7417 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
7418 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
7419 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
7420 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
7421 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
7422 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
7423 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
7424 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
7425 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
7426 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
7427 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
7428 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
7430 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
7432 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
7433 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
7435 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
7436 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
7437 case OP_oI32z
: po_imm_or_fail ( 0, 32, TRUE
); break;
7438 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
7440 /* Immediate variants */
7442 po_char_or_fail ('{');
7443 po_imm_or_fail (0, 255, TRUE
);
7444 po_char_or_fail ('}');
7448 /* The expression parser chokes on a trailing !, so we have
7449 to find it first and zap it. */
7452 while (*s
&& *s
!= ',')
7457 inst
.operands
[i
].writeback
= 1;
7459 po_imm_or_fail (0, 31, TRUE
);
7467 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7472 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7477 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7479 if (inst
.relocs
[0].exp
.X_op
== O_symbol
)
7481 val
= parse_reloc (&str
);
7484 inst
.error
= _("unrecognized relocation suffix");
7487 else if (val
!= BFD_RELOC_UNUSED
)
7489 inst
.operands
[i
].imm
= val
;
7490 inst
.operands
[i
].hasreloc
= 1;
7496 po_misc_or_fail (my_get_expression (&inst
.relocs
[i
].exp
, &str
,
7498 if (inst
.relocs
[i
].exp
.X_op
== O_symbol
)
7500 inst
.operands
[i
].hasreloc
= 1;
7502 else if (inst
.relocs
[i
].exp
.X_op
== O_constant
)
7504 inst
.operands
[i
].imm
= inst
.relocs
[i
].exp
.X_add_number
;
7505 inst
.operands
[i
].hasreloc
= 0;
7509 /* Operand for MOVW or MOVT. */
7511 po_misc_or_fail (parse_half (&str
));
7514 /* Register or expression. */
7515 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
7516 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
7518 /* Register or immediate. */
7519 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
7520 I0
: po_imm_or_fail (0, 0, FALSE
); break;
7522 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
7524 if (!is_immediate_prefix (*str
))
7527 val
= parse_fpa_immediate (&str
);
7530 /* FPA immediates are encoded as registers 8-15.
7531 parse_fpa_immediate has already applied the offset. */
7532 inst
.operands
[i
].reg
= val
;
7533 inst
.operands
[i
].isreg
= 1;
7536 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
7537 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
7539 /* Two kinds of register. */
7542 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7544 || (rege
->type
!= REG_TYPE_MMXWR
7545 && rege
->type
!= REG_TYPE_MMXWC
7546 && rege
->type
!= REG_TYPE_MMXWCG
))
7548 inst
.error
= _("iWMMXt data or control register expected");
7551 inst
.operands
[i
].reg
= rege
->number
;
7552 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
7558 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7560 || (rege
->type
!= REG_TYPE_MMXWC
7561 && rege
->type
!= REG_TYPE_MMXWCG
))
7563 inst
.error
= _("iWMMXt control register expected");
7566 inst
.operands
[i
].reg
= rege
->number
;
7567 inst
.operands
[i
].isreg
= 1;
7572 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
7573 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
7574 case OP_oROR
: val
= parse_ror (&str
); break;
7576 case OP_COND
: val
= parse_cond (&str
); break;
7577 case OP_oBARRIER_I15
:
7578 po_barrier_or_imm (str
); break;
7580 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
7586 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
7587 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
7589 inst
.error
= _("Banked registers are not available with this "
7595 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
7599 po_reg_or_goto (REG_TYPE_VFSD
, try_sysreg
);
7602 val
= parse_sys_vldr_vstr (&str
);
7606 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
7609 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7611 if (strncasecmp (str
, "APSR_", 5) == 0)
7618 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
7619 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
7620 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
7621 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
7622 default: found
= 16;
7626 inst
.operands
[i
].isvec
= 1;
7627 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7628 inst
.operands
[i
].reg
= REG_PC
;
7635 po_misc_or_fail (parse_tb (&str
));
7638 /* Register lists. */
7640 val
= parse_reg_list (&str
, REGLIST_RN
);
7643 inst
.operands
[i
].writeback
= 1;
7649 val
= parse_reg_list (&str
, REGLIST_CLRM
);
7653 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
,
7658 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
,
7663 /* Allow Q registers too. */
7664 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7665 REGLIST_NEON_D
, &partial_match
);
7669 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7670 REGLIST_VFP_S
, &partial_match
);
7671 inst
.operands
[i
].issingle
= 1;
7676 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7677 REGLIST_VFP_D_VPR
, &partial_match
);
7678 if (val
== FAIL
&& !partial_match
)
7681 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7682 REGLIST_VFP_S_VPR
, &partial_match
);
7683 inst
.operands
[i
].issingle
= 1;
7688 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7689 REGLIST_NEON_D
, &partial_match
);
7694 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7695 1, &inst
.operands
[i
].vectype
);
7696 if (val
!= (((op_parse_code
== OP_MSTRLST2
) ? 3 : 7) << 5 | 0xe))
7700 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7701 0, &inst
.operands
[i
].vectype
);
7704 /* Addressing modes */
7706 po_misc_or_fail (parse_address_group_reloc (&str
, i
, GROUP_MVE
));
7710 po_misc_or_fail (parse_address (&str
, i
));
7714 po_misc_or_fail_no_backtrack (
7715 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
7719 po_misc_or_fail_no_backtrack (
7720 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
7724 po_misc_or_fail_no_backtrack (
7725 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
7729 po_misc_or_fail (parse_shifter_operand (&str
, i
));
7733 po_misc_or_fail_no_backtrack (
7734 parse_shifter_operand_group_reloc (&str
, i
));
7738 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
7742 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
7746 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
7751 po_reg_or_goto (REG_TYPE_MQ
, try_rr_zr
);
7754 po_reg_or_goto (REG_TYPE_RN
, ZR
);
7757 po_reg_or_fail (REG_TYPE_ZR
);
7761 as_fatal (_("unhandled operand code %d"), op_parse_code
);
7764 /* Various value-based sanity checks and shared operations. We
7765 do not signal immediate failures for the register constraints;
7766 this allows a syntax error to take precedence. */
7767 switch (op_parse_code
)
7775 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
7776 inst
.error
= BAD_PC
;
7781 if (inst
.operands
[i
].isreg
)
7783 if (inst
.operands
[i
].reg
== REG_PC
)
7784 inst
.error
= BAD_PC
;
7785 else if (inst
.operands
[i
].reg
== REG_SP
7786 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7787 relaxed since ARMv8-A. */
7788 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
7791 inst
.error
= BAD_SP
;
7797 if (inst
.operands
[i
].isreg
7798 && inst
.operands
[i
].reg
== REG_PC
7799 && (inst
.operands
[i
].writeback
|| thumb
))
7800 inst
.error
= BAD_PC
;
7805 if (inst
.operands
[i
].isreg
)
7815 case OP_oBARRIER_I15
:
7828 inst
.operands
[i
].imm
= val
;
7833 if (inst
.operands
[i
].reg
!= REG_LR
)
7834 inst
.error
= _("operand must be LR register");
7839 if (!inst
.operands
[i
].iszr
&& inst
.operands
[i
].reg
== REG_PC
)
7840 inst
.error
= BAD_PC
;
7844 if (inst
.operands
[i
].isreg
7845 && (inst
.operands
[i
].reg
& 0x00000001) != 0)
7846 inst
.error
= BAD_ODD
;
7850 if (inst
.operands
[i
].isreg
)
7852 if ((inst
.operands
[i
].reg
& 0x00000001) != 1)
7853 inst
.error
= BAD_EVEN
;
7854 else if (inst
.operands
[i
].reg
== REG_SP
)
7855 as_tsktsk (MVE_BAD_SP
);
7856 else if (inst
.operands
[i
].reg
== REG_PC
)
7857 inst
.error
= BAD_PC
;
7865 /* If we get here, this operand was successfully parsed. */
7866 inst
.operands
[i
].present
= 1;
7870 inst
.error
= BAD_ARGS
;
7875 /* The parse routine should already have set inst.error, but set a
7876 default here just in case. */
7878 inst
.error
= BAD_SYNTAX
;
7882 /* Do not backtrack over a trailing optional argument that
7883 absorbed some text. We will only fail again, with the
7884 'garbage following instruction' error message, which is
7885 probably less helpful than the current one. */
7886 if (backtrack_index
== i
&& backtrack_pos
!= str
7887 && upat
[i
+1] == OP_stop
)
7890 inst
.error
= BAD_SYNTAX
;
7894 /* Try again, skipping the optional argument at backtrack_pos. */
7895 str
= backtrack_pos
;
7896 inst
.error
= backtrack_error
;
7897 inst
.operands
[backtrack_index
].present
= 0;
7898 i
= backtrack_index
;
7902 /* Check that we have parsed all the arguments. */
7903 if (*str
!= '\0' && !inst
.error
)
7904 inst
.error
= _("garbage following instruction");
7906 return inst
.error
? FAIL
: SUCCESS
;
7909 #undef po_char_or_fail
7910 #undef po_reg_or_fail
7911 #undef po_reg_or_goto
7912 #undef po_imm_or_fail
7913 #undef po_scalar_or_fail
7914 #undef po_barrier_or_imm
7916 /* Shorthand macro for instruction encoding functions issuing errors. */
7917 #define constraint(expr, err) \
7928 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7929 instructions are unpredictable if these registers are used. This
7930 is the BadReg predicate in ARM's Thumb-2 documentation.
7932 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7933 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7934 #define reject_bad_reg(reg) \
7936 if (reg == REG_PC) \
7938 inst.error = BAD_PC; \
7941 else if (reg == REG_SP \
7942 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7944 inst.error = BAD_SP; \
7949 /* If REG is R13 (the stack pointer), warn that its use is
7951 #define warn_deprecated_sp(reg) \
7953 if (warn_on_deprecated && reg == REG_SP) \
7954 as_tsktsk (_("use of r13 is deprecated")); \
7957 /* Functions for operand encoding. ARM, then Thumb. */
7959 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7961 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7963 The only binary encoding difference is the Coprocessor number. Coprocessor
7964 9 is used for half-precision calculations or conversions. The format of the
7965 instruction is the same as the equivalent Coprocessor 10 instruction that
7966 exists for Single-Precision operation. */
7969 do_scalar_fp16_v82_encode (void)
7971 if (inst
.cond
< COND_ALWAYS
)
7972 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7973 " the behaviour is UNPREDICTABLE"));
7974 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
7977 inst
.instruction
= (inst
.instruction
& 0xfffff0ff) | 0x900;
7978 mark_feature_used (&arm_ext_fp16
);
7981 /* If VAL can be encoded in the immediate field of an ARM instruction,
7982 return the encoded form. Otherwise, return FAIL. */
7985 encode_arm_immediate (unsigned int val
)
7992 for (i
= 2; i
< 32; i
+= 2)
7993 if ((a
= rotate_left (val
, i
)) <= 0xff)
7994 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
7999 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8000 return the encoded form. Otherwise, return FAIL. */
8002 encode_thumb32_immediate (unsigned int val
)
8009 for (i
= 1; i
<= 24; i
++)
8012 if ((val
& ~(0xff << i
)) == 0)
8013 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
8017 if (val
== ((a
<< 16) | a
))
8019 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
8023 if (val
== ((a
<< 16) | a
))
8024 return 0x200 | (a
>> 8);
8028 /* Encode a VFP SP or DP register number into inst.instruction. */
8031 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
8033 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
8036 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
8039 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
8042 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
8047 first_error (_("D register out of range for selected VFP version"));
8055 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
8059 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
8063 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
8067 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
8071 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
8075 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
8083 /* Encode a <shift> in an ARM-format instruction. The immediate,
8084 if any, is handled by md_apply_fix. */
8086 encode_arm_shift (int i
)
8088 /* register-shifted register. */
8089 if (inst
.operands
[i
].immisreg
)
8092 for (op_index
= 0; op_index
<= i
; ++op_index
)
8094 /* Check the operand only when it's presented. In pre-UAL syntax,
8095 if the destination register is the same as the first operand, two
8096 register form of the instruction can be used. */
8097 if (inst
.operands
[op_index
].present
&& inst
.operands
[op_index
].isreg
8098 && inst
.operands
[op_index
].reg
== REG_PC
)
8099 as_warn (UNPRED_REG ("r15"));
8102 if (inst
.operands
[i
].imm
== REG_PC
)
8103 as_warn (UNPRED_REG ("r15"));
8106 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8107 inst
.instruction
|= SHIFT_ROR
<< 5;
8110 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8111 if (inst
.operands
[i
].immisreg
)
8113 inst
.instruction
|= SHIFT_BY_REG
;
8114 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
8117 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8122 encode_arm_shifter_operand (int i
)
8124 if (inst
.operands
[i
].isreg
)
8126 inst
.instruction
|= inst
.operands
[i
].reg
;
8127 encode_arm_shift (i
);
8131 inst
.instruction
|= INST_IMMEDIATE
;
8132 if (inst
.relocs
[0].type
!= BFD_RELOC_ARM_IMMEDIATE
)
8133 inst
.instruction
|= inst
.operands
[i
].imm
;
8137 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8139 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
8142 Generate an error if the operand is not a register. */
8143 constraint (!inst
.operands
[i
].isreg
,
8144 _("Instruction does not support =N addresses"));
8146 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8148 if (inst
.operands
[i
].preind
)
8152 inst
.error
= _("instruction does not accept preindexed addressing");
8155 inst
.instruction
|= PRE_INDEX
;
8156 if (inst
.operands
[i
].writeback
)
8157 inst
.instruction
|= WRITE_BACK
;
8160 else if (inst
.operands
[i
].postind
)
8162 gas_assert (inst
.operands
[i
].writeback
);
8164 inst
.instruction
|= WRITE_BACK
;
8166 else /* unindexed - only for coprocessor */
8168 inst
.error
= _("instruction does not accept unindexed addressing");
8172 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
8173 && (((inst
.instruction
& 0x000f0000) >> 16)
8174 == ((inst
.instruction
& 0x0000f000) >> 12)))
8175 as_warn ((inst
.instruction
& LOAD_BIT
)
8176 ? _("destination register same as write-back base")
8177 : _("source register same as write-back base"));
8180 /* inst.operands[i] was set up by parse_address. Encode it into an
8181 ARM-format mode 2 load or store instruction. If is_t is true,
8182 reject forms that cannot be used with a T instruction (i.e. not
8185 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
8187 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8189 encode_arm_addr_mode_common (i
, is_t
);
8191 if (inst
.operands
[i
].immisreg
)
8193 constraint ((inst
.operands
[i
].imm
== REG_PC
8194 || (is_pc
&& inst
.operands
[i
].writeback
)),
8196 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
8197 inst
.instruction
|= inst
.operands
[i
].imm
;
8198 if (!inst
.operands
[i
].negative
)
8199 inst
.instruction
|= INDEX_UP
;
8200 if (inst
.operands
[i
].shifted
)
8202 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8203 inst
.instruction
|= SHIFT_ROR
<< 5;
8206 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8207 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8211 else /* immediate offset in inst.relocs[0] */
8213 if (is_pc
&& !inst
.relocs
[0].pc_rel
)
8215 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
8217 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8218 cannot use PC in addressing.
8219 PC cannot be used in writeback addressing, either. */
8220 constraint ((is_t
|| inst
.operands
[i
].writeback
),
8223 /* Use of PC in str is deprecated for ARMv7. */
8224 if (warn_on_deprecated
8226 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
8227 as_tsktsk (_("use of PC in this instruction is deprecated"));
8230 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8232 /* Prefer + for zero encoded value. */
8233 if (!inst
.operands
[i
].negative
)
8234 inst
.instruction
|= INDEX_UP
;
8235 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM
;
8240 /* inst.operands[i] was set up by parse_address. Encode it into an
8241 ARM-format mode 3 load or store instruction. Reject forms that
8242 cannot be used with such instructions. If is_t is true, reject
8243 forms that cannot be used with a T instruction (i.e. not
8246 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
8248 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
8250 inst
.error
= _("instruction does not accept scaled register index");
8254 encode_arm_addr_mode_common (i
, is_t
);
8256 if (inst
.operands
[i
].immisreg
)
8258 constraint ((inst
.operands
[i
].imm
== REG_PC
8259 || (is_t
&& inst
.operands
[i
].reg
== REG_PC
)),
8261 constraint (inst
.operands
[i
].reg
== REG_PC
&& inst
.operands
[i
].writeback
,
8263 inst
.instruction
|= inst
.operands
[i
].imm
;
8264 if (!inst
.operands
[i
].negative
)
8265 inst
.instruction
|= INDEX_UP
;
8267 else /* immediate offset in inst.relocs[0] */
8269 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.relocs
[0].pc_rel
8270 && inst
.operands
[i
].writeback
),
8272 inst
.instruction
|= HWOFFSET_IMM
;
8273 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8275 /* Prefer + for zero encoded value. */
8276 if (!inst
.operands
[i
].negative
)
8277 inst
.instruction
|= INDEX_UP
;
8279 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM8
;
8284 /* Write immediate bits [7:0] to the following locations:
8286 |28/24|23 19|18 16|15 4|3 0|
8287 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8289 This function is used by VMOV/VMVN/VORR/VBIC. */
8292 neon_write_immbits (unsigned immbits
)
8294 inst
.instruction
|= immbits
& 0xf;
8295 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
8296 inst
.instruction
|= ((immbits
>> 7) & 0x1) << (thumb_mode
? 28 : 24);
8299 /* Invert low-order SIZE bits of XHI:XLO. */
8302 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
8304 unsigned immlo
= xlo
? *xlo
: 0;
8305 unsigned immhi
= xhi
? *xhi
: 0;
8310 immlo
= (~immlo
) & 0xff;
8314 immlo
= (~immlo
) & 0xffff;
8318 immhi
= (~immhi
) & 0xffffffff;
8322 immlo
= (~immlo
) & 0xffffffff;
8336 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8340 neon_bits_same_in_bytes (unsigned imm
)
8342 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
8343 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
8344 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
8345 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
8348 /* For immediate of above form, return 0bABCD. */
8351 neon_squash_bits (unsigned imm
)
8353 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
8354 | ((imm
& 0x01000000) >> 21);
8357 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8360 neon_qfloat_bits (unsigned imm
)
8362 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
8365 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8366 the instruction. *OP is passed as the initial value of the op field, and
8367 may be set to a different value depending on the constant (i.e.
8368 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8369 MVN). If the immediate looks like a repeated pattern then also
8370 try smaller element sizes. */
8373 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
8374 unsigned *immbits
, int *op
, int size
,
8375 enum neon_el_type type
)
8377 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8379 if (type
== NT_float
&& !float_p
)
8382 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
8384 if (size
!= 32 || *op
== 1)
8386 *immbits
= neon_qfloat_bits (immlo
);
8392 if (neon_bits_same_in_bytes (immhi
)
8393 && neon_bits_same_in_bytes (immlo
))
8397 *immbits
= (neon_squash_bits (immhi
) << 4)
8398 | neon_squash_bits (immlo
);
8409 if (immlo
== (immlo
& 0x000000ff))
8414 else if (immlo
== (immlo
& 0x0000ff00))
8416 *immbits
= immlo
>> 8;
8419 else if (immlo
== (immlo
& 0x00ff0000))
8421 *immbits
= immlo
>> 16;
8424 else if (immlo
== (immlo
& 0xff000000))
8426 *immbits
= immlo
>> 24;
8429 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
8431 *immbits
= (immlo
>> 8) & 0xff;
8434 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
8436 *immbits
= (immlo
>> 16) & 0xff;
8440 if ((immlo
& 0xffff) != (immlo
>> 16))
8447 if (immlo
== (immlo
& 0x000000ff))
8452 else if (immlo
== (immlo
& 0x0000ff00))
8454 *immbits
= immlo
>> 8;
8458 if ((immlo
& 0xff) != (immlo
>> 8))
8463 if (immlo
== (immlo
& 0x000000ff))
8465 /* Don't allow MVN with 8-bit immediate. */
8475 #if defined BFD_HOST_64_BIT
8476 /* Returns TRUE if double precision value V may be cast
8477 to single precision without loss of accuracy. */
8480 is_double_a_single (bfd_int64_t v
)
8482 int exp
= (int)((v
>> 52) & 0x7FF);
8483 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8485 return (exp
== 0 || exp
== 0x7FF
8486 || (exp
>= 1023 - 126 && exp
<= 1023 + 127))
8487 && (mantissa
& 0x1FFFFFFFl
) == 0;
8490 /* Returns a double precision value casted to single precision
8491 (ignoring the least significant bits in exponent and mantissa). */
8494 double_to_single (bfd_int64_t v
)
8496 int sign
= (int) ((v
>> 63) & 1l);
8497 int exp
= (int) ((v
>> 52) & 0x7FF);
8498 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8504 exp
= exp
- 1023 + 127;
8513 /* No denormalized numbers. */
8519 return (sign
<< 31) | (exp
<< 23) | mantissa
;
8521 #endif /* BFD_HOST_64_BIT */
8530 static void do_vfp_nsyn_opcode (const char *);
8532 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8533 Determine whether it can be performed with a move instruction; if
8534 it can, convert inst.instruction to that move instruction and
8535 return TRUE; if it can't, convert inst.instruction to a literal-pool
8536 load and return FALSE. If this is not a valid thing to do in the
8537 current context, set inst.error and return TRUE.
8539 inst.operands[i] describes the destination register. */
8542 move_or_literal_pool (int i
, enum lit_type t
, bfd_boolean mode_3
)
8545 bfd_boolean thumb_p
= (t
== CONST_THUMB
);
8546 bfd_boolean arm_p
= (t
== CONST_ARM
);
8549 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
8553 if ((inst
.instruction
& tbit
) == 0)
8555 inst
.error
= _("invalid pseudo operation");
8559 if (inst
.relocs
[0].exp
.X_op
!= O_constant
8560 && inst
.relocs
[0].exp
.X_op
!= O_symbol
8561 && inst
.relocs
[0].exp
.X_op
!= O_big
)
8563 inst
.error
= _("constant expression expected");
8567 if (inst
.relocs
[0].exp
.X_op
== O_constant
8568 || inst
.relocs
[0].exp
.X_op
== O_big
)
8570 #if defined BFD_HOST_64_BIT
8575 if (inst
.relocs
[0].exp
.X_op
== O_big
)
8577 LITTLENUM_TYPE w
[X_PRECISION
];
8580 if (inst
.relocs
[0].exp
.X_add_number
== -1)
8582 gen_to_words (w
, X_PRECISION
, E_PRECISION
);
8584 /* FIXME: Should we check words w[2..5] ? */
8589 #if defined BFD_HOST_64_BIT
8591 ((((((((bfd_int64_t
) l
[3] & LITTLENUM_MASK
)
8592 << LITTLENUM_NUMBER_OF_BITS
)
8593 | ((bfd_int64_t
) l
[2] & LITTLENUM_MASK
))
8594 << LITTLENUM_NUMBER_OF_BITS
)
8595 | ((bfd_int64_t
) l
[1] & LITTLENUM_MASK
))
8596 << LITTLENUM_NUMBER_OF_BITS
)
8597 | ((bfd_int64_t
) l
[0] & LITTLENUM_MASK
));
8599 v
= ((l
[1] & LITTLENUM_MASK
) << LITTLENUM_NUMBER_OF_BITS
)
8600 | (l
[0] & LITTLENUM_MASK
);
8604 v
= inst
.relocs
[0].exp
.X_add_number
;
8606 if (!inst
.operands
[i
].issingle
)
8610 /* LDR should not use lead in a flag-setting instruction being
8611 chosen so we do not check whether movs can be used. */
8613 if ((ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
8614 || ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8615 && inst
.operands
[i
].reg
!= 13
8616 && inst
.operands
[i
].reg
!= 15)
8618 /* Check if on thumb2 it can be done with a mov.w, mvn or
8619 movw instruction. */
8620 unsigned int newimm
;
8621 bfd_boolean isNegated
;
8623 newimm
= encode_thumb32_immediate (v
);
8624 if (newimm
!= (unsigned int) FAIL
)
8628 newimm
= encode_thumb32_immediate (~v
);
8629 if (newimm
!= (unsigned int) FAIL
)
8633 /* The number can be loaded with a mov.w or mvn
8635 if (newimm
!= (unsigned int) FAIL
8636 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
8638 inst
.instruction
= (0xf04f0000 /* MOV.W. */
8639 | (inst
.operands
[i
].reg
<< 8));
8640 /* Change to MOVN. */
8641 inst
.instruction
|= (isNegated
? 0x200000 : 0);
8642 inst
.instruction
|= (newimm
& 0x800) << 15;
8643 inst
.instruction
|= (newimm
& 0x700) << 4;
8644 inst
.instruction
|= (newimm
& 0x0ff);
8647 /* The number can be loaded with a movw instruction. */
8648 else if ((v
& ~0xFFFF) == 0
8649 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8651 int imm
= v
& 0xFFFF;
8653 inst
.instruction
= 0xf2400000; /* MOVW. */
8654 inst
.instruction
|= (inst
.operands
[i
].reg
<< 8);
8655 inst
.instruction
|= (imm
& 0xf000) << 4;
8656 inst
.instruction
|= (imm
& 0x0800) << 15;
8657 inst
.instruction
|= (imm
& 0x0700) << 4;
8658 inst
.instruction
|= (imm
& 0x00ff);
8665 int value
= encode_arm_immediate (v
);
8669 /* This can be done with a mov instruction. */
8670 inst
.instruction
&= LITERAL_MASK
;
8671 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
8672 inst
.instruction
|= value
& 0xfff;
8676 value
= encode_arm_immediate (~ v
);
8679 /* This can be done with a mvn instruction. */
8680 inst
.instruction
&= LITERAL_MASK
;
8681 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
8682 inst
.instruction
|= value
& 0xfff;
8686 else if (t
== CONST_VEC
&& ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
8689 unsigned immbits
= 0;
8690 unsigned immlo
= inst
.operands
[1].imm
;
8691 unsigned immhi
= inst
.operands
[1].regisimm
8692 ? inst
.operands
[1].reg
8693 : inst
.relocs
[0].exp
.X_unsigned
8695 : ((bfd_int64_t
)((int) immlo
)) >> 32;
8696 int cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8697 &op
, 64, NT_invtype
);
8701 neon_invert_size (&immlo
, &immhi
, 64);
8703 cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8704 &op
, 64, NT_invtype
);
8709 inst
.instruction
= (inst
.instruction
& VLDR_VMOV_SAME
)
8715 /* Fill other bits in vmov encoding for both thumb and arm. */
8717 inst
.instruction
|= (0x7U
<< 29) | (0xF << 24);
8719 inst
.instruction
|= (0xFU
<< 28) | (0x1 << 25);
8720 neon_write_immbits (immbits
);
8728 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8729 if (inst
.operands
[i
].issingle
8730 && is_quarter_float (inst
.operands
[1].imm
)
8731 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3xd
))
8733 inst
.operands
[1].imm
=
8734 neon_qfloat_bits (v
);
8735 do_vfp_nsyn_opcode ("fconsts");
8739 /* If our host does not support a 64-bit type then we cannot perform
8740 the following optimization. This mean that there will be a
8741 discrepancy between the output produced by an assembler built for
8742 a 32-bit-only host and the output produced from a 64-bit host, but
8743 this cannot be helped. */
8744 #if defined BFD_HOST_64_BIT
8745 else if (!inst
.operands
[1].issingle
8746 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
8748 if (is_double_a_single (v
)
8749 && is_quarter_float (double_to_single (v
)))
8751 inst
.operands
[1].imm
=
8752 neon_qfloat_bits (double_to_single (v
));
8753 do_vfp_nsyn_opcode ("fconstd");
8761 if (add_to_lit_pool ((!inst
.operands
[i
].isvec
8762 || inst
.operands
[i
].issingle
) ? 4 : 8) == FAIL
)
8765 inst
.operands
[1].reg
= REG_PC
;
8766 inst
.operands
[1].isreg
= 1;
8767 inst
.operands
[1].preind
= 1;
8768 inst
.relocs
[0].pc_rel
= 1;
8769 inst
.relocs
[0].type
= (thumb_p
8770 ? BFD_RELOC_ARM_THUMB_OFFSET
8772 ? BFD_RELOC_ARM_HWLITERAL
8773 : BFD_RELOC_ARM_LITERAL
));
8777 /* inst.operands[i] was set up by parse_address. Encode it into an
8778 ARM-format instruction. Reject all forms which cannot be encoded
8779 into a coprocessor load/store instruction. If wb_ok is false,
8780 reject use of writeback; if unind_ok is false, reject use of
8781 unindexed addressing. If reloc_override is not 0, use it instead
8782 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8783 (in which case it is preserved). */
8786 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
8788 if (!inst
.operands
[i
].isreg
)
8791 if (! inst
.operands
[0].isvec
)
8793 inst
.error
= _("invalid co-processor operand");
8796 if (move_or_literal_pool (0, CONST_VEC
, /*mode_3=*/FALSE
))
8800 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8802 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
8804 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
8806 gas_assert (!inst
.operands
[i
].writeback
);
8809 inst
.error
= _("instruction does not support unindexed addressing");
8812 inst
.instruction
|= inst
.operands
[i
].imm
;
8813 inst
.instruction
|= INDEX_UP
;
8817 if (inst
.operands
[i
].preind
)
8818 inst
.instruction
|= PRE_INDEX
;
8820 if (inst
.operands
[i
].writeback
)
8822 if (inst
.operands
[i
].reg
== REG_PC
)
8824 inst
.error
= _("pc may not be used with write-back");
8829 inst
.error
= _("instruction does not support writeback");
8832 inst
.instruction
|= WRITE_BACK
;
8836 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) reloc_override
;
8837 else if ((inst
.relocs
[0].type
< BFD_RELOC_ARM_ALU_PC_G0_NC
8838 || inst
.relocs
[0].type
> BFD_RELOC_ARM_LDC_SB_G2
)
8839 && inst
.relocs
[0].type
!= BFD_RELOC_ARM_LDR_PC_G0
)
8842 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
8844 inst
.relocs
[0].type
= BFD_RELOC_ARM_CP_OFF_IMM
;
8847 /* Prefer + for zero encoded value. */
8848 if (!inst
.operands
[i
].negative
)
8849 inst
.instruction
|= INDEX_UP
;
8854 /* Functions for instruction encoding, sorted by sub-architecture.
8855 First some generics; their names are taken from the conventional
8856 bit positions for register arguments in ARM format instructions. */
8866 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8872 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8878 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8879 inst
.instruction
|= inst
.operands
[1].reg
;
8885 inst
.instruction
|= inst
.operands
[0].reg
;
8886 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8892 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8893 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8899 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8900 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8906 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8907 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8911 check_obsolete (const arm_feature_set
*feature
, const char *msg
)
8913 if (ARM_CPU_IS_ANY (cpu_variant
))
8915 as_tsktsk ("%s", msg
);
8918 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
8930 unsigned Rn
= inst
.operands
[2].reg
;
8931 /* Enforce restrictions on SWP instruction. */
8932 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
8934 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
8935 _("Rn must not overlap other operands"));
8937 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8939 if (!check_obsolete (&arm_ext_v8
,
8940 _("swp{b} use is obsoleted for ARMv8 and later"))
8941 && warn_on_deprecated
8942 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
))
8943 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8946 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8947 inst
.instruction
|= inst
.operands
[1].reg
;
8948 inst
.instruction
|= Rn
<< 16;
8954 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8955 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8956 inst
.instruction
|= inst
.operands
[2].reg
;
8962 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
8963 constraint (((inst
.relocs
[0].exp
.X_op
!= O_constant
8964 && inst
.relocs
[0].exp
.X_op
!= O_illegal
)
8965 || inst
.relocs
[0].exp
.X_add_number
!= 0),
8967 inst
.instruction
|= inst
.operands
[0].reg
;
8968 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8969 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8975 inst
.instruction
|= inst
.operands
[0].imm
;
8981 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8982 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
8985 /* ARM instructions, in alphabetical order by function name (except
8986 that wrapper functions appear immediately after the function they
8989 /* This is a pseudo-op of the form "adr rd, label" to be converted
8990 into a relative address of the form "add rd, pc, #label-.-8". */
8995 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
8997 /* Frag hacking will turn this into a sub instruction if the offset turns
8998 out to be negative. */
8999 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9000 inst
.relocs
[0].pc_rel
= 1;
9001 inst
.relocs
[0].exp
.X_add_number
-= 8;
9003 if (support_interwork
9004 && inst
.relocs
[0].exp
.X_op
== O_symbol
9005 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9006 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9007 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9008 inst
.relocs
[0].exp
.X_add_number
|= 1;
9011 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9012 into a relative address of the form:
9013 add rd, pc, #low(label-.-8)"
9014 add rd, rd, #high(label-.-8)" */
9019 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9021 /* Frag hacking will turn this into a sub instruction if the offset turns
9022 out to be negative. */
9023 inst
.relocs
[0].type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
9024 inst
.relocs
[0].pc_rel
= 1;
9025 inst
.size
= INSN_SIZE
* 2;
9026 inst
.relocs
[0].exp
.X_add_number
-= 8;
9028 if (support_interwork
9029 && inst
.relocs
[0].exp
.X_op
== O_symbol
9030 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9031 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9032 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9033 inst
.relocs
[0].exp
.X_add_number
|= 1;
9039 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9040 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9042 if (!inst
.operands
[1].present
)
9043 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9044 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9045 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9046 encode_arm_shifter_operand (2);
9052 if (inst
.operands
[0].present
)
9053 inst
.instruction
|= inst
.operands
[0].imm
;
9055 inst
.instruction
|= 0xf;
9061 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9062 constraint (msb
> 32, _("bit-field extends past end of register"));
9063 /* The instruction encoding stores the LSB and MSB,
9064 not the LSB and width. */
9065 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9066 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
9067 inst
.instruction
|= (msb
- 1) << 16;
9075 /* #0 in second position is alternative syntax for bfc, which is
9076 the same instruction but with REG_PC in the Rm field. */
9077 if (!inst
.operands
[1].isreg
)
9078 inst
.operands
[1].reg
= REG_PC
;
9080 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9081 constraint (msb
> 32, _("bit-field extends past end of register"));
9082 /* The instruction encoding stores the LSB and MSB,
9083 not the LSB and width. */
9084 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9085 inst
.instruction
|= inst
.operands
[1].reg
;
9086 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9087 inst
.instruction
|= (msb
- 1) << 16;
9093 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9094 _("bit-field extends past end of register"));
9095 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9096 inst
.instruction
|= inst
.operands
[1].reg
;
9097 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9098 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
9101 /* ARM V5 breakpoint instruction (argument parse)
9102 BKPT <16 bit unsigned immediate>
9103 Instruction is not conditional.
9104 The bit pattern given in insns[] has the COND_ALWAYS condition,
9105 and it is an error if the caller tried to override that. */
9110 /* Top 12 of 16 bits to bits 19:8. */
9111 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
9113 /* Bottom 4 of 16 bits to bits 3:0. */
9114 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
9118 encode_branch (int default_reloc
)
9120 if (inst
.operands
[0].hasreloc
)
9122 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
9123 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
9124 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9125 inst
.relocs
[0].type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
9126 ? BFD_RELOC_ARM_PLT32
9127 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
9130 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) default_reloc
;
9131 inst
.relocs
[0].pc_rel
= 1;
9138 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9139 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9142 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9149 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9151 if (inst
.cond
== COND_ALWAYS
)
9152 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
9154 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9158 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9161 /* ARM V5 branch-link-exchange instruction (argument parse)
9162 BLX <target_addr> ie BLX(1)
9163 BLX{<condition>} <Rm> ie BLX(2)
9164 Unfortunately, there are two different opcodes for this mnemonic.
9165 So, the insns[].value is not used, and the code here zaps values
9166 into inst.instruction.
9167 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9172 if (inst
.operands
[0].isreg
)
9174 /* Arg is a register; the opcode provided by insns[] is correct.
9175 It is not illegal to do "blx pc", just useless. */
9176 if (inst
.operands
[0].reg
== REG_PC
)
9177 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9179 inst
.instruction
|= inst
.operands
[0].reg
;
9183 /* Arg is an address; this instruction cannot be executed
9184 conditionally, and the opcode must be adjusted.
9185 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9186 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9187 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
9188 inst
.instruction
= 0xfa000000;
9189 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
9196 bfd_boolean want_reloc
;
9198 if (inst
.operands
[0].reg
== REG_PC
)
9199 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9201 inst
.instruction
|= inst
.operands
[0].reg
;
9202 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9203 it is for ARMv4t or earlier. */
9204 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
9205 if (!ARM_FEATURE_ZERO (selected_object_arch
)
9206 && !ARM_CPU_HAS_FEATURE (selected_object_arch
, arm_ext_v5
))
9210 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
9215 inst
.relocs
[0].type
= BFD_RELOC_ARM_V4BX
;
9219 /* ARM v5TEJ. Jump to Jazelle code. */
9224 if (inst
.operands
[0].reg
== REG_PC
)
9225 as_tsktsk (_("use of r15 in bxj is not really useful"));
9227 inst
.instruction
|= inst
.operands
[0].reg
;
9230 /* Co-processor data operation:
9231 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9232 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9236 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9237 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
9238 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9239 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9240 inst
.instruction
|= inst
.operands
[4].reg
;
9241 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9247 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9248 encode_arm_shifter_operand (1);
9251 /* Transfer between coprocessor and ARM registers.
9252 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9257 No special properties. */
9259 struct deprecated_coproc_regs_s
9266 arm_feature_set deprecated
;
9267 arm_feature_set obsoleted
;
9268 const char *dep_msg
;
9269 const char *obs_msg
;
9272 #define DEPR_ACCESS_V8 \
9273 N_("This coprocessor register access is deprecated in ARMv8")
9275 /* Table of all deprecated coprocessor registers. */
9276 static struct deprecated_coproc_regs_s deprecated_coproc_regs
[] =
9278 {15, 0, 7, 10, 5, /* CP15DMB. */
9279 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9280 DEPR_ACCESS_V8
, NULL
},
9281 {15, 0, 7, 10, 4, /* CP15DSB. */
9282 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9283 DEPR_ACCESS_V8
, NULL
},
9284 {15, 0, 7, 5, 4, /* CP15ISB. */
9285 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9286 DEPR_ACCESS_V8
, NULL
},
9287 {14, 6, 1, 0, 0, /* TEEHBR. */
9288 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9289 DEPR_ACCESS_V8
, NULL
},
9290 {14, 6, 0, 0, 0, /* TEECR. */
9291 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9292 DEPR_ACCESS_V8
, NULL
},
9295 #undef DEPR_ACCESS_V8
9297 static const size_t deprecated_coproc_reg_count
=
9298 sizeof (deprecated_coproc_regs
) / sizeof (deprecated_coproc_regs
[0]);
9306 Rd
= inst
.operands
[2].reg
;
9309 if (inst
.instruction
== 0xee000010
9310 || inst
.instruction
== 0xfe000010)
9312 reject_bad_reg (Rd
);
9313 else if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
9315 constraint (Rd
== REG_SP
, BAD_SP
);
9320 if (inst
.instruction
== 0xe000010)
9321 constraint (Rd
== REG_PC
, BAD_PC
);
9324 for (i
= 0; i
< deprecated_coproc_reg_count
; ++i
)
9326 const struct deprecated_coproc_regs_s
*r
=
9327 deprecated_coproc_regs
+ i
;
9329 if (inst
.operands
[0].reg
== r
->cp
9330 && inst
.operands
[1].imm
== r
->opc1
9331 && inst
.operands
[3].reg
== r
->crn
9332 && inst
.operands
[4].reg
== r
->crm
9333 && inst
.operands
[5].imm
== r
->opc2
)
9335 if (! ARM_CPU_IS_ANY (cpu_variant
)
9336 && warn_on_deprecated
9337 && ARM_CPU_HAS_FEATURE (cpu_variant
, r
->deprecated
))
9338 as_tsktsk ("%s", r
->dep_msg
);
9342 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9343 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
9344 inst
.instruction
|= Rd
<< 12;
9345 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9346 inst
.instruction
|= inst
.operands
[4].reg
;
9347 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9350 /* Transfer between coprocessor register and pair of ARM registers.
9351 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9356 Two XScale instructions are special cases of these:
9358 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9359 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9361 Result unpredictable if Rd or Rn is R15. */
9368 Rd
= inst
.operands
[2].reg
;
9369 Rn
= inst
.operands
[3].reg
;
9373 reject_bad_reg (Rd
);
9374 reject_bad_reg (Rn
);
9378 constraint (Rd
== REG_PC
, BAD_PC
);
9379 constraint (Rn
== REG_PC
, BAD_PC
);
9382 /* Only check the MRRC{2} variants. */
9383 if ((inst
.instruction
& 0x0FF00000) == 0x0C500000)
9385 /* If Rd == Rn, error that the operation is
9386 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9387 constraint (Rd
== Rn
, BAD_OVERLAP
);
9390 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9391 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
9392 inst
.instruction
|= Rd
<< 12;
9393 inst
.instruction
|= Rn
<< 16;
9394 inst
.instruction
|= inst
.operands
[4].reg
;
9400 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
9401 if (inst
.operands
[1].present
)
9403 inst
.instruction
|= CPSI_MMOD
;
9404 inst
.instruction
|= inst
.operands
[1].imm
;
9411 inst
.instruction
|= inst
.operands
[0].imm
;
9417 unsigned Rd
, Rn
, Rm
;
9419 Rd
= inst
.operands
[0].reg
;
9420 Rn
= (inst
.operands
[1].present
9421 ? inst
.operands
[1].reg
: Rd
);
9422 Rm
= inst
.operands
[2].reg
;
9424 constraint ((Rd
== REG_PC
), BAD_PC
);
9425 constraint ((Rn
== REG_PC
), BAD_PC
);
9426 constraint ((Rm
== REG_PC
), BAD_PC
);
9428 inst
.instruction
|= Rd
<< 16;
9429 inst
.instruction
|= Rn
<< 0;
9430 inst
.instruction
|= Rm
<< 8;
9436 /* There is no IT instruction in ARM mode. We
9437 process it to do the validation as if in
9438 thumb mode, just in case the code gets
9439 assembled for thumb using the unified syntax. */
9444 set_pred_insn_type (IT_INSN
);
9445 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
9446 now_pred
.cc
= inst
.operands
[0].imm
;
9450 /* If there is only one register in the register list,
9451 then return its register number. Otherwise return -1. */
9453 only_one_reg_in_list (int range
)
9455 int i
= ffs (range
) - 1;
9456 return (i
> 15 || range
!= (1 << i
)) ? -1 : i
;
9460 encode_ldmstm(int from_push_pop_mnem
)
9462 int base_reg
= inst
.operands
[0].reg
;
9463 int range
= inst
.operands
[1].imm
;
9466 inst
.instruction
|= base_reg
<< 16;
9467 inst
.instruction
|= range
;
9469 if (inst
.operands
[1].writeback
)
9470 inst
.instruction
|= LDM_TYPE_2_OR_3
;
9472 if (inst
.operands
[0].writeback
)
9474 inst
.instruction
|= WRITE_BACK
;
9475 /* Check for unpredictable uses of writeback. */
9476 if (inst
.instruction
& LOAD_BIT
)
9478 /* Not allowed in LDM type 2. */
9479 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
9480 && ((range
& (1 << REG_PC
)) == 0))
9481 as_warn (_("writeback of base register is UNPREDICTABLE"));
9482 /* Only allowed if base reg not in list for other types. */
9483 else if (range
& (1 << base_reg
))
9484 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9488 /* Not allowed for type 2. */
9489 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
9490 as_warn (_("writeback of base register is UNPREDICTABLE"));
9491 /* Only allowed if base reg not in list, or first in list. */
9492 else if ((range
& (1 << base_reg
))
9493 && (range
& ((1 << base_reg
) - 1)))
9494 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9498 /* If PUSH/POP has only one register, then use the A2 encoding. */
9499 one_reg
= only_one_reg_in_list (range
);
9500 if (from_push_pop_mnem
&& one_reg
>= 0)
9502 int is_push
= (inst
.instruction
& A_PUSH_POP_OP_MASK
) == A1_OPCODE_PUSH
;
9504 if (is_push
&& one_reg
== 13 /* SP */)
9505 /* PR 22483: The A2 encoding cannot be used when
9506 pushing the stack pointer as this is UNPREDICTABLE. */
9509 inst
.instruction
&= A_COND_MASK
;
9510 inst
.instruction
|= is_push
? A2_OPCODE_PUSH
: A2_OPCODE_POP
;
9511 inst
.instruction
|= one_reg
<< 12;
9518 encode_ldmstm (/*from_push_pop_mnem=*/FALSE
);
9521 /* ARMv5TE load-consecutive (argument parse)
9530 constraint (inst
.operands
[0].reg
% 2 != 0,
9531 _("first transfer register must be even"));
9532 constraint (inst
.operands
[1].present
9533 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9534 _("can only transfer two consecutive registers"));
9535 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9536 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
9538 if (!inst
.operands
[1].present
)
9539 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9541 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9542 register and the first register written; we have to diagnose
9543 overlap between the base and the second register written here. */
9545 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
9546 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
9547 as_warn (_("base register written back, and overlaps "
9548 "second transfer register"));
9550 if (!(inst
.instruction
& V4_STR_BIT
))
9552 /* For an index-register load, the index register must not overlap the
9553 destination (even if not write-back). */
9554 if (inst
.operands
[2].immisreg
9555 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
9556 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
9557 as_warn (_("index register overlaps transfer register"));
9559 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9560 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
9566 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9567 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9568 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9569 || inst
.operands
[1].negative
9570 /* This can arise if the programmer has written
9572 or if they have mistakenly used a register name as the last
9575 It is very difficult to distinguish between these two cases
9576 because "rX" might actually be a label. ie the register
9577 name has been occluded by a symbol of the same name. So we
9578 just generate a general 'bad addressing mode' type error
9579 message and leave it up to the programmer to discover the
9580 true cause and fix their mistake. */
9581 || (inst
.operands
[1].reg
== REG_PC
),
9584 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9585 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9586 _("offset must be zero in ARM encoding"));
9588 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
9590 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9591 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9592 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
9598 constraint (inst
.operands
[0].reg
% 2 != 0,
9599 _("even register required"));
9600 constraint (inst
.operands
[1].present
9601 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9602 _("can only load two consecutive registers"));
9603 /* If op 1 were present and equal to PC, this function wouldn't
9604 have been called in the first place. */
9605 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9607 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9608 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9611 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9612 which is not a multiple of four is UNPREDICTABLE. */
9614 check_ldr_r15_aligned (void)
9616 constraint (!(inst
.operands
[1].immisreg
)
9617 && (inst
.operands
[0].reg
== REG_PC
9618 && inst
.operands
[1].reg
== REG_PC
9619 && (inst
.relocs
[0].exp
.X_add_number
& 0x3)),
9620 _("ldr to register 15 must be 4-byte aligned"));
9626 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9627 if (!inst
.operands
[1].isreg
)
9628 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/FALSE
))
9630 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
9631 check_ldr_r15_aligned ();
9637 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9639 if (inst
.operands
[1].preind
)
9641 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9642 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9643 _("this instruction requires a post-indexed address"));
9645 inst
.operands
[1].preind
= 0;
9646 inst
.operands
[1].postind
= 1;
9647 inst
.operands
[1].writeback
= 1;
9649 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9650 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
9653 /* Halfword and signed-byte load/store operations. */
9658 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9659 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9660 if (!inst
.operands
[1].isreg
)
9661 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/TRUE
))
9663 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
9669 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9671 if (inst
.operands
[1].preind
)
9673 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9674 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9675 _("this instruction requires a post-indexed address"));
9677 inst
.operands
[1].preind
= 0;
9678 inst
.operands
[1].postind
= 1;
9679 inst
.operands
[1].writeback
= 1;
9681 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9682 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
9685 /* Co-processor register load/store.
9686 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9690 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9691 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9692 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
9698 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9699 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9700 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
9701 && !(inst
.instruction
& 0x00400000))
9702 as_tsktsk (_("Rd and Rm should be different in mla"));
9704 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9705 inst
.instruction
|= inst
.operands
[1].reg
;
9706 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9707 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
9713 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9714 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9716 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9717 encode_arm_shifter_operand (1);
9720 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9727 top
= (inst
.instruction
& 0x00400000) != 0;
9728 constraint (top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
,
9729 _(":lower16: not allowed in this instruction"));
9730 constraint (!top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
,
9731 _(":upper16: not allowed in this instruction"));
9732 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9733 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
9735 imm
= inst
.relocs
[0].exp
.X_add_number
;
9736 /* The value is in two pieces: 0:11, 16:19. */
9737 inst
.instruction
|= (imm
& 0x00000fff);
9738 inst
.instruction
|= (imm
& 0x0000f000) << 4;
9743 do_vfp_nsyn_mrs (void)
9745 if (inst
.operands
[0].isvec
)
9747 if (inst
.operands
[1].reg
!= 1)
9748 first_error (_("operand 1 must be FPSCR"));
9749 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
9750 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
9751 do_vfp_nsyn_opcode ("fmstat");
9753 else if (inst
.operands
[1].isvec
)
9754 do_vfp_nsyn_opcode ("fmrx");
9762 do_vfp_nsyn_msr (void)
9764 if (inst
.operands
[0].isvec
)
9765 do_vfp_nsyn_opcode ("fmxr");
9775 unsigned Rt
= inst
.operands
[0].reg
;
9777 if (thumb_mode
&& Rt
== REG_SP
)
9779 inst
.error
= BAD_SP
;
9783 /* MVFR2 is only valid at ARMv8-A. */
9784 if (inst
.operands
[1].reg
== 5)
9785 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9788 /* APSR_ sets isvec. All other refs to PC are illegal. */
9789 if (!inst
.operands
[0].isvec
&& Rt
== REG_PC
)
9791 inst
.error
= BAD_PC
;
9795 /* If we get through parsing the register name, we just insert the number
9796 generated into the instruction without further validation. */
9797 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
9798 inst
.instruction
|= (Rt
<< 12);
9804 unsigned Rt
= inst
.operands
[1].reg
;
9807 reject_bad_reg (Rt
);
9808 else if (Rt
== REG_PC
)
9810 inst
.error
= BAD_PC
;
9814 /* MVFR2 is only valid for ARMv8-A. */
9815 if (inst
.operands
[0].reg
== 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9819 /* If we get through parsing the register name, we just insert the number
9820 generated into the instruction without further validation. */
9821 inst
.instruction
|= (inst
.operands
[0].reg
<< 16);
9822 inst
.instruction
|= (Rt
<< 12);
9830 if (do_vfp_nsyn_mrs () == SUCCESS
)
9833 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9834 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9836 if (inst
.operands
[1].isreg
)
9838 br
= inst
.operands
[1].reg
;
9839 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf0000))
9840 as_bad (_("bad register for mrs"));
9844 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9845 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
9847 _("'APSR', 'CPSR' or 'SPSR' expected"));
9848 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
9851 inst
.instruction
|= br
;
9854 /* Two possible forms:
9855 "{C|S}PSR_<field>, Rm",
9856 "{C|S}PSR_f, #expression". */
9861 if (do_vfp_nsyn_msr () == SUCCESS
)
9864 inst
.instruction
|= inst
.operands
[0].imm
;
9865 if (inst
.operands
[1].isreg
)
9866 inst
.instruction
|= inst
.operands
[1].reg
;
9869 inst
.instruction
|= INST_IMMEDIATE
;
9870 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9871 inst
.relocs
[0].pc_rel
= 0;
9878 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
9880 if (!inst
.operands
[2].present
)
9881 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
9882 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9883 inst
.instruction
|= inst
.operands
[1].reg
;
9884 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9886 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9887 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9888 as_tsktsk (_("Rd and Rm should be different in mul"));
9891 /* Long Multiply Parser
9892 UMULL RdLo, RdHi, Rm, Rs
9893 SMULL RdLo, RdHi, Rm, Rs
9894 UMLAL RdLo, RdHi, Rm, Rs
9895 SMLAL RdLo, RdHi, Rm, Rs. */
9900 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9901 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9902 inst
.instruction
|= inst
.operands
[2].reg
;
9903 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
9905 /* rdhi and rdlo must be different. */
9906 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9907 as_tsktsk (_("rdhi and rdlo must be different"));
9909 /* rdhi, rdlo and rm must all be different before armv6. */
9910 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
9911 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
9912 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9913 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9919 if (inst
.operands
[0].present
9920 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
9922 /* Architectural NOP hints are CPSR sets with no bits selected. */
9923 inst
.instruction
&= 0xf0000000;
9924 inst
.instruction
|= 0x0320f000;
9925 if (inst
.operands
[0].present
)
9926 inst
.instruction
|= inst
.operands
[0].imm
;
9930 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9931 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9932 Condition defaults to COND_ALWAYS.
9933 Error if Rd, Rn or Rm are R15. */
9938 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9939 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9940 inst
.instruction
|= inst
.operands
[2].reg
;
9941 if (inst
.operands
[3].present
)
9942 encode_arm_shift (3);
9945 /* ARM V6 PKHTB (Argument Parse). */
9950 if (!inst
.operands
[3].present
)
9952 /* If the shift specifier is omitted, turn the instruction
9953 into pkhbt rd, rm, rn. */
9954 inst
.instruction
&= 0xfff00010;
9955 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9956 inst
.instruction
|= inst
.operands
[1].reg
;
9957 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9961 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9962 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9963 inst
.instruction
|= inst
.operands
[2].reg
;
9964 encode_arm_shift (3);
9968 /* ARMv5TE: Preload-Cache
9969 MP Extensions: Preload for write
9973 Syntactically, like LDR with B=1, W=0, L=1. */
9978 constraint (!inst
.operands
[0].isreg
,
9979 _("'[' expected after PLD mnemonic"));
9980 constraint (inst
.operands
[0].postind
,
9981 _("post-indexed expression used in preload instruction"));
9982 constraint (inst
.operands
[0].writeback
,
9983 _("writeback used in preload instruction"));
9984 constraint (!inst
.operands
[0].preind
,
9985 _("unindexed addressing used in preload instruction"));
9986 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
9989 /* ARMv7: PLI <addr_mode> */
9993 constraint (!inst
.operands
[0].isreg
,
9994 _("'[' expected after PLI mnemonic"));
9995 constraint (inst
.operands
[0].postind
,
9996 _("post-indexed expression used in preload instruction"));
9997 constraint (inst
.operands
[0].writeback
,
9998 _("writeback used in preload instruction"));
9999 constraint (!inst
.operands
[0].preind
,
10000 _("unindexed addressing used in preload instruction"));
10001 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10002 inst
.instruction
&= ~PRE_INDEX
;
10008 constraint (inst
.operands
[0].writeback
,
10009 _("push/pop do not support {reglist}^"));
10010 inst
.operands
[1] = inst
.operands
[0];
10011 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
10012 inst
.operands
[0].isreg
= 1;
10013 inst
.operands
[0].writeback
= 1;
10014 inst
.operands
[0].reg
= REG_SP
;
10015 encode_ldmstm (/*from_push_pop_mnem=*/TRUE
);
10018 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10019 word at the specified address and the following word
10021 Unconditionally executed.
10022 Error if Rn is R15. */
10027 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10028 if (inst
.operands
[0].writeback
)
10029 inst
.instruction
|= WRITE_BACK
;
10032 /* ARM V6 ssat (argument parse). */
10037 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10038 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
10039 inst
.instruction
|= inst
.operands
[2].reg
;
10041 if (inst
.operands
[3].present
)
10042 encode_arm_shift (3);
10045 /* ARM V6 usat (argument parse). */
10050 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10051 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10052 inst
.instruction
|= inst
.operands
[2].reg
;
10054 if (inst
.operands
[3].present
)
10055 encode_arm_shift (3);
10058 /* ARM V6 ssat16 (argument parse). */
10063 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10064 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
10065 inst
.instruction
|= inst
.operands
[2].reg
;
10071 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10072 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10073 inst
.instruction
|= inst
.operands
[2].reg
;
10076 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10077 preserving the other bits.
10079 setend <endian_specifier>, where <endian_specifier> is either
10085 if (warn_on_deprecated
10086 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
10087 as_tsktsk (_("setend use is deprecated for ARMv8"));
10089 if (inst
.operands
[0].imm
)
10090 inst
.instruction
|= 0x200;
10096 unsigned int Rm
= (inst
.operands
[1].present
10097 ? inst
.operands
[1].reg
10098 : inst
.operands
[0].reg
);
10100 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10101 inst
.instruction
|= Rm
;
10102 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
10104 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10105 inst
.instruction
|= SHIFT_BY_REG
;
10106 /* PR 12854: Error on extraneous shifts. */
10107 constraint (inst
.operands
[2].shifted
,
10108 _("extraneous shift as part of operand to shift insn"));
10111 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
10117 inst
.relocs
[0].type
= BFD_RELOC_ARM_SMC
;
10118 inst
.relocs
[0].pc_rel
= 0;
10124 inst
.relocs
[0].type
= BFD_RELOC_ARM_HVC
;
10125 inst
.relocs
[0].pc_rel
= 0;
10131 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
10132 inst
.relocs
[0].pc_rel
= 0;
10138 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10139 _("selected processor does not support SETPAN instruction"));
10141 inst
.instruction
|= ((inst
.operands
[0].imm
& 1) << 9);
10147 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10148 _("selected processor does not support SETPAN instruction"));
10150 inst
.instruction
|= (inst
.operands
[0].imm
<< 3);
10153 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10154 SMLAxy{cond} Rd,Rm,Rs,Rn
10155 SMLAWy{cond} Rd,Rm,Rs,Rn
10156 Error if any register is R15. */
10161 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10162 inst
.instruction
|= inst
.operands
[1].reg
;
10163 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10164 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
10167 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10168 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10169 Error if any register is R15.
10170 Warning if Rdlo == Rdhi. */
10175 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10176 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10177 inst
.instruction
|= inst
.operands
[2].reg
;
10178 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
10180 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
10181 as_tsktsk (_("rdhi and rdlo must be different"));
10184 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10185 SMULxy{cond} Rd,Rm,Rs
10186 Error if any register is R15. */
10191 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10192 inst
.instruction
|= inst
.operands
[1].reg
;
10193 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10196 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10197 the same for both ARM and Thumb-2. */
10204 if (inst
.operands
[0].present
)
10206 reg
= inst
.operands
[0].reg
;
10207 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
10212 inst
.instruction
|= reg
<< 16;
10213 inst
.instruction
|= inst
.operands
[1].imm
;
10214 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
10215 inst
.instruction
|= WRITE_BACK
;
10218 /* ARM V6 strex (argument parse). */
10223 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10224 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10225 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10226 || inst
.operands
[2].negative
10227 /* See comment in do_ldrex(). */
10228 || (inst
.operands
[2].reg
== REG_PC
),
10231 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10232 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10234 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10235 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10236 _("offset must be zero in ARM encoding"));
10238 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10239 inst
.instruction
|= inst
.operands
[1].reg
;
10240 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10241 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
10245 do_t_strexbh (void)
10247 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10248 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10249 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10250 || inst
.operands
[2].negative
,
10253 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10254 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10262 constraint (inst
.operands
[1].reg
% 2 != 0,
10263 _("even register required"));
10264 constraint (inst
.operands
[2].present
10265 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
10266 _("can only store two consecutive registers"));
10267 /* If op 2 were present and equal to PC, this function wouldn't
10268 have been called in the first place. */
10269 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
10271 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10272 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
10273 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
10276 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10277 inst
.instruction
|= inst
.operands
[1].reg
;
10278 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
10285 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10286 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10294 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10295 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10300 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10301 extends it to 32-bits, and adds the result to a value in another
10302 register. You can specify a rotation by 0, 8, 16, or 24 bits
10303 before extracting the 16-bit value.
10304 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10305 Condition defaults to COND_ALWAYS.
10306 Error if any register uses R15. */
10311 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10312 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10313 inst
.instruction
|= inst
.operands
[2].reg
;
10314 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
10319 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10320 Condition defaults to COND_ALWAYS.
10321 Error if any register uses R15. */
10326 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10327 inst
.instruction
|= inst
.operands
[1].reg
;
10328 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
10331 /* VFP instructions. In a logical order: SP variant first, monad
10332 before dyad, arithmetic then move then load/store. */
10335 do_vfp_sp_monadic (void)
10337 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10338 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10341 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10342 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10346 do_vfp_sp_dyadic (void)
10348 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10349 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10350 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10354 do_vfp_sp_compare_z (void)
10356 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10360 do_vfp_dp_sp_cvt (void)
10362 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10363 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10367 do_vfp_sp_dp_cvt (void)
10369 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10370 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10374 do_vfp_reg_from_sp (void)
10376 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10377 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10380 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10381 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10385 do_vfp_reg2_from_sp2 (void)
10387 constraint (inst
.operands
[2].imm
!= 2,
10388 _("only two consecutive VFP SP registers allowed here"));
10389 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10390 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10391 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10395 do_vfp_sp_from_reg (void)
10397 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10398 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10401 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
10402 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10406 do_vfp_sp2_from_reg2 (void)
10408 constraint (inst
.operands
[0].imm
!= 2,
10409 _("only two consecutive VFP SP registers allowed here"));
10410 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
10411 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10412 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10416 do_vfp_sp_ldst (void)
10418 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10419 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10423 do_vfp_dp_ldst (void)
10425 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10426 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10431 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
10433 if (inst
.operands
[0].writeback
)
10434 inst
.instruction
|= WRITE_BACK
;
10436 constraint (ldstm_type
!= VFP_LDSTMIA
,
10437 _("this addressing mode requires base-register writeback"));
10438 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10439 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
10440 inst
.instruction
|= inst
.operands
[1].imm
;
10444 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
10448 if (inst
.operands
[0].writeback
)
10449 inst
.instruction
|= WRITE_BACK
;
10451 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
10452 _("this addressing mode requires base-register writeback"));
10454 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10455 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10457 count
= inst
.operands
[1].imm
<< 1;
10458 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
10461 inst
.instruction
|= count
;
10465 do_vfp_sp_ldstmia (void)
10467 vfp_sp_ldstm (VFP_LDSTMIA
);
10471 do_vfp_sp_ldstmdb (void)
10473 vfp_sp_ldstm (VFP_LDSTMDB
);
10477 do_vfp_dp_ldstmia (void)
10479 vfp_dp_ldstm (VFP_LDSTMIA
);
10483 do_vfp_dp_ldstmdb (void)
10485 vfp_dp_ldstm (VFP_LDSTMDB
);
10489 do_vfp_xp_ldstmia (void)
10491 vfp_dp_ldstm (VFP_LDSTMIAX
);
10495 do_vfp_xp_ldstmdb (void)
10497 vfp_dp_ldstm (VFP_LDSTMDBX
);
10501 do_vfp_dp_rd_rm (void)
10503 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
10504 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10507 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10508 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10512 do_vfp_dp_rn_rd (void)
10514 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
10515 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10519 do_vfp_dp_rd_rn (void)
10521 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10522 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10526 do_vfp_dp_rd_rn_rm (void)
10528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10529 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10532 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10533 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10534 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
10538 do_vfp_dp_rd (void)
10540 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10544 do_vfp_dp_rm_rd_rn (void)
10546 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10547 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10550 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
10551 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10552 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
10555 /* VFPv3 instructions. */
10557 do_vfp_sp_const (void)
10559 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10560 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10561 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10565 do_vfp_dp_const (void)
10567 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10568 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10569 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10573 vfp_conv (int srcsize
)
10575 int immbits
= srcsize
- inst
.operands
[1].imm
;
10577 if (srcsize
== 16 && !(immbits
>= 0 && immbits
<= srcsize
))
10579 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10580 i.e. immbits must be in range 0 - 16. */
10581 inst
.error
= _("immediate value out of range, expected range [0, 16]");
10584 else if (srcsize
== 32 && !(immbits
>= 0 && immbits
< srcsize
))
10586 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10587 i.e. immbits must be in range 0 - 31. */
10588 inst
.error
= _("immediate value out of range, expected range [1, 32]");
10592 inst
.instruction
|= (immbits
& 1) << 5;
10593 inst
.instruction
|= (immbits
>> 1);
10597 do_vfp_sp_conv_16 (void)
10599 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10604 do_vfp_dp_conv_16 (void)
10606 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10611 do_vfp_sp_conv_32 (void)
10613 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10618 do_vfp_dp_conv_32 (void)
10620 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10624 /* FPA instructions. Also in a logical order. */
10629 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10630 inst
.instruction
|= inst
.operands
[1].reg
;
10634 do_fpa_ldmstm (void)
10636 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10637 switch (inst
.operands
[1].imm
)
10639 case 1: inst
.instruction
|= CP_T_X
; break;
10640 case 2: inst
.instruction
|= CP_T_Y
; break;
10641 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
10646 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
10648 /* The instruction specified "ea" or "fd", so we can only accept
10649 [Rn]{!}. The instruction does not really support stacking or
10650 unstacking, so we have to emulate these by setting appropriate
10651 bits and offsets. */
10652 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10653 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10654 _("this instruction does not support indexing"));
10656 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
10657 inst
.relocs
[0].exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
10659 if (!(inst
.instruction
& INDEX_UP
))
10660 inst
.relocs
[0].exp
.X_add_number
= -inst
.relocs
[0].exp
.X_add_number
;
10662 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
10664 inst
.operands
[2].preind
= 0;
10665 inst
.operands
[2].postind
= 1;
10669 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
10672 /* iWMMXt instructions: strictly in alphabetical order. */
10675 do_iwmmxt_tandorc (void)
10677 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
10681 do_iwmmxt_textrc (void)
10683 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10684 inst
.instruction
|= inst
.operands
[1].imm
;
10688 do_iwmmxt_textrm (void)
10690 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10691 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10692 inst
.instruction
|= inst
.operands
[2].imm
;
10696 do_iwmmxt_tinsr (void)
10698 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10699 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10700 inst
.instruction
|= inst
.operands
[2].imm
;
10704 do_iwmmxt_tmia (void)
10706 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10707 inst
.instruction
|= inst
.operands
[1].reg
;
10708 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10712 do_iwmmxt_waligni (void)
10714 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10715 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10716 inst
.instruction
|= inst
.operands
[2].reg
;
10717 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
10721 do_iwmmxt_wmerge (void)
10723 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10724 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10725 inst
.instruction
|= inst
.operands
[2].reg
;
10726 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
10730 do_iwmmxt_wmov (void)
10732 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10733 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10734 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10735 inst
.instruction
|= inst
.operands
[1].reg
;
10739 do_iwmmxt_wldstbh (void)
10742 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10744 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
10746 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
10747 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
10751 do_iwmmxt_wldstw (void)
10753 /* RIWR_RIWC clears .isreg for a control register. */
10754 if (!inst
.operands
[0].isreg
)
10756 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
10757 inst
.instruction
|= 0xf0000000;
10760 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10761 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
10765 do_iwmmxt_wldstd (void)
10767 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10768 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
10769 && inst
.operands
[1].immisreg
)
10771 inst
.instruction
&= ~0x1a000ff;
10772 inst
.instruction
|= (0xfU
<< 28);
10773 if (inst
.operands
[1].preind
)
10774 inst
.instruction
|= PRE_INDEX
;
10775 if (!inst
.operands
[1].negative
)
10776 inst
.instruction
|= INDEX_UP
;
10777 if (inst
.operands
[1].writeback
)
10778 inst
.instruction
|= WRITE_BACK
;
10779 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10780 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
10781 inst
.instruction
|= inst
.operands
[1].imm
;
10784 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
10788 do_iwmmxt_wshufh (void)
10790 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10791 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10792 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
10793 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
10797 do_iwmmxt_wzero (void)
10799 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10800 inst
.instruction
|= inst
.operands
[0].reg
;
10801 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10802 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10806 do_iwmmxt_wrwrwr_or_imm5 (void)
10808 if (inst
.operands
[2].isreg
)
10811 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
10812 _("immediate operand requires iWMMXt2"));
10814 if (inst
.operands
[2].imm
== 0)
10816 switch ((inst
.instruction
>> 20) & 0xf)
10822 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10823 inst
.operands
[2].imm
= 16;
10824 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
10830 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10831 inst
.operands
[2].imm
= 32;
10832 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
10839 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10841 wrn
= (inst
.instruction
>> 16) & 0xf;
10842 inst
.instruction
&= 0xff0fff0f;
10843 inst
.instruction
|= wrn
;
10844 /* Bail out here; the instruction is now assembled. */
10849 /* Map 32 -> 0, etc. */
10850 inst
.operands
[2].imm
&= 0x1f;
10851 inst
.instruction
|= (0xfU
<< 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
10855 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10856 operations first, then control, shift, and load/store. */
10858 /* Insns like "foo X,Y,Z". */
10861 do_mav_triple (void)
10863 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10864 inst
.instruction
|= inst
.operands
[1].reg
;
10865 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10868 /* Insns like "foo W,X,Y,Z".
10869 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10874 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10875 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10876 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10877 inst
.instruction
|= inst
.operands
[3].reg
;
10880 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10882 do_mav_dspsc (void)
10884 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10887 /* Maverick shift immediate instructions.
10888 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10889 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10892 do_mav_shift (void)
10894 int imm
= inst
.operands
[2].imm
;
10896 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10897 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10899 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10900 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10901 Bit 4 should be 0. */
10902 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
10904 inst
.instruction
|= imm
;
10907 /* XScale instructions. Also sorted arithmetic before move. */
10909 /* Xscale multiply-accumulate (argument parse)
10912 MIAxycc acc0,Rm,Rs. */
10917 inst
.instruction
|= inst
.operands
[1].reg
;
10918 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10921 /* Xscale move-accumulator-register (argument parse)
10923 MARcc acc0,RdLo,RdHi. */
10928 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10929 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10932 /* Xscale move-register-accumulator (argument parse)
10934 MRAcc RdLo,RdHi,acc0. */
10939 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
10940 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10941 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10944 /* Encoding functions relevant only to Thumb. */
10946 /* inst.operands[i] is a shifted-register operand; encode
10947 it into inst.instruction in the format used by Thumb32. */
10950 encode_thumb32_shifted_operand (int i
)
10952 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
10953 unsigned int shift
= inst
.operands
[i
].shift_kind
;
10955 constraint (inst
.operands
[i
].immisreg
,
10956 _("shift by register not allowed in thumb mode"));
10957 inst
.instruction
|= inst
.operands
[i
].reg
;
10958 if (shift
== SHIFT_RRX
)
10959 inst
.instruction
|= SHIFT_ROR
<< 4;
10962 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
10963 _("expression too complex"));
10965 constraint (value
> 32
10966 || (value
== 32 && (shift
== SHIFT_LSL
10967 || shift
== SHIFT_ROR
)),
10968 _("shift expression is too large"));
10972 else if (value
== 32)
10975 inst
.instruction
|= shift
<< 4;
10976 inst
.instruction
|= (value
& 0x1c) << 10;
10977 inst
.instruction
|= (value
& 0x03) << 6;
10982 /* inst.operands[i] was set up by parse_address. Encode it into a
10983 Thumb32 format load or store instruction. Reject forms that cannot
10984 be used with such instructions. If is_t is true, reject forms that
10985 cannot be used with a T instruction; if is_d is true, reject forms
10986 that cannot be used with a D instruction. If it is a store insn,
10987 reject PC in Rn. */
10990 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
10992 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
10994 constraint (!inst
.operands
[i
].isreg
,
10995 _("Instruction does not support =N addresses"));
10997 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
10998 if (inst
.operands
[i
].immisreg
)
11000 constraint (is_pc
, BAD_PC_ADDRESSING
);
11001 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
11002 constraint (inst
.operands
[i
].negative
,
11003 _("Thumb does not support negative register indexing"));
11004 constraint (inst
.operands
[i
].postind
,
11005 _("Thumb does not support register post-indexing"));
11006 constraint (inst
.operands
[i
].writeback
,
11007 _("Thumb does not support register indexing with writeback"));
11008 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
11009 _("Thumb supports only LSL in shifted register indexing"));
11011 inst
.instruction
|= inst
.operands
[i
].imm
;
11012 if (inst
.operands
[i
].shifted
)
11014 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11015 _("expression too complex"));
11016 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11017 || inst
.relocs
[0].exp
.X_add_number
> 3,
11018 _("shift out of range"));
11019 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
11021 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11023 else if (inst
.operands
[i
].preind
)
11025 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
11026 constraint (is_t
&& inst
.operands
[i
].writeback
,
11027 _("cannot use writeback with this instruction"));
11028 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0),
11029 BAD_PC_ADDRESSING
);
11033 inst
.instruction
|= 0x01000000;
11034 if (inst
.operands
[i
].writeback
)
11035 inst
.instruction
|= 0x00200000;
11039 inst
.instruction
|= 0x00000c00;
11040 if (inst
.operands
[i
].writeback
)
11041 inst
.instruction
|= 0x00000100;
11043 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11045 else if (inst
.operands
[i
].postind
)
11047 gas_assert (inst
.operands
[i
].writeback
);
11048 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
11049 constraint (is_t
, _("cannot use post-indexing with this instruction"));
11052 inst
.instruction
|= 0x00200000;
11054 inst
.instruction
|= 0x00000900;
11055 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11057 else /* unindexed - only for coprocessor */
11058 inst
.error
= _("instruction does not accept unindexed addressing");
11061 /* Table of Thumb instructions which exist in both 16- and 32-bit
11062 encodings (the latter only in post-V6T2 cores). The index is the
11063 value used in the insns table below. When there is more than one
11064 possible 16-bit encoding for the instruction, this table always
11066 Also contains several pseudo-instructions used during relaxation. */
11067 #define T16_32_TAB \
11068 X(_adc, 4140, eb400000), \
11069 X(_adcs, 4140, eb500000), \
11070 X(_add, 1c00, eb000000), \
11071 X(_adds, 1c00, eb100000), \
11072 X(_addi, 0000, f1000000), \
11073 X(_addis, 0000, f1100000), \
11074 X(_add_pc,000f, f20f0000), \
11075 X(_add_sp,000d, f10d0000), \
11076 X(_adr, 000f, f20f0000), \
11077 X(_and, 4000, ea000000), \
11078 X(_ands, 4000, ea100000), \
11079 X(_asr, 1000, fa40f000), \
11080 X(_asrs, 1000, fa50f000), \
11081 X(_b, e000, f000b000), \
11082 X(_bcond, d000, f0008000), \
11083 X(_bf, 0000, f040e001), \
11084 X(_bfcsel,0000, f000e001), \
11085 X(_bfx, 0000, f060e001), \
11086 X(_bfl, 0000, f000c001), \
11087 X(_bflx, 0000, f070e001), \
11088 X(_bic, 4380, ea200000), \
11089 X(_bics, 4380, ea300000), \
11090 X(_cmn, 42c0, eb100f00), \
11091 X(_cmp, 2800, ebb00f00), \
11092 X(_cpsie, b660, f3af8400), \
11093 X(_cpsid, b670, f3af8600), \
11094 X(_cpy, 4600, ea4f0000), \
11095 X(_dec_sp,80dd, f1ad0d00), \
11096 X(_dls, 0000, f040e001), \
11097 X(_eor, 4040, ea800000), \
11098 X(_eors, 4040, ea900000), \
11099 X(_inc_sp,00dd, f10d0d00), \
11100 X(_ldmia, c800, e8900000), \
11101 X(_ldr, 6800, f8500000), \
11102 X(_ldrb, 7800, f8100000), \
11103 X(_ldrh, 8800, f8300000), \
11104 X(_ldrsb, 5600, f9100000), \
11105 X(_ldrsh, 5e00, f9300000), \
11106 X(_ldr_pc,4800, f85f0000), \
11107 X(_ldr_pc2,4800, f85f0000), \
11108 X(_ldr_sp,9800, f85d0000), \
11109 X(_le, 0000, f00fc001), \
11110 X(_lsl, 0000, fa00f000), \
11111 X(_lsls, 0000, fa10f000), \
11112 X(_lsr, 0800, fa20f000), \
11113 X(_lsrs, 0800, fa30f000), \
11114 X(_mov, 2000, ea4f0000), \
11115 X(_movs, 2000, ea5f0000), \
11116 X(_mul, 4340, fb00f000), \
11117 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11118 X(_mvn, 43c0, ea6f0000), \
11119 X(_mvns, 43c0, ea7f0000), \
11120 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11121 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11122 X(_orr, 4300, ea400000), \
11123 X(_orrs, 4300, ea500000), \
11124 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11125 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11126 X(_rev, ba00, fa90f080), \
11127 X(_rev16, ba40, fa90f090), \
11128 X(_revsh, bac0, fa90f0b0), \
11129 X(_ror, 41c0, fa60f000), \
11130 X(_rors, 41c0, fa70f000), \
11131 X(_sbc, 4180, eb600000), \
11132 X(_sbcs, 4180, eb700000), \
11133 X(_stmia, c000, e8800000), \
11134 X(_str, 6000, f8400000), \
11135 X(_strb, 7000, f8000000), \
11136 X(_strh, 8000, f8200000), \
11137 X(_str_sp,9000, f84d0000), \
11138 X(_sub, 1e00, eba00000), \
11139 X(_subs, 1e00, ebb00000), \
11140 X(_subi, 8000, f1a00000), \
11141 X(_subis, 8000, f1b00000), \
11142 X(_sxtb, b240, fa4ff080), \
11143 X(_sxth, b200, fa0ff080), \
11144 X(_tst, 4200, ea100f00), \
11145 X(_uxtb, b2c0, fa5ff080), \
11146 X(_uxth, b280, fa1ff080), \
11147 X(_nop, bf00, f3af8000), \
11148 X(_yield, bf10, f3af8001), \
11149 X(_wfe, bf20, f3af8002), \
11150 X(_wfi, bf30, f3af8003), \
11151 X(_wls, 0000, f040c001), \
11152 X(_sev, bf40, f3af8004), \
11153 X(_sevl, bf50, f3af8005), \
11154 X(_udf, de00, f7f0a000)
11156 /* To catch errors in encoding functions, the codes are all offset by
11157 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11158 as 16-bit instructions. */
11159 #define X(a,b,c) T_MNEM##a
11160 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
11163 #define X(a,b,c) 0x##b
11164 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
11165 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11168 #define X(a,b,c) 0x##c
11169 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
11170 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11171 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11175 /* Thumb instruction encoders, in alphabetical order. */
11177 /* ADDW or SUBW. */
11180 do_t_add_sub_w (void)
11184 Rd
= inst
.operands
[0].reg
;
11185 Rn
= inst
.operands
[1].reg
;
11187 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11188 is the SP-{plus,minus}-immediate form of the instruction. */
11190 constraint (Rd
== REG_PC
, BAD_PC
);
11192 reject_bad_reg (Rd
);
11194 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
11195 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11198 /* Parse an add or subtract instruction. We get here with inst.instruction
11199 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11202 do_t_add_sub (void)
11206 Rd
= inst
.operands
[0].reg
;
11207 Rs
= (inst
.operands
[1].present
11208 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11209 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11212 set_pred_insn_type_last ();
11214 if (unified_syntax
)
11217 bfd_boolean narrow
;
11220 flags
= (inst
.instruction
== T_MNEM_adds
11221 || inst
.instruction
== T_MNEM_subs
);
11223 narrow
= !in_pred_block ();
11225 narrow
= in_pred_block ();
11226 if (!inst
.operands
[2].isreg
)
11230 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11231 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11233 add
= (inst
.instruction
== T_MNEM_add
11234 || inst
.instruction
== T_MNEM_adds
);
11236 if (inst
.size_req
!= 4)
11238 /* Attempt to use a narrow opcode, with relaxation if
11240 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
11241 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
11242 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
11243 opcode
= T_MNEM_add_sp
;
11244 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
11245 opcode
= T_MNEM_add_pc
;
11246 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
11249 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
11251 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
11255 inst
.instruction
= THUMB_OP16(opcode
);
11256 inst
.instruction
|= (Rd
<< 4) | Rs
;
11257 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11258 || (inst
.relocs
[0].type
11259 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
))
11261 if (inst
.size_req
== 2)
11262 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11264 inst
.relax
= opcode
;
11268 constraint (inst
.size_req
== 2, BAD_HIREG
);
11270 if (inst
.size_req
== 4
11271 || (inst
.size_req
!= 2 && !opcode
))
11273 constraint ((inst
.relocs
[0].type
11274 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
11275 && (inst
.relocs
[0].type
11276 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
11277 THUMB1_RELOC_ONLY
);
11280 constraint (add
, BAD_PC
);
11281 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
11282 _("only SUBS PC, LR, #const allowed"));
11283 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11284 _("expression too complex"));
11285 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11286 || inst
.relocs
[0].exp
.X_add_number
> 0xff,
11287 _("immediate value out of range"));
11288 inst
.instruction
= T2_SUBS_PC_LR
11289 | inst
.relocs
[0].exp
.X_add_number
;
11290 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11293 else if (Rs
== REG_PC
)
11295 /* Always use addw/subw. */
11296 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
11297 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11301 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11302 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
11305 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11307 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_IMM
;
11309 inst
.instruction
|= Rd
<< 8;
11310 inst
.instruction
|= Rs
<< 16;
11315 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
11316 unsigned int shift
= inst
.operands
[2].shift_kind
;
11318 Rn
= inst
.operands
[2].reg
;
11319 /* See if we can do this with a 16-bit instruction. */
11320 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
11322 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11327 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
11328 || inst
.instruction
== T_MNEM_add
)
11330 : T_OPCODE_SUB_R3
);
11331 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11335 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
11337 /* Thumb-1 cores (except v6-M) require at least one high
11338 register in a narrow non flag setting add. */
11339 if (Rd
> 7 || Rn
> 7
11340 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
11341 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
11348 inst
.instruction
= T_OPCODE_ADD_HI
;
11349 inst
.instruction
|= (Rd
& 8) << 4;
11350 inst
.instruction
|= (Rd
& 7);
11351 inst
.instruction
|= Rn
<< 3;
11357 constraint (Rd
== REG_PC
, BAD_PC
);
11358 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11359 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11360 constraint (Rs
== REG_PC
, BAD_PC
);
11361 reject_bad_reg (Rn
);
11363 /* If we get here, it can't be done in 16 bits. */
11364 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
11365 _("shift must be constant"));
11366 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11367 inst
.instruction
|= Rd
<< 8;
11368 inst
.instruction
|= Rs
<< 16;
11369 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& value
> 3,
11370 _("shift value over 3 not allowed in thumb mode"));
11371 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& shift
!= SHIFT_LSL
,
11372 _("only LSL shift allowed in thumb mode"));
11373 encode_thumb32_shifted_operand (2);
11378 constraint (inst
.instruction
== T_MNEM_adds
11379 || inst
.instruction
== T_MNEM_subs
,
11382 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
11384 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
11385 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
11388 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11389 ? 0x0000 : 0x8000);
11390 inst
.instruction
|= (Rd
<< 4) | Rs
;
11391 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11395 Rn
= inst
.operands
[2].reg
;
11396 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
11398 /* We now have Rd, Rs, and Rn set to registers. */
11399 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11401 /* Can't do this for SUB. */
11402 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
11403 inst
.instruction
= T_OPCODE_ADD_HI
;
11404 inst
.instruction
|= (Rd
& 8) << 4;
11405 inst
.instruction
|= (Rd
& 7);
11407 inst
.instruction
|= Rn
<< 3;
11409 inst
.instruction
|= Rs
<< 3;
11411 constraint (1, _("dest must overlap one source register"));
11415 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11416 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
11417 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11427 Rd
= inst
.operands
[0].reg
;
11428 reject_bad_reg (Rd
);
11430 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
11432 /* Defer to section relaxation. */
11433 inst
.relax
= inst
.instruction
;
11434 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11435 inst
.instruction
|= Rd
<< 4;
11437 else if (unified_syntax
&& inst
.size_req
!= 2)
11439 /* Generate a 32-bit opcode. */
11440 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11441 inst
.instruction
|= Rd
<< 8;
11442 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_PC12
;
11443 inst
.relocs
[0].pc_rel
= 1;
11447 /* Generate a 16-bit opcode. */
11448 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11449 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11450 inst
.relocs
[0].exp
.X_add_number
-= 4; /* PC relative adjust. */
11451 inst
.relocs
[0].pc_rel
= 1;
11452 inst
.instruction
|= Rd
<< 4;
11455 if (inst
.relocs
[0].exp
.X_op
== O_symbol
11456 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11457 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11458 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11459 inst
.relocs
[0].exp
.X_add_number
+= 1;
11462 /* Arithmetic instructions for which there is just one 16-bit
11463 instruction encoding, and it allows only two low registers.
11464 For maximal compatibility with ARM syntax, we allow three register
11465 operands even when Thumb-32 instructions are not available, as long
11466 as the first two are identical. For instance, both "sbc r0,r1" and
11467 "sbc r0,r0,r1" are allowed. */
11473 Rd
= inst
.operands
[0].reg
;
11474 Rs
= (inst
.operands
[1].present
11475 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11476 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11477 Rn
= inst
.operands
[2].reg
;
11479 reject_bad_reg (Rd
);
11480 reject_bad_reg (Rs
);
11481 if (inst
.operands
[2].isreg
)
11482 reject_bad_reg (Rn
);
11484 if (unified_syntax
)
11486 if (!inst
.operands
[2].isreg
)
11488 /* For an immediate, we always generate a 32-bit opcode;
11489 section relaxation will shrink it later if possible. */
11490 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11491 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11492 inst
.instruction
|= Rd
<< 8;
11493 inst
.instruction
|= Rs
<< 16;
11494 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11498 bfd_boolean narrow
;
11500 /* See if we can do this with a 16-bit instruction. */
11501 if (THUMB_SETS_FLAGS (inst
.instruction
))
11502 narrow
= !in_pred_block ();
11504 narrow
= in_pred_block ();
11506 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11508 if (inst
.operands
[2].shifted
)
11510 if (inst
.size_req
== 4)
11516 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11517 inst
.instruction
|= Rd
;
11518 inst
.instruction
|= Rn
<< 3;
11522 /* If we get here, it can't be done in 16 bits. */
11523 constraint (inst
.operands
[2].shifted
11524 && inst
.operands
[2].immisreg
,
11525 _("shift must be constant"));
11526 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11527 inst
.instruction
|= Rd
<< 8;
11528 inst
.instruction
|= Rs
<< 16;
11529 encode_thumb32_shifted_operand (2);
11534 /* On its face this is a lie - the instruction does set the
11535 flags. However, the only supported mnemonic in this mode
11536 says it doesn't. */
11537 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11539 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11540 _("unshifted register required"));
11541 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11542 constraint (Rd
!= Rs
,
11543 _("dest and source1 must be the same register"));
11545 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11546 inst
.instruction
|= Rd
;
11547 inst
.instruction
|= Rn
<< 3;
11551 /* Similarly, but for instructions where the arithmetic operation is
11552 commutative, so we can allow either of them to be different from
11553 the destination operand in a 16-bit instruction. For instance, all
11554 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11561 Rd
= inst
.operands
[0].reg
;
11562 Rs
= (inst
.operands
[1].present
11563 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11564 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11565 Rn
= inst
.operands
[2].reg
;
11567 reject_bad_reg (Rd
);
11568 reject_bad_reg (Rs
);
11569 if (inst
.operands
[2].isreg
)
11570 reject_bad_reg (Rn
);
11572 if (unified_syntax
)
11574 if (!inst
.operands
[2].isreg
)
11576 /* For an immediate, we always generate a 32-bit opcode;
11577 section relaxation will shrink it later if possible. */
11578 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11579 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11580 inst
.instruction
|= Rd
<< 8;
11581 inst
.instruction
|= Rs
<< 16;
11582 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11586 bfd_boolean narrow
;
11588 /* See if we can do this with a 16-bit instruction. */
11589 if (THUMB_SETS_FLAGS (inst
.instruction
))
11590 narrow
= !in_pred_block ();
11592 narrow
= in_pred_block ();
11594 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11596 if (inst
.operands
[2].shifted
)
11598 if (inst
.size_req
== 4)
11605 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11606 inst
.instruction
|= Rd
;
11607 inst
.instruction
|= Rn
<< 3;
11612 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11613 inst
.instruction
|= Rd
;
11614 inst
.instruction
|= Rs
<< 3;
11619 /* If we get here, it can't be done in 16 bits. */
11620 constraint (inst
.operands
[2].shifted
11621 && inst
.operands
[2].immisreg
,
11622 _("shift must be constant"));
11623 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11624 inst
.instruction
|= Rd
<< 8;
11625 inst
.instruction
|= Rs
<< 16;
11626 encode_thumb32_shifted_operand (2);
11631 /* On its face this is a lie - the instruction does set the
11632 flags. However, the only supported mnemonic in this mode
11633 says it doesn't. */
11634 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11636 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11637 _("unshifted register required"));
11638 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11640 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11641 inst
.instruction
|= Rd
;
11644 inst
.instruction
|= Rn
<< 3;
11646 inst
.instruction
|= Rs
<< 3;
11648 constraint (1, _("dest must overlap one source register"));
11656 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
11657 constraint (msb
> 32, _("bit-field extends past end of register"));
11658 /* The instruction encoding stores the LSB and MSB,
11659 not the LSB and width. */
11660 Rd
= inst
.operands
[0].reg
;
11661 reject_bad_reg (Rd
);
11662 inst
.instruction
|= Rd
<< 8;
11663 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
11664 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
11665 inst
.instruction
|= msb
- 1;
11674 Rd
= inst
.operands
[0].reg
;
11675 reject_bad_reg (Rd
);
11677 /* #0 in second position is alternative syntax for bfc, which is
11678 the same instruction but with REG_PC in the Rm field. */
11679 if (!inst
.operands
[1].isreg
)
11683 Rn
= inst
.operands
[1].reg
;
11684 reject_bad_reg (Rn
);
11687 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
11688 constraint (msb
> 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 inst
.instruction
|= Rd
<< 8;
11692 inst
.instruction
|= Rn
<< 16;
11693 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11694 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11695 inst
.instruction
|= msb
- 1;
11703 Rd
= inst
.operands
[0].reg
;
11704 Rn
= inst
.operands
[1].reg
;
11706 reject_bad_reg (Rd
);
11707 reject_bad_reg (Rn
);
11709 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
11710 _("bit-field extends past end of register"));
11711 inst
.instruction
|= Rd
<< 8;
11712 inst
.instruction
|= Rn
<< 16;
11713 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11714 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11715 inst
.instruction
|= inst
.operands
[3].imm
- 1;
11718 /* ARM V5 Thumb BLX (argument parse)
11719 BLX <target_addr> which is BLX(1)
11720 BLX <Rm> which is BLX(2)
11721 Unfortunately, there are two different opcodes for this mnemonic.
11722 So, the insns[].value is not used, and the code here zaps values
11723 into inst.instruction.
11725 ??? How to take advantage of the additional two bits of displacement
11726 available in Thumb32 mode? Need new relocation? */
11731 set_pred_insn_type_last ();
11733 if (inst
.operands
[0].isreg
)
11735 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
11736 /* We have a register, so this is BLX(2). */
11737 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11741 /* No register. This must be BLX(1). */
11742 inst
.instruction
= 0xf000e800;
11743 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
11752 bfd_reloc_code_real_type reloc
;
11755 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN
);
11757 if (in_pred_block ())
11759 /* Conditional branches inside IT blocks are encoded as unconditional
11761 cond
= COND_ALWAYS
;
11766 if (cond
!= COND_ALWAYS
)
11767 opcode
= T_MNEM_bcond
;
11769 opcode
= inst
.instruction
;
11772 && (inst
.size_req
== 4
11773 || (inst
.size_req
!= 2
11774 && (inst
.operands
[0].hasreloc
11775 || inst
.relocs
[0].exp
.X_op
== O_constant
))))
11777 inst
.instruction
= THUMB_OP32(opcode
);
11778 if (cond
== COND_ALWAYS
)
11779 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
11782 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
),
11783 _("selected architecture does not support "
11784 "wide conditional branch instruction"));
11786 gas_assert (cond
!= 0xF);
11787 inst
.instruction
|= cond
<< 22;
11788 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
11793 inst
.instruction
= THUMB_OP16(opcode
);
11794 if (cond
== COND_ALWAYS
)
11795 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
11798 inst
.instruction
|= cond
<< 8;
11799 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
11801 /* Allow section relaxation. */
11802 if (unified_syntax
&& inst
.size_req
!= 2)
11803 inst
.relax
= opcode
;
11805 inst
.relocs
[0].type
= reloc
;
11806 inst
.relocs
[0].pc_rel
= 1;
11809 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11810 between the two is the maximum immediate allowed - which is passed in
11813 do_t_bkpt_hlt1 (int range
)
11815 constraint (inst
.cond
!= COND_ALWAYS
,
11816 _("instruction is always unconditional"));
11817 if (inst
.operands
[0].present
)
11819 constraint (inst
.operands
[0].imm
> range
,
11820 _("immediate value out of range"));
11821 inst
.instruction
|= inst
.operands
[0].imm
;
11824 set_pred_insn_type (NEUTRAL_IT_INSN
);
11830 do_t_bkpt_hlt1 (63);
11836 do_t_bkpt_hlt1 (255);
11840 do_t_branch23 (void)
11842 set_pred_insn_type_last ();
11843 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
11845 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11846 this file. We used to simply ignore the PLT reloc type here --
11847 the branch encoding is now needed to deal with TLSCALL relocs.
11848 So if we see a PLT reloc now, put it back to how it used to be to
11849 keep the preexisting behaviour. */
11850 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_PLT32
)
11851 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
11853 #if defined(OBJ_COFF)
11854 /* If the destination of the branch is a defined symbol which does not have
11855 the THUMB_FUNC attribute, then we must be calling a function which has
11856 the (interfacearm) attribute. We look for the Thumb entry point to that
11857 function and change the branch to refer to that function instead. */
11858 if ( inst
.relocs
[0].exp
.X_op
== O_symbol
11859 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11860 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11861 && ! THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11862 inst
.relocs
[0].exp
.X_add_symbol
11863 = find_real_start (inst
.relocs
[0].exp
.X_add_symbol
);
11870 set_pred_insn_type_last ();
11871 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11872 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11873 should cause the alignment to be checked once it is known. This is
11874 because BX PC only works if the instruction is word aligned. */
11882 set_pred_insn_type_last ();
11883 Rm
= inst
.operands
[0].reg
;
11884 reject_bad_reg (Rm
);
11885 inst
.instruction
|= Rm
<< 16;
11894 Rd
= inst
.operands
[0].reg
;
11895 Rm
= inst
.operands
[1].reg
;
11897 reject_bad_reg (Rd
);
11898 reject_bad_reg (Rm
);
11900 inst
.instruction
|= Rd
<< 8;
11901 inst
.instruction
|= Rm
<< 16;
11902 inst
.instruction
|= Rm
;
11908 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11914 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11915 inst
.instruction
|= inst
.operands
[0].imm
;
11921 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11923 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
11924 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
11926 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
11927 inst
.instruction
= 0xf3af8000;
11928 inst
.instruction
|= imod
<< 9;
11929 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
11930 if (inst
.operands
[1].present
)
11931 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
11935 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
11936 && (inst
.operands
[0].imm
& 4),
11937 _("selected processor does not support 'A' form "
11938 "of this instruction"));
11939 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
11940 _("Thumb does not support the 2-argument "
11941 "form of this instruction"));
11942 inst
.instruction
|= inst
.operands
[0].imm
;
11946 /* THUMB CPY instruction (argument parse). */
11951 if (inst
.size_req
== 4)
11953 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
11954 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11955 inst
.instruction
|= inst
.operands
[1].reg
;
11959 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
11960 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
11961 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11968 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11969 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
11970 inst
.instruction
|= inst
.operands
[0].reg
;
11971 inst
.relocs
[0].pc_rel
= 1;
11972 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
11978 inst
.instruction
|= inst
.operands
[0].imm
;
11984 unsigned Rd
, Rn
, Rm
;
11986 Rd
= inst
.operands
[0].reg
;
11987 Rn
= (inst
.operands
[1].present
11988 ? inst
.operands
[1].reg
: Rd
);
11989 Rm
= inst
.operands
[2].reg
;
11991 reject_bad_reg (Rd
);
11992 reject_bad_reg (Rn
);
11993 reject_bad_reg (Rm
);
11995 inst
.instruction
|= Rd
<< 8;
11996 inst
.instruction
|= Rn
<< 16;
11997 inst
.instruction
|= Rm
;
12003 if (unified_syntax
&& inst
.size_req
== 4)
12004 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12006 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12012 unsigned int cond
= inst
.operands
[0].imm
;
12014 set_pred_insn_type (IT_INSN
);
12015 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
12016 now_pred
.cc
= cond
;
12017 now_pred
.warn_deprecated
= FALSE
;
12018 now_pred
.type
= SCALAR_PRED
;
12020 /* If the condition is a negative condition, invert the mask. */
12021 if ((cond
& 0x1) == 0x0)
12023 unsigned int mask
= inst
.instruction
& 0x000f;
12025 if ((mask
& 0x7) == 0)
12027 /* No conversion needed. */
12028 now_pred
.block_length
= 1;
12030 else if ((mask
& 0x3) == 0)
12033 now_pred
.block_length
= 2;
12035 else if ((mask
& 0x1) == 0)
12038 now_pred
.block_length
= 3;
12043 now_pred
.block_length
= 4;
12046 inst
.instruction
&= 0xfff0;
12047 inst
.instruction
|= mask
;
12050 inst
.instruction
|= cond
<< 4;
12053 /* Helper function used for both push/pop and ldm/stm. */
12055 encode_thumb2_multi (bfd_boolean do_io
, int base
, unsigned mask
,
12056 bfd_boolean writeback
)
12058 bfd_boolean load
, store
;
12060 gas_assert (base
!= -1 || !do_io
);
12061 load
= do_io
&& ((inst
.instruction
& (1 << 20)) != 0);
12062 store
= do_io
&& !load
;
12064 if (mask
& (1 << 13))
12065 inst
.error
= _("SP not allowed in register list");
12067 if (do_io
&& (mask
& (1 << base
)) != 0
12069 inst
.error
= _("having the base register in the register list when "
12070 "using write back is UNPREDICTABLE");
12074 if (mask
& (1 << 15))
12076 if (mask
& (1 << 14))
12077 inst
.error
= _("LR and PC should not both be in register list");
12079 set_pred_insn_type_last ();
12084 if (mask
& (1 << 15))
12085 inst
.error
= _("PC not allowed in register list");
12088 if (do_io
&& ((mask
& (mask
- 1)) == 0))
12090 /* Single register transfers implemented as str/ldr. */
12093 if (inst
.instruction
& (1 << 23))
12094 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
12096 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
12100 if (inst
.instruction
& (1 << 23))
12101 inst
.instruction
= 0x00800000; /* ia -> [base] */
12103 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
12106 inst
.instruction
|= 0xf8400000;
12108 inst
.instruction
|= 0x00100000;
12110 mask
= ffs (mask
) - 1;
12113 else if (writeback
)
12114 inst
.instruction
|= WRITE_BACK
;
12116 inst
.instruction
|= mask
;
12118 inst
.instruction
|= base
<< 16;
12124 /* This really doesn't seem worth it. */
12125 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
12126 _("expression too complex"));
12127 constraint (inst
.operands
[1].writeback
,
12128 _("Thumb load/store multiple does not support {reglist}^"));
12130 if (unified_syntax
)
12132 bfd_boolean narrow
;
12136 /* See if we can use a 16-bit instruction. */
12137 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
12138 && inst
.size_req
!= 4
12139 && !(inst
.operands
[1].imm
& ~0xff))
12141 mask
= 1 << inst
.operands
[0].reg
;
12143 if (inst
.operands
[0].reg
<= 7)
12145 if (inst
.instruction
== T_MNEM_stmia
12146 ? inst
.operands
[0].writeback
12147 : (inst
.operands
[0].writeback
12148 == !(inst
.operands
[1].imm
& mask
)))
12150 if (inst
.instruction
== T_MNEM_stmia
12151 && (inst
.operands
[1].imm
& mask
)
12152 && (inst
.operands
[1].imm
& (mask
- 1)))
12153 as_warn (_("value stored for r%d is UNKNOWN"),
12154 inst
.operands
[0].reg
);
12156 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12157 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12158 inst
.instruction
|= inst
.operands
[1].imm
;
12161 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12163 /* This means 1 register in reg list one of 3 situations:
12164 1. Instruction is stmia, but without writeback.
12165 2. lmdia without writeback, but with Rn not in
12167 3. ldmia with writeback, but with Rn in reglist.
12168 Case 3 is UNPREDICTABLE behaviour, so we handle
12169 case 1 and 2 which can be converted into a 16-bit
12170 str or ldr. The SP cases are handled below. */
12171 unsigned long opcode
;
12172 /* First, record an error for Case 3. */
12173 if (inst
.operands
[1].imm
& mask
12174 && inst
.operands
[0].writeback
)
12176 _("having the base register in the register list when "
12177 "using write back is UNPREDICTABLE");
12179 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
12181 inst
.instruction
= THUMB_OP16 (opcode
);
12182 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12183 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
12187 else if (inst
.operands
[0] .reg
== REG_SP
)
12189 if (inst
.operands
[0].writeback
)
12192 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12193 ? T_MNEM_push
: T_MNEM_pop
);
12194 inst
.instruction
|= inst
.operands
[1].imm
;
12197 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12200 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12201 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
12202 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
12210 if (inst
.instruction
< 0xffff)
12211 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12213 encode_thumb2_multi (TRUE
/* do_io */, inst
.operands
[0].reg
,
12214 inst
.operands
[1].imm
,
12215 inst
.operands
[0].writeback
);
12220 constraint (inst
.operands
[0].reg
> 7
12221 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
12222 constraint (inst
.instruction
!= T_MNEM_ldmia
12223 && inst
.instruction
!= T_MNEM_stmia
,
12224 _("Thumb-2 instruction only valid in unified syntax"));
12225 if (inst
.instruction
== T_MNEM_stmia
)
12227 if (!inst
.operands
[0].writeback
)
12228 as_warn (_("this instruction will write back the base register"));
12229 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
12230 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
12231 as_warn (_("value stored for r%d is UNKNOWN"),
12232 inst
.operands
[0].reg
);
12236 if (!inst
.operands
[0].writeback
12237 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12238 as_warn (_("this instruction will write back the base register"));
12239 else if (inst
.operands
[0].writeback
12240 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12241 as_warn (_("this instruction will not write back the base register"));
12244 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12245 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12246 inst
.instruction
|= inst
.operands
[1].imm
;
12253 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
12254 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
12255 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
12256 || inst
.operands
[1].negative
,
12259 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
12261 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12262 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
12263 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
12269 if (!inst
.operands
[1].present
)
12271 constraint (inst
.operands
[0].reg
== REG_LR
,
12272 _("r14 not allowed as first register "
12273 "when second register is omitted"));
12274 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12276 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12279 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12280 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12281 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12287 unsigned long opcode
;
12290 if (inst
.operands
[0].isreg
12291 && !inst
.operands
[0].preind
12292 && inst
.operands
[0].reg
== REG_PC
)
12293 set_pred_insn_type_last ();
12295 opcode
= inst
.instruction
;
12296 if (unified_syntax
)
12298 if (!inst
.operands
[1].isreg
)
12300 if (opcode
<= 0xffff)
12301 inst
.instruction
= THUMB_OP32 (opcode
);
12302 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12305 if (inst
.operands
[1].isreg
12306 && !inst
.operands
[1].writeback
12307 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
12308 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
12309 && opcode
<= 0xffff
12310 && inst
.size_req
!= 4)
12312 /* Insn may have a 16-bit form. */
12313 Rn
= inst
.operands
[1].reg
;
12314 if (inst
.operands
[1].immisreg
)
12316 inst
.instruction
= THUMB_OP16 (opcode
);
12318 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
12320 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
12321 reject_bad_reg (inst
.operands
[1].imm
);
12323 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
12324 && opcode
!= T_MNEM_ldrsb
)
12325 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
12326 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
12333 if (inst
.relocs
[0].pc_rel
)
12334 opcode
= T_MNEM_ldr_pc2
;
12336 opcode
= T_MNEM_ldr_pc
;
12340 if (opcode
== T_MNEM_ldr
)
12341 opcode
= T_MNEM_ldr_sp
;
12343 opcode
= T_MNEM_str_sp
;
12345 inst
.instruction
= inst
.operands
[0].reg
<< 8;
12349 inst
.instruction
= inst
.operands
[0].reg
;
12350 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12352 inst
.instruction
|= THUMB_OP16 (opcode
);
12353 if (inst
.size_req
== 2)
12354 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12356 inst
.relax
= opcode
;
12360 /* Definitely a 32-bit variant. */
12362 /* Warning for Erratum 752419. */
12363 if (opcode
== T_MNEM_ldr
12364 && inst
.operands
[0].reg
== REG_SP
12365 && inst
.operands
[1].writeback
== 1
12366 && !inst
.operands
[1].immisreg
)
12368 if (no_cpu_selected ()
12369 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
12370 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
12371 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
12372 as_warn (_("This instruction may be unpredictable "
12373 "if executed on M-profile cores "
12374 "with interrupts enabled."));
12377 /* Do some validations regarding addressing modes. */
12378 if (inst
.operands
[1].immisreg
)
12379 reject_bad_reg (inst
.operands
[1].imm
);
12381 constraint (inst
.operands
[1].writeback
== 1
12382 && inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12385 inst
.instruction
= THUMB_OP32 (opcode
);
12386 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12387 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
12388 check_ldr_r15_aligned ();
12392 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12394 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
12396 /* Only [Rn,Rm] is acceptable. */
12397 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
12398 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
12399 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
12400 || inst
.operands
[1].negative
,
12401 _("Thumb does not support this addressing mode"));
12402 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12406 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12407 if (!inst
.operands
[1].isreg
)
12408 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12411 constraint (!inst
.operands
[1].preind
12412 || inst
.operands
[1].shifted
12413 || inst
.operands
[1].writeback
,
12414 _("Thumb does not support this addressing mode"));
12415 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
12417 constraint (inst
.instruction
& 0x0600,
12418 _("byte or halfword not valid for base register"));
12419 constraint (inst
.operands
[1].reg
== REG_PC
12420 && !(inst
.instruction
& THUMB_LOAD_BIT
),
12421 _("r15 based store not allowed"));
12422 constraint (inst
.operands
[1].immisreg
,
12423 _("invalid base register for register offset"));
12425 if (inst
.operands
[1].reg
== REG_PC
)
12426 inst
.instruction
= T_OPCODE_LDR_PC
;
12427 else if (inst
.instruction
& THUMB_LOAD_BIT
)
12428 inst
.instruction
= T_OPCODE_LDR_SP
;
12430 inst
.instruction
= T_OPCODE_STR_SP
;
12432 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12433 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12437 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
12438 if (!inst
.operands
[1].immisreg
)
12440 /* Immediate offset. */
12441 inst
.instruction
|= inst
.operands
[0].reg
;
12442 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12443 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12447 /* Register offset. */
12448 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
12449 constraint (inst
.operands
[1].negative
,
12450 _("Thumb does not support this addressing mode"));
12453 switch (inst
.instruction
)
12455 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
12456 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
12457 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
12458 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
12459 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
12460 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
12461 case 0x5600 /* ldrsb */:
12462 case 0x5e00 /* ldrsh */: break;
12466 inst
.instruction
|= inst
.operands
[0].reg
;
12467 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12468 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
12474 if (!inst
.operands
[1].present
)
12476 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12477 constraint (inst
.operands
[0].reg
== REG_LR
,
12478 _("r14 not allowed here"));
12479 constraint (inst
.operands
[0].reg
== REG_R12
,
12480 _("r12 not allowed here"));
12483 if (inst
.operands
[2].writeback
12484 && (inst
.operands
[0].reg
== inst
.operands
[2].reg
12485 || inst
.operands
[1].reg
== inst
.operands
[2].reg
))
12486 as_warn (_("base register written back, and overlaps "
12487 "one of transfer registers"));
12489 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12490 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12491 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
12497 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12498 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
12504 unsigned Rd
, Rn
, Rm
, Ra
;
12506 Rd
= inst
.operands
[0].reg
;
12507 Rn
= inst
.operands
[1].reg
;
12508 Rm
= inst
.operands
[2].reg
;
12509 Ra
= inst
.operands
[3].reg
;
12511 reject_bad_reg (Rd
);
12512 reject_bad_reg (Rn
);
12513 reject_bad_reg (Rm
);
12514 reject_bad_reg (Ra
);
12516 inst
.instruction
|= Rd
<< 8;
12517 inst
.instruction
|= Rn
<< 16;
12518 inst
.instruction
|= Rm
;
12519 inst
.instruction
|= Ra
<< 12;
12525 unsigned RdLo
, RdHi
, Rn
, Rm
;
12527 RdLo
= inst
.operands
[0].reg
;
12528 RdHi
= inst
.operands
[1].reg
;
12529 Rn
= inst
.operands
[2].reg
;
12530 Rm
= inst
.operands
[3].reg
;
12532 reject_bad_reg (RdLo
);
12533 reject_bad_reg (RdHi
);
12534 reject_bad_reg (Rn
);
12535 reject_bad_reg (Rm
);
12537 inst
.instruction
|= RdLo
<< 12;
12538 inst
.instruction
|= RdHi
<< 8;
12539 inst
.instruction
|= Rn
<< 16;
12540 inst
.instruction
|= Rm
;
12544 do_t_mov_cmp (void)
12548 Rn
= inst
.operands
[0].reg
;
12549 Rm
= inst
.operands
[1].reg
;
12552 set_pred_insn_type_last ();
12554 if (unified_syntax
)
12556 int r0off
= (inst
.instruction
== T_MNEM_mov
12557 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
12558 unsigned long opcode
;
12559 bfd_boolean narrow
;
12560 bfd_boolean low_regs
;
12562 low_regs
= (Rn
<= 7 && Rm
<= 7);
12563 opcode
= inst
.instruction
;
12564 if (in_pred_block ())
12565 narrow
= opcode
!= T_MNEM_movs
;
12567 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
12568 if (inst
.size_req
== 4
12569 || inst
.operands
[1].shifted
)
12572 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12573 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
12574 && !inst
.operands
[1].shifted
12578 inst
.instruction
= T2_SUBS_PC_LR
;
12582 if (opcode
== T_MNEM_cmp
)
12584 constraint (Rn
== REG_PC
, BAD_PC
);
12587 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12589 warn_deprecated_sp (Rm
);
12590 /* R15 was documented as a valid choice for Rm in ARMv6,
12591 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12592 tools reject R15, so we do too. */
12593 constraint (Rm
== REG_PC
, BAD_PC
);
12596 reject_bad_reg (Rm
);
12598 else if (opcode
== T_MNEM_mov
12599 || opcode
== T_MNEM_movs
)
12601 if (inst
.operands
[1].isreg
)
12603 if (opcode
== T_MNEM_movs
)
12605 reject_bad_reg (Rn
);
12606 reject_bad_reg (Rm
);
12610 /* This is mov.n. */
12611 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
12612 && (Rm
== REG_SP
|| Rm
== REG_PC
))
12614 as_tsktsk (_("Use of r%u as a source register is "
12615 "deprecated when r%u is the destination "
12616 "register."), Rm
, Rn
);
12621 /* This is mov.w. */
12622 constraint (Rn
== REG_PC
, BAD_PC
);
12623 constraint (Rm
== REG_PC
, BAD_PC
);
12624 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
12625 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
12629 reject_bad_reg (Rn
);
12632 if (!inst
.operands
[1].isreg
)
12634 /* Immediate operand. */
12635 if (!in_pred_block () && opcode
== T_MNEM_mov
)
12637 if (low_regs
&& narrow
)
12639 inst
.instruction
= THUMB_OP16 (opcode
);
12640 inst
.instruction
|= Rn
<< 8;
12641 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12642 || inst
.relocs
[0].type
> BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
12644 if (inst
.size_req
== 2)
12645 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12647 inst
.relax
= opcode
;
12652 constraint ((inst
.relocs
[0].type
12653 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
12654 && (inst
.relocs
[0].type
12655 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
12656 THUMB1_RELOC_ONLY
);
12658 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12659 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12660 inst
.instruction
|= Rn
<< r0off
;
12661 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12664 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
12665 && (inst
.instruction
== T_MNEM_mov
12666 || inst
.instruction
== T_MNEM_movs
))
12668 /* Register shifts are encoded as separate shift instructions. */
12669 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
12671 if (in_pred_block ())
12676 if (inst
.size_req
== 4)
12679 if (!low_regs
|| inst
.operands
[1].imm
> 7)
12685 switch (inst
.operands
[1].shift_kind
)
12688 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
12691 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
12694 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
12697 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
12703 inst
.instruction
= opcode
;
12706 inst
.instruction
|= Rn
;
12707 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
12712 inst
.instruction
|= CONDS_BIT
;
12714 inst
.instruction
|= Rn
<< 8;
12715 inst
.instruction
|= Rm
<< 16;
12716 inst
.instruction
|= inst
.operands
[1].imm
;
12721 /* Some mov with immediate shift have narrow variants.
12722 Register shifts are handled above. */
12723 if (low_regs
&& inst
.operands
[1].shifted
12724 && (inst
.instruction
== T_MNEM_mov
12725 || inst
.instruction
== T_MNEM_movs
))
12727 if (in_pred_block ())
12728 narrow
= (inst
.instruction
== T_MNEM_mov
);
12730 narrow
= (inst
.instruction
== T_MNEM_movs
);
12735 switch (inst
.operands
[1].shift_kind
)
12737 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
12738 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
12739 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
12740 default: narrow
= FALSE
; break;
12746 inst
.instruction
|= Rn
;
12747 inst
.instruction
|= Rm
<< 3;
12748 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
12752 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12753 inst
.instruction
|= Rn
<< r0off
;
12754 encode_thumb32_shifted_operand (1);
12758 switch (inst
.instruction
)
12761 /* In v4t or v5t a move of two lowregs produces unpredictable
12762 results. Don't allow this. */
12765 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
),
12766 "MOV Rd, Rs with two low registers is not "
12767 "permitted on this architecture");
12768 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
12772 inst
.instruction
= T_OPCODE_MOV_HR
;
12773 inst
.instruction
|= (Rn
& 0x8) << 4;
12774 inst
.instruction
|= (Rn
& 0x7);
12775 inst
.instruction
|= Rm
<< 3;
12779 /* We know we have low registers at this point.
12780 Generate LSLS Rd, Rs, #0. */
12781 inst
.instruction
= T_OPCODE_LSL_I
;
12782 inst
.instruction
|= Rn
;
12783 inst
.instruction
|= Rm
<< 3;
12789 inst
.instruction
= T_OPCODE_CMP_LR
;
12790 inst
.instruction
|= Rn
;
12791 inst
.instruction
|= Rm
<< 3;
12795 inst
.instruction
= T_OPCODE_CMP_HR
;
12796 inst
.instruction
|= (Rn
& 0x8) << 4;
12797 inst
.instruction
|= (Rn
& 0x7);
12798 inst
.instruction
|= Rm
<< 3;
12805 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12807 /* PR 10443: Do not silently ignore shifted operands. */
12808 constraint (inst
.operands
[1].shifted
,
12809 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12811 if (inst
.operands
[1].isreg
)
12813 if (Rn
< 8 && Rm
< 8)
12815 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12816 since a MOV instruction produces unpredictable results. */
12817 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12818 inst
.instruction
= T_OPCODE_ADD_I3
;
12820 inst
.instruction
= T_OPCODE_CMP_LR
;
12822 inst
.instruction
|= Rn
;
12823 inst
.instruction
|= Rm
<< 3;
12827 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12828 inst
.instruction
= T_OPCODE_MOV_HR
;
12830 inst
.instruction
= T_OPCODE_CMP_HR
;
12836 constraint (Rn
> 7,
12837 _("only lo regs allowed with immediate"));
12838 inst
.instruction
|= Rn
<< 8;
12839 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12850 top
= (inst
.instruction
& 0x00800000) != 0;
12851 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
)
12853 constraint (top
, _(":lower16: not allowed in this instruction"));
12854 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVW
;
12856 else if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
)
12858 constraint (!top
, _(":upper16: not allowed in this instruction"));
12859 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVT
;
12862 Rd
= inst
.operands
[0].reg
;
12863 reject_bad_reg (Rd
);
12865 inst
.instruction
|= Rd
<< 8;
12866 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
12868 imm
= inst
.relocs
[0].exp
.X_add_number
;
12869 inst
.instruction
|= (imm
& 0xf000) << 4;
12870 inst
.instruction
|= (imm
& 0x0800) << 15;
12871 inst
.instruction
|= (imm
& 0x0700) << 4;
12872 inst
.instruction
|= (imm
& 0x00ff);
12877 do_t_mvn_tst (void)
12881 Rn
= inst
.operands
[0].reg
;
12882 Rm
= inst
.operands
[1].reg
;
12884 if (inst
.instruction
== T_MNEM_cmp
12885 || inst
.instruction
== T_MNEM_cmn
)
12886 constraint (Rn
== REG_PC
, BAD_PC
);
12888 reject_bad_reg (Rn
);
12889 reject_bad_reg (Rm
);
12891 if (unified_syntax
)
12893 int r0off
= (inst
.instruction
== T_MNEM_mvn
12894 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
12895 bfd_boolean narrow
;
12897 if (inst
.size_req
== 4
12898 || inst
.instruction
> 0xffff
12899 || inst
.operands
[1].shifted
12900 || Rn
> 7 || Rm
> 7)
12902 else if (inst
.instruction
== T_MNEM_cmn
12903 || inst
.instruction
== T_MNEM_tst
)
12905 else if (THUMB_SETS_FLAGS (inst
.instruction
))
12906 narrow
= !in_pred_block ();
12908 narrow
= in_pred_block ();
12910 if (!inst
.operands
[1].isreg
)
12912 /* For an immediate, we always generate a 32-bit opcode;
12913 section relaxation will shrink it later if possible. */
12914 if (inst
.instruction
< 0xffff)
12915 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12916 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12917 inst
.instruction
|= Rn
<< r0off
;
12918 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12922 /* See if we can do this with a 16-bit instruction. */
12925 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12926 inst
.instruction
|= Rn
;
12927 inst
.instruction
|= Rm
<< 3;
12931 constraint (inst
.operands
[1].shifted
12932 && inst
.operands
[1].immisreg
,
12933 _("shift must be constant"));
12934 if (inst
.instruction
< 0xffff)
12935 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12936 inst
.instruction
|= Rn
<< r0off
;
12937 encode_thumb32_shifted_operand (1);
12943 constraint (inst
.instruction
> 0xffff
12944 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
12945 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
12946 _("unshifted register required"));
12947 constraint (Rn
> 7 || Rm
> 7,
12950 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12951 inst
.instruction
|= Rn
;
12952 inst
.instruction
|= Rm
<< 3;
12961 if (do_vfp_nsyn_mrs () == SUCCESS
)
12964 Rd
= inst
.operands
[0].reg
;
12965 reject_bad_reg (Rd
);
12966 inst
.instruction
|= Rd
<< 8;
12968 if (inst
.operands
[1].isreg
)
12970 unsigned br
= inst
.operands
[1].reg
;
12971 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
12972 as_bad (_("bad register for mrs"));
12974 inst
.instruction
|= br
& (0xf << 16);
12975 inst
.instruction
|= (br
& 0x300) >> 4;
12976 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
12980 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
12982 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
12984 /* PR gas/12698: The constraint is only applied for m_profile.
12985 If the user has specified -march=all, we want to ignore it as
12986 we are building for any CPU type, including non-m variants. */
12987 bfd_boolean m_profile
=
12988 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
12989 constraint ((flags
!= 0) && m_profile
, _("selected processor does "
12990 "not support requested special purpose register"));
12993 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12995 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
12996 _("'APSR', 'CPSR' or 'SPSR' expected"));
12998 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
12999 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
13000 inst
.instruction
|= 0xf0000;
13010 if (do_vfp_nsyn_msr () == SUCCESS
)
13013 constraint (!inst
.operands
[1].isreg
,
13014 _("Thumb encoding does not support an immediate here"));
13016 if (inst
.operands
[0].isreg
)
13017 flags
= (int)(inst
.operands
[0].reg
);
13019 flags
= inst
.operands
[0].imm
;
13021 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13023 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13025 /* PR gas/12698: The constraint is only applied for m_profile.
13026 If the user has specified -march=all, we want to ignore it as
13027 we are building for any CPU type, including non-m variants. */
13028 bfd_boolean m_profile
=
13029 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13030 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13031 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
13032 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13033 && bits
!= PSR_f
)) && m_profile
,
13034 _("selected processor does not support requested special "
13035 "purpose register"));
13038 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
13039 "requested special purpose register"));
13041 Rn
= inst
.operands
[1].reg
;
13042 reject_bad_reg (Rn
);
13044 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13045 inst
.instruction
|= (flags
& 0xf0000) >> 8;
13046 inst
.instruction
|= (flags
& 0x300) >> 4;
13047 inst
.instruction
|= (flags
& 0xff);
13048 inst
.instruction
|= Rn
<< 16;
13054 bfd_boolean narrow
;
13055 unsigned Rd
, Rn
, Rm
;
13057 if (!inst
.operands
[2].present
)
13058 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
13060 Rd
= inst
.operands
[0].reg
;
13061 Rn
= inst
.operands
[1].reg
;
13062 Rm
= inst
.operands
[2].reg
;
13064 if (unified_syntax
)
13066 if (inst
.size_req
== 4
13072 else if (inst
.instruction
== T_MNEM_muls
)
13073 narrow
= !in_pred_block ();
13075 narrow
= in_pred_block ();
13079 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
13080 constraint (Rn
> 7 || Rm
> 7,
13087 /* 16-bit MULS/Conditional MUL. */
13088 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13089 inst
.instruction
|= Rd
;
13092 inst
.instruction
|= Rm
<< 3;
13094 inst
.instruction
|= Rn
<< 3;
13096 constraint (1, _("dest must overlap one source register"));
13100 constraint (inst
.instruction
!= T_MNEM_mul
,
13101 _("Thumb-2 MUL must not set flags"));
13103 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13104 inst
.instruction
|= Rd
<< 8;
13105 inst
.instruction
|= Rn
<< 16;
13106 inst
.instruction
|= Rm
<< 0;
13108 reject_bad_reg (Rd
);
13109 reject_bad_reg (Rn
);
13110 reject_bad_reg (Rm
);
13117 unsigned RdLo
, RdHi
, Rn
, Rm
;
13119 RdLo
= inst
.operands
[0].reg
;
13120 RdHi
= inst
.operands
[1].reg
;
13121 Rn
= inst
.operands
[2].reg
;
13122 Rm
= inst
.operands
[3].reg
;
13124 reject_bad_reg (RdLo
);
13125 reject_bad_reg (RdHi
);
13126 reject_bad_reg (Rn
);
13127 reject_bad_reg (Rm
);
13129 inst
.instruction
|= RdLo
<< 12;
13130 inst
.instruction
|= RdHi
<< 8;
13131 inst
.instruction
|= Rn
<< 16;
13132 inst
.instruction
|= Rm
;
13135 as_tsktsk (_("rdhi and rdlo must be different"));
13141 set_pred_insn_type (NEUTRAL_IT_INSN
);
13143 if (unified_syntax
)
13145 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
13147 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13148 inst
.instruction
|= inst
.operands
[0].imm
;
13152 /* PR9722: Check for Thumb2 availability before
13153 generating a thumb2 nop instruction. */
13154 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
13156 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13157 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
13160 inst
.instruction
= 0x46c0;
13165 constraint (inst
.operands
[0].present
,
13166 _("Thumb does not support NOP with hints"));
13167 inst
.instruction
= 0x46c0;
13174 if (unified_syntax
)
13176 bfd_boolean narrow
;
13178 if (THUMB_SETS_FLAGS (inst
.instruction
))
13179 narrow
= !in_pred_block ();
13181 narrow
= in_pred_block ();
13182 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13184 if (inst
.size_req
== 4)
13189 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13190 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13191 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13195 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13196 inst
.instruction
|= inst
.operands
[0].reg
;
13197 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13202 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
13204 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13206 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13207 inst
.instruction
|= inst
.operands
[0].reg
;
13208 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13217 Rd
= inst
.operands
[0].reg
;
13218 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
13220 reject_bad_reg (Rd
);
13221 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13222 reject_bad_reg (Rn
);
13224 inst
.instruction
|= Rd
<< 8;
13225 inst
.instruction
|= Rn
<< 16;
13227 if (!inst
.operands
[2].isreg
)
13229 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13230 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13236 Rm
= inst
.operands
[2].reg
;
13237 reject_bad_reg (Rm
);
13239 constraint (inst
.operands
[2].shifted
13240 && inst
.operands
[2].immisreg
,
13241 _("shift must be constant"));
13242 encode_thumb32_shifted_operand (2);
13249 unsigned Rd
, Rn
, Rm
;
13251 Rd
= inst
.operands
[0].reg
;
13252 Rn
= inst
.operands
[1].reg
;
13253 Rm
= inst
.operands
[2].reg
;
13255 reject_bad_reg (Rd
);
13256 reject_bad_reg (Rn
);
13257 reject_bad_reg (Rm
);
13259 inst
.instruction
|= Rd
<< 8;
13260 inst
.instruction
|= Rn
<< 16;
13261 inst
.instruction
|= Rm
;
13262 if (inst
.operands
[3].present
)
13264 unsigned int val
= inst
.relocs
[0].exp
.X_add_number
;
13265 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13266 _("expression too complex"));
13267 inst
.instruction
|= (val
& 0x1c) << 10;
13268 inst
.instruction
|= (val
& 0x03) << 6;
13275 if (!inst
.operands
[3].present
)
13279 inst
.instruction
&= ~0x00000020;
13281 /* PR 10168. Swap the Rm and Rn registers. */
13282 Rtmp
= inst
.operands
[1].reg
;
13283 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
13284 inst
.operands
[2].reg
= Rtmp
;
13292 if (inst
.operands
[0].immisreg
)
13293 reject_bad_reg (inst
.operands
[0].imm
);
13295 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
13299 do_t_push_pop (void)
13303 constraint (inst
.operands
[0].writeback
,
13304 _("push/pop do not support {reglist}^"));
13305 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
13306 _("expression too complex"));
13308 mask
= inst
.operands
[0].imm
;
13309 if (inst
.size_req
!= 4 && (mask
& ~0xff) == 0)
13310 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
13311 else if (inst
.size_req
!= 4
13312 && (mask
& ~0xff) == (1U << (inst
.instruction
== T_MNEM_push
13313 ? REG_LR
: REG_PC
)))
13315 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13316 inst
.instruction
|= THUMB_PP_PC_LR
;
13317 inst
.instruction
|= mask
& 0xff;
13319 else if (unified_syntax
)
13321 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13322 encode_thumb2_multi (TRUE
/* do_io */, 13, mask
, TRUE
);
13326 inst
.error
= _("invalid register list to push/pop instruction");
13334 if (unified_syntax
)
13335 encode_thumb2_multi (FALSE
/* do_io */, -1, inst
.operands
[0].imm
, FALSE
);
13338 inst
.error
= _("invalid register list to push/pop instruction");
13344 do_t_vscclrm (void)
13346 if (inst
.operands
[0].issingle
)
13348 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1) << 22;
13349 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1e) << 11;
13350 inst
.instruction
|= inst
.operands
[0].imm
;
13354 inst
.instruction
|= (inst
.operands
[0].reg
& 0x10) << 18;
13355 inst
.instruction
|= (inst
.operands
[0].reg
& 0xf) << 12;
13356 inst
.instruction
|= 1 << 8;
13357 inst
.instruction
|= inst
.operands
[0].imm
<< 1;
13366 Rd
= inst
.operands
[0].reg
;
13367 Rm
= inst
.operands
[1].reg
;
13369 reject_bad_reg (Rd
);
13370 reject_bad_reg (Rm
);
13372 inst
.instruction
|= Rd
<< 8;
13373 inst
.instruction
|= Rm
<< 16;
13374 inst
.instruction
|= Rm
;
13382 Rd
= inst
.operands
[0].reg
;
13383 Rm
= inst
.operands
[1].reg
;
13385 reject_bad_reg (Rd
);
13386 reject_bad_reg (Rm
);
13388 if (Rd
<= 7 && Rm
<= 7
13389 && inst
.size_req
!= 4)
13391 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13392 inst
.instruction
|= Rd
;
13393 inst
.instruction
|= Rm
<< 3;
13395 else if (unified_syntax
)
13397 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13398 inst
.instruction
|= Rd
<< 8;
13399 inst
.instruction
|= Rm
<< 16;
13400 inst
.instruction
|= Rm
;
13403 inst
.error
= BAD_HIREG
;
13411 Rd
= inst
.operands
[0].reg
;
13412 Rm
= inst
.operands
[1].reg
;
13414 reject_bad_reg (Rd
);
13415 reject_bad_reg (Rm
);
13417 inst
.instruction
|= Rd
<< 8;
13418 inst
.instruction
|= Rm
;
13426 Rd
= inst
.operands
[0].reg
;
13427 Rs
= (inst
.operands
[1].present
13428 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
13429 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
13431 reject_bad_reg (Rd
);
13432 reject_bad_reg (Rs
);
13433 if (inst
.operands
[2].isreg
)
13434 reject_bad_reg (inst
.operands
[2].reg
);
13436 inst
.instruction
|= Rd
<< 8;
13437 inst
.instruction
|= Rs
<< 16;
13438 if (!inst
.operands
[2].isreg
)
13440 bfd_boolean narrow
;
13442 if ((inst
.instruction
& 0x00100000) != 0)
13443 narrow
= !in_pred_block ();
13445 narrow
= in_pred_block ();
13447 if (Rd
> 7 || Rs
> 7)
13450 if (inst
.size_req
== 4 || !unified_syntax
)
13453 if (inst
.relocs
[0].exp
.X_op
!= O_constant
13454 || inst
.relocs
[0].exp
.X_add_number
!= 0)
13457 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13458 relaxation, but it doesn't seem worth the hassle. */
13461 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13462 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
13463 inst
.instruction
|= Rs
<< 3;
13464 inst
.instruction
|= Rd
;
13468 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13469 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13473 encode_thumb32_shifted_operand (2);
13479 if (warn_on_deprecated
13480 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13481 as_tsktsk (_("setend use is deprecated for ARMv8"));
13483 set_pred_insn_type (OUTSIDE_PRED_INSN
);
13484 if (inst
.operands
[0].imm
)
13485 inst
.instruction
|= 0x8;
13491 if (!inst
.operands
[1].present
)
13492 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
13494 if (unified_syntax
)
13496 bfd_boolean narrow
;
13499 switch (inst
.instruction
)
13502 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
13504 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
13506 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
13508 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
13512 if (THUMB_SETS_FLAGS (inst
.instruction
))
13513 narrow
= !in_pred_block ();
13515 narrow
= in_pred_block ();
13516 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13518 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
13520 if (inst
.operands
[2].isreg
13521 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
13522 || inst
.operands
[2].reg
> 7))
13524 if (inst
.size_req
== 4)
13527 reject_bad_reg (inst
.operands
[0].reg
);
13528 reject_bad_reg (inst
.operands
[1].reg
);
13532 if (inst
.operands
[2].isreg
)
13534 reject_bad_reg (inst
.operands
[2].reg
);
13535 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13536 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13537 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13538 inst
.instruction
|= inst
.operands
[2].reg
;
13540 /* PR 12854: Error on extraneous shifts. */
13541 constraint (inst
.operands
[2].shifted
,
13542 _("extraneous shift as part of operand to shift insn"));
13546 inst
.operands
[1].shifted
= 1;
13547 inst
.operands
[1].shift_kind
= shift_kind
;
13548 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
13549 ? T_MNEM_movs
: T_MNEM_mov
);
13550 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13551 encode_thumb32_shifted_operand (1);
13552 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13553 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13558 if (inst
.operands
[2].isreg
)
13560 switch (shift_kind
)
13562 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13563 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13564 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13565 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13569 inst
.instruction
|= inst
.operands
[0].reg
;
13570 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13572 /* PR 12854: Error on extraneous shifts. */
13573 constraint (inst
.operands
[2].shifted
,
13574 _("extraneous shift as part of operand to shift insn"));
13578 switch (shift_kind
)
13580 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13581 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13582 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13585 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13586 inst
.instruction
|= inst
.operands
[0].reg
;
13587 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13593 constraint (inst
.operands
[0].reg
> 7
13594 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
13595 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13597 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
13599 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
13600 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13601 _("source1 and dest must be same register"));
13603 switch (inst
.instruction
)
13605 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13606 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13607 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13608 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13612 inst
.instruction
|= inst
.operands
[0].reg
;
13613 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13615 /* PR 12854: Error on extraneous shifts. */
13616 constraint (inst
.operands
[2].shifted
,
13617 _("extraneous shift as part of operand to shift insn"));
13621 switch (inst
.instruction
)
13623 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13624 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13625 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13626 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
13629 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13630 inst
.instruction
|= inst
.operands
[0].reg
;
13631 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13639 unsigned Rd
, Rn
, Rm
;
13641 Rd
= inst
.operands
[0].reg
;
13642 Rn
= inst
.operands
[1].reg
;
13643 Rm
= inst
.operands
[2].reg
;
13645 reject_bad_reg (Rd
);
13646 reject_bad_reg (Rn
);
13647 reject_bad_reg (Rm
);
13649 inst
.instruction
|= Rd
<< 8;
13650 inst
.instruction
|= Rn
<< 16;
13651 inst
.instruction
|= Rm
;
13657 unsigned Rd
, Rn
, Rm
;
13659 Rd
= inst
.operands
[0].reg
;
13660 Rm
= inst
.operands
[1].reg
;
13661 Rn
= inst
.operands
[2].reg
;
13663 reject_bad_reg (Rd
);
13664 reject_bad_reg (Rn
);
13665 reject_bad_reg (Rm
);
13667 inst
.instruction
|= Rd
<< 8;
13668 inst
.instruction
|= Rn
<< 16;
13669 inst
.instruction
|= Rm
;
13675 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13676 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
13677 _("SMC is not permitted on this architecture"));
13678 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13679 _("expression too complex"));
13680 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13681 inst
.instruction
|= (value
& 0xf000) >> 12;
13682 inst
.instruction
|= (value
& 0x0ff0);
13683 inst
.instruction
|= (value
& 0x000f) << 16;
13684 /* PR gas/15623: SMC instructions must be last in an IT block. */
13685 set_pred_insn_type_last ();
13691 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13693 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13694 inst
.instruction
|= (value
& 0x0fff);
13695 inst
.instruction
|= (value
& 0xf000) << 4;
13699 do_t_ssat_usat (int bias
)
13703 Rd
= inst
.operands
[0].reg
;
13704 Rn
= inst
.operands
[2].reg
;
13706 reject_bad_reg (Rd
);
13707 reject_bad_reg (Rn
);
13709 inst
.instruction
|= Rd
<< 8;
13710 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
13711 inst
.instruction
|= Rn
<< 16;
13713 if (inst
.operands
[3].present
)
13715 offsetT shift_amount
= inst
.relocs
[0].exp
.X_add_number
;
13717 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13719 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13720 _("expression too complex"));
13722 if (shift_amount
!= 0)
13724 constraint (shift_amount
> 31,
13725 _("shift expression is too large"));
13727 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
13728 inst
.instruction
|= 0x00200000; /* sh bit. */
13730 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
13731 inst
.instruction
|= (shift_amount
& 0x03) << 6;
13739 do_t_ssat_usat (1);
13747 Rd
= inst
.operands
[0].reg
;
13748 Rn
= inst
.operands
[2].reg
;
13750 reject_bad_reg (Rd
);
13751 reject_bad_reg (Rn
);
13753 inst
.instruction
|= Rd
<< 8;
13754 inst
.instruction
|= inst
.operands
[1].imm
- 1;
13755 inst
.instruction
|= Rn
<< 16;
13761 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
13762 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
13763 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
13764 || inst
.operands
[2].negative
,
13767 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
13769 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13770 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13771 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
13772 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
13778 if (!inst
.operands
[2].present
)
13779 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
13781 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
13782 || inst
.operands
[0].reg
== inst
.operands
[2].reg
13783 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
13786 inst
.instruction
|= inst
.operands
[0].reg
;
13787 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13788 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
13789 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
13795 unsigned Rd
, Rn
, Rm
;
13797 Rd
= inst
.operands
[0].reg
;
13798 Rn
= inst
.operands
[1].reg
;
13799 Rm
= inst
.operands
[2].reg
;
13801 reject_bad_reg (Rd
);
13802 reject_bad_reg (Rn
);
13803 reject_bad_reg (Rm
);
13805 inst
.instruction
|= Rd
<< 8;
13806 inst
.instruction
|= Rn
<< 16;
13807 inst
.instruction
|= Rm
;
13808 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
13816 Rd
= inst
.operands
[0].reg
;
13817 Rm
= inst
.operands
[1].reg
;
13819 reject_bad_reg (Rd
);
13820 reject_bad_reg (Rm
);
13822 if (inst
.instruction
<= 0xffff
13823 && inst
.size_req
!= 4
13824 && Rd
<= 7 && Rm
<= 7
13825 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
13827 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13828 inst
.instruction
|= Rd
;
13829 inst
.instruction
|= Rm
<< 3;
13831 else if (unified_syntax
)
13833 if (inst
.instruction
<= 0xffff)
13834 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13835 inst
.instruction
|= Rd
<< 8;
13836 inst
.instruction
|= Rm
;
13837 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
13841 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
13842 _("Thumb encoding does not support rotation"));
13843 constraint (1, BAD_HIREG
);
13850 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
13859 half
= (inst
.instruction
& 0x10) != 0;
13860 set_pred_insn_type_last ();
13861 constraint (inst
.operands
[0].immisreg
,
13862 _("instruction requires register index"));
13864 Rn
= inst
.operands
[0].reg
;
13865 Rm
= inst
.operands
[0].imm
;
13867 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13868 constraint (Rn
== REG_SP
, BAD_SP
);
13869 reject_bad_reg (Rm
);
13871 constraint (!half
&& inst
.operands
[0].shifted
,
13872 _("instruction does not allow shifted index"));
13873 inst
.instruction
|= (Rn
<< 16) | Rm
;
13879 if (!inst
.operands
[0].present
)
13880 inst
.operands
[0].imm
= 0;
13882 if ((unsigned int) inst
.operands
[0].imm
> 255 || inst
.size_req
== 4)
13884 constraint (inst
.size_req
== 2,
13885 _("immediate value out of range"));
13886 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13887 inst
.instruction
|= (inst
.operands
[0].imm
& 0xf000u
) << 4;
13888 inst
.instruction
|= (inst
.operands
[0].imm
& 0x0fffu
) << 0;
13892 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13893 inst
.instruction
|= inst
.operands
[0].imm
;
13896 set_pred_insn_type (NEUTRAL_IT_INSN
);
13903 do_t_ssat_usat (0);
13911 Rd
= inst
.operands
[0].reg
;
13912 Rn
= inst
.operands
[2].reg
;
13914 reject_bad_reg (Rd
);
13915 reject_bad_reg (Rn
);
13917 inst
.instruction
|= Rd
<< 8;
13918 inst
.instruction
|= inst
.operands
[1].imm
;
13919 inst
.instruction
|= Rn
<< 16;
13922 /* Checking the range of the branch offset (VAL) with NBITS bits
13923 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13925 v8_1_branch_value_check (int val
, int nbits
, int is_signed
)
13927 gas_assert (nbits
> 0 && nbits
<= 32);
13930 int cmp
= (1 << (nbits
- 1));
13931 if ((val
< -cmp
) || (val
>= cmp
) || (val
& 0x01))
13936 if ((val
<= 0) || (val
>= (1 << nbits
)) || (val
& 0x1))
13942 /* For branches in Armv8.1-M Mainline. */
13944 do_t_branch_future (void)
13946 unsigned long insn
= inst
.instruction
;
13948 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13949 if (inst
.operands
[0].hasreloc
== 0)
13951 if (v8_1_branch_value_check (inst
.operands
[0].imm
, 5, FALSE
) == FAIL
)
13952 as_bad (BAD_BRANCH_OFF
);
13954 inst
.instruction
|= ((inst
.operands
[0].imm
& 0x1f) >> 1) << 23;
13958 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH5
;
13959 inst
.relocs
[0].pc_rel
= 1;
13965 if (inst
.operands
[1].hasreloc
== 0)
13967 int val
= inst
.operands
[1].imm
;
13968 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 17, TRUE
) == FAIL
)
13969 as_bad (BAD_BRANCH_OFF
);
13971 int immA
= (val
& 0x0001f000) >> 12;
13972 int immB
= (val
& 0x00000ffc) >> 2;
13973 int immC
= (val
& 0x00000002) >> 1;
13974 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
13978 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF17
;
13979 inst
.relocs
[1].pc_rel
= 1;
13984 if (inst
.operands
[1].hasreloc
== 0)
13986 int val
= inst
.operands
[1].imm
;
13987 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 19, TRUE
) == FAIL
)
13988 as_bad (BAD_BRANCH_OFF
);
13990 int immA
= (val
& 0x0007f000) >> 12;
13991 int immB
= (val
& 0x00000ffc) >> 2;
13992 int immC
= (val
& 0x00000002) >> 1;
13993 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
13997 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF19
;
13998 inst
.relocs
[1].pc_rel
= 1;
14002 case T_MNEM_bfcsel
:
14004 if (inst
.operands
[1].hasreloc
== 0)
14006 int val
= inst
.operands
[1].imm
;
14007 int immA
= (val
& 0x00001000) >> 12;
14008 int immB
= (val
& 0x00000ffc) >> 2;
14009 int immC
= (val
& 0x00000002) >> 1;
14010 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14014 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF13
;
14015 inst
.relocs
[1].pc_rel
= 1;
14019 if (inst
.operands
[2].hasreloc
== 0)
14021 constraint ((inst
.operands
[0].hasreloc
!= 0), BAD_ARGS
);
14022 int val2
= inst
.operands
[2].imm
;
14023 int val0
= inst
.operands
[0].imm
& 0x1f;
14024 int diff
= val2
- val0
;
14026 inst
.instruction
|= 1 << 17; /* T bit. */
14027 else if (diff
!= 2)
14028 as_bad (_("out of range label-relative fixup value"));
14032 constraint ((inst
.operands
[0].hasreloc
== 0), BAD_ARGS
);
14033 inst
.relocs
[2].type
= BFD_RELOC_THUMB_PCREL_BFCSEL
;
14034 inst
.relocs
[2].pc_rel
= 1;
14038 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
14039 inst
.instruction
|= (inst
.operands
[3].imm
& 0xf) << 18;
14044 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14051 /* Helper function for do_t_loloop to handle relocations. */
14053 v8_1_loop_reloc (int is_le
)
14055 if (inst
.relocs
[0].exp
.X_op
== O_constant
)
14057 int value
= inst
.relocs
[0].exp
.X_add_number
;
14058 value
= (is_le
) ? -value
: value
;
14060 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
14061 as_bad (BAD_BRANCH_OFF
);
14065 immh
= (value
& 0x00000ffc) >> 2;
14066 imml
= (value
& 0x00000002) >> 1;
14068 inst
.instruction
|= (imml
<< 11) | (immh
<< 1);
14072 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_LOOP12
;
14073 inst
.relocs
[0].pc_rel
= 1;
14077 /* To handle the Scalar Low Overhead Loop instructions
14078 in Armv8.1-M Mainline. */
14082 unsigned long insn
= inst
.instruction
;
14084 set_pred_insn_type (OUTSIDE_PRED_INSN
);
14085 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14091 if (!inst
.operands
[0].present
)
14092 inst
.instruction
|= 1 << 21;
14094 v8_1_loop_reloc (TRUE
);
14098 v8_1_loop_reloc (FALSE
);
14099 /* Fall through. */
14101 constraint (inst
.operands
[1].isreg
!= 1, BAD_ARGS
);
14102 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
14109 /* MVE instruction encoder helpers. */
14110 #define M_MNEM_vabav 0xee800f01
14111 #define M_MNEM_vmladav 0xeef00e00
14112 #define M_MNEM_vmladava 0xeef00e20
14113 #define M_MNEM_vmladavx 0xeef01e00
14114 #define M_MNEM_vmladavax 0xeef01e20
14115 #define M_MNEM_vmlsdav 0xeef00e01
14116 #define M_MNEM_vmlsdava 0xeef00e21
14117 #define M_MNEM_vmlsdavx 0xeef01e01
14118 #define M_MNEM_vmlsdavax 0xeef01e21
14119 #define M_MNEM_vmullt 0xee011e00
14120 #define M_MNEM_vmullb 0xee010e00
14121 #define M_MNEM_vst20 0xfc801e00
14122 #define M_MNEM_vst21 0xfc801e20
14123 #define M_MNEM_vst40 0xfc801e01
14124 #define M_MNEM_vst41 0xfc801e21
14125 #define M_MNEM_vst42 0xfc801e41
14126 #define M_MNEM_vst43 0xfc801e61
14127 #define M_MNEM_vld20 0xfc901e00
14128 #define M_MNEM_vld21 0xfc901e20
14129 #define M_MNEM_vld40 0xfc901e01
14130 #define M_MNEM_vld41 0xfc901e21
14131 #define M_MNEM_vld42 0xfc901e41
14132 #define M_MNEM_vld43 0xfc901e61
14133 #define M_MNEM_vstrb 0xec000e00
14134 #define M_MNEM_vstrh 0xec000e10
14135 #define M_MNEM_vstrw 0xec000e40
14136 #define M_MNEM_vstrd 0xec000e50
14137 #define M_MNEM_vldrb 0xec100e00
14138 #define M_MNEM_vldrh 0xec100e10
14139 #define M_MNEM_vldrw 0xec100e40
14140 #define M_MNEM_vldrd 0xec100e50
14141 #define M_MNEM_vmovlt 0xeea01f40
14142 #define M_MNEM_vmovlb 0xeea00f40
14143 #define M_MNEM_vmovnt 0xfe311e81
14144 #define M_MNEM_vmovnb 0xfe310e81
14145 #define M_MNEM_vadc 0xee300f00
14146 #define M_MNEM_vadci 0xee301f00
14147 #define M_MNEM_vbrsr 0xfe011e60
14148 #define M_MNEM_vaddlv 0xee890f00
14149 #define M_MNEM_vaddlva 0xee890f20
14150 #define M_MNEM_vaddv 0xeef10f00
14151 #define M_MNEM_vaddva 0xeef10f20
14153 /* Neon instruction encoder helpers. */
14155 /* Encodings for the different types for various Neon opcodes. */
14157 /* An "invalid" code for the following tables. */
14160 struct neon_tab_entry
14163 unsigned float_or_poly
;
14164 unsigned scalar_or_imm
;
14167 /* Map overloaded Neon opcodes to their respective encodings. */
14168 #define NEON_ENC_TAB \
14169 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14170 X(vabdl, 0x0800700, N_INV, N_INV), \
14171 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14172 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14173 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14174 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14175 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14176 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14177 X(vaddl, 0x0800000, N_INV, N_INV), \
14178 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14179 X(vsubl, 0x0800200, N_INV, N_INV), \
14180 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14181 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14182 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14183 /* Register variants of the following two instructions are encoded as
14184 vcge / vcgt with the operands reversed. */ \
14185 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14186 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14187 X(vfma, N_INV, 0x0000c10, N_INV), \
14188 X(vfms, N_INV, 0x0200c10, N_INV), \
14189 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14190 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14191 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14192 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14193 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14194 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14195 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14196 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14197 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14198 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14199 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14200 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14201 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14202 X(vshl, 0x0000400, N_INV, 0x0800510), \
14203 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14204 X(vand, 0x0000110, N_INV, 0x0800030), \
14205 X(vbic, 0x0100110, N_INV, 0x0800030), \
14206 X(veor, 0x1000110, N_INV, N_INV), \
14207 X(vorn, 0x0300110, N_INV, 0x0800010), \
14208 X(vorr, 0x0200110, N_INV, 0x0800010), \
14209 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14210 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14211 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14212 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14213 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14214 X(vst1, 0x0000000, 0x0800000, N_INV), \
14215 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14216 X(vst2, 0x0000100, 0x0800100, N_INV), \
14217 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14218 X(vst3, 0x0000200, 0x0800200, N_INV), \
14219 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14220 X(vst4, 0x0000300, 0x0800300, N_INV), \
14221 X(vmovn, 0x1b20200, N_INV, N_INV), \
14222 X(vtrn, 0x1b20080, N_INV, N_INV), \
14223 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14224 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14225 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14226 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14227 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14228 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14229 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14230 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14231 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14232 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14233 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14234 X(vseleq, 0xe000a00, N_INV, N_INV), \
14235 X(vselvs, 0xe100a00, N_INV, N_INV), \
14236 X(vselge, 0xe200a00, N_INV, N_INV), \
14237 X(vselgt, 0xe300a00, N_INV, N_INV), \
14238 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14239 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14240 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14241 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14242 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14243 X(aes, 0x3b00300, N_INV, N_INV), \
14244 X(sha3op, 0x2000c00, N_INV, N_INV), \
14245 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14246 X(sha2op, 0x3ba0380, N_INV, N_INV)
14250 #define X(OPC,I,F,S) N_MNEM_##OPC
14255 static const struct neon_tab_entry neon_enc_tab
[] =
14257 #define X(OPC,I,F,S) { (I), (F), (S) }
14262 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14263 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14264 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14265 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14266 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14267 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14268 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14269 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14270 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14271 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14272 #define NEON_ENC_SINGLE_(X) \
14273 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14274 #define NEON_ENC_DOUBLE_(X) \
14275 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14276 #define NEON_ENC_FPV8_(X) \
14277 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14279 #define NEON_ENCODE(type, inst) \
14282 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14283 inst.is_neon = 1; \
14287 #define check_neon_suffixes \
14290 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14292 as_bad (_("invalid neon suffix for non neon instruction")); \
14298 /* Define shapes for instruction operands. The following mnemonic characters
14299 are used in this table:
14301 F - VFP S<n> register
14302 D - Neon D<n> register
14303 Q - Neon Q<n> register
14307 L - D<n> register list
14309 This table is used to generate various data:
14310 - enumerations of the form NS_DDR to be used as arguments to
14312 - a table classifying shapes into single, double, quad, mixed.
14313 - a table used to drive neon_select_shape. */
14315 #define NEON_SHAPE_DEF \
14316 X(4, (R, R, S, S), QUAD), \
14317 X(4, (S, S, R, R), QUAD), \
14318 X(3, (I, Q, Q), QUAD), \
14319 X(3, (I, Q, R), QUAD), \
14320 X(3, (R, Q, Q), QUAD), \
14321 X(3, (D, D, D), DOUBLE), \
14322 X(3, (Q, Q, Q), QUAD), \
14323 X(3, (D, D, I), DOUBLE), \
14324 X(3, (Q, Q, I), QUAD), \
14325 X(3, (D, D, S), DOUBLE), \
14326 X(3, (Q, Q, S), QUAD), \
14327 X(3, (Q, Q, R), QUAD), \
14328 X(3, (R, R, Q), QUAD), \
14329 X(2, (R, Q), QUAD), \
14330 X(2, (D, D), DOUBLE), \
14331 X(2, (Q, Q), QUAD), \
14332 X(2, (D, S), DOUBLE), \
14333 X(2, (Q, S), QUAD), \
14334 X(2, (D, R), DOUBLE), \
14335 X(2, (Q, R), QUAD), \
14336 X(2, (D, I), DOUBLE), \
14337 X(2, (Q, I), QUAD), \
14338 X(3, (D, L, D), DOUBLE), \
14339 X(2, (D, Q), MIXED), \
14340 X(2, (Q, D), MIXED), \
14341 X(3, (D, Q, I), MIXED), \
14342 X(3, (Q, D, I), MIXED), \
14343 X(3, (Q, D, D), MIXED), \
14344 X(3, (D, Q, Q), MIXED), \
14345 X(3, (Q, Q, D), MIXED), \
14346 X(3, (Q, D, S), MIXED), \
14347 X(3, (D, Q, S), MIXED), \
14348 X(4, (D, D, D, I), DOUBLE), \
14349 X(4, (Q, Q, Q, I), QUAD), \
14350 X(4, (D, D, S, I), DOUBLE), \
14351 X(4, (Q, Q, S, I), QUAD), \
14352 X(2, (F, F), SINGLE), \
14353 X(3, (F, F, F), SINGLE), \
14354 X(2, (F, I), SINGLE), \
14355 X(2, (F, D), MIXED), \
14356 X(2, (D, F), MIXED), \
14357 X(3, (F, F, I), MIXED), \
14358 X(4, (R, R, F, F), SINGLE), \
14359 X(4, (F, F, R, R), SINGLE), \
14360 X(3, (D, R, R), DOUBLE), \
14361 X(3, (R, R, D), DOUBLE), \
14362 X(2, (S, R), SINGLE), \
14363 X(2, (R, S), SINGLE), \
14364 X(2, (F, R), SINGLE), \
14365 X(2, (R, F), SINGLE), \
14366 /* Half float shape supported so far. */\
14367 X (2, (H, D), MIXED), \
14368 X (2, (D, H), MIXED), \
14369 X (2, (H, F), MIXED), \
14370 X (2, (F, H), MIXED), \
14371 X (2, (H, H), HALF), \
14372 X (2, (H, R), HALF), \
14373 X (2, (R, H), HALF), \
14374 X (2, (H, I), HALF), \
14375 X (3, (H, H, H), HALF), \
14376 X (3, (H, F, I), MIXED), \
14377 X (3, (F, H, I), MIXED), \
14378 X (3, (D, H, H), MIXED), \
14379 X (3, (D, H, S), MIXED)
14381 #define S2(A,B) NS_##A##B
14382 #define S3(A,B,C) NS_##A##B##C
14383 #define S4(A,B,C,D) NS_##A##B##C##D
14385 #define X(N, L, C) S##N L
14398 enum neon_shape_class
14407 #define X(N, L, C) SC_##C
14409 static enum neon_shape_class neon_shape_class
[] =
14428 /* Register widths of above. */
14429 static unsigned neon_shape_el_size
[] =
14441 struct neon_shape_info
14444 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
14447 #define S2(A,B) { SE_##A, SE_##B }
14448 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14449 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14451 #define X(N, L, C) { N, S##N L }
14453 static struct neon_shape_info neon_shape_tab
[] =
14463 /* Bit masks used in type checking given instructions.
14464 'N_EQK' means the type must be the same as (or based on in some way) the key
14465 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14466 set, various other bits can be set as well in order to modify the meaning of
14467 the type constraint. */
14469 enum neon_type_mask
14493 N_KEY
= 0x1000000, /* Key element (main type specifier). */
14494 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
14495 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
14496 N_UNT
= 0x8000000, /* Must be explicitly untyped. */
14497 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
14498 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
14499 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14500 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14501 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14502 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
14503 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14505 N_MAX_NONSPECIAL
= N_P64
14508 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14510 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14511 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14512 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14513 #define N_S_32 (N_S8 | N_S16 | N_S32)
14514 #define N_F_16_32 (N_F16 | N_F32)
14515 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14516 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14517 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14518 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14519 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14520 #define N_F_MVE (N_F16 | N_F32)
14521 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14523 /* Pass this as the first type argument to neon_check_type to ignore types
14525 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14527 /* Select a "shape" for the current instruction (describing register types or
14528 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14529 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14530 function of operand parsing, so this function doesn't need to be called.
14531 Shapes should be listed in order of decreasing length. */
14533 static enum neon_shape
14534 neon_select_shape (enum neon_shape shape
, ...)
14537 enum neon_shape first_shape
= shape
;
14539 /* Fix missing optional operands. FIXME: we don't know at this point how
14540 many arguments we should have, so this makes the assumption that we have
14541 > 1. This is true of all current Neon opcodes, I think, but may not be
14542 true in the future. */
14543 if (!inst
.operands
[1].present
)
14544 inst
.operands
[1] = inst
.operands
[0];
14546 va_start (ap
, shape
);
14548 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
14553 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
14555 if (!inst
.operands
[j
].present
)
14561 switch (neon_shape_tab
[shape
].el
[j
])
14563 /* If a .f16, .16, .u16, .s16 type specifier is given over
14564 a VFP single precision register operand, it's essentially
14565 means only half of the register is used.
14567 If the type specifier is given after the mnemonics, the
14568 information is stored in inst.vectype. If the type specifier
14569 is given after register operand, the information is stored
14570 in inst.operands[].vectype.
14572 When there is only one type specifier, and all the register
14573 operands are the same type of hardware register, the type
14574 specifier applies to all register operands.
14576 If no type specifier is given, the shape is inferred from
14577 operand information.
14580 vadd.f16 s0, s1, s2: NS_HHH
14581 vabs.f16 s0, s1: NS_HH
14582 vmov.f16 s0, r1: NS_HR
14583 vmov.f16 r0, s1: NS_RH
14584 vcvt.f16 r0, s1: NS_RH
14585 vcvt.f16.s32 s2, s2, #29: NS_HFI
14586 vcvt.f16.s32 s2, s2: NS_HF
14589 if (!(inst
.operands
[j
].isreg
14590 && inst
.operands
[j
].isvec
14591 && inst
.operands
[j
].issingle
14592 && !inst
.operands
[j
].isquad
14593 && ((inst
.vectype
.elems
== 1
14594 && inst
.vectype
.el
[0].size
== 16)
14595 || (inst
.vectype
.elems
> 1
14596 && inst
.vectype
.el
[j
].size
== 16)
14597 || (inst
.vectype
.elems
== 0
14598 && inst
.operands
[j
].vectype
.type
!= NT_invtype
14599 && inst
.operands
[j
].vectype
.size
== 16))))
14604 if (!(inst
.operands
[j
].isreg
14605 && inst
.operands
[j
].isvec
14606 && inst
.operands
[j
].issingle
14607 && !inst
.operands
[j
].isquad
14608 && ((inst
.vectype
.elems
== 1 && inst
.vectype
.el
[0].size
== 32)
14609 || (inst
.vectype
.elems
> 1 && inst
.vectype
.el
[j
].size
== 32)
14610 || (inst
.vectype
.elems
== 0
14611 && (inst
.operands
[j
].vectype
.size
== 32
14612 || inst
.operands
[j
].vectype
.type
== NT_invtype
)))))
14617 if (!(inst
.operands
[j
].isreg
14618 && inst
.operands
[j
].isvec
14619 && !inst
.operands
[j
].isquad
14620 && !inst
.operands
[j
].issingle
))
14625 if (!(inst
.operands
[j
].isreg
14626 && !inst
.operands
[j
].isvec
))
14631 if (!(inst
.operands
[j
].isreg
14632 && inst
.operands
[j
].isvec
14633 && inst
.operands
[j
].isquad
14634 && !inst
.operands
[j
].issingle
))
14639 if (!(!inst
.operands
[j
].isreg
14640 && !inst
.operands
[j
].isscalar
))
14645 if (!(!inst
.operands
[j
].isreg
14646 && inst
.operands
[j
].isscalar
))
14656 if (matches
&& (j
>= ARM_IT_MAX_OPERANDS
|| !inst
.operands
[j
].present
))
14657 /* We've matched all the entries in the shape table, and we don't
14658 have any left over operands which have not been matched. */
14664 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
14665 first_error (_("invalid instruction shape"));
14670 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14671 means the Q bit should be set). */
14674 neon_quad (enum neon_shape shape
)
14676 return neon_shape_class
[shape
] == SC_QUAD
;
14680 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
14683 /* Allow modification to be made to types which are constrained to be
14684 based on the key element, based on bits set alongside N_EQK. */
14685 if ((typebits
& N_EQK
) != 0)
14687 if ((typebits
& N_HLF
) != 0)
14689 else if ((typebits
& N_DBL
) != 0)
14691 if ((typebits
& N_SGN
) != 0)
14692 *g_type
= NT_signed
;
14693 else if ((typebits
& N_UNS
) != 0)
14694 *g_type
= NT_unsigned
;
14695 else if ((typebits
& N_INT
) != 0)
14696 *g_type
= NT_integer
;
14697 else if ((typebits
& N_FLT
) != 0)
14698 *g_type
= NT_float
;
14699 else if ((typebits
& N_SIZ
) != 0)
14700 *g_type
= NT_untyped
;
14704 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14705 operand type, i.e. the single type specified in a Neon instruction when it
14706 is the only one given. */
14708 static struct neon_type_el
14709 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
14711 struct neon_type_el dest
= *key
;
14713 gas_assert ((thisarg
& N_EQK
) != 0);
14715 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
14720 /* Convert Neon type and size into compact bitmask representation. */
14722 static enum neon_type_mask
14723 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
14730 case 8: return N_8
;
14731 case 16: return N_16
;
14732 case 32: return N_32
;
14733 case 64: return N_64
;
14741 case 8: return N_I8
;
14742 case 16: return N_I16
;
14743 case 32: return N_I32
;
14744 case 64: return N_I64
;
14752 case 16: return N_F16
;
14753 case 32: return N_F32
;
14754 case 64: return N_F64
;
14762 case 8: return N_P8
;
14763 case 16: return N_P16
;
14764 case 64: return N_P64
;
14772 case 8: return N_S8
;
14773 case 16: return N_S16
;
14774 case 32: return N_S32
;
14775 case 64: return N_S64
;
14783 case 8: return N_U8
;
14784 case 16: return N_U16
;
14785 case 32: return N_U32
;
14786 case 64: return N_U64
;
14797 /* Convert compact Neon bitmask type representation to a type and size. Only
14798 handles the case where a single bit is set in the mask. */
14801 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
14802 enum neon_type_mask mask
)
14804 if ((mask
& N_EQK
) != 0)
14807 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
14809 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_F16
| N_P16
)) != 0)
14811 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
14813 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
| N_P64
)) != 0)
14818 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
14820 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
14821 *type
= NT_unsigned
;
14822 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
14823 *type
= NT_integer
;
14824 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
14825 *type
= NT_untyped
;
14826 else if ((mask
& (N_P8
| N_P16
| N_P64
)) != 0)
14828 else if ((mask
& (N_F_ALL
)) != 0)
14836 /* Modify a bitmask of allowed types. This is only needed for type
14840 modify_types_allowed (unsigned allowed
, unsigned mods
)
14843 enum neon_el_type type
;
14849 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
14851 if (el_type_of_type_chk (&type
, &size
,
14852 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
14854 neon_modify_type_size (mods
, &type
, &size
);
14855 destmask
|= type_chk_of_el_type (type
, size
);
14862 /* Check type and return type classification.
14863 The manual states (paraphrase): If one datatype is given, it indicates the
14865 - the second operand, if there is one
14866 - the operand, if there is no second operand
14867 - the result, if there are no operands.
14868 This isn't quite good enough though, so we use a concept of a "key" datatype
14869 which is set on a per-instruction basis, which is the one which matters when
14870 only one data type is written.
14871 Note: this function has side-effects (e.g. filling in missing operands). All
14872 Neon instructions should call it before performing bit encoding. */
14874 static struct neon_type_el
14875 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
14878 unsigned i
, pass
, key_el
= 0;
14879 unsigned types
[NEON_MAX_TYPE_ELS
];
14880 enum neon_el_type k_type
= NT_invtype
;
14881 unsigned k_size
= -1u;
14882 struct neon_type_el badtype
= {NT_invtype
, -1};
14883 unsigned key_allowed
= 0;
14885 /* Optional registers in Neon instructions are always (not) in operand 1.
14886 Fill in the missing operand here, if it was omitted. */
14887 if (els
> 1 && !inst
.operands
[1].present
)
14888 inst
.operands
[1] = inst
.operands
[0];
14890 /* Suck up all the varargs. */
14892 for (i
= 0; i
< els
; i
++)
14894 unsigned thisarg
= va_arg (ap
, unsigned);
14895 if (thisarg
== N_IGNORE_TYPE
)
14900 types
[i
] = thisarg
;
14901 if ((thisarg
& N_KEY
) != 0)
14906 if (inst
.vectype
.elems
> 0)
14907 for (i
= 0; i
< els
; i
++)
14908 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
14910 first_error (_("types specified in both the mnemonic and operands"));
14914 /* Duplicate inst.vectype elements here as necessary.
14915 FIXME: No idea if this is exactly the same as the ARM assembler,
14916 particularly when an insn takes one register and one non-register
14918 if (inst
.vectype
.elems
== 1 && els
> 1)
14921 inst
.vectype
.elems
= els
;
14922 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
14923 for (j
= 0; j
< els
; j
++)
14925 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14928 else if (inst
.vectype
.elems
== 0 && els
> 0)
14931 /* No types were given after the mnemonic, so look for types specified
14932 after each operand. We allow some flexibility here; as long as the
14933 "key" operand has a type, we can infer the others. */
14934 for (j
= 0; j
< els
; j
++)
14935 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
14936 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
14938 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
14940 for (j
= 0; j
< els
; j
++)
14941 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
14942 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14947 first_error (_("operand types can't be inferred"));
14951 else if (inst
.vectype
.elems
!= els
)
14953 first_error (_("type specifier has the wrong number of parts"));
14957 for (pass
= 0; pass
< 2; pass
++)
14959 for (i
= 0; i
< els
; i
++)
14961 unsigned thisarg
= types
[i
];
14962 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
14963 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
14964 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
14965 unsigned g_size
= inst
.vectype
.el
[i
].size
;
14967 /* Decay more-specific signed & unsigned types to sign-insensitive
14968 integer types if sign-specific variants are unavailable. */
14969 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
14970 && (types_allowed
& N_SU_ALL
) == 0)
14971 g_type
= NT_integer
;
14973 /* If only untyped args are allowed, decay any more specific types to
14974 them. Some instructions only care about signs for some element
14975 sizes, so handle that properly. */
14976 if (((types_allowed
& N_UNT
) == 0)
14977 && ((g_size
== 8 && (types_allowed
& N_8
) != 0)
14978 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
14979 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
14980 || (g_size
== 64 && (types_allowed
& N_64
) != 0)))
14981 g_type
= NT_untyped
;
14985 if ((thisarg
& N_KEY
) != 0)
14989 key_allowed
= thisarg
& ~N_KEY
;
14991 /* Check architecture constraint on FP16 extension. */
14993 && k_type
== NT_float
14994 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
14996 inst
.error
= _(BAD_FP16
);
15003 if ((thisarg
& N_VFP
) != 0)
15005 enum neon_shape_el regshape
;
15006 unsigned regwidth
, match
;
15008 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15011 first_error (_("invalid instruction shape"));
15014 regshape
= neon_shape_tab
[ns
].el
[i
];
15015 regwidth
= neon_shape_el_size
[regshape
];
15017 /* In VFP mode, operands must match register widths. If we
15018 have a key operand, use its width, else use the width of
15019 the current operand. */
15025 /* FP16 will use a single precision register. */
15026 if (regwidth
== 32 && match
== 16)
15028 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15032 inst
.error
= _(BAD_FP16
);
15037 if (regwidth
!= match
)
15039 first_error (_("operand size must match register width"));
15044 if ((thisarg
& N_EQK
) == 0)
15046 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
15048 if ((given_type
& types_allowed
) == 0)
15050 first_error (BAD_SIMD_TYPE
);
15056 enum neon_el_type mod_k_type
= k_type
;
15057 unsigned mod_k_size
= k_size
;
15058 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
15059 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
15061 first_error (_("inconsistent types in Neon instruction"));
15069 return inst
.vectype
.el
[key_el
];
15072 /* Neon-style VFP instruction forwarding. */
15074 /* Thumb VFP instructions have 0xE in the condition field. */
15077 do_vfp_cond_or_thumb (void)
15082 inst
.instruction
|= 0xe0000000;
15084 inst
.instruction
|= inst
.cond
<< 28;
15087 /* Look up and encode a simple mnemonic, for use as a helper function for the
15088 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15089 etc. It is assumed that operand parsing has already been done, and that the
15090 operands are in the form expected by the given opcode (this isn't necessarily
15091 the same as the form in which they were parsed, hence some massaging must
15092 take place before this function is called).
15093 Checks current arch version against that in the looked-up opcode. */
15096 do_vfp_nsyn_opcode (const char *opname
)
15098 const struct asm_opcode
*opcode
;
15100 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
15105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
15106 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
15113 inst
.instruction
= opcode
->tvalue
;
15114 opcode
->tencode ();
15118 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
15119 opcode
->aencode ();
15124 do_vfp_nsyn_add_sub (enum neon_shape rs
)
15126 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
15128 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15131 do_vfp_nsyn_opcode ("fadds");
15133 do_vfp_nsyn_opcode ("fsubs");
15135 /* ARMv8.2 fp16 instruction. */
15137 do_scalar_fp16_v82_encode ();
15142 do_vfp_nsyn_opcode ("faddd");
15144 do_vfp_nsyn_opcode ("fsubd");
15148 /* Check operand types to see if this is a VFP instruction, and if so call
15152 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
15154 enum neon_shape rs
;
15155 struct neon_type_el et
;
15160 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15161 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15165 rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15166 et
= neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15167 N_F_ALL
| N_KEY
| N_VFP
);
15174 if (et
.type
!= NT_invtype
)
15185 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
15187 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
15189 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15192 do_vfp_nsyn_opcode ("fmacs");
15194 do_vfp_nsyn_opcode ("fnmacs");
15196 /* ARMv8.2 fp16 instruction. */
15198 do_scalar_fp16_v82_encode ();
15203 do_vfp_nsyn_opcode ("fmacd");
15205 do_vfp_nsyn_opcode ("fnmacd");
15210 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
15212 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
15214 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15217 do_vfp_nsyn_opcode ("ffmas");
15219 do_vfp_nsyn_opcode ("ffnmas");
15221 /* ARMv8.2 fp16 instruction. */
15223 do_scalar_fp16_v82_encode ();
15228 do_vfp_nsyn_opcode ("ffmad");
15230 do_vfp_nsyn_opcode ("ffnmad");
15235 do_vfp_nsyn_mul (enum neon_shape rs
)
15237 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15239 do_vfp_nsyn_opcode ("fmuls");
15241 /* ARMv8.2 fp16 instruction. */
15243 do_scalar_fp16_v82_encode ();
15246 do_vfp_nsyn_opcode ("fmuld");
15250 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
15252 int is_neg
= (inst
.instruction
& 0x80) != 0;
15253 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_VFP
| N_KEY
);
15255 if (rs
== NS_FF
|| rs
== NS_HH
)
15258 do_vfp_nsyn_opcode ("fnegs");
15260 do_vfp_nsyn_opcode ("fabss");
15262 /* ARMv8.2 fp16 instruction. */
15264 do_scalar_fp16_v82_encode ();
15269 do_vfp_nsyn_opcode ("fnegd");
15271 do_vfp_nsyn_opcode ("fabsd");
15275 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15276 insns belong to Neon, and are handled elsewhere. */
15279 do_vfp_nsyn_ldm_stm (int is_dbmode
)
15281 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
15285 do_vfp_nsyn_opcode ("fldmdbs");
15287 do_vfp_nsyn_opcode ("fldmias");
15292 do_vfp_nsyn_opcode ("fstmdbs");
15294 do_vfp_nsyn_opcode ("fstmias");
15299 do_vfp_nsyn_sqrt (void)
15301 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15302 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15304 if (rs
== NS_FF
|| rs
== NS_HH
)
15306 do_vfp_nsyn_opcode ("fsqrts");
15308 /* ARMv8.2 fp16 instruction. */
15310 do_scalar_fp16_v82_encode ();
15313 do_vfp_nsyn_opcode ("fsqrtd");
15317 do_vfp_nsyn_div (void)
15319 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15320 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15321 N_F_ALL
| N_KEY
| N_VFP
);
15323 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15325 do_vfp_nsyn_opcode ("fdivs");
15327 /* ARMv8.2 fp16 instruction. */
15329 do_scalar_fp16_v82_encode ();
15332 do_vfp_nsyn_opcode ("fdivd");
15336 do_vfp_nsyn_nmul (void)
15338 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15339 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15340 N_F_ALL
| N_KEY
| N_VFP
);
15342 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15344 NEON_ENCODE (SINGLE
, inst
);
15345 do_vfp_sp_dyadic ();
15347 /* ARMv8.2 fp16 instruction. */
15349 do_scalar_fp16_v82_encode ();
15353 NEON_ENCODE (DOUBLE
, inst
);
15354 do_vfp_dp_rd_rn_rm ();
15356 do_vfp_cond_or_thumb ();
15360 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15364 neon_logbits (unsigned x
)
15366 return ffs (x
) - 4;
15369 #define LOW4(R) ((R) & 0xf)
15370 #define HI1(R) (((R) >> 4) & 1)
15373 mve_get_vcmp_vpt_cond (struct neon_type_el et
)
15378 first_error (BAD_EL_TYPE
);
15381 switch (inst
.operands
[0].imm
)
15384 first_error (_("invalid condition"));
15406 /* only accept eq and ne. */
15407 if (inst
.operands
[0].imm
> 1)
15409 first_error (_("invalid condition"));
15412 return inst
.operands
[0].imm
;
15414 if (inst
.operands
[0].imm
== 0x2)
15416 else if (inst
.operands
[0].imm
== 0x8)
15420 first_error (_("invalid condition"));
15424 switch (inst
.operands
[0].imm
)
15427 first_error (_("invalid condition"));
15443 /* Should be unreachable. */
15450 /* We are dealing with a vector predicated block. */
15451 if (inst
.operands
[0].present
)
15453 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15454 struct neon_type_el et
15455 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15458 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15460 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15462 if (et
.type
== NT_invtype
)
15465 if (et
.type
== NT_float
)
15467 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15469 constraint (et
.size
!= 16 && et
.size
!= 32, BAD_EL_TYPE
);
15470 inst
.instruction
|= (et
.size
== 16) << 28;
15471 inst
.instruction
|= 0x3 << 20;
15475 constraint (et
.size
!= 8 && et
.size
!= 16 && et
.size
!= 32,
15477 inst
.instruction
|= 1 << 28;
15478 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15481 if (inst
.operands
[2].isquad
)
15483 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15484 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15485 inst
.instruction
|= (fcond
& 0x2) >> 1;
15489 if (inst
.operands
[2].reg
== REG_SP
)
15490 as_tsktsk (MVE_BAD_SP
);
15491 inst
.instruction
|= 1 << 6;
15492 inst
.instruction
|= (fcond
& 0x2) << 4;
15493 inst
.instruction
|= inst
.operands
[2].reg
;
15495 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15496 inst
.instruction
|= (fcond
& 0x4) << 10;
15497 inst
.instruction
|= (fcond
& 0x1) << 7;
15500 set_pred_insn_type (VPT_INSN
);
15502 now_pred
.mask
= ((inst
.instruction
& 0x00400000) >> 19)
15503 | ((inst
.instruction
& 0xe000) >> 13);
15504 now_pred
.warn_deprecated
= FALSE
;
15505 now_pred
.type
= VECTOR_PRED
;
15512 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
15513 if (!inst
.operands
[1].isreg
|| !inst
.operands
[1].isquad
)
15514 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
15515 if (!inst
.operands
[2].present
)
15516 first_error (_("MVE vector or ARM register expected"));
15517 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15519 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15520 if ((inst
.instruction
& 0xffffffff) == N_MNEM_vcmpe
15521 && inst
.operands
[1].isquad
)
15523 inst
.instruction
= N_MNEM_vcmp
;
15527 if (inst
.cond
> COND_ALWAYS
)
15528 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15530 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15532 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15533 struct neon_type_el et
15534 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15537 constraint (rs
== NS_IQR
&& inst
.operands
[2].reg
== REG_PC
15538 && !inst
.operands
[2].iszr
, BAD_PC
);
15540 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15542 inst
.instruction
= 0xee010f00;
15543 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15544 inst
.instruction
|= (fcond
& 0x4) << 10;
15545 inst
.instruction
|= (fcond
& 0x1) << 7;
15546 if (et
.type
== NT_float
)
15548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15550 inst
.instruction
|= (et
.size
== 16) << 28;
15551 inst
.instruction
|= 0x3 << 20;
15555 inst
.instruction
|= 1 << 28;
15556 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15558 if (inst
.operands
[2].isquad
)
15560 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15561 inst
.instruction
|= (fcond
& 0x2) >> 1;
15562 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15566 if (inst
.operands
[2].reg
== REG_SP
)
15567 as_tsktsk (MVE_BAD_SP
);
15568 inst
.instruction
|= 1 << 6;
15569 inst
.instruction
|= (fcond
& 0x2) << 4;
15570 inst
.instruction
|= inst
.operands
[2].reg
;
15578 do_vfp_nsyn_cmp (void)
15580 enum neon_shape rs
;
15581 if (!inst
.operands
[0].isreg
)
15588 constraint (inst
.operands
[2].present
, BAD_SYNTAX
);
15589 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
15593 if (inst
.operands
[1].isreg
)
15595 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15596 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15598 if (rs
== NS_FF
|| rs
== NS_HH
)
15600 NEON_ENCODE (SINGLE
, inst
);
15601 do_vfp_sp_monadic ();
15605 NEON_ENCODE (DOUBLE
, inst
);
15606 do_vfp_dp_rd_rm ();
15611 rs
= neon_select_shape (NS_HI
, NS_FI
, NS_DI
, NS_NULL
);
15612 neon_check_type (2, rs
, N_F_ALL
| N_KEY
| N_VFP
, N_EQK
);
15614 switch (inst
.instruction
& 0x0fffffff)
15617 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
15620 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
15626 if (rs
== NS_FI
|| rs
== NS_HI
)
15628 NEON_ENCODE (SINGLE
, inst
);
15629 do_vfp_sp_compare_z ();
15633 NEON_ENCODE (DOUBLE
, inst
);
15637 do_vfp_cond_or_thumb ();
15639 /* ARMv8.2 fp16 instruction. */
15640 if (rs
== NS_HI
|| rs
== NS_HH
)
15641 do_scalar_fp16_v82_encode ();
15645 nsyn_insert_sp (void)
15647 inst
.operands
[1] = inst
.operands
[0];
15648 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
15649 inst
.operands
[0].reg
= REG_SP
;
15650 inst
.operands
[0].isreg
= 1;
15651 inst
.operands
[0].writeback
= 1;
15652 inst
.operands
[0].present
= 1;
15656 do_vfp_nsyn_push (void)
15660 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15661 _("register list must contain at least 1 and at most 16 "
15664 if (inst
.operands
[1].issingle
)
15665 do_vfp_nsyn_opcode ("fstmdbs");
15667 do_vfp_nsyn_opcode ("fstmdbd");
15671 do_vfp_nsyn_pop (void)
15675 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15676 _("register list must contain at least 1 and at most 16 "
15679 if (inst
.operands
[1].issingle
)
15680 do_vfp_nsyn_opcode ("fldmias");
15682 do_vfp_nsyn_opcode ("fldmiad");
15685 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15686 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15689 neon_dp_fixup (struct arm_it
* insn
)
15691 unsigned int i
= insn
->instruction
;
15696 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15707 insn
->instruction
= i
;
15711 mve_encode_qqr (int size
, int fp
)
15713 if (inst
.operands
[2].reg
== REG_SP
)
15714 as_tsktsk (MVE_BAD_SP
);
15715 else if (inst
.operands
[2].reg
== REG_PC
)
15716 as_tsktsk (MVE_BAD_PC
);
15721 if (((unsigned)inst
.instruction
) == 0xd00)
15722 inst
.instruction
= 0xee300f40;
15724 else if (((unsigned)inst
.instruction
) == 0x200d00)
15725 inst
.instruction
= 0xee301f40;
15727 /* Setting size which is 1 for F16 and 0 for F32. */
15728 inst
.instruction
|= (size
== 16) << 28;
15733 if (((unsigned)inst
.instruction
) == 0x800)
15734 inst
.instruction
= 0xee010f40;
15736 else if (((unsigned)inst
.instruction
) == 0x1000800)
15737 inst
.instruction
= 0xee011f40;
15738 /* Setting bits for size. */
15739 inst
.instruction
|= neon_logbits (size
) << 20;
15741 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15742 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15743 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15744 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15745 inst
.instruction
|= inst
.operands
[2].reg
;
15750 mve_encode_rqq (unsigned bit28
, unsigned size
)
15752 inst
.instruction
|= bit28
<< 28;
15753 inst
.instruction
|= neon_logbits (size
) << 20;
15754 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15755 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
15756 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15757 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15758 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15763 mve_encode_qqq (int ubit
, int size
)
15766 inst
.instruction
|= (ubit
!= 0) << 28;
15767 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15768 inst
.instruction
|= neon_logbits (size
) << 20;
15769 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15770 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15771 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15772 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15773 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15779 mve_encode_rq (unsigned bit28
, unsigned size
)
15781 inst
.instruction
|= bit28
<< 28;
15782 inst
.instruction
|= neon_logbits (size
) << 18;
15783 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
15784 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15788 /* Encode insns with bit pattern:
15790 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15791 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15793 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15794 different meaning for some instruction. */
15797 neon_three_same (int isquad
, int ubit
, int size
)
15799 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15800 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15801 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15802 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15803 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15804 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15805 inst
.instruction
|= (isquad
!= 0) << 6;
15806 inst
.instruction
|= (ubit
!= 0) << 24;
15808 inst
.instruction
|= neon_logbits (size
) << 20;
15810 neon_dp_fixup (&inst
);
15813 /* Encode instructions of the form:
15815 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15816 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15818 Don't write size if SIZE == -1. */
15821 neon_two_same (int qbit
, int ubit
, int size
)
15823 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15824 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15825 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15826 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15827 inst
.instruction
|= (qbit
!= 0) << 6;
15828 inst
.instruction
|= (ubit
!= 0) << 24;
15831 inst
.instruction
|= neon_logbits (size
) << 18;
15833 neon_dp_fixup (&inst
);
15836 /* Neon instruction encoders, in approximate order of appearance. */
15839 do_neon_dyadic_i_su (void)
15841 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15842 struct neon_type_el et
= neon_check_type (3, rs
,
15843 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
15844 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15848 do_neon_dyadic_i64_su (void)
15850 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15851 struct neon_type_el et
= neon_check_type (3, rs
,
15852 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
15853 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15857 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
15860 unsigned size
= et
.size
>> 3;
15861 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15862 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15863 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15864 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15865 inst
.instruction
|= (isquad
!= 0) << 6;
15866 inst
.instruction
|= immbits
<< 16;
15867 inst
.instruction
|= (size
>> 3) << 7;
15868 inst
.instruction
|= (size
& 0x7) << 19;
15870 inst
.instruction
|= (uval
!= 0) << 24;
15872 neon_dp_fixup (&inst
);
15876 do_neon_shl_imm (void)
15878 if (!inst
.operands
[2].isreg
)
15880 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
15881 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
15882 int imm
= inst
.operands
[2].imm
;
15884 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
15885 _("immediate out of range for shift"));
15886 NEON_ENCODE (IMMED
, inst
);
15887 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
15891 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15892 struct neon_type_el et
= neon_check_type (3, rs
,
15893 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
15896 /* VSHL/VQSHL 3-register variants have syntax such as:
15898 whereas other 3-register operations encoded by neon_three_same have
15901 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15903 tmp
= inst
.operands
[2].reg
;
15904 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
15905 inst
.operands
[1].reg
= tmp
;
15906 NEON_ENCODE (INTEGER
, inst
);
15907 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15912 do_neon_qshl_imm (void)
15914 if (!inst
.operands
[2].isreg
)
15916 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
15917 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
15918 int imm
= inst
.operands
[2].imm
;
15920 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
15921 _("immediate out of range for shift"));
15922 NEON_ENCODE (IMMED
, inst
);
15923 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
, imm
);
15927 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15928 struct neon_type_el et
= neon_check_type (3, rs
,
15929 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
15932 /* See note in do_neon_shl_imm. */
15933 tmp
= inst
.operands
[2].reg
;
15934 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
15935 inst
.operands
[1].reg
= tmp
;
15936 NEON_ENCODE (INTEGER
, inst
);
15937 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15942 do_neon_rshl (void)
15944 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
15945 struct neon_type_el et
= neon_check_type (3, rs
,
15946 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
15949 tmp
= inst
.operands
[2].reg
;
15950 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
15951 inst
.operands
[1].reg
= tmp
;
15952 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
15956 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
15958 /* Handle .I8 pseudo-instructions. */
15961 /* Unfortunately, this will make everything apart from zero out-of-range.
15962 FIXME is this the intended semantics? There doesn't seem much point in
15963 accepting .I8 if so. */
15964 immediate
|= immediate
<< 8;
15970 if (immediate
== (immediate
& 0x000000ff))
15972 *immbits
= immediate
;
15975 else if (immediate
== (immediate
& 0x0000ff00))
15977 *immbits
= immediate
>> 8;
15980 else if (immediate
== (immediate
& 0x00ff0000))
15982 *immbits
= immediate
>> 16;
15985 else if (immediate
== (immediate
& 0xff000000))
15987 *immbits
= immediate
>> 24;
15990 if ((immediate
& 0xffff) != (immediate
>> 16))
15991 goto bad_immediate
;
15992 immediate
&= 0xffff;
15995 if (immediate
== (immediate
& 0x000000ff))
15997 *immbits
= immediate
;
16000 else if (immediate
== (immediate
& 0x0000ff00))
16002 *immbits
= immediate
>> 8;
16007 first_error (_("immediate value out of range"));
16011 enum vfp_or_neon_is_neon_bits
16014 NEON_CHECK_ARCH
= 2,
16015 NEON_CHECK_ARCH8
= 4
16018 /* Call this function if an instruction which may have belonged to the VFP or
16019 Neon instruction sets, but turned out to be a Neon instruction (due to the
16020 operand types involved, etc.). We have to check and/or fix-up a couple of
16023 - Make sure the user hasn't attempted to make a Neon instruction
16025 - Alter the value in the condition code field if necessary.
16026 - Make sure that the arch supports Neon instructions.
16028 Which of these operations take place depends on bits from enum
16029 vfp_or_neon_is_neon_bits.
16031 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16032 current instruction's condition is COND_ALWAYS, the condition field is
16033 changed to inst.uncond_value. This is necessary because instructions shared
16034 between VFP and Neon may be conditional for the VFP variants only, and the
16035 unconditional Neon version must have, e.g., 0xF in the condition field. */
16038 vfp_or_neon_is_neon (unsigned check
)
16040 /* Conditions are always legal in Thumb mode (IT blocks). */
16041 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
16043 if (inst
.cond
!= COND_ALWAYS
)
16045 first_error (_(BAD_COND
));
16048 if (inst
.uncond_value
!= -1)
16049 inst
.instruction
|= inst
.uncond_value
<< 28;
16053 if (((check
& NEON_CHECK_ARCH
) && !mark_feature_used (&fpu_neon_ext_v1
))
16054 || ((check
& NEON_CHECK_ARCH8
)
16055 && !mark_feature_used (&fpu_neon_ext_armv8
)))
16057 first_error (_(BAD_FPU
));
16065 check_simd_pred_availability (int fp
, unsigned check
)
16067 if (inst
.cond
> COND_ALWAYS
)
16069 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16071 inst
.error
= BAD_FPU
;
16074 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16076 else if (inst
.cond
< COND_ALWAYS
)
16078 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16079 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16080 else if (vfp_or_neon_is_neon (check
) == FAIL
)
16085 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fp
? mve_fp_ext
: mve_ext
)
16086 && vfp_or_neon_is_neon (check
) == FAIL
)
16089 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16090 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16096 do_neon_logic (void)
16098 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
16100 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16102 && check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
)
16105 else if (rs
!= NS_QQQ
16106 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
16107 first_error (BAD_FPU
);
16109 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16110 /* U bit and size field were set as part of the bitmask. */
16111 NEON_ENCODE (INTEGER
, inst
);
16112 neon_three_same (neon_quad (rs
), 0, -1);
16116 const int three_ops_form
= (inst
.operands
[2].present
16117 && !inst
.operands
[2].isreg
);
16118 const int immoperand
= (three_ops_form
? 2 : 1);
16119 enum neon_shape rs
= (three_ops_form
16120 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
16121 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
16122 /* Because neon_select_shape makes the second operand a copy of the first
16123 if the second operand is not present. */
16125 && check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
)
16128 else if (rs
!= NS_QQI
16129 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
16130 first_error (BAD_FPU
);
16132 struct neon_type_el et
;
16133 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16134 et
= neon_check_type (2, rs
, N_I32
| N_I16
| N_KEY
, N_EQK
);
16136 et
= neon_check_type (2, rs
, N_I8
| N_I16
| N_I32
| N_I64
| N_F32
16139 if (et
.type
== NT_invtype
)
16141 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
16146 if (three_ops_form
)
16147 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
16148 _("first and second operands shall be the same register"));
16150 NEON_ENCODE (IMMED
, inst
);
16152 immbits
= inst
.operands
[immoperand
].imm
;
16155 /* .i64 is a pseudo-op, so the immediate must be a repeating
16157 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
16158 inst
.operands
[immoperand
].reg
: 0))
16160 /* Set immbits to an invalid constant. */
16161 immbits
= 0xdeadbeef;
16168 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16172 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16176 /* Pseudo-instruction for VBIC. */
16177 neon_invert_size (&immbits
, 0, et
.size
);
16178 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16182 /* Pseudo-instruction for VORR. */
16183 neon_invert_size (&immbits
, 0, et
.size
);
16184 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16194 inst
.instruction
|= neon_quad (rs
) << 6;
16195 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16196 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16197 inst
.instruction
|= cmode
<< 8;
16198 neon_write_immbits (immbits
);
16200 neon_dp_fixup (&inst
);
16205 do_neon_bitfield (void)
16207 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16208 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16209 neon_three_same (neon_quad (rs
), 0, -1);
16213 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
16216 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16217 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
16219 if (et
.type
== NT_float
)
16221 NEON_ENCODE (FLOAT
, inst
);
16223 mve_encode_qqr (et
.size
, 1);
16225 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
16229 NEON_ENCODE (INTEGER
, inst
);
16231 mve_encode_qqr (et
.size
, 0);
16233 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
16239 do_neon_dyadic_if_su_d (void)
16241 /* This version only allow D registers, but that constraint is enforced during
16242 operand parsing so we don't need to do anything extra here. */
16243 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16247 do_neon_dyadic_if_i_d (void)
16249 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16250 affected if we specify unsigned args. */
16251 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16255 do_mve_vstr_vldr_QI (int size
, int elsize
, int load
)
16257 constraint (size
< 32, BAD_ADDR_MODE
);
16258 constraint (size
!= elsize
, BAD_EL_TYPE
);
16259 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
16260 constraint (!inst
.operands
[1].preind
, BAD_ADDR_MODE
);
16261 constraint (load
&& inst
.operands
[0].reg
== inst
.operands
[1].reg
,
16262 _("destination register and offset register may not be the"
16265 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16272 constraint ((imm
% (size
/ 8) != 0)
16273 || imm
> (0x7f << neon_logbits (size
)),
16274 (size
== 32) ? _("immediate must be a multiple of 4 in the"
16275 " range of +/-[0,508]")
16276 : _("immediate must be a multiple of 8 in the"
16277 " range of +/-[0,1016]"));
16278 inst
.instruction
|= 0x11 << 24;
16279 inst
.instruction
|= add
<< 23;
16280 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16281 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16282 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16283 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16284 inst
.instruction
|= 1 << 12;
16285 inst
.instruction
|= (size
== 64) << 8;
16286 inst
.instruction
&= 0xffffff00;
16287 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16288 inst
.instruction
|= imm
>> neon_logbits (size
);
16292 do_mve_vstr_vldr_RQ (int size
, int elsize
, int load
)
16294 unsigned os
= inst
.operands
[1].imm
>> 5;
16295 constraint (os
!= 0 && size
== 8,
16296 _("can not shift offsets when accessing less than half-word"));
16297 constraint (os
&& os
!= neon_logbits (size
),
16298 _("shift immediate must be 1, 2 or 3 for half-word, word"
16299 " or double-word accesses respectively"));
16300 if (inst
.operands
[1].reg
== REG_PC
)
16301 as_tsktsk (MVE_BAD_PC
);
16306 constraint (elsize
>= 64, BAD_EL_TYPE
);
16309 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16313 constraint (elsize
!= size
, BAD_EL_TYPE
);
16318 constraint (inst
.operands
[1].writeback
|| !inst
.operands
[1].preind
,
16322 constraint (inst
.operands
[0].reg
== (inst
.operands
[1].imm
& 0x1f),
16323 _("destination register and offset register may not be"
16325 constraint (size
== elsize
&& inst
.vectype
.el
[0].type
!= NT_unsigned
,
16327 constraint (inst
.vectype
.el
[0].type
!= NT_unsigned
16328 && inst
.vectype
.el
[0].type
!= NT_signed
, BAD_EL_TYPE
);
16329 inst
.instruction
|= (inst
.vectype
.el
[0].type
== NT_unsigned
) << 28;
16333 constraint (inst
.vectype
.el
[0].type
!= NT_untyped
, BAD_EL_TYPE
);
16336 inst
.instruction
|= 1 << 23;
16337 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16338 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16339 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16340 inst
.instruction
|= neon_logbits (elsize
) << 7;
16341 inst
.instruction
|= HI1 (inst
.operands
[1].imm
) << 5;
16342 inst
.instruction
|= LOW4 (inst
.operands
[1].imm
);
16343 inst
.instruction
|= !!os
;
16347 do_mve_vstr_vldr_RI (int size
, int elsize
, int load
)
16349 enum neon_el_type type
= inst
.vectype
.el
[0].type
;
16351 constraint (size
>= 64, BAD_ADDR_MODE
);
16355 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16358 constraint (elsize
!= size
, BAD_EL_TYPE
);
16365 constraint (elsize
!= size
&& type
!= NT_unsigned
16366 && type
!= NT_signed
, BAD_EL_TYPE
);
16370 constraint (elsize
!= size
&& type
!= NT_untyped
, BAD_EL_TYPE
);
16373 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16381 if ((imm
% (size
/ 8) != 0) || imm
> (0x7f << neon_logbits (size
)))
16386 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16389 constraint (1, _("immediate must be a multiple of 2 in the"
16390 " range of +/-[0,254]"));
16393 constraint (1, _("immediate must be a multiple of 4 in the"
16394 " range of +/-[0,508]"));
16399 if (size
!= elsize
)
16401 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
16402 constraint (inst
.operands
[0].reg
> 14,
16403 _("MVE vector register in the range [Q0..Q7] expected"));
16404 inst
.instruction
|= (load
&& type
== NT_unsigned
) << 28;
16405 inst
.instruction
|= (size
== 16) << 19;
16406 inst
.instruction
|= neon_logbits (elsize
) << 7;
16410 if (inst
.operands
[1].reg
== REG_PC
)
16411 as_tsktsk (MVE_BAD_PC
);
16412 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16413 as_tsktsk (MVE_BAD_SP
);
16414 inst
.instruction
|= 1 << 12;
16415 inst
.instruction
|= neon_logbits (size
) << 7;
16417 inst
.instruction
|= inst
.operands
[1].preind
<< 24;
16418 inst
.instruction
|= add
<< 23;
16419 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16420 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16421 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16422 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16423 inst
.instruction
&= 0xffffff80;
16424 inst
.instruction
|= imm
>> neon_logbits (size
);
16429 do_mve_vstr_vldr (void)
16434 if (inst
.cond
> COND_ALWAYS
)
16435 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16437 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16439 switch (inst
.instruction
)
16446 /* fall through. */
16452 /* fall through. */
16458 /* fall through. */
16464 /* fall through. */
16469 unsigned elsize
= inst
.vectype
.el
[0].size
;
16471 if (inst
.operands
[1].isquad
)
16473 /* We are dealing with [Q, imm]{!} cases. */
16474 do_mve_vstr_vldr_QI (size
, elsize
, load
);
16478 if (inst
.operands
[1].immisreg
== 2)
16480 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16481 do_mve_vstr_vldr_RQ (size
, elsize
, load
);
16483 else if (!inst
.operands
[1].immisreg
)
16485 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16486 do_mve_vstr_vldr_RI (size
, elsize
, load
);
16489 constraint (1, BAD_ADDR_MODE
);
16496 do_mve_vst_vld (void)
16498 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16501 constraint (!inst
.operands
[1].preind
|| inst
.relocs
[0].exp
.X_add_symbol
!= 0
16502 || inst
.relocs
[0].exp
.X_add_number
!= 0
16503 || inst
.operands
[1].immisreg
!= 0,
16505 constraint (inst
.vectype
.el
[0].size
> 32, BAD_EL_TYPE
);
16506 if (inst
.operands
[1].reg
== REG_PC
)
16507 as_tsktsk (MVE_BAD_PC
);
16508 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16509 as_tsktsk (MVE_BAD_SP
);
16512 /* These instructions are one of the "exceptions" mentioned in
16513 handle_pred_state. They are MVE instructions that are not VPT compatible
16514 and do not accept a VPT code, thus appending such a code is a syntax
16516 if (inst
.cond
> COND_ALWAYS
)
16517 first_error (BAD_SYNTAX
);
16518 /* If we append a scalar condition code we can set this to
16519 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16520 else if (inst
.cond
< COND_ALWAYS
)
16521 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16523 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
16525 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16526 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16527 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16528 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16529 inst
.instruction
|= neon_logbits (inst
.vectype
.el
[0].size
) << 7;
16534 do_mve_vaddlv (void)
16536 enum neon_shape rs
= neon_select_shape (NS_RRQ
, NS_NULL
);
16537 struct neon_type_el et
16538 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S32
| N_U32
| N_KEY
);
16540 if (et
.type
== NT_invtype
)
16541 first_error (BAD_EL_TYPE
);
16543 if (inst
.cond
> COND_ALWAYS
)
16544 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16546 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16548 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
16550 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16551 inst
.instruction
|= inst
.operands
[1].reg
<< 19;
16552 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16553 inst
.instruction
|= inst
.operands
[2].reg
;
16558 do_neon_dyadic_if_su (void)
16560 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16561 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16564 if (check_simd_pred_availability (et
.type
== NT_float
,
16565 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16568 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16572 do_neon_addsub_if_i (void)
16574 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
16575 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
16578 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16579 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
,
16580 N_EQK
, N_IF_32
| N_I64
| N_KEY
);
16582 constraint (rs
== NS_QQR
&& et
.size
== 64, BAD_FPU
);
16583 /* If we are parsing Q registers and the element types match MVE, which NEON
16584 also supports, then we must check whether this is an instruction that can
16585 be used by both MVE/NEON. This distinction can be made based on whether
16586 they are predicated or not. */
16587 if ((rs
== NS_QQQ
|| rs
== NS_QQR
) && et
.size
!= 64)
16589 if (check_simd_pred_availability (et
.type
== NT_float
,
16590 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16595 /* If they are either in a D register or are using an unsupported. */
16597 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16601 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16602 affected if we specify unsigned args. */
16603 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
16606 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16608 V<op> A,B (A is operand 0, B is operand 2)
16613 so handle that case specially. */
16616 neon_exchange_operands (void)
16618 if (inst
.operands
[1].present
)
16620 void *scratch
= xmalloc (sizeof (inst
.operands
[0]));
16622 /* Swap operands[1] and operands[2]. */
16623 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
16624 inst
.operands
[1] = inst
.operands
[2];
16625 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
16630 inst
.operands
[1] = inst
.operands
[2];
16631 inst
.operands
[2] = inst
.operands
[0];
16636 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
16638 if (inst
.operands
[2].isreg
)
16641 neon_exchange_operands ();
16642 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
16646 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16647 struct neon_type_el et
= neon_check_type (2, rs
,
16648 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
16650 NEON_ENCODE (IMMED
, inst
);
16651 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16652 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16653 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16654 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16655 inst
.instruction
|= neon_quad (rs
) << 6;
16656 inst
.instruction
|= (et
.type
== NT_float
) << 10;
16657 inst
.instruction
|= neon_logbits (et
.size
) << 18;
16659 neon_dp_fixup (&inst
);
16666 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, FALSE
);
16670 do_neon_cmp_inv (void)
16672 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, TRUE
);
16678 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
16681 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16682 scalars, which are encoded in 5 bits, M : Rm.
16683 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16684 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16687 Dot Product instructions are similar to multiply instructions except elsize
16688 should always be 32.
16690 This function translates SCALAR, which is GAS's internal encoding of indexed
16691 scalar register, to raw encoding. There is also register and index range
16692 check based on ELSIZE. */
16695 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
16697 unsigned regno
= NEON_SCALAR_REG (scalar
);
16698 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
16703 if (regno
> 7 || elno
> 3)
16705 return regno
| (elno
<< 3);
16708 if (regno
> 15 || elno
> 1)
16710 return regno
| (elno
<< 4);
16714 first_error (_("scalar out of range for multiply instruction"));
16720 /* Encode multiply / multiply-accumulate scalar instructions. */
16723 neon_mul_mac (struct neon_type_el et
, int ubit
)
16727 /* Give a more helpful error message if we have an invalid type. */
16728 if (et
.type
== NT_invtype
)
16731 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
16732 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16733 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16734 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16735 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16736 inst
.instruction
|= LOW4 (scalar
);
16737 inst
.instruction
|= HI1 (scalar
) << 5;
16738 inst
.instruction
|= (et
.type
== NT_float
) << 8;
16739 inst
.instruction
|= neon_logbits (et
.size
) << 20;
16740 inst
.instruction
|= (ubit
!= 0) << 24;
16742 neon_dp_fixup (&inst
);
16746 do_neon_mac_maybe_scalar (void)
16748 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
16751 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16754 if (inst
.operands
[2].isscalar
)
16756 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
16757 struct neon_type_el et
= neon_check_type (3, rs
,
16758 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F_16_32
| N_KEY
);
16759 NEON_ENCODE (SCALAR
, inst
);
16760 neon_mul_mac (et
, neon_quad (rs
));
16764 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16765 affected if we specify unsigned args. */
16766 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16771 do_neon_fmac (void)
16773 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
16776 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16779 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16785 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16786 struct neon_type_el et
= neon_check_type (3, rs
,
16787 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
16788 neon_three_same (neon_quad (rs
), 0, et
.size
);
16791 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16792 same types as the MAC equivalents. The polynomial type for this instruction
16793 is encoded the same as the integer type. */
16798 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
16801 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16804 if (inst
.operands
[2].isscalar
)
16805 do_neon_mac_maybe_scalar ();
16807 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F16
| N_F32
| N_P8
, 0);
16811 do_neon_qdmulh (void)
16813 if (inst
.operands
[2].isscalar
)
16815 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
16816 struct neon_type_el et
= neon_check_type (3, rs
,
16817 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16818 NEON_ENCODE (SCALAR
, inst
);
16819 neon_mul_mac (et
, neon_quad (rs
));
16823 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16824 struct neon_type_el et
= neon_check_type (3, rs
,
16825 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
16826 NEON_ENCODE (INTEGER
, inst
);
16827 /* The U bit (rounding) comes from bit mask. */
16828 neon_three_same (neon_quad (rs
), 0, et
.size
);
16833 do_mve_vaddv (void)
16835 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
16836 struct neon_type_el et
16837 = neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
16839 if (et
.type
== NT_invtype
)
16840 first_error (BAD_EL_TYPE
);
16842 if (inst
.cond
> COND_ALWAYS
)
16843 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16845 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16847 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
16849 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
16855 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
16856 struct neon_type_el et
16857 = neon_check_type (3, rs
, N_KEY
| N_I32
, N_EQK
, N_EQK
);
16859 if (et
.type
== NT_invtype
)
16860 first_error (BAD_EL_TYPE
);
16862 if (inst
.cond
> COND_ALWAYS
)
16863 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16865 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16867 mve_encode_qqq (0, 64);
16871 do_mve_vbrsr (void)
16873 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
16874 struct neon_type_el et
16875 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
16877 if (inst
.cond
> COND_ALWAYS
)
16878 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16880 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16882 mve_encode_qqr (et
.size
, 0);
16888 neon_check_type (3, NS_QQQ
, N_EQK
, N_EQK
, N_I32
| N_KEY
);
16890 if (inst
.cond
> COND_ALWAYS
)
16891 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16893 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16895 mve_encode_qqq (1, 64);
16899 do_mve_vmull (void)
16902 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_DDS
,
16903 NS_QQS
, NS_QQQ
, NS_QQR
, NS_NULL
);
16904 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
16905 && inst
.cond
== COND_ALWAYS
16906 && ((unsigned)inst
.instruction
) == M_MNEM_vmullt
)
16911 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16912 N_SUF_32
| N_F64
| N_P8
16913 | N_P16
| N_I_MVE
| N_KEY
);
16914 if (((et
.type
== NT_poly
) && et
.size
== 8
16915 && ARM_CPU_IS_ANY (cpu_variant
))
16916 || (et
.type
== NT_integer
) || (et
.type
== NT_float
))
16923 constraint (rs
!= NS_QQQ
, BAD_FPU
);
16924 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16925 N_SU_32
| N_P8
| N_P16
| N_KEY
);
16927 /* We are dealing with MVE's vmullt. */
16929 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
16930 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
16931 as_tsktsk (BAD_MVE_SRCDEST
);
16933 if (inst
.cond
> COND_ALWAYS
)
16934 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16936 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16938 if (et
.type
== NT_poly
)
16939 mve_encode_qqq (neon_logbits (et
.size
), 64);
16941 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
16946 inst
.instruction
= N_MNEM_vmul
;
16949 inst
.pred_insn_type
= INSIDE_IT_INSN
;
16954 do_mve_vabav (void)
16956 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
16961 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16964 struct neon_type_el et
= neon_check_type (2, NS_NULL
, N_EQK
, N_KEY
| N_S8
16965 | N_S16
| N_S32
| N_U8
| N_U16
16968 if (inst
.cond
> COND_ALWAYS
)
16969 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16971 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16973 mve_encode_rqq (et
.type
== NT_unsigned
, et
.size
);
16977 do_mve_vmladav (void)
16979 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
16980 struct neon_type_el et
= neon_check_type (3, rs
,
16981 N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
16983 if (et
.type
== NT_unsigned
16984 && (inst
.instruction
== M_MNEM_vmladavx
16985 || inst
.instruction
== M_MNEM_vmladavax
16986 || inst
.instruction
== M_MNEM_vmlsdav
16987 || inst
.instruction
== M_MNEM_vmlsdava
16988 || inst
.instruction
== M_MNEM_vmlsdavx
16989 || inst
.instruction
== M_MNEM_vmlsdavax
))
16990 first_error (BAD_SIMD_TYPE
);
16992 constraint (inst
.operands
[2].reg
> 14,
16993 _("MVE vector register in the range [Q0..Q7] expected"));
16995 if (inst
.cond
> COND_ALWAYS
)
16996 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16998 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17000 if (inst
.instruction
== M_MNEM_vmlsdav
17001 || inst
.instruction
== M_MNEM_vmlsdava
17002 || inst
.instruction
== M_MNEM_vmlsdavx
17003 || inst
.instruction
== M_MNEM_vmlsdavax
)
17004 inst
.instruction
|= (et
.size
== 8) << 28;
17006 inst
.instruction
|= (et
.size
== 8) << 8;
17008 mve_encode_rqq (et
.type
== NT_unsigned
, 64);
17009 inst
.instruction
|= (et
.size
== 32) << 16;
17013 do_neon_qrdmlah (void)
17015 /* Check we're on the correct architecture. */
17016 if (!mark_feature_used (&fpu_neon_ext_armv8
))
17018 _("instruction form not available on this architecture.");
17019 else if (!mark_feature_used (&fpu_neon_ext_v8_1
))
17021 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17022 record_feature_use (&fpu_neon_ext_v8_1
);
17025 if (inst
.operands
[2].isscalar
)
17027 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17028 struct neon_type_el et
= neon_check_type (3, rs
,
17029 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17030 NEON_ENCODE (SCALAR
, inst
);
17031 neon_mul_mac (et
, neon_quad (rs
));
17035 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17036 struct neon_type_el et
= neon_check_type (3, rs
,
17037 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17038 NEON_ENCODE (INTEGER
, inst
);
17039 /* The U bit (rounding) comes from bit mask. */
17040 neon_three_same (neon_quad (rs
), 0, et
.size
);
17045 do_neon_fcmp_absolute (void)
17047 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17048 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17049 N_F_16_32
| N_KEY
);
17050 /* Size field comes from bit mask. */
17051 neon_three_same (neon_quad (rs
), 1, et
.size
== 16 ? (int) et
.size
: -1);
17055 do_neon_fcmp_absolute_inv (void)
17057 neon_exchange_operands ();
17058 do_neon_fcmp_absolute ();
17062 do_neon_step (void)
17064 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17065 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17066 N_F_16_32
| N_KEY
);
17067 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
17071 do_neon_abs_neg (void)
17073 enum neon_shape rs
;
17074 struct neon_type_el et
;
17076 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
17079 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
17080 et
= neon_check_type (2, rs
, N_EQK
, N_S_32
| N_F_16_32
| N_KEY
);
17082 if (check_simd_pred_availability (et
.type
== NT_float
,
17083 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17086 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17087 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17088 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17089 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17090 inst
.instruction
|= neon_quad (rs
) << 6;
17091 inst
.instruction
|= (et
.type
== NT_float
) << 10;
17092 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17094 neon_dp_fixup (&inst
);
17100 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17101 struct neon_type_el et
= neon_check_type (2, rs
,
17102 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17103 int imm
= inst
.operands
[2].imm
;
17104 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17105 _("immediate out of range for insert"));
17106 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17112 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17113 struct neon_type_el et
= neon_check_type (2, rs
,
17114 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17115 int imm
= inst
.operands
[2].imm
;
17116 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17117 _("immediate out of range for insert"));
17118 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
17122 do_neon_qshlu_imm (void)
17124 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17125 struct neon_type_el et
= neon_check_type (2, rs
,
17126 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
17127 int imm
= inst
.operands
[2].imm
;
17128 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17129 _("immediate out of range for shift"));
17130 /* Only encodes the 'U present' variant of the instruction.
17131 In this case, signed types have OP (bit 8) set to 0.
17132 Unsigned types have OP set to 1. */
17133 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
17134 /* The rest of the bits are the same as other immediate shifts. */
17135 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17139 do_neon_qmovn (void)
17141 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17142 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17143 /* Saturating move where operands can be signed or unsigned, and the
17144 destination has the same signedness. */
17145 NEON_ENCODE (INTEGER
, inst
);
17146 if (et
.type
== NT_unsigned
)
17147 inst
.instruction
|= 0xc0;
17149 inst
.instruction
|= 0x80;
17150 neon_two_same (0, 1, et
.size
/ 2);
17154 do_neon_qmovun (void)
17156 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17157 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17158 /* Saturating move with unsigned results. Operands must be signed. */
17159 NEON_ENCODE (INTEGER
, inst
);
17160 neon_two_same (0, 1, et
.size
/ 2);
17164 do_neon_rshift_sat_narrow (void)
17166 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17167 or unsigned. If operands are unsigned, results must also be unsigned. */
17168 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17169 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17170 int imm
= inst
.operands
[2].imm
;
17171 /* This gets the bounds check, size encoding and immediate bits calculation
17175 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17176 VQMOVN.I<size> <Dd>, <Qm>. */
17179 inst
.operands
[2].present
= 0;
17180 inst
.instruction
= N_MNEM_vqmovn
;
17185 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17186 _("immediate out of range"));
17187 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
17191 do_neon_rshift_sat_narrow_u (void)
17193 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17194 or unsigned. If operands are unsigned, results must also be unsigned. */
17195 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17196 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17197 int imm
= inst
.operands
[2].imm
;
17198 /* This gets the bounds check, size encoding and immediate bits calculation
17202 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17203 VQMOVUN.I<size> <Dd>, <Qm>. */
17206 inst
.operands
[2].present
= 0;
17207 inst
.instruction
= N_MNEM_vqmovun
;
17212 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17213 _("immediate out of range"));
17214 /* FIXME: The manual is kind of unclear about what value U should have in
17215 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17217 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
17221 do_neon_movn (void)
17223 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17224 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17225 NEON_ENCODE (INTEGER
, inst
);
17226 neon_two_same (0, 1, et
.size
/ 2);
17230 do_neon_rshift_narrow (void)
17232 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17233 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17234 int imm
= inst
.operands
[2].imm
;
17235 /* This gets the bounds check, size encoding and immediate bits calculation
17239 /* If immediate is zero then we are a pseudo-instruction for
17240 VMOVN.I<size> <Dd>, <Qm> */
17243 inst
.operands
[2].present
= 0;
17244 inst
.instruction
= N_MNEM_vmovn
;
17249 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17250 _("immediate out of range for narrowing operation"));
17251 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
17255 do_neon_shll (void)
17257 /* FIXME: Type checking when lengthening. */
17258 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
17259 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
17260 unsigned imm
= inst
.operands
[2].imm
;
17262 if (imm
== et
.size
)
17264 /* Maximum shift variant. */
17265 NEON_ENCODE (INTEGER
, inst
);
17266 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17267 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17268 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17269 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17270 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17272 neon_dp_fixup (&inst
);
17276 /* A more-specific type check for non-max versions. */
17277 et
= neon_check_type (2, NS_QDI
,
17278 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
17279 NEON_ENCODE (IMMED
, inst
);
17280 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
17284 /* Check the various types for the VCVT instruction, and return which version
17285 the current instruction is. */
17287 #define CVT_FLAVOUR_VAR \
17288 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17289 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17290 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17291 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17292 /* Half-precision conversions. */ \
17293 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17294 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17295 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17296 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17297 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17298 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17299 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17300 Compared with single/double precision variants, only the co-processor \
17301 field is different, so the encoding flow is reused here. */ \
17302 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17303 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17304 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17305 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17306 /* VFP instructions. */ \
17307 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17308 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17309 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17310 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17311 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17312 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17313 /* VFP instructions with bitshift. */ \
17314 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17315 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17316 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17317 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17318 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17319 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17320 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17321 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17323 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17324 neon_cvt_flavour_##C,
17326 /* The different types of conversions we can do. */
17327 enum neon_cvt_flavour
17330 neon_cvt_flavour_invalid
,
17331 neon_cvt_flavour_first_fp
= neon_cvt_flavour_f32_f64
17336 static enum neon_cvt_flavour
17337 get_neon_cvt_flavour (enum neon_shape rs
)
17339 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17340 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17341 if (et.type != NT_invtype) \
17343 inst.error = NULL; \
17344 return (neon_cvt_flavour_##C); \
17347 struct neon_type_el et
;
17348 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
17349 || rs
== NS_FF
) ? N_VFP
: 0;
17350 /* The instruction versions which take an immediate take one register
17351 argument, which is extended to the width of the full register. Thus the
17352 "source" and "destination" registers must have the same width. Hack that
17353 here by making the size equal to the key (wider, in this case) operand. */
17354 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
17358 return neon_cvt_flavour_invalid
;
17373 /* Neon-syntax VFP conversions. */
17376 do_vfp_nsyn_cvt (enum neon_shape rs
, enum neon_cvt_flavour flavour
)
17378 const char *opname
= 0;
17380 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
17381 || rs
== NS_FHI
|| rs
== NS_HFI
)
17383 /* Conversions with immediate bitshift. */
17384 const char *enc
[] =
17386 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17392 if (flavour
< (int) ARRAY_SIZE (enc
))
17394 opname
= enc
[flavour
];
17395 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
17396 _("operands 0 and 1 must be the same register"));
17397 inst
.operands
[1] = inst
.operands
[2];
17398 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
17403 /* Conversions without bitshift. */
17404 const char *enc
[] =
17406 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17412 if (flavour
< (int) ARRAY_SIZE (enc
))
17413 opname
= enc
[flavour
];
17417 do_vfp_nsyn_opcode (opname
);
17419 /* ARMv8.2 fp16 VCVT instruction. */
17420 if (flavour
== neon_cvt_flavour_s32_f16
17421 || flavour
== neon_cvt_flavour_u32_f16
17422 || flavour
== neon_cvt_flavour_f16_u32
17423 || flavour
== neon_cvt_flavour_f16_s32
)
17424 do_scalar_fp16_v82_encode ();
17428 do_vfp_nsyn_cvtz (void)
17430 enum neon_shape rs
= neon_select_shape (NS_FH
, NS_FF
, NS_FD
, NS_NULL
);
17431 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
17432 const char *enc
[] =
17434 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17440 if (flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
17441 do_vfp_nsyn_opcode (enc
[flavour
]);
17445 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour
,
17446 enum neon_cvt_mode mode
)
17451 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17452 D register operands. */
17453 if (flavour
== neon_cvt_flavour_s32_f64
17454 || flavour
== neon_cvt_flavour_u32_f64
)
17455 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
17458 if (flavour
== neon_cvt_flavour_s32_f16
17459 || flavour
== neon_cvt_flavour_u32_f16
)
17460 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
17463 set_pred_insn_type (OUTSIDE_PRED_INSN
);
17467 case neon_cvt_flavour_s32_f64
:
17471 case neon_cvt_flavour_s32_f32
:
17475 case neon_cvt_flavour_s32_f16
:
17479 case neon_cvt_flavour_u32_f64
:
17483 case neon_cvt_flavour_u32_f32
:
17487 case neon_cvt_flavour_u32_f16
:
17492 first_error (_("invalid instruction shape"));
17498 case neon_cvt_mode_a
: rm
= 0; break;
17499 case neon_cvt_mode_n
: rm
= 1; break;
17500 case neon_cvt_mode_p
: rm
= 2; break;
17501 case neon_cvt_mode_m
: rm
= 3; break;
17502 default: first_error (_("invalid rounding mode")); return;
17505 NEON_ENCODE (FPV8
, inst
);
17506 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
17507 encode_arm_vfp_reg (inst
.operands
[1].reg
, sz
== 1 ? VFP_REG_Dm
: VFP_REG_Sm
);
17508 inst
.instruction
|= sz
<< 8;
17510 /* ARMv8.2 fp16 VCVT instruction. */
17511 if (flavour
== neon_cvt_flavour_s32_f16
17512 ||flavour
== neon_cvt_flavour_u32_f16
)
17513 do_scalar_fp16_v82_encode ();
17514 inst
.instruction
|= op
<< 7;
17515 inst
.instruction
|= rm
<< 16;
17516 inst
.instruction
|= 0xf0000000;
17517 inst
.is_neon
= TRUE
;
17521 do_neon_cvt_1 (enum neon_cvt_mode mode
)
17523 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
17524 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
,
17525 NS_FH
, NS_HF
, NS_FHI
, NS_HFI
,
17527 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
17529 if (flavour
== neon_cvt_flavour_invalid
)
17532 /* PR11109: Handle round-to-zero for VCVT conversions. */
17533 if (mode
== neon_cvt_mode_z
17534 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
17535 && (flavour
== neon_cvt_flavour_s16_f16
17536 || flavour
== neon_cvt_flavour_u16_f16
17537 || flavour
== neon_cvt_flavour_s32_f32
17538 || flavour
== neon_cvt_flavour_u32_f32
17539 || flavour
== neon_cvt_flavour_s32_f64
17540 || flavour
== neon_cvt_flavour_u32_f64
)
17541 && (rs
== NS_FD
|| rs
== NS_FF
))
17543 do_vfp_nsyn_cvtz ();
17547 /* ARMv8.2 fp16 VCVT conversions. */
17548 if (mode
== neon_cvt_mode_z
17549 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
)
17550 && (flavour
== neon_cvt_flavour_s32_f16
17551 || flavour
== neon_cvt_flavour_u32_f16
)
17554 do_vfp_nsyn_cvtz ();
17555 do_scalar_fp16_v82_encode ();
17559 /* VFP rather than Neon conversions. */
17560 if (flavour
>= neon_cvt_flavour_first_fp
)
17562 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
17563 do_vfp_nsyn_cvt (rs
, flavour
);
17565 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
17573 if (mode
== neon_cvt_mode_z
17574 && (flavour
== neon_cvt_flavour_f16_s16
17575 || flavour
== neon_cvt_flavour_f16_u16
17576 || flavour
== neon_cvt_flavour_s16_f16
17577 || flavour
== neon_cvt_flavour_u16_f16
17578 || flavour
== neon_cvt_flavour_f32_u32
17579 || flavour
== neon_cvt_flavour_f32_s32
17580 || flavour
== neon_cvt_flavour_s32_f32
17581 || flavour
== neon_cvt_flavour_u32_f32
))
17583 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17586 else if (mode
== neon_cvt_mode_n
)
17588 /* We are dealing with vcvt with the 'ne' condition. */
17590 inst
.instruction
= N_MNEM_vcvt
;
17591 do_neon_cvt_1 (neon_cvt_mode_z
);
17594 /* fall through. */
17598 unsigned enctab
[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17599 0x0000100, 0x1000100, 0x0, 0x1000000};
17601 if ((rs
!= NS_QQI
|| !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17602 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17605 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17607 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0,
17608 _("immediate value out of range"));
17611 case neon_cvt_flavour_f16_s16
:
17612 case neon_cvt_flavour_f16_u16
:
17613 case neon_cvt_flavour_s16_f16
:
17614 case neon_cvt_flavour_u16_f16
:
17615 constraint (inst
.operands
[2].imm
> 16,
17616 _("immediate value out of range"));
17618 case neon_cvt_flavour_f32_u32
:
17619 case neon_cvt_flavour_f32_s32
:
17620 case neon_cvt_flavour_s32_f32
:
17621 case neon_cvt_flavour_u32_f32
:
17622 constraint (inst
.operands
[2].imm
> 32,
17623 _("immediate value out of range"));
17626 inst
.error
= BAD_FPU
;
17631 /* Fixed-point conversion with #0 immediate is encoded as an
17632 integer conversion. */
17633 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
17635 NEON_ENCODE (IMMED
, inst
);
17636 if (flavour
!= neon_cvt_flavour_invalid
)
17637 inst
.instruction
|= enctab
[flavour
];
17638 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17639 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17640 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17641 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17642 inst
.instruction
|= neon_quad (rs
) << 6;
17643 inst
.instruction
|= 1 << 21;
17644 if (flavour
< neon_cvt_flavour_s16_f16
)
17646 inst
.instruction
|= 1 << 21;
17647 immbits
= 32 - inst
.operands
[2].imm
;
17648 inst
.instruction
|= immbits
<< 16;
17652 inst
.instruction
|= 3 << 20;
17653 immbits
= 16 - inst
.operands
[2].imm
;
17654 inst
.instruction
|= immbits
<< 16;
17655 inst
.instruction
&= ~(1 << 9);
17658 neon_dp_fixup (&inst
);
17663 if ((mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
17664 || mode
== neon_cvt_mode_m
|| mode
== neon_cvt_mode_p
)
17665 && (flavour
== neon_cvt_flavour_s16_f16
17666 || flavour
== neon_cvt_flavour_u16_f16
17667 || flavour
== neon_cvt_flavour_s32_f32
17668 || flavour
== neon_cvt_flavour_u32_f32
))
17670 if (check_simd_pred_availability (1,
17671 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
17674 else if (mode
== neon_cvt_mode_z
17675 && (flavour
== neon_cvt_flavour_f16_s16
17676 || flavour
== neon_cvt_flavour_f16_u16
17677 || flavour
== neon_cvt_flavour_s16_f16
17678 || flavour
== neon_cvt_flavour_u16_f16
17679 || flavour
== neon_cvt_flavour_f32_u32
17680 || flavour
== neon_cvt_flavour_f32_s32
17681 || flavour
== neon_cvt_flavour_s32_f32
17682 || flavour
== neon_cvt_flavour_u32_f32
))
17684 if (check_simd_pred_availability (1,
17685 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17688 /* fall through. */
17690 if (mode
!= neon_cvt_mode_x
&& mode
!= neon_cvt_mode_z
)
17693 NEON_ENCODE (FLOAT
, inst
);
17694 if (check_simd_pred_availability (1,
17695 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
17698 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17699 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17700 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17701 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17702 inst
.instruction
|= neon_quad (rs
) << 6;
17703 inst
.instruction
|= (flavour
== neon_cvt_flavour_u16_f16
17704 || flavour
== neon_cvt_flavour_u32_f32
) << 7;
17705 inst
.instruction
|= mode
<< 8;
17706 if (flavour
== neon_cvt_flavour_u16_f16
17707 || flavour
== neon_cvt_flavour_s16_f16
)
17708 /* Mask off the original size bits and reencode them. */
17709 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff) | (1 << 18));
17712 inst
.instruction
|= 0xfc000000;
17714 inst
.instruction
|= 0xf0000000;
17720 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080,
17721 0x100, 0x180, 0x0, 0x080};
17723 NEON_ENCODE (INTEGER
, inst
);
17725 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17727 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17731 if (flavour
!= neon_cvt_flavour_invalid
)
17732 inst
.instruction
|= enctab
[flavour
];
17734 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17735 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17736 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17737 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17738 inst
.instruction
|= neon_quad (rs
) << 6;
17739 if (flavour
>= neon_cvt_flavour_s16_f16
17740 && flavour
<= neon_cvt_flavour_f16_u16
)
17741 /* Half precision. */
17742 inst
.instruction
|= 1 << 18;
17744 inst
.instruction
|= 2 << 18;
17746 neon_dp_fixup (&inst
);
17751 /* Half-precision conversions for Advanced SIMD -- neon. */
17754 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
17758 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
17760 as_bad (_("operand size must match register width"));
17765 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
17767 as_bad (_("operand size must match register width"));
17772 inst
.instruction
= 0x3b60600;
17774 inst
.instruction
= 0x3b60700;
17776 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17777 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17778 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17779 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17780 neon_dp_fixup (&inst
);
17784 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17785 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
17786 do_vfp_nsyn_cvt (rs
, flavour
);
17788 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
17793 do_neon_cvtr (void)
17795 do_neon_cvt_1 (neon_cvt_mode_x
);
17801 do_neon_cvt_1 (neon_cvt_mode_z
);
17805 do_neon_cvta (void)
17807 do_neon_cvt_1 (neon_cvt_mode_a
);
17811 do_neon_cvtn (void)
17813 do_neon_cvt_1 (neon_cvt_mode_n
);
17817 do_neon_cvtp (void)
17819 do_neon_cvt_1 (neon_cvt_mode_p
);
17823 do_neon_cvtm (void)
17825 do_neon_cvt_1 (neon_cvt_mode_m
);
17829 do_neon_cvttb_2 (bfd_boolean t
, bfd_boolean to
, bfd_boolean is_double
)
17832 mark_feature_used (&fpu_vfp_ext_armv8
);
17834 encode_arm_vfp_reg (inst
.operands
[0].reg
,
17835 (is_double
&& !to
) ? VFP_REG_Dd
: VFP_REG_Sd
);
17836 encode_arm_vfp_reg (inst
.operands
[1].reg
,
17837 (is_double
&& to
) ? VFP_REG_Dm
: VFP_REG_Sm
);
17838 inst
.instruction
|= to
? 0x10000 : 0;
17839 inst
.instruction
|= t
? 0x80 : 0;
17840 inst
.instruction
|= is_double
? 0x100 : 0;
17841 do_vfp_cond_or_thumb ();
17845 do_neon_cvttb_1 (bfd_boolean t
)
17847 enum neon_shape rs
= neon_select_shape (NS_HF
, NS_HD
, NS_FH
, NS_FF
, NS_FD
,
17848 NS_DF
, NS_DH
, NS_QQ
, NS_QQI
, NS_NULL
);
17852 else if (rs
== NS_QQ
|| rs
== NS_QQI
)
17854 int single_to_half
= 0;
17855 if (check_simd_pred_availability (1, NEON_CHECK_ARCH
))
17858 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
17860 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
17861 && (flavour
== neon_cvt_flavour_u16_f16
17862 || flavour
== neon_cvt_flavour_s16_f16
17863 || flavour
== neon_cvt_flavour_f16_s16
17864 || flavour
== neon_cvt_flavour_f16_u16
17865 || flavour
== neon_cvt_flavour_u32_f32
17866 || flavour
== neon_cvt_flavour_s32_f32
17867 || flavour
== neon_cvt_flavour_f32_s32
17868 || flavour
== neon_cvt_flavour_f32_u32
))
17871 inst
.instruction
= N_MNEM_vcvt
;
17872 set_pred_insn_type (INSIDE_VPT_INSN
);
17873 do_neon_cvt_1 (neon_cvt_mode_z
);
17876 else if (rs
== NS_QQ
&& flavour
== neon_cvt_flavour_f32_f16
)
17877 single_to_half
= 1;
17878 else if (rs
== NS_QQ
&& flavour
!= neon_cvt_flavour_f16_f32
)
17880 first_error (BAD_FPU
);
17884 inst
.instruction
= 0xee3f0e01;
17885 inst
.instruction
|= single_to_half
<< 28;
17886 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17887 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 13;
17888 inst
.instruction
|= t
<< 12;
17889 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17890 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 1;
17893 else if (neon_check_type (2, rs
, N_F16
, N_F32
| N_VFP
).type
!= NT_invtype
)
17896 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/FALSE
);
17898 else if (neon_check_type (2, rs
, N_F32
| N_VFP
, N_F16
).type
!= NT_invtype
)
17901 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/FALSE
);
17903 else if (neon_check_type (2, rs
, N_F16
, N_F64
| N_VFP
).type
!= NT_invtype
)
17905 /* The VCVTB and VCVTT instructions with D-register operands
17906 don't work for SP only targets. */
17907 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
17911 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/TRUE
);
17913 else if (neon_check_type (2, rs
, N_F64
| N_VFP
, N_F16
).type
!= NT_invtype
)
17915 /* The VCVTB and VCVTT instructions with D-register operands
17916 don't work for SP only targets. */
17917 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
17921 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/TRUE
);
17928 do_neon_cvtb (void)
17930 do_neon_cvttb_1 (FALSE
);
17935 do_neon_cvtt (void)
17937 do_neon_cvttb_1 (TRUE
);
17941 neon_move_immediate (void)
17943 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
17944 struct neon_type_el et
= neon_check_type (2, rs
,
17945 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
17946 unsigned immlo
, immhi
= 0, immbits
;
17947 int op
, cmode
, float_p
;
17949 constraint (et
.type
== NT_invtype
,
17950 _("operand size must be specified for immediate VMOV"));
17952 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17953 op
= (inst
.instruction
& (1 << 5)) != 0;
17955 immlo
= inst
.operands
[1].imm
;
17956 if (inst
.operands
[1].regisimm
)
17957 immhi
= inst
.operands
[1].reg
;
17959 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
17960 _("immediate has bits set outside the operand size"));
17962 float_p
= inst
.operands
[1].immisfloat
;
17964 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
17965 et
.size
, et
.type
)) == FAIL
)
17967 /* Invert relevant bits only. */
17968 neon_invert_size (&immlo
, &immhi
, et
.size
);
17969 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
17970 with one or the other; those cases are caught by
17971 neon_cmode_for_move_imm. */
17973 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
17974 &op
, et
.size
, et
.type
)) == FAIL
)
17976 first_error (_("immediate out of range"));
17981 inst
.instruction
&= ~(1 << 5);
17982 inst
.instruction
|= op
<< 5;
17984 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17985 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17986 inst
.instruction
|= neon_quad (rs
) << 6;
17987 inst
.instruction
|= cmode
<< 8;
17989 neon_write_immbits (immbits
);
17995 if (inst
.operands
[1].isreg
)
17997 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
17999 NEON_ENCODE (INTEGER
, inst
);
18000 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18001 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18002 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18003 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18004 inst
.instruction
|= neon_quad (rs
) << 6;
18008 NEON_ENCODE (IMMED
, inst
);
18009 neon_move_immediate ();
18012 neon_dp_fixup (&inst
);
18015 /* Encode instructions of form:
18017 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18018 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18021 neon_mixed_length (struct neon_type_el et
, unsigned size
)
18023 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18024 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18025 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18026 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18027 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18028 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18029 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
18030 inst
.instruction
|= neon_logbits (size
) << 20;
18032 neon_dp_fixup (&inst
);
18036 do_neon_dyadic_long (void)
18038 enum neon_shape rs
= neon_select_shape (NS_QDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
18041 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH
| NEON_CHECK_CC
) == FAIL
)
18044 NEON_ENCODE (INTEGER
, inst
);
18045 /* FIXME: Type checking for lengthening op. */
18046 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18047 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18048 neon_mixed_length (et
, et
.size
);
18050 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18051 && (inst
.cond
== 0xf || inst
.cond
== 0x10))
18053 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18054 in an IT block with le/lt conditions. */
18056 if (inst
.cond
== 0xf)
18058 else if (inst
.cond
== 0x10)
18061 inst
.pred_insn_type
= INSIDE_IT_INSN
;
18063 if (inst
.instruction
== N_MNEM_vaddl
)
18065 inst
.instruction
= N_MNEM_vadd
;
18066 do_neon_addsub_if_i ();
18068 else if (inst
.instruction
== N_MNEM_vsubl
)
18070 inst
.instruction
= N_MNEM_vsub
;
18071 do_neon_addsub_if_i ();
18073 else if (inst
.instruction
== N_MNEM_vabdl
)
18075 inst
.instruction
= N_MNEM_vabd
;
18076 do_neon_dyadic_if_su ();
18080 first_error (BAD_FPU
);
18084 do_neon_abal (void)
18086 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18087 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18088 neon_mixed_length (et
, et
.size
);
18092 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
18094 if (inst
.operands
[2].isscalar
)
18096 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
18097 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
18098 NEON_ENCODE (SCALAR
, inst
);
18099 neon_mul_mac (et
, et
.type
== NT_unsigned
);
18103 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18104 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
18105 NEON_ENCODE (INTEGER
, inst
);
18106 neon_mixed_length (et
, et
.size
);
18111 do_neon_mac_maybe_scalar_long (void)
18113 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
18116 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18117 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18120 neon_scalar_for_fmac_fp16_long (unsigned scalar
, unsigned quad_p
)
18122 unsigned regno
= NEON_SCALAR_REG (scalar
);
18123 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
18127 if (regno
> 7 || elno
> 3)
18130 return ((regno
& 0x7)
18131 | ((elno
& 0x1) << 3)
18132 | (((elno
>> 1) & 0x1) << 5));
18136 if (regno
> 15 || elno
> 1)
18139 return (((regno
& 0x1) << 5)
18140 | ((regno
>> 1) & 0x7)
18141 | ((elno
& 0x1) << 3));
18145 first_error (_("scalar out of range for multiply instruction"));
18150 do_neon_fmac_maybe_scalar_long (int subtype
)
18152 enum neon_shape rs
;
18154 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18155 field (bits[21:20]) has different meaning. For scalar index variant, it's
18156 used to differentiate add and subtract, otherwise it's with fixed value
18160 if (inst
.cond
!= COND_ALWAYS
)
18161 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18162 "behaviour is UNPREDICTABLE"));
18164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16_fml
),
18167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
18170 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18171 be a scalar index register. */
18172 if (inst
.operands
[2].isscalar
)
18174 high8
= 0xfe000000;
18177 rs
= neon_select_shape (NS_DHS
, NS_QDS
, NS_NULL
);
18181 high8
= 0xfc000000;
18184 inst
.instruction
|= (0x1 << 23);
18185 rs
= neon_select_shape (NS_DHH
, NS_QDD
, NS_NULL
);
18188 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
);
18190 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18191 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18192 so we simply pass -1 as size. */
18193 unsigned quad_p
= (rs
== NS_QDD
|| rs
== NS_QDS
);
18194 neon_three_same (quad_p
, 0, size
);
18196 /* Undo neon_dp_fixup. Redo the high eight bits. */
18197 inst
.instruction
&= 0x00ffffff;
18198 inst
.instruction
|= high8
;
18200 #define LOW1(R) ((R) & 0x1)
18201 #define HI4(R) (((R) >> 1) & 0xf)
18202 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18203 whether the instruction is in Q form and whether Vm is a scalar indexed
18205 if (inst
.operands
[2].isscalar
)
18208 = neon_scalar_for_fmac_fp16_long (inst
.operands
[2].reg
, quad_p
);
18209 inst
.instruction
&= 0xffffffd0;
18210 inst
.instruction
|= rm
;
18214 /* Redo Rn as well. */
18215 inst
.instruction
&= 0xfff0ff7f;
18216 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18217 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18222 /* Redo Rn and Rm. */
18223 inst
.instruction
&= 0xfff0ff50;
18224 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18225 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18226 inst
.instruction
|= HI4 (inst
.operands
[2].reg
);
18227 inst
.instruction
|= LOW1 (inst
.operands
[2].reg
) << 5;
18232 do_neon_vfmal (void)
18234 return do_neon_fmac_maybe_scalar_long (0);
18238 do_neon_vfmsl (void)
18240 return do_neon_fmac_maybe_scalar_long (1);
18244 do_neon_dyadic_wide (void)
18246 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
18247 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18248 neon_mixed_length (et
, et
.size
);
18252 do_neon_dyadic_narrow (void)
18254 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18255 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
18256 /* Operand sign is unimportant, and the U bit is part of the opcode,
18257 so force the operand type to integer. */
18258 et
.type
= NT_integer
;
18259 neon_mixed_length (et
, et
.size
/ 2);
18263 do_neon_mul_sat_scalar_long (void)
18265 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
18269 do_neon_vmull (void)
18271 if (inst
.operands
[2].isscalar
)
18272 do_neon_mac_maybe_scalar_long ();
18275 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18276 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_P64
| N_KEY
);
18278 if (et
.type
== NT_poly
)
18279 NEON_ENCODE (POLY
, inst
);
18281 NEON_ENCODE (INTEGER
, inst
);
18283 /* For polynomial encoding the U bit must be zero, and the size must
18284 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18285 obviously, as 0b10). */
18288 /* Check we're on the correct architecture. */
18289 if (!mark_feature_used (&fpu_crypto_ext_armv8
))
18291 _("Instruction form not available on this architecture.");
18296 neon_mixed_length (et
, et
.size
);
18303 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
18304 struct neon_type_el et
= neon_check_type (3, rs
,
18305 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
18306 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
18308 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
18309 _("shift out of range"));
18310 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18311 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18312 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18313 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18314 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18315 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18316 inst
.instruction
|= neon_quad (rs
) << 6;
18317 inst
.instruction
|= imm
<< 8;
18319 neon_dp_fixup (&inst
);
18325 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18326 struct neon_type_el et
= neon_check_type (2, rs
,
18327 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18328 unsigned op
= (inst
.instruction
>> 7) & 3;
18329 /* N (width of reversed regions) is encoded as part of the bitmask. We
18330 extract it here to check the elements to be reversed are smaller.
18331 Otherwise we'd get a reserved instruction. */
18332 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
18333 gas_assert (elsize
!= 0);
18334 constraint (et
.size
>= elsize
,
18335 _("elements must be smaller than reversal region"));
18336 neon_two_same (neon_quad (rs
), 1, et
.size
);
18342 if (inst
.operands
[1].isscalar
)
18344 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
18345 struct neon_type_el et
= neon_check_type (2, rs
,
18346 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18347 unsigned sizebits
= et
.size
>> 3;
18348 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
18349 int logsize
= neon_logbits (et
.size
);
18350 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
18352 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
18355 NEON_ENCODE (SCALAR
, inst
);
18356 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18357 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18358 inst
.instruction
|= LOW4 (dm
);
18359 inst
.instruction
|= HI1 (dm
) << 5;
18360 inst
.instruction
|= neon_quad (rs
) << 6;
18361 inst
.instruction
|= x
<< 17;
18362 inst
.instruction
|= sizebits
<< 16;
18364 neon_dp_fixup (&inst
);
18368 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
18369 struct neon_type_el et
= neon_check_type (2, rs
,
18370 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
18371 /* Duplicate ARM register to lanes of vector. */
18372 NEON_ENCODE (ARMREG
, inst
);
18375 case 8: inst
.instruction
|= 0x400000; break;
18376 case 16: inst
.instruction
|= 0x000020; break;
18377 case 32: inst
.instruction
|= 0x000000; break;
18380 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
18381 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
18382 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
18383 inst
.instruction
|= neon_quad (rs
) << 21;
18384 /* The encoding for this instruction is identical for the ARM and Thumb
18385 variants, except for the condition field. */
18386 do_vfp_cond_or_thumb ();
18391 do_mve_mov (int toQ
)
18393 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18395 if (inst
.cond
> COND_ALWAYS
)
18396 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
18398 unsigned Rt
= 0, Rt2
= 1, Q0
= 2, Q1
= 3;
18407 constraint (inst
.operands
[Q0
].reg
!= inst
.operands
[Q1
].reg
+ 2,
18408 _("Index one must be [2,3] and index two must be two less than"
18410 constraint (inst
.operands
[Rt
].reg
== inst
.operands
[Rt2
].reg
,
18411 _("General purpose registers may not be the same"));
18412 constraint (inst
.operands
[Rt
].reg
== REG_SP
18413 || inst
.operands
[Rt2
].reg
== REG_SP
,
18415 constraint (inst
.operands
[Rt
].reg
== REG_PC
18416 || inst
.operands
[Rt2
].reg
== REG_PC
,
18419 inst
.instruction
= 0xec000f00;
18420 inst
.instruction
|= HI1 (inst
.operands
[Q1
].reg
/ 32) << 23;
18421 inst
.instruction
|= !!toQ
<< 20;
18422 inst
.instruction
|= inst
.operands
[Rt2
].reg
<< 16;
18423 inst
.instruction
|= LOW4 (inst
.operands
[Q1
].reg
/ 32) << 13;
18424 inst
.instruction
|= (inst
.operands
[Q1
].reg
% 4) << 4;
18425 inst
.instruction
|= inst
.operands
[Rt
].reg
;
18431 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18434 if (inst
.cond
> COND_ALWAYS
)
18435 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18437 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
18439 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_I16
| N_I32
18442 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18443 inst
.instruction
|= (neon_logbits (et
.size
) - 1) << 18;
18444 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18445 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18446 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18451 /* VMOV has particularly many variations. It can be one of:
18452 0. VMOV<c><q> <Qd>, <Qm>
18453 1. VMOV<c><q> <Dd>, <Dm>
18454 (Register operations, which are VORR with Rm = Rn.)
18455 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18456 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18458 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18459 (ARM register to scalar.)
18460 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18461 (Two ARM registers to vector.)
18462 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18463 (Scalar to ARM register.)
18464 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18465 (Vector to two ARM registers.)
18466 8. VMOV.F32 <Sd>, <Sm>
18467 9. VMOV.F64 <Dd>, <Dm>
18468 (VFP register moves.)
18469 10. VMOV.F32 <Sd>, #imm
18470 11. VMOV.F64 <Dd>, #imm
18471 (VFP float immediate load.)
18472 12. VMOV <Rd>, <Sm>
18473 (VFP single to ARM reg.)
18474 13. VMOV <Sd>, <Rm>
18475 (ARM reg to VFP single.)
18476 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18477 (Two ARM regs to two VFP singles.)
18478 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18479 (Two VFP singles to two ARM regs.)
18480 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18481 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18482 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18483 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18485 These cases can be disambiguated using neon_select_shape, except cases 1/9
18486 and 3/11 which depend on the operand type too.
18488 All the encoded bits are hardcoded by this function.
18490 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18491 Cases 5, 7 may be used with VFPv2 and above.
18493 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18494 can specify a type where it doesn't make sense to, and is ignored). */
18499 enum neon_shape rs
= neon_select_shape (NS_RRSS
, NS_SSRR
, NS_RRFF
, NS_FFRR
,
18500 NS_DRR
, NS_RRD
, NS_QQ
, NS_DD
, NS_QI
,
18501 NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
,
18502 NS_RF
, NS_FR
, NS_HR
, NS_RH
, NS_HI
,
18504 struct neon_type_el et
;
18505 const char *ldconst
= 0;
18509 case NS_DD
: /* case 1/9. */
18510 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
18511 /* It is not an error here if no type is given. */
18513 if (et
.type
== NT_float
&& et
.size
== 64)
18515 do_vfp_nsyn_opcode ("fcpyd");
18518 /* fall through. */
18520 case NS_QQ
: /* case 0/1. */
18522 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18524 /* The architecture manual I have doesn't explicitly state which
18525 value the U bit should have for register->register moves, but
18526 the equivalent VORR instruction has U = 0, so do that. */
18527 inst
.instruction
= 0x0200110;
18528 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18529 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18530 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18531 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18532 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18533 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18534 inst
.instruction
|= neon_quad (rs
) << 6;
18536 neon_dp_fixup (&inst
);
18540 case NS_DI
: /* case 3/11. */
18541 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
18543 if (et
.type
== NT_float
&& et
.size
== 64)
18545 /* case 11 (fconstd). */
18546 ldconst
= "fconstd";
18547 goto encode_fconstd
;
18549 /* fall through. */
18551 case NS_QI
: /* case 2/3. */
18552 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18554 inst
.instruction
= 0x0800010;
18555 neon_move_immediate ();
18556 neon_dp_fixup (&inst
);
18559 case NS_SR
: /* case 4. */
18561 unsigned bcdebits
= 0;
18563 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
18564 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
18566 /* .<size> is optional here, defaulting to .32. */
18567 if (inst
.vectype
.elems
== 0
18568 && inst
.operands
[0].vectype
.type
== NT_invtype
18569 && inst
.operands
[1].vectype
.type
== NT_invtype
)
18571 inst
.vectype
.el
[0].type
= NT_untyped
;
18572 inst
.vectype
.el
[0].size
= 32;
18573 inst
.vectype
.elems
= 1;
18576 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
18577 logsize
= neon_logbits (et
.size
);
18581 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18582 && vfp_or_neon_is_neon (NEON_CHECK_ARCH
) == FAIL
)
18587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
18588 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18592 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18594 if (inst
.operands
[1].reg
== REG_SP
)
18595 as_tsktsk (MVE_BAD_SP
);
18596 else if (inst
.operands
[1].reg
== REG_PC
)
18597 as_tsktsk (MVE_BAD_PC
);
18599 unsigned size
= inst
.operands
[0].isscalar
== 1 ? 64 : 128;
18601 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
18602 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
18607 case 8: bcdebits
= 0x8; break;
18608 case 16: bcdebits
= 0x1; break;
18609 case 32: bcdebits
= 0x0; break;
18613 bcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
18615 inst
.instruction
= 0xe000b10;
18616 do_vfp_cond_or_thumb ();
18617 inst
.instruction
|= LOW4 (dn
) << 16;
18618 inst
.instruction
|= HI1 (dn
) << 7;
18619 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
18620 inst
.instruction
|= (bcdebits
& 3) << 5;
18621 inst
.instruction
|= ((bcdebits
>> 2) & 3) << 21;
18622 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
18626 case NS_DRR
: /* case 5 (fmdrr). */
18627 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18628 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18631 inst
.instruction
= 0xc400b10;
18632 do_vfp_cond_or_thumb ();
18633 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
18634 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
18635 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
18636 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
18639 case NS_RS
: /* case 6. */
18642 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
18643 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
18644 unsigned abcdebits
= 0;
18646 /* .<dt> is optional here, defaulting to .32. */
18647 if (inst
.vectype
.elems
== 0
18648 && inst
.operands
[0].vectype
.type
== NT_invtype
18649 && inst
.operands
[1].vectype
.type
== NT_invtype
)
18651 inst
.vectype
.el
[0].type
= NT_untyped
;
18652 inst
.vectype
.el
[0].size
= 32;
18653 inst
.vectype
.elems
= 1;
18656 et
= neon_check_type (2, NS_NULL
,
18657 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
18658 logsize
= neon_logbits (et
.size
);
18662 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18663 && vfp_or_neon_is_neon (NEON_CHECK_CC
18664 | NEON_CHECK_ARCH
) == FAIL
)
18669 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
18670 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18674 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18676 if (inst
.operands
[0].reg
== REG_SP
)
18677 as_tsktsk (MVE_BAD_SP
);
18678 else if (inst
.operands
[0].reg
== REG_PC
)
18679 as_tsktsk (MVE_BAD_PC
);
18682 unsigned size
= inst
.operands
[1].isscalar
== 1 ? 64 : 128;
18684 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
18685 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
18689 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
18690 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
18691 case 32: abcdebits
= 0x00; break;
18695 abcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
18696 inst
.instruction
= 0xe100b10;
18697 do_vfp_cond_or_thumb ();
18698 inst
.instruction
|= LOW4 (dn
) << 16;
18699 inst
.instruction
|= HI1 (dn
) << 7;
18700 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
18701 inst
.instruction
|= (abcdebits
& 3) << 5;
18702 inst
.instruction
|= (abcdebits
>> 2) << 21;
18703 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
18707 case NS_RRD
: /* case 7 (fmrrd). */
18708 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18709 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18712 inst
.instruction
= 0xc500b10;
18713 do_vfp_cond_or_thumb ();
18714 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
18715 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
18716 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18717 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18720 case NS_FF
: /* case 8 (fcpys). */
18721 do_vfp_nsyn_opcode ("fcpys");
18725 case NS_FI
: /* case 10 (fconsts). */
18726 ldconst
= "fconsts";
18728 if (!inst
.operands
[1].immisfloat
)
18731 /* Immediate has to fit in 8 bits so float is enough. */
18732 float imm
= (float) inst
.operands
[1].imm
;
18733 memcpy (&new_imm
, &imm
, sizeof (float));
18734 /* But the assembly may have been written to provide an integer
18735 bit pattern that equates to a float, so check that the
18736 conversion has worked. */
18737 if (is_quarter_float (new_imm
))
18739 if (is_quarter_float (inst
.operands
[1].imm
))
18740 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18742 inst
.operands
[1].imm
= new_imm
;
18743 inst
.operands
[1].immisfloat
= 1;
18747 if (is_quarter_float (inst
.operands
[1].imm
))
18749 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
18750 do_vfp_nsyn_opcode (ldconst
);
18752 /* ARMv8.2 fp16 vmov.f16 instruction. */
18754 do_scalar_fp16_v82_encode ();
18757 first_error (_("immediate out of range"));
18761 case NS_RF
: /* case 12 (fmrs). */
18762 do_vfp_nsyn_opcode ("fmrs");
18763 /* ARMv8.2 fp16 vmov.f16 instruction. */
18765 do_scalar_fp16_v82_encode ();
18769 case NS_FR
: /* case 13 (fmsr). */
18770 do_vfp_nsyn_opcode ("fmsr");
18771 /* ARMv8.2 fp16 vmov.f16 instruction. */
18773 do_scalar_fp16_v82_encode ();
18783 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18784 (one of which is a list), but we have parsed four. Do some fiddling to
18785 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18787 case NS_RRFF
: /* case 14 (fmrrs). */
18788 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18789 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18791 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
18792 _("VFP registers must be adjacent"));
18793 inst
.operands
[2].imm
= 2;
18794 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
18795 do_vfp_nsyn_opcode ("fmrrs");
18798 case NS_FFRR
: /* case 15 (fmsrr). */
18799 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
18800 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
18802 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
18803 _("VFP registers must be adjacent"));
18804 inst
.operands
[1] = inst
.operands
[2];
18805 inst
.operands
[2] = inst
.operands
[3];
18806 inst
.operands
[0].imm
= 2;
18807 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
18808 do_vfp_nsyn_opcode ("fmsrr");
18812 /* neon_select_shape has determined that the instruction
18813 shape is wrong and has already set the error message. */
18824 if (!(inst
.operands
[0].present
&& inst
.operands
[0].isquad
18825 && inst
.operands
[1].present
&& inst
.operands
[1].isquad
18826 && !inst
.operands
[2].present
))
18828 inst
.instruction
= 0;
18831 set_pred_insn_type (INSIDE_IT_INSN
);
18836 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18839 if (inst
.cond
!= COND_ALWAYS
)
18840 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
18842 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_S8
| N_U8
18843 | N_S16
| N_U16
| N_KEY
);
18845 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
18846 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18847 inst
.instruction
|= (neon_logbits (et
.size
) + 1) << 19;
18848 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18849 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18850 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18855 do_neon_rshift_round_imm (void)
18857 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
18858 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
18859 int imm
= inst
.operands
[2].imm
;
18861 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18864 inst
.operands
[2].present
= 0;
18869 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
18870 _("immediate out of range for shift"));
18871 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
18876 do_neon_movhf (void)
18878 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_NULL
);
18879 constraint (rs
!= NS_HH
, _("invalid suffix"));
18881 if (inst
.cond
!= COND_ALWAYS
)
18885 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18886 " the behaviour is UNPREDICTABLE"));
18890 inst
.error
= BAD_COND
;
18895 do_vfp_sp_monadic ();
18898 inst
.instruction
|= 0xf0000000;
18902 do_neon_movl (void)
18904 struct neon_type_el et
= neon_check_type (2, NS_QD
,
18905 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18906 unsigned sizebits
= et
.size
>> 3;
18907 inst
.instruction
|= sizebits
<< 19;
18908 neon_two_same (0, et
.type
== NT_unsigned
, -1);
18914 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18915 struct neon_type_el et
= neon_check_type (2, rs
,
18916 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18917 NEON_ENCODE (INTEGER
, inst
);
18918 neon_two_same (neon_quad (rs
), 1, et
.size
);
18922 do_neon_zip_uzp (void)
18924 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18925 struct neon_type_el et
= neon_check_type (2, rs
,
18926 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18927 if (rs
== NS_DD
&& et
.size
== 32)
18929 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18930 inst
.instruction
= N_MNEM_vtrn
;
18934 neon_two_same (neon_quad (rs
), 1, et
.size
);
18938 do_neon_sat_abs_neg (void)
18940 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18941 struct neon_type_el et
= neon_check_type (2, rs
,
18942 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18943 neon_two_same (neon_quad (rs
), 1, et
.size
);
18947 do_neon_pair_long (void)
18949 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18950 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
18951 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18952 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
18953 neon_two_same (neon_quad (rs
), 1, et
.size
);
18957 do_neon_recip_est (void)
18959 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18960 struct neon_type_el et
= neon_check_type (2, rs
,
18961 N_EQK
| N_FLT
, N_F_16_32
| N_U32
| N_KEY
);
18962 inst
.instruction
|= (et
.type
== NT_float
) << 8;
18963 neon_two_same (neon_quad (rs
), 1, et
.size
);
18969 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18970 struct neon_type_el et
= neon_check_type (2, rs
,
18971 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
18972 neon_two_same (neon_quad (rs
), 1, et
.size
);
18978 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18979 struct neon_type_el et
= neon_check_type (2, rs
,
18980 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
18981 neon_two_same (neon_quad (rs
), 1, et
.size
);
18987 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18988 struct neon_type_el et
= neon_check_type (2, rs
,
18989 N_EQK
| N_INT
, N_8
| N_KEY
);
18990 neon_two_same (neon_quad (rs
), 1, et
.size
);
18996 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18997 neon_two_same (neon_quad (rs
), 1, -1);
19001 do_neon_tbl_tbx (void)
19003 unsigned listlenbits
;
19004 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
19006 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
19008 first_error (_("bad list length for table lookup"));
19012 listlenbits
= inst
.operands
[1].imm
- 1;
19013 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19014 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19015 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19016 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19017 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19018 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19019 inst
.instruction
|= listlenbits
<< 8;
19021 neon_dp_fixup (&inst
);
19025 do_neon_ldm_stm (void)
19027 /* P, U and L bits are part of bitmask. */
19028 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
19029 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
19031 if (inst
.operands
[1].issingle
)
19033 do_vfp_nsyn_ldm_stm (is_dbmode
);
19037 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
19038 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19040 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
19041 _("register list must contain at least 1 and at most 16 "
19044 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
19045 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
19046 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
19047 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
19049 inst
.instruction
|= offsetbits
;
19051 do_vfp_cond_or_thumb ();
19055 do_neon_ldr_str (void)
19057 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
19059 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19060 And is UNPREDICTABLE in thumb mode. */
19062 && inst
.operands
[1].reg
== REG_PC
19063 && (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
) || thumb_mode
))
19066 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19067 else if (warn_on_deprecated
)
19068 as_tsktsk (_("Use of PC here is deprecated"));
19071 if (inst
.operands
[0].issingle
)
19074 do_vfp_nsyn_opcode ("flds");
19076 do_vfp_nsyn_opcode ("fsts");
19078 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19079 if (inst
.vectype
.el
[0].size
== 16)
19080 do_scalar_fp16_v82_encode ();
19085 do_vfp_nsyn_opcode ("fldd");
19087 do_vfp_nsyn_opcode ("fstd");
19092 do_t_vldr_vstr_sysreg (void)
19094 int fp_vldr_bitno
= 20, sysreg_vldr_bitno
= 20;
19095 bfd_boolean is_vldr
= ((inst
.instruction
& (1 << fp_vldr_bitno
)) != 0);
19097 /* Use of PC is UNPREDICTABLE. */
19098 if (inst
.operands
[1].reg
== REG_PC
)
19099 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19101 if (inst
.operands
[1].immisreg
)
19102 inst
.error
= _("instruction does not accept register index");
19104 if (!inst
.operands
[1].isreg
)
19105 inst
.error
= _("instruction does not accept PC-relative addressing");
19107 if (abs (inst
.operands
[1].imm
) >= (1 << 7))
19108 inst
.error
= _("immediate value out of range");
19110 inst
.instruction
= 0xec000f80;
19112 inst
.instruction
|= 1 << sysreg_vldr_bitno
;
19113 encode_arm_cp_address (1, TRUE
, FALSE
, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
);
19114 inst
.instruction
|= (inst
.operands
[0].imm
& 0x7) << 13;
19115 inst
.instruction
|= (inst
.operands
[0].imm
& 0x8) << 19;
19119 do_vldr_vstr (void)
19121 bfd_boolean sysreg_op
= !inst
.operands
[0].isreg
;
19123 /* VLDR/VSTR (System Register). */
19126 if (!mark_feature_used (&arm_ext_v8_1m_main
))
19127 as_bad (_("Instruction not permitted on this architecture"));
19129 do_t_vldr_vstr_sysreg ();
19134 if (!mark_feature_used (&fpu_vfp_ext_v1xd
))
19135 as_bad (_("Instruction not permitted on this architecture"));
19136 do_neon_ldr_str ();
19140 /* "interleave" version also handles non-interleaving register VLD1/VST1
19144 do_neon_ld_st_interleave (void)
19146 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
19147 N_8
| N_16
| N_32
| N_64
);
19148 unsigned alignbits
= 0;
19150 /* The bits in this table go:
19151 0: register stride of one (0) or two (1)
19152 1,2: register list length, minus one (1, 2, 3, 4).
19153 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19154 We use -1 for invalid entries. */
19155 const int typetable
[] =
19157 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19158 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19159 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19160 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19164 if (et
.type
== NT_invtype
)
19167 if (inst
.operands
[1].immisalign
)
19168 switch (inst
.operands
[1].imm
>> 8)
19170 case 64: alignbits
= 1; break;
19172 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
19173 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19174 goto bad_alignment
;
19178 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19179 goto bad_alignment
;
19184 first_error (_("bad alignment"));
19188 inst
.instruction
|= alignbits
<< 4;
19189 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19191 /* Bits [4:6] of the immediate in a list specifier encode register stride
19192 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19193 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19194 up the right value for "type" in a table based on this value and the given
19195 list style, then stick it back. */
19196 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
19197 | (((inst
.instruction
>> 8) & 3) << 3);
19199 typebits
= typetable
[idx
];
19201 constraint (typebits
== -1, _("bad list type for instruction"));
19202 constraint (((inst
.instruction
>> 8) & 3) && et
.size
== 64,
19205 inst
.instruction
&= ~0xf00;
19206 inst
.instruction
|= typebits
<< 8;
19209 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19210 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19211 otherwise. The variable arguments are a list of pairs of legal (size, align)
19212 values, terminated with -1. */
19215 neon_alignment_bit (int size
, int align
, int *do_alignment
, ...)
19218 int result
= FAIL
, thissize
, thisalign
;
19220 if (!inst
.operands
[1].immisalign
)
19226 va_start (ap
, do_alignment
);
19230 thissize
= va_arg (ap
, int);
19231 if (thissize
== -1)
19233 thisalign
= va_arg (ap
, int);
19235 if (size
== thissize
&& align
== thisalign
)
19238 while (result
!= SUCCESS
);
19242 if (result
== SUCCESS
)
19245 first_error (_("unsupported alignment for instruction"));
19251 do_neon_ld_st_lane (void)
19253 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
19254 int align_good
, do_alignment
= 0;
19255 int logsize
= neon_logbits (et
.size
);
19256 int align
= inst
.operands
[1].imm
>> 8;
19257 int n
= (inst
.instruction
>> 8) & 3;
19258 int max_el
= 64 / et
.size
;
19260 if (et
.type
== NT_invtype
)
19263 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
19264 _("bad list length"));
19265 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
19266 _("scalar index out of range"));
19267 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
19269 _("stride of 2 unavailable when element size is 8"));
19273 case 0: /* VLD1 / VST1. */
19274 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 16, 16,
19276 if (align_good
== FAIL
)
19280 unsigned alignbits
= 0;
19283 case 16: alignbits
= 0x1; break;
19284 case 32: alignbits
= 0x3; break;
19287 inst
.instruction
|= alignbits
<< 4;
19291 case 1: /* VLD2 / VST2. */
19292 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 16,
19293 16, 32, 32, 64, -1);
19294 if (align_good
== FAIL
)
19297 inst
.instruction
|= 1 << 4;
19300 case 2: /* VLD3 / VST3. */
19301 constraint (inst
.operands
[1].immisalign
,
19302 _("can't use alignment with this instruction"));
19305 case 3: /* VLD4 / VST4. */
19306 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
19307 16, 64, 32, 64, 32, 128, -1);
19308 if (align_good
== FAIL
)
19312 unsigned alignbits
= 0;
19315 case 8: alignbits
= 0x1; break;
19316 case 16: alignbits
= 0x1; break;
19317 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
19320 inst
.instruction
|= alignbits
<< 4;
19327 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19328 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19329 inst
.instruction
|= 1 << (4 + logsize
);
19331 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
19332 inst
.instruction
|= logsize
<< 10;
19335 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19338 do_neon_ld_dup (void)
19340 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
19341 int align_good
, do_alignment
= 0;
19343 if (et
.type
== NT_invtype
)
19346 switch ((inst
.instruction
>> 8) & 3)
19348 case 0: /* VLD1. */
19349 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
19350 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
19351 &do_alignment
, 16, 16, 32, 32, -1);
19352 if (align_good
== FAIL
)
19354 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
19357 case 2: inst
.instruction
|= 1 << 5; break;
19358 default: first_error (_("bad list length")); return;
19360 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19363 case 1: /* VLD2. */
19364 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
19365 &do_alignment
, 8, 16, 16, 32, 32, 64,
19367 if (align_good
== FAIL
)
19369 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
19370 _("bad list length"));
19371 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19372 inst
.instruction
|= 1 << 5;
19373 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19376 case 2: /* VLD3. */
19377 constraint (inst
.operands
[1].immisalign
,
19378 _("can't use alignment with this instruction"));
19379 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
19380 _("bad list length"));
19381 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19382 inst
.instruction
|= 1 << 5;
19383 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19386 case 3: /* VLD4. */
19388 int align
= inst
.operands
[1].imm
>> 8;
19389 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
19390 16, 64, 32, 64, 32, 128, -1);
19391 if (align_good
== FAIL
)
19393 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
19394 _("bad list length"));
19395 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19396 inst
.instruction
|= 1 << 5;
19397 if (et
.size
== 32 && align
== 128)
19398 inst
.instruction
|= 0x3 << 6;
19400 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19407 inst
.instruction
|= do_alignment
<< 4;
19410 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19411 apart from bits [11:4]. */
19414 do_neon_ldx_stx (void)
19416 if (inst
.operands
[1].isreg
)
19417 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
19419 switch (NEON_LANE (inst
.operands
[0].imm
))
19421 case NEON_INTERLEAVE_LANES
:
19422 NEON_ENCODE (INTERLV
, inst
);
19423 do_neon_ld_st_interleave ();
19426 case NEON_ALL_LANES
:
19427 NEON_ENCODE (DUP
, inst
);
19428 if (inst
.instruction
== N_INV
)
19430 first_error ("only loads support such operands");
19437 NEON_ENCODE (LANE
, inst
);
19438 do_neon_ld_st_lane ();
19441 /* L bit comes from bit mask. */
19442 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19443 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19444 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
19446 if (inst
.operands
[1].postind
)
19448 int postreg
= inst
.operands
[1].imm
& 0xf;
19449 constraint (!inst
.operands
[1].immisreg
,
19450 _("post-index must be a register"));
19451 constraint (postreg
== 0xd || postreg
== 0xf,
19452 _("bad register for post-index"));
19453 inst
.instruction
|= postreg
;
19457 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
19458 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
19459 || inst
.relocs
[0].exp
.X_add_number
!= 0,
19462 if (inst
.operands
[1].writeback
)
19464 inst
.instruction
|= 0xd;
19467 inst
.instruction
|= 0xf;
19471 inst
.instruction
|= 0xf9000000;
19473 inst
.instruction
|= 0xf4000000;
19478 do_vfp_nsyn_fpv8 (enum neon_shape rs
)
19480 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19481 D register operands. */
19482 if (neon_shape_class
[rs
] == SC_DOUBLE
)
19483 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19486 NEON_ENCODE (FPV8
, inst
);
19488 if (rs
== NS_FFF
|| rs
== NS_HHH
)
19490 do_vfp_sp_dyadic ();
19492 /* ARMv8.2 fp16 instruction. */
19494 do_scalar_fp16_v82_encode ();
19497 do_vfp_dp_rd_rn_rm ();
19500 inst
.instruction
|= 0x100;
19502 inst
.instruction
|= 0xf0000000;
19508 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19510 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) != SUCCESS
)
19511 first_error (_("invalid instruction shape"));
19517 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19519 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) == SUCCESS
)
19522 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH8
) == FAIL
)
19525 neon_dyadic_misc (NT_untyped
, N_F_16_32
, 0);
19529 do_vrint_1 (enum neon_cvt_mode mode
)
19531 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_QQ
, NS_NULL
);
19532 struct neon_type_el et
;
19537 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19538 D register operands. */
19539 if (neon_shape_class
[rs
] == SC_DOUBLE
)
19540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19543 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
19545 if (et
.type
!= NT_invtype
)
19547 /* VFP encodings. */
19548 if (mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
19549 || mode
== neon_cvt_mode_p
|| mode
== neon_cvt_mode_m
)
19550 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19552 NEON_ENCODE (FPV8
, inst
);
19553 if (rs
== NS_FF
|| rs
== NS_HH
)
19554 do_vfp_sp_monadic ();
19556 do_vfp_dp_rd_rm ();
19560 case neon_cvt_mode_r
: inst
.instruction
|= 0x00000000; break;
19561 case neon_cvt_mode_z
: inst
.instruction
|= 0x00000080; break;
19562 case neon_cvt_mode_x
: inst
.instruction
|= 0x00010000; break;
19563 case neon_cvt_mode_a
: inst
.instruction
|= 0xf0000000; break;
19564 case neon_cvt_mode_n
: inst
.instruction
|= 0xf0010000; break;
19565 case neon_cvt_mode_p
: inst
.instruction
|= 0xf0020000; break;
19566 case neon_cvt_mode_m
: inst
.instruction
|= 0xf0030000; break;
19570 inst
.instruction
|= (rs
== NS_DD
) << 8;
19571 do_vfp_cond_or_thumb ();
19573 /* ARMv8.2 fp16 vrint instruction. */
19575 do_scalar_fp16_v82_encode ();
19579 /* Neon encodings (or something broken...). */
19581 et
= neon_check_type (2, rs
, N_EQK
, N_F_16_32
| N_KEY
);
19583 if (et
.type
== NT_invtype
)
19586 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19587 NEON_ENCODE (FLOAT
, inst
);
19589 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH8
) == FAIL
)
19592 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19593 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19594 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19595 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19596 inst
.instruction
|= neon_quad (rs
) << 6;
19597 /* Mask off the original size bits and reencode them. */
19598 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff)
19599 | neon_logbits (et
.size
) << 18);
19603 case neon_cvt_mode_z
: inst
.instruction
|= 3 << 7; break;
19604 case neon_cvt_mode_x
: inst
.instruction
|= 1 << 7; break;
19605 case neon_cvt_mode_a
: inst
.instruction
|= 2 << 7; break;
19606 case neon_cvt_mode_n
: inst
.instruction
|= 0 << 7; break;
19607 case neon_cvt_mode_p
: inst
.instruction
|= 7 << 7; break;
19608 case neon_cvt_mode_m
: inst
.instruction
|= 5 << 7; break;
19609 case neon_cvt_mode_r
: inst
.error
= _("invalid rounding mode"); break;
19614 inst
.instruction
|= 0xfc000000;
19616 inst
.instruction
|= 0xf0000000;
19623 do_vrint_1 (neon_cvt_mode_x
);
19629 do_vrint_1 (neon_cvt_mode_z
);
19635 do_vrint_1 (neon_cvt_mode_r
);
19641 do_vrint_1 (neon_cvt_mode_a
);
19647 do_vrint_1 (neon_cvt_mode_n
);
19653 do_vrint_1 (neon_cvt_mode_p
);
19659 do_vrint_1 (neon_cvt_mode_m
);
19663 neon_scalar_for_vcmla (unsigned opnd
, unsigned elsize
)
19665 unsigned regno
= NEON_SCALAR_REG (opnd
);
19666 unsigned elno
= NEON_SCALAR_INDEX (opnd
);
19668 if (elsize
== 16 && elno
< 2 && regno
< 16)
19669 return regno
| (elno
<< 4);
19670 else if (elsize
== 32 && elno
== 0)
19673 first_error (_("scalar out of range"));
19680 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19682 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
19683 _("expression too complex"));
19684 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
19685 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
19686 _("immediate out of range"));
19688 if (inst
.operands
[2].isscalar
)
19690 enum neon_shape rs
= neon_select_shape (NS_DDSI
, NS_QQSI
, NS_NULL
);
19691 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
19692 N_KEY
| N_F16
| N_F32
).size
;
19693 unsigned m
= neon_scalar_for_vcmla (inst
.operands
[2].reg
, size
);
19695 inst
.instruction
= 0xfe000800;
19696 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19697 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19698 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19699 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19700 inst
.instruction
|= LOW4 (m
);
19701 inst
.instruction
|= HI1 (m
) << 5;
19702 inst
.instruction
|= neon_quad (rs
) << 6;
19703 inst
.instruction
|= rot
<< 20;
19704 inst
.instruction
|= (size
== 32) << 23;
19708 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
19709 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
19710 N_KEY
| N_F16
| N_F32
).size
;
19711 neon_three_same (neon_quad (rs
), 0, -1);
19712 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
19713 inst
.instruction
|= 0xfc200800;
19714 inst
.instruction
|= rot
<< 23;
19715 inst
.instruction
|= (size
== 32) << 20;
19722 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19724 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
19725 _("expression too complex"));
19726 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
19727 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
19728 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
19729 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
19730 N_KEY
| N_F16
| N_F32
).size
;
19731 neon_three_same (neon_quad (rs
), 0, -1);
19732 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
19733 inst
.instruction
|= 0xfc800800;
19734 inst
.instruction
|= (rot
== 270) << 24;
19735 inst
.instruction
|= (size
== 32) << 20;
19738 /* Dot Product instructions encoding support. */
19741 do_neon_dotproduct (int unsigned_p
)
19743 enum neon_shape rs
;
19744 unsigned scalar_oprd2
= 0;
19747 if (inst
.cond
!= COND_ALWAYS
)
19748 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19749 "is UNPREDICTABLE"));
19751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
19754 /* Dot Product instructions are in three-same D/Q register format or the third
19755 operand can be a scalar index register. */
19756 if (inst
.operands
[2].isscalar
)
19758 scalar_oprd2
= neon_scalar_for_mul (inst
.operands
[2].reg
, 32);
19759 high8
= 0xfe000000;
19760 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
19764 high8
= 0xfc000000;
19765 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
19769 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_U8
);
19771 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_S8
);
19773 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19774 Product instruction, so we pass 0 as the "ubit" parameter. And the
19775 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19776 neon_three_same (neon_quad (rs
), 0, 32);
19778 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19779 different NEON three-same encoding. */
19780 inst
.instruction
&= 0x00ffffff;
19781 inst
.instruction
|= high8
;
19782 /* Encode 'U' bit which indicates signedness. */
19783 inst
.instruction
|= (unsigned_p
? 1 : 0) << 4;
19784 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19785 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19786 the instruction encoding. */
19787 if (inst
.operands
[2].isscalar
)
19789 inst
.instruction
&= 0xffffffd0;
19790 inst
.instruction
|= LOW4 (scalar_oprd2
);
19791 inst
.instruction
|= HI1 (scalar_oprd2
) << 5;
19795 /* Dot Product instructions for signed integer. */
19798 do_neon_dotproduct_s (void)
19800 return do_neon_dotproduct (0);
19803 /* Dot Product instructions for unsigned integer. */
19806 do_neon_dotproduct_u (void)
19808 return do_neon_dotproduct (1);
19811 /* Crypto v1 instructions. */
19813 do_crypto_2op_1 (unsigned elttype
, int op
)
19815 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19817 if (neon_check_type (2, NS_QQ
, N_EQK
| N_UNT
, elttype
| N_UNT
| N_KEY
).type
19823 NEON_ENCODE (INTEGER
, inst
);
19824 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19825 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19826 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19827 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19829 inst
.instruction
|= op
<< 6;
19832 inst
.instruction
|= 0xfc000000;
19834 inst
.instruction
|= 0xf0000000;
19838 do_crypto_3op_1 (int u
, int op
)
19840 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19842 if (neon_check_type (3, NS_QQQ
, N_EQK
| N_UNT
, N_EQK
| N_UNT
,
19843 N_32
| N_UNT
| N_KEY
).type
== NT_invtype
)
19848 NEON_ENCODE (INTEGER
, inst
);
19849 neon_three_same (1, u
, 8 << op
);
19855 do_crypto_2op_1 (N_8
, 0);
19861 do_crypto_2op_1 (N_8
, 1);
19867 do_crypto_2op_1 (N_8
, 2);
19873 do_crypto_2op_1 (N_8
, 3);
19879 do_crypto_3op_1 (0, 0);
19885 do_crypto_3op_1 (0, 1);
19891 do_crypto_3op_1 (0, 2);
19897 do_crypto_3op_1 (0, 3);
19903 do_crypto_3op_1 (1, 0);
19909 do_crypto_3op_1 (1, 1);
19913 do_sha256su1 (void)
19915 do_crypto_3op_1 (1, 2);
19921 do_crypto_2op_1 (N_32
, -1);
19927 do_crypto_2op_1 (N_32
, 0);
19931 do_sha256su0 (void)
19933 do_crypto_2op_1 (N_32
, 1);
19937 do_crc32_1 (unsigned int poly
, unsigned int sz
)
19939 unsigned int Rd
= inst
.operands
[0].reg
;
19940 unsigned int Rn
= inst
.operands
[1].reg
;
19941 unsigned int Rm
= inst
.operands
[2].reg
;
19943 set_pred_insn_type (OUTSIDE_PRED_INSN
);
19944 inst
.instruction
|= LOW4 (Rd
) << (thumb_mode
? 8 : 12);
19945 inst
.instruction
|= LOW4 (Rn
) << 16;
19946 inst
.instruction
|= LOW4 (Rm
);
19947 inst
.instruction
|= sz
<< (thumb_mode
? 4 : 21);
19948 inst
.instruction
|= poly
<< (thumb_mode
? 20 : 9);
19950 if (Rd
== REG_PC
|| Rn
== REG_PC
|| Rm
== REG_PC
)
19951 as_warn (UNPRED_REG ("r15"));
19993 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
19995 neon_check_type (2, NS_FD
, N_S32
, N_F64
);
19996 do_vfp_sp_dp_cvt ();
19997 do_vfp_cond_or_thumb ();
20001 /* Overall per-instruction processing. */
20003 /* We need to be able to fix up arbitrary expressions in some statements.
20004 This is so that we can handle symbols that are an arbitrary distance from
20005 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20006 which returns part of an address in a form which will be valid for
20007 a data instruction. We do this by pushing the expression into a symbol
20008 in the expr_section, and creating a fix for that. */
20011 fix_new_arm (fragS
* frag
,
20025 /* Create an absolute valued symbol, so we have something to
20026 refer to in the object file. Unfortunately for us, gas's
20027 generic expression parsing will already have folded out
20028 any use of .set foo/.type foo %function that may have
20029 been used to set type information of the target location,
20030 that's being specified symbolically. We have to presume
20031 the user knows what they are doing. */
20035 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
20037 symbol
= symbol_find_or_make (name
);
20038 S_SET_SEGMENT (symbol
, absolute_section
);
20039 symbol_set_frag (symbol
, &zero_address_frag
);
20040 S_SET_VALUE (symbol
, exp
->X_add_number
);
20041 exp
->X_op
= O_symbol
;
20042 exp
->X_add_symbol
= symbol
;
20043 exp
->X_add_number
= 0;
20049 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
20050 (enum bfd_reloc_code_real
) reloc
);
20054 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
20055 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
20059 /* Mark whether the fix is to a THUMB instruction, or an ARM
20061 new_fix
->tc_fix_data
= thumb_mode
;
20064 /* Create a frg for an instruction requiring relaxation. */
20066 output_relax_insn (void)
20072 /* The size of the instruction is unknown, so tie the debug info to the
20073 start of the instruction. */
20074 dwarf2_emit_insn (0);
20076 switch (inst
.relocs
[0].exp
.X_op
)
20079 sym
= inst
.relocs
[0].exp
.X_add_symbol
;
20080 offset
= inst
.relocs
[0].exp
.X_add_number
;
20084 offset
= inst
.relocs
[0].exp
.X_add_number
;
20087 sym
= make_expr_symbol (&inst
.relocs
[0].exp
);
20091 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
20092 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
20093 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
20096 /* Write a 32-bit thumb instruction to buf. */
20098 put_thumb32_insn (char * buf
, unsigned long insn
)
20100 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
20101 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
20105 output_inst (const char * str
)
20111 as_bad ("%s -- `%s'", inst
.error
, str
);
20116 output_relax_insn ();
20119 if (inst
.size
== 0)
20122 to
= frag_more (inst
.size
);
20123 /* PR 9814: Record the thumb mode into the current frag so that we know
20124 what type of NOP padding to use, if necessary. We override any previous
20125 setting so that if the mode has changed then the NOPS that we use will
20126 match the encoding of the last instruction in the frag. */
20127 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
20129 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
20131 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
20132 put_thumb32_insn (to
, inst
.instruction
);
20134 else if (inst
.size
> INSN_SIZE
)
20136 gas_assert (inst
.size
== (2 * INSN_SIZE
));
20137 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
20138 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
20141 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
20144 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
20146 if (inst
.relocs
[r
].type
!= BFD_RELOC_UNUSED
)
20147 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
20148 inst
.size
, & inst
.relocs
[r
].exp
, inst
.relocs
[r
].pc_rel
,
20149 inst
.relocs
[r
].type
);
20152 dwarf2_emit_insn (inst
.size
);
20156 output_it_inst (int cond
, int mask
, char * to
)
20158 unsigned long instruction
= 0xbf00;
20161 instruction
|= mask
;
20162 instruction
|= cond
<< 4;
20166 to
= frag_more (2);
20168 dwarf2_emit_insn (2);
20172 md_number_to_chars (to
, instruction
, 2);
20177 /* Tag values used in struct asm_opcode's tag field. */
20180 OT_unconditional
, /* Instruction cannot be conditionalized.
20181 The ARM condition field is still 0xE. */
20182 OT_unconditionalF
, /* Instruction cannot be conditionalized
20183 and carries 0xF in its ARM condition field. */
20184 OT_csuffix
, /* Instruction takes a conditional suffix. */
20185 OT_csuffixF
, /* Some forms of the instruction take a scalar
20186 conditional suffix, others place 0xF where the
20187 condition field would be, others take a vector
20188 conditional suffix. */
20189 OT_cinfix3
, /* Instruction takes a conditional infix,
20190 beginning at character index 3. (In
20191 unified mode, it becomes a suffix.) */
20192 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
20193 tsts, cmps, cmns, and teqs. */
20194 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
20195 character index 3, even in unified mode. Used for
20196 legacy instructions where suffix and infix forms
20197 may be ambiguous. */
20198 OT_csuf_or_in3
, /* Instruction takes either a conditional
20199 suffix or an infix at character index 3. */
20200 OT_odd_infix_unc
, /* This is the unconditional variant of an
20201 instruction that takes a conditional infix
20202 at an unusual position. In unified mode,
20203 this variant will accept a suffix. */
20204 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
20205 are the conditional variants of instructions that
20206 take conditional infixes in unusual positions.
20207 The infix appears at character index
20208 (tag - OT_odd_infix_0). These are not accepted
20209 in unified mode. */
20212 /* Subroutine of md_assemble, responsible for looking up the primary
20213 opcode from the mnemonic the user wrote. STR points to the
20214 beginning of the mnemonic.
20216 This is not simply a hash table lookup, because of conditional
20217 variants. Most instructions have conditional variants, which are
20218 expressed with a _conditional affix_ to the mnemonic. If we were
20219 to encode each conditional variant as a literal string in the opcode
20220 table, it would have approximately 20,000 entries.
20222 Most mnemonics take this affix as a suffix, and in unified syntax,
20223 'most' is upgraded to 'all'. However, in the divided syntax, some
20224 instructions take the affix as an infix, notably the s-variants of
20225 the arithmetic instructions. Of those instructions, all but six
20226 have the infix appear after the third character of the mnemonic.
20228 Accordingly, the algorithm for looking up primary opcodes given
20231 1. Look up the identifier in the opcode table.
20232 If we find a match, go to step U.
20234 2. Look up the last two characters of the identifier in the
20235 conditions table. If we find a match, look up the first N-2
20236 characters of the identifier in the opcode table. If we
20237 find a match, go to step CE.
20239 3. Look up the fourth and fifth characters of the identifier in
20240 the conditions table. If we find a match, extract those
20241 characters from the identifier, and look up the remaining
20242 characters in the opcode table. If we find a match, go
20247 U. Examine the tag field of the opcode structure, in case this is
20248 one of the six instructions with its conditional infix in an
20249 unusual place. If it is, the tag tells us where to find the
20250 infix; look it up in the conditions table and set inst.cond
20251 accordingly. Otherwise, this is an unconditional instruction.
20252 Again set inst.cond accordingly. Return the opcode structure.
20254 CE. Examine the tag field to make sure this is an instruction that
20255 should receive a conditional suffix. If it is not, fail.
20256 Otherwise, set inst.cond from the suffix we already looked up,
20257 and return the opcode structure.
20259 CM. Examine the tag field to make sure this is an instruction that
20260 should receive a conditional infix after the third character.
20261 If it is not, fail. Otherwise, undo the edits to the current
20262 line of input and proceed as for case CE. */
20264 static const struct asm_opcode
*
20265 opcode_lookup (char **str
)
20269 const struct asm_opcode
*opcode
;
20270 const struct asm_cond
*cond
;
20273 /* Scan up to the end of the mnemonic, which must end in white space,
20274 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20275 for (base
= end
= *str
; *end
!= '\0'; end
++)
20276 if (*end
== ' ' || *end
== '.')
20282 /* Handle a possible width suffix and/or Neon type suffix. */
20287 /* The .w and .n suffixes are only valid if the unified syntax is in
20289 if (unified_syntax
&& end
[1] == 'w')
20291 else if (unified_syntax
&& end
[1] == 'n')
20296 inst
.vectype
.elems
= 0;
20298 *str
= end
+ offset
;
20300 if (end
[offset
] == '.')
20302 /* See if we have a Neon type suffix (possible in either unified or
20303 non-unified ARM syntax mode). */
20304 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
20307 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
20313 /* Look for unaffixed or special-case affixed mnemonic. */
20314 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20319 if (opcode
->tag
< OT_odd_infix_0
)
20321 inst
.cond
= COND_ALWAYS
;
20325 if (warn_on_deprecated
&& unified_syntax
)
20326 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20327 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
20328 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
20331 inst
.cond
= cond
->value
;
20334 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20336 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20338 if (end
- base
< 2)
20341 cond
= (const struct asm_cond
*) hash_find_n (arm_vcond_hsh
, affix
, 1);
20342 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20344 /* If this opcode can not be vector predicated then don't accept it with a
20345 vector predication code. */
20346 if (opcode
&& !opcode
->mayBeVecPred
)
20349 if (!opcode
|| !cond
)
20351 /* Cannot have a conditional suffix on a mnemonic of less than two
20353 if (end
- base
< 3)
20356 /* Look for suffixed mnemonic. */
20358 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
20359 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20363 if (opcode
&& cond
)
20366 switch (opcode
->tag
)
20368 case OT_cinfix3_legacy
:
20369 /* Ignore conditional suffixes matched on infix only mnemonics. */
20373 case OT_cinfix3_deprecated
:
20374 case OT_odd_infix_unc
:
20375 if (!unified_syntax
)
20377 /* Fall through. */
20381 case OT_csuf_or_in3
:
20382 inst
.cond
= cond
->value
;
20385 case OT_unconditional
:
20386 case OT_unconditionalF
:
20388 inst
.cond
= cond
->value
;
20391 /* Delayed diagnostic. */
20392 inst
.error
= BAD_COND
;
20393 inst
.cond
= COND_ALWAYS
;
20402 /* Cannot have a usual-position infix on a mnemonic of less than
20403 six characters (five would be a suffix). */
20404 if (end
- base
< 6)
20407 /* Look for infixed mnemonic in the usual position. */
20409 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
20413 memcpy (save
, affix
, 2);
20414 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
20415 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
20417 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
20418 memcpy (affix
, save
, 2);
20421 && (opcode
->tag
== OT_cinfix3
20422 || opcode
->tag
== OT_cinfix3_deprecated
20423 || opcode
->tag
== OT_csuf_or_in3
20424 || opcode
->tag
== OT_cinfix3_legacy
))
20427 if (warn_on_deprecated
&& unified_syntax
20428 && (opcode
->tag
== OT_cinfix3
20429 || opcode
->tag
== OT_cinfix3_deprecated
))
20430 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20432 inst
.cond
= cond
->value
;
20439 /* This function generates an initial IT instruction, leaving its block
20440 virtually open for the new instructions. Eventually,
20441 the mask will be updated by now_pred_add_mask () each time
20442 a new instruction needs to be included in the IT block.
20443 Finally, the block is closed with close_automatic_it_block ().
20444 The block closure can be requested either from md_assemble (),
20445 a tencode (), or due to a label hook. */
20448 new_automatic_it_block (int cond
)
20450 now_pred
.state
= AUTOMATIC_PRED_BLOCK
;
20451 now_pred
.mask
= 0x18;
20452 now_pred
.cc
= cond
;
20453 now_pred
.block_length
= 1;
20454 mapping_state (MAP_THUMB
);
20455 now_pred
.insn
= output_it_inst (cond
, now_pred
.mask
, NULL
);
20456 now_pred
.warn_deprecated
= FALSE
;
20457 now_pred
.insn_cond
= TRUE
;
20460 /* Close an automatic IT block.
20461 See comments in new_automatic_it_block (). */
20464 close_automatic_it_block (void)
20466 now_pred
.mask
= 0x10;
20467 now_pred
.block_length
= 0;
20470 /* Update the mask of the current automatically-generated IT
20471 instruction. See comments in new_automatic_it_block (). */
20474 now_pred_add_mask (int cond
)
20476 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20477 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20478 | ((bitvalue) << (nbit)))
20479 const int resulting_bit
= (cond
& 1);
20481 now_pred
.mask
&= 0xf;
20482 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
20484 (5 - now_pred
.block_length
));
20485 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
20487 ((5 - now_pred
.block_length
) - 1));
20488 output_it_inst (now_pred
.cc
, now_pred
.mask
, now_pred
.insn
);
20491 #undef SET_BIT_VALUE
20494 /* The IT blocks handling machinery is accessed through the these functions:
20495 it_fsm_pre_encode () from md_assemble ()
20496 set_pred_insn_type () optional, from the tencode functions
20497 set_pred_insn_type_last () ditto
20498 in_pred_block () ditto
20499 it_fsm_post_encode () from md_assemble ()
20500 force_automatic_it_block_close () from label handling functions
20503 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20504 initializing the IT insn type with a generic initial value depending
20505 on the inst.condition.
20506 2) During the tencode function, two things may happen:
20507 a) The tencode function overrides the IT insn type by
20508 calling either set_pred_insn_type (type) or
20509 set_pred_insn_type_last ().
20510 b) The tencode function queries the IT block state by
20511 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20513 Both set_pred_insn_type and in_pred_block run the internal FSM state
20514 handling function (handle_pred_state), because: a) setting the IT insn
20515 type may incur in an invalid state (exiting the function),
20516 and b) querying the state requires the FSM to be updated.
20517 Specifically we want to avoid creating an IT block for conditional
20518 branches, so it_fsm_pre_encode is actually a guess and we can't
20519 determine whether an IT block is required until the tencode () routine
20520 has decided what type of instruction this actually it.
20521 Because of this, if set_pred_insn_type and in_pred_block have to be
20522 used, set_pred_insn_type has to be called first.
20524 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20525 that determines the insn IT type depending on the inst.cond code.
20526 When a tencode () routine encodes an instruction that can be
20527 either outside an IT block, or, in the case of being inside, has to be
20528 the last one, set_pred_insn_type_last () will determine the proper
20529 IT instruction type based on the inst.cond code. Otherwise,
20530 set_pred_insn_type can be called for overriding that logic or
20531 for covering other cases.
20533 Calling handle_pred_state () may not transition the IT block state to
20534 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20535 still queried. Instead, if the FSM determines that the state should
20536 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20537 after the tencode () function: that's what it_fsm_post_encode () does.
20539 Since in_pred_block () calls the state handling function to get an
20540 updated state, an error may occur (due to invalid insns combination).
20541 In that case, inst.error is set.
20542 Therefore, inst.error has to be checked after the execution of
20543 the tencode () routine.
20545 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20546 any pending state change (if any) that didn't take place in
20547 handle_pred_state () as explained above. */
20550 it_fsm_pre_encode (void)
20552 if (inst
.cond
!= COND_ALWAYS
)
20553 inst
.pred_insn_type
= INSIDE_IT_INSN
;
20555 inst
.pred_insn_type
= OUTSIDE_PRED_INSN
;
20557 now_pred
.state_handled
= 0;
20560 /* IT state FSM handling function. */
20561 /* MVE instructions and non-MVE instructions are handled differently because of
20562 the introduction of VPT blocks.
20563 Specifications say that any non-MVE instruction inside a VPT block is
20564 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20565 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20566 few exceptions we have MVE_UNPREDICABLE_INSN.
20567 The error messages provided depending on the different combinations possible
20568 are described in the cases below:
20569 For 'most' MVE instructions:
20570 1) In an IT block, with an IT code: syntax error
20571 2) In an IT block, with a VPT code: error: must be in a VPT block
20572 3) In an IT block, with no code: warning: UNPREDICTABLE
20573 4) In a VPT block, with an IT code: syntax error
20574 5) In a VPT block, with a VPT code: OK!
20575 6) In a VPT block, with no code: error: missing code
20576 7) Outside a pred block, with an IT code: error: syntax error
20577 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20578 9) Outside a pred block, with no code: OK!
20579 For non-MVE instructions:
20580 10) In an IT block, with an IT code: OK!
20581 11) In an IT block, with a VPT code: syntax error
20582 12) In an IT block, with no code: error: missing code
20583 13) In a VPT block, with an IT code: error: should be in an IT block
20584 14) In a VPT block, with a VPT code: syntax error
20585 15) In a VPT block, with no code: UNPREDICTABLE
20586 16) Outside a pred block, with an IT code: error: should be in an IT block
20587 17) Outside a pred block, with a VPT code: syntax error
20588 18) Outside a pred block, with no code: OK!
20593 handle_pred_state (void)
20595 now_pred
.state_handled
= 1;
20596 now_pred
.insn_cond
= FALSE
;
20598 switch (now_pred
.state
)
20600 case OUTSIDE_PRED_BLOCK
:
20601 switch (inst
.pred_insn_type
)
20603 case MVE_UNPREDICABLE_INSN
:
20604 case MVE_OUTSIDE_PRED_INSN
:
20605 if (inst
.cond
< COND_ALWAYS
)
20607 /* Case 7: Outside a pred block, with an IT code: error: syntax
20609 inst
.error
= BAD_SYNTAX
;
20612 /* Case 9: Outside a pred block, with no code: OK! */
20614 case OUTSIDE_PRED_INSN
:
20615 if (inst
.cond
> COND_ALWAYS
)
20617 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20619 inst
.error
= BAD_SYNTAX
;
20622 /* Case 18: Outside a pred block, with no code: OK! */
20625 case INSIDE_VPT_INSN
:
20626 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20628 inst
.error
= BAD_OUT_VPT
;
20631 case INSIDE_IT_INSN
:
20632 case INSIDE_IT_LAST_INSN
:
20633 if (inst
.cond
< COND_ALWAYS
)
20635 /* Case 16: Outside a pred block, with an IT code: error: should
20636 be in an IT block. */
20637 if (thumb_mode
== 0)
20640 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
20641 as_tsktsk (_("Warning: conditional outside an IT block"\
20646 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
20647 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
20649 /* Automatically generate the IT instruction. */
20650 new_automatic_it_block (inst
.cond
);
20651 if (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
)
20652 close_automatic_it_block ();
20656 inst
.error
= BAD_OUT_IT
;
20662 else if (inst
.cond
> COND_ALWAYS
)
20664 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20666 inst
.error
= BAD_SYNTAX
;
20671 case IF_INSIDE_IT_LAST_INSN
:
20672 case NEUTRAL_IT_INSN
:
20676 if (inst
.cond
!= COND_ALWAYS
)
20677 first_error (BAD_SYNTAX
);
20678 now_pred
.state
= MANUAL_PRED_BLOCK
;
20679 now_pred
.block_length
= 0;
20680 now_pred
.type
= VECTOR_PRED
;
20684 now_pred
.state
= MANUAL_PRED_BLOCK
;
20685 now_pred
.block_length
= 0;
20686 now_pred
.type
= SCALAR_PRED
;
20691 case AUTOMATIC_PRED_BLOCK
:
20692 /* Three things may happen now:
20693 a) We should increment current it block size;
20694 b) We should close current it block (closing insn or 4 insns);
20695 c) We should close current it block and start a new one (due
20696 to incompatible conditions or
20697 4 insns-length block reached). */
20699 switch (inst
.pred_insn_type
)
20701 case INSIDE_VPT_INSN
:
20703 case MVE_UNPREDICABLE_INSN
:
20704 case MVE_OUTSIDE_PRED_INSN
:
20706 case OUTSIDE_PRED_INSN
:
20707 /* The closure of the block shall happen immediately,
20708 so any in_pred_block () call reports the block as closed. */
20709 force_automatic_it_block_close ();
20712 case INSIDE_IT_INSN
:
20713 case INSIDE_IT_LAST_INSN
:
20714 case IF_INSIDE_IT_LAST_INSN
:
20715 now_pred
.block_length
++;
20717 if (now_pred
.block_length
> 4
20718 || !now_pred_compatible (inst
.cond
))
20720 force_automatic_it_block_close ();
20721 if (inst
.pred_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
20722 new_automatic_it_block (inst
.cond
);
20726 now_pred
.insn_cond
= TRUE
;
20727 now_pred_add_mask (inst
.cond
);
20730 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
20731 && (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
20732 || inst
.pred_insn_type
== IF_INSIDE_IT_LAST_INSN
))
20733 close_automatic_it_block ();
20736 case NEUTRAL_IT_INSN
:
20737 now_pred
.block_length
++;
20738 now_pred
.insn_cond
= TRUE
;
20740 if (now_pred
.block_length
> 4)
20741 force_automatic_it_block_close ();
20743 now_pred_add_mask (now_pred
.cc
& 1);
20747 close_automatic_it_block ();
20748 now_pred
.state
= MANUAL_PRED_BLOCK
;
20753 case MANUAL_PRED_BLOCK
:
20756 if (now_pred
.type
== SCALAR_PRED
)
20758 /* Check conditional suffixes. */
20759 cond
= now_pred
.cc
^ ((now_pred
.mask
>> 4) & 1) ^ 1;
20760 now_pred
.mask
<<= 1;
20761 now_pred
.mask
&= 0x1f;
20762 is_last
= (now_pred
.mask
== 0x10);
20766 now_pred
.cc
^= (now_pred
.mask
>> 4);
20767 cond
= now_pred
.cc
+ 0xf;
20768 now_pred
.mask
<<= 1;
20769 now_pred
.mask
&= 0x1f;
20770 is_last
= now_pred
.mask
== 0x10;
20772 now_pred
.insn_cond
= TRUE
;
20774 switch (inst
.pred_insn_type
)
20776 case OUTSIDE_PRED_INSN
:
20777 if (now_pred
.type
== SCALAR_PRED
)
20779 if (inst
.cond
== COND_ALWAYS
)
20781 /* Case 12: In an IT block, with no code: error: missing
20783 inst
.error
= BAD_NOT_IT
;
20786 else if (inst
.cond
> COND_ALWAYS
)
20788 /* Case 11: In an IT block, with a VPT code: syntax error.
20790 inst
.error
= BAD_SYNTAX
;
20793 else if (thumb_mode
)
20795 /* This is for some special cases where a non-MVE
20796 instruction is not allowed in an IT block, such as cbz,
20797 but are put into one with a condition code.
20798 You could argue this should be a syntax error, but we
20799 gave the 'not allowed in IT block' diagnostic in the
20800 past so we will keep doing so. */
20801 inst
.error
= BAD_NOT_IT
;
20808 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20809 as_tsktsk (MVE_NOT_VPT
);
20812 case MVE_OUTSIDE_PRED_INSN
:
20813 if (now_pred
.type
== SCALAR_PRED
)
20815 if (inst
.cond
== COND_ALWAYS
)
20817 /* Case 3: In an IT block, with no code: warning:
20819 as_tsktsk (MVE_NOT_IT
);
20822 else if (inst
.cond
< COND_ALWAYS
)
20824 /* Case 1: In an IT block, with an IT code: syntax error.
20826 inst
.error
= BAD_SYNTAX
;
20834 if (inst
.cond
< COND_ALWAYS
)
20836 /* Case 4: In a VPT block, with an IT code: syntax error.
20838 inst
.error
= BAD_SYNTAX
;
20841 else if (inst
.cond
== COND_ALWAYS
)
20843 /* Case 6: In a VPT block, with no code: error: missing
20845 inst
.error
= BAD_NOT_VPT
;
20853 case MVE_UNPREDICABLE_INSN
:
20854 as_tsktsk (now_pred
.type
== SCALAR_PRED
? MVE_NOT_IT
: MVE_NOT_VPT
);
20856 case INSIDE_IT_INSN
:
20857 if (inst
.cond
> COND_ALWAYS
)
20859 /* Case 11: In an IT block, with a VPT code: syntax error. */
20860 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20861 inst
.error
= BAD_SYNTAX
;
20864 else if (now_pred
.type
== SCALAR_PRED
)
20866 /* Case 10: In an IT block, with an IT code: OK! */
20867 if (cond
!= inst
.cond
)
20869 inst
.error
= now_pred
.type
== SCALAR_PRED
? BAD_IT_COND
:
20876 /* Case 13: In a VPT block, with an IT code: error: should be
20878 inst
.error
= BAD_OUT_IT
;
20883 case INSIDE_VPT_INSN
:
20884 if (now_pred
.type
== SCALAR_PRED
)
20886 /* Case 2: In an IT block, with a VPT code: error: must be in a
20888 inst
.error
= BAD_OUT_VPT
;
20891 /* Case 5: In a VPT block, with a VPT code: OK! */
20892 else if (cond
!= inst
.cond
)
20894 inst
.error
= BAD_VPT_COND
;
20898 case INSIDE_IT_LAST_INSN
:
20899 case IF_INSIDE_IT_LAST_INSN
:
20900 if (now_pred
.type
== VECTOR_PRED
|| inst
.cond
> COND_ALWAYS
)
20902 /* Case 4: In a VPT block, with an IT code: syntax error. */
20903 /* Case 11: In an IT block, with a VPT code: syntax error. */
20904 inst
.error
= BAD_SYNTAX
;
20907 else if (cond
!= inst
.cond
)
20909 inst
.error
= BAD_IT_COND
;
20914 inst
.error
= BAD_BRANCH
;
20919 case NEUTRAL_IT_INSN
:
20920 /* The BKPT instruction is unconditional even in a IT or VPT
20925 if (now_pred
.type
== SCALAR_PRED
)
20927 inst
.error
= BAD_IT_IT
;
20930 /* fall through. */
20932 if (inst
.cond
== COND_ALWAYS
)
20934 /* Executing a VPT/VPST instruction inside an IT block or a
20935 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
20937 if (now_pred
.type
== SCALAR_PRED
)
20938 as_tsktsk (MVE_NOT_IT
);
20940 as_tsktsk (MVE_NOT_VPT
);
20945 /* VPT/VPST do not accept condition codes. */
20946 inst
.error
= BAD_SYNTAX
;
20957 struct depr_insn_mask
20959 unsigned long pattern
;
20960 unsigned long mask
;
20961 const char* description
;
20964 /* List of 16-bit instruction patterns deprecated in an IT block in
20966 static const struct depr_insn_mask depr_it_insns
[] = {
20967 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
20968 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
20969 { 0xa000, 0xb800, N_("ADR") },
20970 { 0x4800, 0xf800, N_("Literal loads") },
20971 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
20972 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
20973 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
20974 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
20975 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
20980 it_fsm_post_encode (void)
20984 if (!now_pred
.state_handled
)
20985 handle_pred_state ();
20987 if (now_pred
.insn_cond
20988 && !now_pred
.warn_deprecated
20989 && warn_on_deprecated
20990 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
)
20991 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
))
20993 if (inst
.instruction
>= 0x10000)
20995 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
20996 "performance deprecated in ARMv8-A and ARMv8-R"));
20997 now_pred
.warn_deprecated
= TRUE
;
21001 const struct depr_insn_mask
*p
= depr_it_insns
;
21003 while (p
->mask
!= 0)
21005 if ((inst
.instruction
& p
->mask
) == p
->pattern
)
21007 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21008 "instructions of the following class are "
21009 "performance deprecated in ARMv8-A and "
21010 "ARMv8-R: %s"), p
->description
);
21011 now_pred
.warn_deprecated
= TRUE
;
21019 if (now_pred
.block_length
> 1)
21021 as_tsktsk (_("IT blocks containing more than one conditional "
21022 "instruction are performance deprecated in ARMv8-A and "
21024 now_pred
.warn_deprecated
= TRUE
;
21028 is_last
= (now_pred
.mask
== 0x10);
21031 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
21037 force_automatic_it_block_close (void)
21039 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
21041 close_automatic_it_block ();
21042 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
21048 in_pred_block (void)
21050 if (!now_pred
.state_handled
)
21051 handle_pred_state ();
21053 return now_pred
.state
!= OUTSIDE_PRED_BLOCK
;
21056 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21057 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21058 here, hence the "known" in the function name. */
21061 known_t32_only_insn (const struct asm_opcode
*opcode
)
21063 /* Original Thumb-1 wide instruction. */
21064 if (opcode
->tencode
== do_t_blx
21065 || opcode
->tencode
== do_t_branch23
21066 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
21067 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
))
21070 /* Wide-only instruction added to ARMv8-M Baseline. */
21071 if (ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v8m_m_only
)
21072 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_atomics
)
21073 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v6t2_v8m
)
21074 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_div
))
21080 /* Whether wide instruction variant can be used if available for a valid OPCODE
21084 t32_insn_ok (arm_feature_set arch
, const struct asm_opcode
*opcode
)
21086 if (known_t32_only_insn (opcode
))
21089 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21090 of variant T3 of B.W is checked in do_t_branch. */
21091 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21092 && opcode
->tencode
== do_t_branch
)
21095 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21096 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21097 && opcode
->tencode
== do_t_mov_cmp
21098 /* Make sure CMP instruction is not affected. */
21099 && opcode
->aencode
== do_mov
)
21102 /* Wide instruction variants of all instructions with narrow *and* wide
21103 variants become available with ARMv6t2. Other opcodes are either
21104 narrow-only or wide-only and are thus available if OPCODE is valid. */
21105 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v6t2
))
21108 /* OPCODE with narrow only instruction variant or wide variant not
21114 md_assemble (char *str
)
21117 const struct asm_opcode
* opcode
;
21119 /* Align the previous label if needed. */
21120 if (last_label_seen
!= NULL
)
21122 symbol_set_frag (last_label_seen
, frag_now
);
21123 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
21124 S_SET_SEGMENT (last_label_seen
, now_seg
);
21127 memset (&inst
, '\0', sizeof (inst
));
21129 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
21130 inst
.relocs
[r
].type
= BFD_RELOC_UNUSED
;
21132 opcode
= opcode_lookup (&p
);
21135 /* It wasn't an instruction, but it might be a register alias of
21136 the form alias .req reg, or a Neon .dn/.qn directive. */
21137 if (! create_register_alias (str
, p
)
21138 && ! create_neon_reg_alias (str
, p
))
21139 as_bad (_("bad instruction `%s'"), str
);
21144 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
21145 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21147 /* The value which unconditional instructions should have in place of the
21148 condition field. */
21149 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
21153 arm_feature_set variant
;
21155 variant
= cpu_variant
;
21156 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21157 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
21158 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
21159 /* Check that this instruction is supported for this CPU. */
21160 if (!opcode
->tvariant
21161 || (thumb_mode
== 1
21162 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
21164 if (opcode
->tencode
== do_t_swi
)
21165 as_bad (_("SVC is not permitted on this architecture"));
21167 as_bad (_("selected processor does not support `%s' in Thumb mode"), str
);
21170 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
21171 && opcode
->tencode
!= do_t_branch
)
21173 as_bad (_("Thumb does not support conditional execution"));
21177 /* Two things are addressed here:
21178 1) Implicit require narrow instructions on Thumb-1.
21179 This avoids relaxation accidentally introducing Thumb-2
21181 2) Reject wide instructions in non Thumb-2 cores.
21183 Only instructions with narrow and wide variants need to be handled
21184 but selecting all non wide-only instructions is easier. */
21185 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
)
21186 && !t32_insn_ok (variant
, opcode
))
21188 if (inst
.size_req
== 0)
21190 else if (inst
.size_req
== 4)
21192 if (ARM_CPU_HAS_FEATURE (variant
, arm_ext_v8m
))
21193 as_bad (_("selected processor does not support 32bit wide "
21194 "variant of instruction `%s'"), str
);
21196 as_bad (_("selected processor does not support `%s' in "
21197 "Thumb-2 mode"), str
);
21202 inst
.instruction
= opcode
->tvalue
;
21204 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
21206 /* Prepare the pred_insn_type for those encodings that don't set
21208 it_fsm_pre_encode ();
21210 opcode
->tencode ();
21212 it_fsm_post_encode ();
21215 if (!(inst
.error
|| inst
.relax
))
21217 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
21218 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
21219 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
21221 as_bad (_("cannot honor width suffix -- `%s'"), str
);
21226 /* Something has gone badly wrong if we try to relax a fixed size
21228 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
21230 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21231 *opcode
->tvariant
);
21232 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21233 set those bits when Thumb-2 32-bit instructions are seen. The impact
21234 of relaxable instructions will be considered later after we finish all
21236 if (ARM_FEATURE_CORE_EQUAL (cpu_variant
, arm_arch_any
))
21237 variant
= arm_arch_none
;
21239 variant
= cpu_variant
;
21240 if (inst
.size
== 4 && !t32_insn_ok (variant
, opcode
))
21241 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21244 check_neon_suffixes
;
21248 mapping_state (MAP_THUMB
);
21251 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
21255 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21256 is_bx
= (opcode
->aencode
== do_bx
);
21258 /* Check that this instruction is supported for this CPU. */
21259 if (!(is_bx
&& fix_v4bx
)
21260 && !(opcode
->avariant
&&
21261 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
21263 as_bad (_("selected processor does not support `%s' in ARM mode"), str
);
21268 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
21272 inst
.instruction
= opcode
->avalue
;
21273 if (opcode
->tag
== OT_unconditionalF
)
21274 inst
.instruction
|= 0xFU
<< 28;
21276 inst
.instruction
|= inst
.cond
<< 28;
21277 inst
.size
= INSN_SIZE
;
21278 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
21280 it_fsm_pre_encode ();
21281 opcode
->aencode ();
21282 it_fsm_post_encode ();
21284 /* Arm mode bx is marked as both v4T and v5 because it's still required
21285 on a hypothetical non-thumb v5 core. */
21287 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
21289 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
21290 *opcode
->avariant
);
21292 check_neon_suffixes
;
21296 mapping_state (MAP_ARM
);
21301 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21309 check_pred_blocks_finished (void)
21314 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
21315 if (seg_info (sect
)->tc_segment_info_data
.current_pred
.state
21316 == MANUAL_PRED_BLOCK
)
21318 if (now_pred
.type
== SCALAR_PRED
)
21319 as_warn (_("section '%s' finished with an open IT block."),
21322 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21326 if (now_pred
.state
== MANUAL_PRED_BLOCK
)
21328 if (now_pred
.type
== SCALAR_PRED
)
21329 as_warn (_("file finished with an open IT block."));
21331 as_warn (_("file finished with an open VPT/VPST block."));
21336 /* Various frobbings of labels and their addresses. */
21339 arm_start_line_hook (void)
21341 last_label_seen
= NULL
;
21345 arm_frob_label (symbolS
* sym
)
21347 last_label_seen
= sym
;
21349 ARM_SET_THUMB (sym
, thumb_mode
);
21351 #if defined OBJ_COFF || defined OBJ_ELF
21352 ARM_SET_INTERWORK (sym
, support_interwork
);
21355 force_automatic_it_block_close ();
21357 /* Note - do not allow local symbols (.Lxxx) to be labelled
21358 as Thumb functions. This is because these labels, whilst
21359 they exist inside Thumb code, are not the entry points for
21360 possible ARM->Thumb calls. Also, these labels can be used
21361 as part of a computed goto or switch statement. eg gcc
21362 can generate code that looks like this:
21364 ldr r2, [pc, .Laaa]
21374 The first instruction loads the address of the jump table.
21375 The second instruction converts a table index into a byte offset.
21376 The third instruction gets the jump address out of the table.
21377 The fourth instruction performs the jump.
21379 If the address stored at .Laaa is that of a symbol which has the
21380 Thumb_Func bit set, then the linker will arrange for this address
21381 to have the bottom bit set, which in turn would mean that the
21382 address computation performed by the third instruction would end
21383 up with the bottom bit set. Since the ARM is capable of unaligned
21384 word loads, the instruction would then load the incorrect address
21385 out of the jump table, and chaos would ensue. */
21386 if (label_is_thumb_function_name
21387 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
21388 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
21390 /* When the address of a Thumb function is taken the bottom
21391 bit of that address should be set. This will allow
21392 interworking between Arm and Thumb functions to work
21395 THUMB_SET_FUNC (sym
, 1);
21397 label_is_thumb_function_name
= FALSE
;
21400 dwarf2_emit_label (sym
);
21404 arm_data_in_code (void)
21406 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
21408 *input_line_pointer
= '/';
21409 input_line_pointer
+= 5;
21410 *input_line_pointer
= 0;
21418 arm_canonicalize_symbol_name (char * name
)
21422 if (thumb_mode
&& (len
= strlen (name
)) > 5
21423 && streq (name
+ len
- 5, "/data"))
21424 *(name
+ len
- 5) = 0;
21429 /* Table of all register names defined by default. The user can
21430 define additional names with .req. Note that all register names
21431 should appear in both upper and lowercase variants. Some registers
21432 also have mixed-case names. */
21434 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21435 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21436 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21437 #define REGSET(p,t) \
21438 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21439 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21440 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21441 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21442 #define REGSETH(p,t) \
21443 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21444 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21445 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21446 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21447 #define REGSET2(p,t) \
21448 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21449 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21450 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21451 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21452 #define SPLRBANK(base,bank,t) \
21453 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21454 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21455 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21456 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21457 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21458 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21460 static const struct reg_entry reg_names
[] =
21462 /* ARM integer registers. */
21463 REGSET(r
, RN
), REGSET(R
, RN
),
21465 /* ATPCS synonyms. */
21466 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
21467 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
21468 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
21470 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
21471 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
21472 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
21474 /* Well-known aliases. */
21475 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
21476 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
21478 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
21479 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
21481 /* Defining the new Zero register from ARMv8.1-M. */
21485 /* Coprocessor numbers. */
21486 REGSET(p
, CP
), REGSET(P
, CP
),
21488 /* Coprocessor register numbers. The "cr" variants are for backward
21490 REGSET(c
, CN
), REGSET(C
, CN
),
21491 REGSET(cr
, CN
), REGSET(CR
, CN
),
21493 /* ARM banked registers. */
21494 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
21495 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
21496 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
21497 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
21498 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
21499 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
21500 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
21502 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
21503 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
21504 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
21505 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
21506 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
21507 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(sp_fiq
,512|(13<<16),RNB
),
21508 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
21509 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
21511 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
21512 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
21513 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
21514 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
21515 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
21516 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
21517 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
21518 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
21519 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
21521 /* FPA registers. */
21522 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
21523 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
21525 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
21526 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
21528 /* VFP SP registers. */
21529 REGSET(s
,VFS
), REGSET(S
,VFS
),
21530 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
21532 /* VFP DP Registers. */
21533 REGSET(d
,VFD
), REGSET(D
,VFD
),
21534 /* Extra Neon DP registers. */
21535 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
21537 /* Neon QP registers. */
21538 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
21540 /* VFP control registers. */
21541 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
21542 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
21543 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
21544 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
21545 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
21546 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
21547 REGDEF(mvfr2
,5,VFC
), REGDEF(MVFR2
,5,VFC
),
21549 /* Maverick DSP coprocessor registers. */
21550 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
21551 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
21553 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
21554 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
21555 REGDEF(dspsc
,0,DSPSC
),
21557 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
21558 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
21559 REGDEF(DSPSC
,0,DSPSC
),
21561 /* iWMMXt data registers - p0, c0-15. */
21562 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
21564 /* iWMMXt control registers - p1, c0-3. */
21565 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
21566 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
21567 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
21568 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
21570 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21571 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
21572 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
21573 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
21574 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
21576 /* XScale accumulator registers. */
21577 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
21583 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21584 within psr_required_here. */
21585 static const struct asm_psr psrs
[] =
21587 /* Backward compatibility notation. Note that "all" is no longer
21588 truly all possible PSR bits. */
21589 {"all", PSR_c
| PSR_f
},
21593 /* Individual flags. */
21599 /* Combinations of flags. */
21600 {"fs", PSR_f
| PSR_s
},
21601 {"fx", PSR_f
| PSR_x
},
21602 {"fc", PSR_f
| PSR_c
},
21603 {"sf", PSR_s
| PSR_f
},
21604 {"sx", PSR_s
| PSR_x
},
21605 {"sc", PSR_s
| PSR_c
},
21606 {"xf", PSR_x
| PSR_f
},
21607 {"xs", PSR_x
| PSR_s
},
21608 {"xc", PSR_x
| PSR_c
},
21609 {"cf", PSR_c
| PSR_f
},
21610 {"cs", PSR_c
| PSR_s
},
21611 {"cx", PSR_c
| PSR_x
},
21612 {"fsx", PSR_f
| PSR_s
| PSR_x
},
21613 {"fsc", PSR_f
| PSR_s
| PSR_c
},
21614 {"fxs", PSR_f
| PSR_x
| PSR_s
},
21615 {"fxc", PSR_f
| PSR_x
| PSR_c
},
21616 {"fcs", PSR_f
| PSR_c
| PSR_s
},
21617 {"fcx", PSR_f
| PSR_c
| PSR_x
},
21618 {"sfx", PSR_s
| PSR_f
| PSR_x
},
21619 {"sfc", PSR_s
| PSR_f
| PSR_c
},
21620 {"sxf", PSR_s
| PSR_x
| PSR_f
},
21621 {"sxc", PSR_s
| PSR_x
| PSR_c
},
21622 {"scf", PSR_s
| PSR_c
| PSR_f
},
21623 {"scx", PSR_s
| PSR_c
| PSR_x
},
21624 {"xfs", PSR_x
| PSR_f
| PSR_s
},
21625 {"xfc", PSR_x
| PSR_f
| PSR_c
},
21626 {"xsf", PSR_x
| PSR_s
| PSR_f
},
21627 {"xsc", PSR_x
| PSR_s
| PSR_c
},
21628 {"xcf", PSR_x
| PSR_c
| PSR_f
},
21629 {"xcs", PSR_x
| PSR_c
| PSR_s
},
21630 {"cfs", PSR_c
| PSR_f
| PSR_s
},
21631 {"cfx", PSR_c
| PSR_f
| PSR_x
},
21632 {"csf", PSR_c
| PSR_s
| PSR_f
},
21633 {"csx", PSR_c
| PSR_s
| PSR_x
},
21634 {"cxf", PSR_c
| PSR_x
| PSR_f
},
21635 {"cxs", PSR_c
| PSR_x
| PSR_s
},
21636 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
21637 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
21638 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
21639 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
21640 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
21641 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
21642 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
21643 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
21644 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
21645 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
21646 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
21647 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
21648 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
21649 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
21650 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
21651 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
21652 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
21653 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
21654 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
21655 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
21656 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
21657 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
21658 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
21659 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
21662 /* Table of V7M psr names. */
21663 static const struct asm_psr v7m_psrs
[] =
21665 {"apsr", 0x0 }, {"APSR", 0x0 },
21666 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21667 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21668 {"psr", 0x3 }, {"PSR", 0x3 },
21669 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21670 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21671 {"epsr", 0x6 }, {"EPSR", 0x6 },
21672 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21673 {"msp", 0x8 }, {"MSP", 0x8 },
21674 {"psp", 0x9 }, {"PSP", 0x9 },
21675 {"msplim", 0xa }, {"MSPLIM", 0xa },
21676 {"psplim", 0xb }, {"PSPLIM", 0xb },
21677 {"primask", 0x10}, {"PRIMASK", 0x10},
21678 {"basepri", 0x11}, {"BASEPRI", 0x11},
21679 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21680 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21681 {"control", 0x14}, {"CONTROL", 0x14},
21682 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21683 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21684 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21685 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21686 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21687 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21688 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21689 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21690 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21693 /* Table of all shift-in-operand names. */
21694 static const struct asm_shift_name shift_names
[] =
21696 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
21697 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
21698 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
21699 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
21700 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
21701 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
},
21702 { "uxtw", SHIFT_UXTW
}, { "UXTW", SHIFT_UXTW
}
21705 /* Table of all explicit relocation names. */
21707 static struct reloc_entry reloc_names
[] =
21709 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
21710 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
21711 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
21712 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
21713 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
21714 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
21715 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
21716 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
21717 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
21718 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
21719 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
21720 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
21721 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
21722 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
21723 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
21724 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
21725 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
21726 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
},
21727 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC
},
21728 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC
},
21729 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
21730 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
21731 { "funcdesc", BFD_RELOC_ARM_FUNCDESC
},
21732 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC
},
21733 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC
}, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC
},
21734 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC
}, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC
},
21735 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC
}, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC
},
21739 /* Table of all conditional affixes. */
21740 static const struct asm_cond conds
[] =
21744 {"cs", 0x2}, {"hs", 0x2},
21745 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21758 static const struct asm_cond vconds
[] =
21764 #define UL_BARRIER(L,U,CODE,FEAT) \
21765 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21766 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
21768 static struct asm_barrier_opt barrier_opt_names
[] =
21770 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER
),
21771 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER
),
21772 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8
),
21773 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER
),
21774 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER
),
21775 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER
),
21776 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER
),
21777 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8
),
21778 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER
),
21779 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER
),
21780 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER
),
21781 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER
),
21782 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8
),
21783 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER
),
21784 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER
),
21785 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8
)
21790 /* Table of ARM-format instructions. */
21792 /* Macros for gluing together operand strings. N.B. In all cases
21793 other than OPS0, the trailing OP_stop comes from default
21794 zero-initialization of the unspecified elements of the array. */
21795 #define OPS0() { OP_stop, }
21796 #define OPS1(a) { OP_##a, }
21797 #define OPS2(a,b) { OP_##a,OP_##b, }
21798 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21799 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21800 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21801 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21803 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21804 This is useful when mixing operands for ARM and THUMB, i.e. using the
21805 MIX_ARM_THUMB_OPERANDS macro.
21806 In order to use these macros, prefix the number of operands with _
21808 #define OPS_1(a) { a, }
21809 #define OPS_2(a,b) { a,b, }
21810 #define OPS_3(a,b,c) { a,b,c, }
21811 #define OPS_4(a,b,c,d) { a,b,c,d, }
21812 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21813 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21815 /* These macros abstract out the exact format of the mnemonic table and
21816 save some repeated characters. */
21818 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21819 #define TxCE(mnem, op, top, nops, ops, ae, te) \
21820 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
21821 THUMB_VARIANT, do_##ae, do_##te, 0 }
21823 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21824 a T_MNEM_xyz enumerator. */
21825 #define TCE(mnem, aop, top, nops, ops, ae, te) \
21826 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
21827 #define tCE(mnem, aop, top, nops, ops, ae, te) \
21828 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21830 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21831 infix after the third character. */
21832 #define TxC3(mnem, op, top, nops, ops, ae, te) \
21833 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
21834 THUMB_VARIANT, do_##ae, do_##te, 0 }
21835 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
21836 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
21837 THUMB_VARIANT, do_##ae, do_##te, 0 }
21838 #define TC3(mnem, aop, top, nops, ops, ae, te) \
21839 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
21840 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
21841 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
21842 #define tC3(mnem, aop, top, nops, ops, ae, te) \
21843 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21844 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
21845 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21847 /* Mnemonic that cannot be conditionalized. The ARM condition-code
21848 field is still 0xE. Many of the Thumb variants can be executed
21849 conditionally, so this is checked separately. */
21850 #define TUE(mnem, op, top, nops, ops, ae, te) \
21851 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21852 THUMB_VARIANT, do_##ae, do_##te, 0 }
21854 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21855 Used by mnemonics that have very minimal differences in the encoding for
21856 ARM and Thumb variants and can be handled in a common function. */
21857 #define TUEc(mnem, op, top, nops, ops, en) \
21858 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21859 THUMB_VARIANT, do_##en, do_##en, 0 }
21861 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21862 condition code field. */
21863 #define TUF(mnem, op, top, nops, ops, ae, te) \
21864 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
21865 THUMB_VARIANT, do_##ae, do_##te, 0 }
21867 /* ARM-only variants of all the above. */
21868 #define CE(mnem, op, nops, ops, ae) \
21869 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21871 #define C3(mnem, op, nops, ops, ae) \
21872 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21874 /* Thumb-only variants of TCE and TUE. */
21875 #define ToC(mnem, top, nops, ops, te) \
21876 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21879 #define ToU(mnem, top, nops, ops, te) \
21880 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
21883 /* T_MNEM_xyz enumerator variants of ToC. */
21884 #define toC(mnem, top, nops, ops, te) \
21885 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
21888 /* T_MNEM_xyz enumerator variants of ToU. */
21889 #define toU(mnem, top, nops, ops, te) \
21890 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
21893 /* Legacy mnemonics that always have conditional infix after the third
21895 #define CL(mnem, op, nops, ops, ae) \
21896 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21897 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21899 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21900 #define cCE(mnem, op, nops, ops, ae) \
21901 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21903 /* mov instructions that are shared between coprocessor and MVE. */
21904 #define mcCE(mnem, op, nops, ops, ae) \
21905 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
21907 /* Legacy coprocessor instructions where conditional infix and conditional
21908 suffix are ambiguous. For consistency this includes all FPA instructions,
21909 not just the potentially ambiguous ones. */
21910 #define cCL(mnem, op, nops, ops, ae) \
21911 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21912 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21914 /* Coprocessor, takes either a suffix or a position-3 infix
21915 (for an FPA corner case). */
21916 #define C3E(mnem, op, nops, ops, ae) \
21917 { mnem, OPS##nops ops, OT_csuf_or_in3, \
21918 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21920 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
21921 { m1 #m2 m3, OPS##nops ops, \
21922 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
21923 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21925 #define CM(m1, m2, op, nops, ops, ae) \
21926 xCM_ (m1, , m2, op, nops, ops, ae), \
21927 xCM_ (m1, eq, m2, op, nops, ops, ae), \
21928 xCM_ (m1, ne, m2, op, nops, ops, ae), \
21929 xCM_ (m1, cs, m2, op, nops, ops, ae), \
21930 xCM_ (m1, hs, m2, op, nops, ops, ae), \
21931 xCM_ (m1, cc, m2, op, nops, ops, ae), \
21932 xCM_ (m1, ul, m2, op, nops, ops, ae), \
21933 xCM_ (m1, lo, m2, op, nops, ops, ae), \
21934 xCM_ (m1, mi, m2, op, nops, ops, ae), \
21935 xCM_ (m1, pl, m2, op, nops, ops, ae), \
21936 xCM_ (m1, vs, m2, op, nops, ops, ae), \
21937 xCM_ (m1, vc, m2, op, nops, ops, ae), \
21938 xCM_ (m1, hi, m2, op, nops, ops, ae), \
21939 xCM_ (m1, ls, m2, op, nops, ops, ae), \
21940 xCM_ (m1, ge, m2, op, nops, ops, ae), \
21941 xCM_ (m1, lt, m2, op, nops, ops, ae), \
21942 xCM_ (m1, gt, m2, op, nops, ops, ae), \
21943 xCM_ (m1, le, m2, op, nops, ops, ae), \
21944 xCM_ (m1, al, m2, op, nops, ops, ae)
21946 #define UE(mnem, op, nops, ops, ae) \
21947 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21949 #define UF(mnem, op, nops, ops, ae) \
21950 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21952 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
21953 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
21954 use the same encoding function for each. */
21955 #define NUF(mnem, op, nops, ops, enc) \
21956 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21957 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21959 /* Neon data processing, version which indirects through neon_enc_tab for
21960 the various overloaded versions of opcodes. */
21961 #define nUF(mnem, op, nops, ops, enc) \
21962 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21963 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21965 /* Neon insn with conditional suffix for the ARM version, non-overloaded
21967 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21968 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
21969 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21971 #define NCE(mnem, op, nops, ops, enc) \
21972 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21974 #define NCEF(mnem, op, nops, ops, enc) \
21975 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21977 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
21978 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21979 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
21980 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21982 #define nCE(mnem, op, nops, ops, enc) \
21983 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21985 #define nCEF(mnem, op, nops, ops, enc) \
21986 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21989 #define mCEF(mnem, op, nops, ops, enc) \
21990 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
21991 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21994 /* nCEF but for MVE predicated instructions. */
21995 #define mnCEF(mnem, op, nops, ops, enc) \
21996 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21998 /* nCE but for MVE predicated instructions. */
21999 #define mnCE(mnem, op, nops, ops, enc) \
22000 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22002 /* NUF but for potentially MVE predicated instructions. */
22003 #define MNUF(mnem, op, nops, ops, enc) \
22004 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22005 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22007 /* nUF but for potentially MVE predicated instructions. */
22008 #define mnUF(mnem, op, nops, ops, enc) \
22009 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22010 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22012 /* ToC but for potentially MVE predicated instructions. */
22013 #define mToC(mnem, top, nops, ops, te) \
22014 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22017 /* NCE but for MVE predicated instructions. */
22018 #define MNCE(mnem, op, nops, ops, enc) \
22019 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22021 /* NCEF but for MVE predicated instructions. */
22022 #define MNCEF(mnem, op, nops, ops, enc) \
22023 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22026 static const struct asm_opcode insns
[] =
22028 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22029 #define THUMB_VARIANT & arm_ext_v4t
22030 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22031 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22032 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22033 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22034 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
22035 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
22036 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
22037 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
22038 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22039 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22040 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22041 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22042 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22043 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22044 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22045 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22047 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22048 for setting PSR flag bits. They are obsolete in V6 and do not
22049 have Thumb equivalents. */
22050 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22051 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22052 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
22053 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
22054 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
22055 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
22056 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22057 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22058 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
22060 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
22061 tC3("movs", 1b00000
, _movs
, 2, (RR
, SHG
), mov
, t_mov_cmp
),
22062 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
22063 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
22065 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
22066 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
22067 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
22069 OP_ADDRGLDR
),ldst
, t_ldst
),
22070 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
22072 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22073 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22074 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22075 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22076 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22077 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22079 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
22080 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
22083 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
22084 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
22085 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
22086 tCE("udf", 7f000f0
, _udf
, 1, (oIffffb
), bkpt
, t_udf
),
22088 /* Thumb-compatibility pseudo ops. */
22089 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22090 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22091 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22092 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22093 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22094 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22095 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22096 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22097 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
22098 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
22099 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
22100 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
22102 /* These may simplify to neg. */
22103 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22104 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22106 #undef THUMB_VARIANT
22107 #define THUMB_VARIANT & arm_ext_os
22109 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22110 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22112 #undef THUMB_VARIANT
22113 #define THUMB_VARIANT & arm_ext_v6
22115 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
22117 /* V1 instructions with no Thumb analogue prior to V6T2. */
22118 #undef THUMB_VARIANT
22119 #define THUMB_VARIANT & arm_ext_v6t2
22121 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22122 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22123 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
22125 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22126 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22127 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
22128 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22130 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22131 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22133 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22134 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22136 /* V1 instructions with no Thumb analogue at all. */
22137 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
22138 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
22140 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22141 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22142 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22143 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22144 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22145 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22146 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22147 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22150 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22151 #undef THUMB_VARIANT
22152 #define THUMB_VARIANT & arm_ext_v4t
22154 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22155 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22157 #undef THUMB_VARIANT
22158 #define THUMB_VARIANT & arm_ext_v6t2
22160 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
22161 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
22163 /* Generic coprocessor instructions. */
22164 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22165 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22166 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22167 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22168 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22169 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22170 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22173 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22175 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22176 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22179 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22180 #undef THUMB_VARIANT
22181 #define THUMB_VARIANT & arm_ext_msr
22183 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
22184 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
22187 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22188 #undef THUMB_VARIANT
22189 #define THUMB_VARIANT & arm_ext_v6t2
22191 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22192 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22193 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22194 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22195 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22196 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22197 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22198 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22201 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22202 #undef THUMB_VARIANT
22203 #define THUMB_VARIANT & arm_ext_v4t
22205 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22206 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22207 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22208 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22209 tC3("ldsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22210 tC3("ldsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22213 #define ARM_VARIANT & arm_ext_v4t_5
22215 /* ARM Architecture 4T. */
22216 /* Note: bx (and blx) are required on V5, even if the processor does
22217 not support Thumb. */
22218 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
22221 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22222 #undef THUMB_VARIANT
22223 #define THUMB_VARIANT & arm_ext_v5t
22225 /* Note: blx has 2 variants; the .value coded here is for
22226 BLX(2). Only this variant has conditional execution. */
22227 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
22228 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
22230 #undef THUMB_VARIANT
22231 #define THUMB_VARIANT & arm_ext_v6t2
22233 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
22234 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22235 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22236 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22237 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22238 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22239 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22240 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22243 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22244 #undef THUMB_VARIANT
22245 #define THUMB_VARIANT & arm_ext_v5exp
22247 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22248 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22249 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22250 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22252 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22253 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22255 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22256 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22257 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22258 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22260 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22261 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22262 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22263 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22265 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22266 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22268 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22269 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22270 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22271 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22274 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22275 #undef THUMB_VARIANT
22276 #define THUMB_VARIANT & arm_ext_v6t2
22278 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
22279 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
22281 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
22282 ADDRGLDRS
), ldrd
, t_ldstd
),
22284 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22285 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22288 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22290 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
22293 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22294 #undef THUMB_VARIANT
22295 #define THUMB_VARIANT & arm_ext_v6
22297 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
22298 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
22299 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
22300 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
22301 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
22302 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22303 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22304 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22305 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22306 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
22308 #undef THUMB_VARIANT
22309 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22311 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
22312 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
22314 #undef THUMB_VARIANT
22315 #define THUMB_VARIANT & arm_ext_v6t2
22317 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22318 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
22320 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
22321 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
22323 /* ARM V6 not included in V7M. */
22324 #undef THUMB_VARIANT
22325 #define THUMB_VARIANT & arm_ext_v6_notm
22326 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
22327 TUF("rfe", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
22328 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
22329 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
22330 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
22331 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
22332 UF(rfefa
, 8100a00
, 1, (RRw
), rfe
),
22333 TUF("rfeea", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
22334 UF(rfeed
, 9900a00
, 1, (RRw
), rfe
),
22335 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
22336 TUF("srs", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
22337 TUF("srsea", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
22338 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
22339 UF(srsfa
, 9c00500
, 2, (oRRw
, I31w
), srs
),
22340 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
22341 UF(srsed
, 8400500, 2, (oRRw
, I31w
), srs
),
22342 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
22343 TUF("srsfd", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
22344 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
22346 /* ARM V6 not included in V7M (eg. integer SIMD). */
22347 #undef THUMB_VARIANT
22348 #define THUMB_VARIANT & arm_ext_v6_dsp
22349 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
22350 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
22351 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22352 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22353 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22354 /* Old name for QASX. */
22355 TCE("qaddsubx",6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22356 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22357 /* Old name for QSAX. */
22358 TCE("qsubaddx",6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22359 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22360 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22361 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22362 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22363 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22364 /* Old name for SASX. */
22365 TCE("saddsubx",6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22366 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22367 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22368 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22369 /* Old name for SHASX. */
22370 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22371 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22372 /* Old name for SHSAX. */
22373 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22374 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22375 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22376 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22377 /* Old name for SSAX. */
22378 TCE("ssubaddx",6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22379 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22380 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22381 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22382 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22383 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22384 /* Old name for UASX. */
22385 TCE("uaddsubx",6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22386 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22387 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22388 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22389 /* Old name for UHASX. */
22390 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22391 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22392 /* Old name for UHSAX. */
22393 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22394 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22395 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22396 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22397 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22398 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22399 /* Old name for UQASX. */
22400 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22401 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22402 /* Old name for UQSAX. */
22403 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22404 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22405 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22406 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22407 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22408 /* Old name for USAX. */
22409 TCE("usubaddx",6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22410 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22411 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22412 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22413 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22414 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22415 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22416 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22417 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
22418 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
22419 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
22420 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22421 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22422 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22423 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22424 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22425 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22426 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22427 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
22428 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22429 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22430 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22431 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22432 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22433 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22434 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22435 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22436 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22437 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22438 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
22439 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
22440 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22441 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
22442 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
22445 #define ARM_VARIANT & arm_ext_v6k_v6t2
22446 #undef THUMB_VARIANT
22447 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22449 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
22450 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
22451 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
22452 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
22454 #undef THUMB_VARIANT
22455 #define THUMB_VARIANT & arm_ext_v6_notm
22456 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
22458 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
22459 RRnpcb
), strexd
, t_strexd
),
22461 #undef THUMB_VARIANT
22462 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22463 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
22465 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
22467 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
22469 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
22471 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
22474 #define ARM_VARIANT & arm_ext_sec
22475 #undef THUMB_VARIANT
22476 #define THUMB_VARIANT & arm_ext_sec
22478 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
22481 #define ARM_VARIANT & arm_ext_virt
22482 #undef THUMB_VARIANT
22483 #define THUMB_VARIANT & arm_ext_virt
22485 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
22486 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
22489 #define ARM_VARIANT & arm_ext_pan
22490 #undef THUMB_VARIANT
22491 #define THUMB_VARIANT & arm_ext_pan
22493 TUF("setpan", 1100000, b610
, 1, (I7
), setpan
, t_setpan
),
22496 #define ARM_VARIANT & arm_ext_v6t2
22497 #undef THUMB_VARIANT
22498 #define THUMB_VARIANT & arm_ext_v6t2
22500 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
22501 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
22502 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
22503 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
22505 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
22506 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
22508 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22509 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22510 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22511 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
22514 #define ARM_VARIANT & arm_ext_v3
22515 #undef THUMB_VARIANT
22516 #define THUMB_VARIANT & arm_ext_v6t2
22518 TUE("csdb", 320f014
, f3af8014
, 0, (), noargs
, t_csdb
),
22519 TUF("ssbb", 57ff040
, f3bf8f40
, 0, (), noargs
, t_csdb
),
22520 TUF("pssbb", 57ff044
, f3bf8f44
, 0, (), noargs
, t_csdb
),
22523 #define ARM_VARIANT & arm_ext_v6t2
22524 #undef THUMB_VARIANT
22525 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22526 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
22527 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
22529 /* Thumb-only instructions. */
22531 #define ARM_VARIANT NULL
22532 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
22533 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
22535 /* ARM does not really have an IT instruction, so always allow it.
22536 The opcode is copied from Thumb in order to allow warnings in
22537 -mimplicit-it=[never | arm] modes. */
22539 #define ARM_VARIANT & arm_ext_v1
22540 #undef THUMB_VARIANT
22541 #define THUMB_VARIANT & arm_ext_v6t2
22543 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
22544 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
22545 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
22546 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
22547 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
22548 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
22549 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
22550 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
22551 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
22552 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
22553 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
22554 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
22555 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
22556 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
22557 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
22558 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22559 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
22560 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
22562 /* Thumb2 only instructions. */
22564 #define ARM_VARIANT NULL
22566 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
22567 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
22568 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
22569 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
22570 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
22571 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
22573 /* Hardware division instructions. */
22575 #define ARM_VARIANT & arm_ext_adiv
22576 #undef THUMB_VARIANT
22577 #define THUMB_VARIANT & arm_ext_div
22579 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
22580 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
22582 /* ARM V6M/V7 instructions. */
22584 #define ARM_VARIANT & arm_ext_barrier
22585 #undef THUMB_VARIANT
22586 #define THUMB_VARIANT & arm_ext_barrier
22588 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, barrier
),
22589 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, barrier
),
22590 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, barrier
),
22592 /* ARM V7 instructions. */
22594 #define ARM_VARIANT & arm_ext_v7
22595 #undef THUMB_VARIANT
22596 #define THUMB_VARIANT & arm_ext_v7
22598 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
22599 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
22602 #define ARM_VARIANT & arm_ext_mp
22603 #undef THUMB_VARIANT
22604 #define THUMB_VARIANT & arm_ext_mp
22606 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
22608 /* AArchv8 instructions. */
22610 #define ARM_VARIANT & arm_ext_v8
22612 /* Instructions shared between armv8-a and armv8-m. */
22613 #undef THUMB_VARIANT
22614 #define THUMB_VARIANT & arm_ext_atomics
22616 TCE("lda", 1900c9f
, e8d00faf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22617 TCE("ldab", 1d00c9f
, e8d00f8f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22618 TCE("ldah", 1f00c9f
, e8d00f9f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22619 TCE("stl", 180fc90
, e8c00faf
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
22620 TCE("stlb", 1c0fc90
, e8c00f8f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
22621 TCE("stlh", 1e0fc90
, e8c00f9f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
22622 TCE("ldaex", 1900e9f
, e8d00fef
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22623 TCE("ldaexb", 1d00e9f
, e8d00fcf
, 2, (RRnpc
,RRnpcb
), rd_rn
, rd_rn
),
22624 TCE("ldaexh", 1f00e9f
, e8d00fdf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
22625 TCE("stlex", 1800e90
, e8c00fe0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
22627 TCE("stlexb", 1c00e90
, e8c00fc0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
22629 TCE("stlexh", 1e00e90
, e8c00fd0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
22631 #undef THUMB_VARIANT
22632 #define THUMB_VARIANT & arm_ext_v8
22634 tCE("sevl", 320f005
, _sevl
, 0, (), noargs
, t_hint
),
22635 TCE("ldaexd", 1b00e9f
, e8d000ff
, 3, (RRnpc
, oRRnpc
, RRnpcb
),
22637 TCE("stlexd", 1a00e90
, e8c000f0
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
),
22640 /* Defined in V8 but is in undefined encoding space for earlier
22641 architectures. However earlier architectures are required to treat
22642 this instuction as a semihosting trap as well. Hence while not explicitly
22643 defined as such, it is in fact correct to define the instruction for all
22645 #undef THUMB_VARIANT
22646 #define THUMB_VARIANT & arm_ext_v1
22648 #define ARM_VARIANT & arm_ext_v1
22649 TUE("hlt", 1000070, ba80
, 1, (oIffffb
), bkpt
, t_hlt
),
22651 /* ARMv8 T32 only. */
22653 #define ARM_VARIANT NULL
22654 TUF("dcps1", 0, f78f8001
, 0, (), noargs
, noargs
),
22655 TUF("dcps2", 0, f78f8002
, 0, (), noargs
, noargs
),
22656 TUF("dcps3", 0, f78f8003
, 0, (), noargs
, noargs
),
22658 /* FP for ARMv8. */
22660 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22661 #undef THUMB_VARIANT
22662 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22664 nUF(vseleq
, _vseleq
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22665 nUF(vselvs
, _vselvs
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22666 nUF(vselge
, _vselge
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22667 nUF(vselgt
, _vselgt
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
22668 nUF(vmaxnm
, _vmaxnm
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), vmaxnm
),
22669 nUF(vminnm
, _vminnm
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), vmaxnm
),
22670 nCE(vrintr
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintr
),
22671 nCE(vrintz
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintz
),
22672 nCE(vrintx
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintx
),
22673 nUF(vrinta
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrinta
),
22674 nUF(vrintn
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintn
),
22675 nUF(vrintp
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintp
),
22676 nUF(vrintm
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintm
),
22678 /* Crypto v1 extensions. */
22680 #define ARM_VARIANT & fpu_crypto_ext_armv8
22681 #undef THUMB_VARIANT
22682 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22684 nUF(aese
, _aes
, 2, (RNQ
, RNQ
), aese
),
22685 nUF(aesd
, _aes
, 2, (RNQ
, RNQ
), aesd
),
22686 nUF(aesmc
, _aes
, 2, (RNQ
, RNQ
), aesmc
),
22687 nUF(aesimc
, _aes
, 2, (RNQ
, RNQ
), aesimc
),
22688 nUF(sha1c
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1c
),
22689 nUF(sha1p
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1p
),
22690 nUF(sha1m
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1m
),
22691 nUF(sha1su0
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1su0
),
22692 nUF(sha256h
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h
),
22693 nUF(sha256h2
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h2
),
22694 nUF(sha256su1
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256su1
),
22695 nUF(sha1h
, _sha1h
, 2, (RNQ
, RNQ
), sha1h
),
22696 nUF(sha1su1
, _sha2op
, 2, (RNQ
, RNQ
), sha1su1
),
22697 nUF(sha256su0
, _sha2op
, 2, (RNQ
, RNQ
), sha256su0
),
22700 #define ARM_VARIANT & crc_ext_armv8
22701 #undef THUMB_VARIANT
22702 #define THUMB_VARIANT & crc_ext_armv8
22703 TUEc("crc32b", 1000040, fac0f080
, 3, (RR
, oRR
, RR
), crc32b
),
22704 TUEc("crc32h", 1200040, fac0f090
, 3, (RR
, oRR
, RR
), crc32h
),
22705 TUEc("crc32w", 1400040, fac0f0a0
, 3, (RR
, oRR
, RR
), crc32w
),
22706 TUEc("crc32cb",1000240, fad0f080
, 3, (RR
, oRR
, RR
), crc32cb
),
22707 TUEc("crc32ch",1200240, fad0f090
, 3, (RR
, oRR
, RR
), crc32ch
),
22708 TUEc("crc32cw",1400240, fad0f0a0
, 3, (RR
, oRR
, RR
), crc32cw
),
22710 /* ARMv8.2 RAS extension. */
22712 #define ARM_VARIANT & arm_ext_ras
22713 #undef THUMB_VARIANT
22714 #define THUMB_VARIANT & arm_ext_ras
22715 TUE ("esb", 320f010
, f3af8010
, 0, (), noargs
, noargs
),
22718 #define ARM_VARIANT & arm_ext_v8_3
22719 #undef THUMB_VARIANT
22720 #define THUMB_VARIANT & arm_ext_v8_3
22721 NCE (vjcvt
, eb90bc0
, 2, (RVS
, RVD
), vjcvt
),
22722 NUF (vcmla
, 0, 4, (RNDQ
, RNDQ
, RNDQ_RNSC
, EXPi
), vcmla
),
22723 NUF (vcadd
, 0, 4, (RNDQ
, RNDQ
, RNDQ
, EXPi
), vcadd
),
22726 #define ARM_VARIANT & fpu_neon_ext_dotprod
22727 #undef THUMB_VARIANT
22728 #define THUMB_VARIANT & fpu_neon_ext_dotprod
22729 NUF (vsdot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_s
),
22730 NUF (vudot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_u
),
22733 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
22734 #undef THUMB_VARIANT
22735 #define THUMB_VARIANT NULL
22737 cCE("wfs", e200110
, 1, (RR
), rd
),
22738 cCE("rfs", e300110
, 1, (RR
), rd
),
22739 cCE("wfc", e400110
, 1, (RR
), rd
),
22740 cCE("rfc", e500110
, 1, (RR
), rd
),
22742 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22743 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22744 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22745 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22747 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22748 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22749 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22750 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
22752 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
22753 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
22754 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
22755 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
22756 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
22757 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
22758 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
22759 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
22760 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
22761 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
22762 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
22763 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
22765 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
22766 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
22767 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
22768 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
22769 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
22770 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
22771 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
22772 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
22773 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
22774 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
22775 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
22776 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
22778 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
22779 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
22780 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
22781 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
22782 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
22783 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
22784 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
22785 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
22786 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
22787 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
22788 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
22789 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
22791 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
22792 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
22793 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
22794 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
22795 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
22796 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
22797 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
22798 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
22799 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
22800 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
22801 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
22802 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
22804 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
22805 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
22806 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
22807 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
22808 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
22809 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
22810 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
22811 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
22812 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
22813 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
22814 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
22815 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
22817 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
22818 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
22819 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
22820 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
22821 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
22822 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
22823 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
22824 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
22825 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
22826 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
22827 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
22828 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
22830 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
22831 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
22832 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
22833 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
22834 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
22835 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
22836 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
22837 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
22838 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
22839 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
22840 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
22841 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
22843 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
22844 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
22845 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
22846 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
22847 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
22848 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
22849 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
22850 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
22851 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
22852 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
22853 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
22854 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
22856 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
22857 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
22858 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
22859 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
22860 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
22861 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
22862 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
22863 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
22864 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
22865 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
22866 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
22867 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
22869 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
22870 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
22871 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
22872 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
22873 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
22874 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
22875 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
22876 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
22877 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
22878 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
22879 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
22880 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
22882 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
22883 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
22884 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
22885 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
22886 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
22887 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
22888 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
22889 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
22890 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
22891 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
22892 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
22893 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
22895 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
22896 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
22897 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
22898 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
22899 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
22900 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
22901 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
22902 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
22903 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
22904 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
22905 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
22906 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
22908 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
22909 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
22910 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
22911 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
22912 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
22913 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
22914 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
22915 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
22916 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
22917 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
22918 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
22919 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
22921 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
22922 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
22923 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
22924 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
22925 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
22926 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
22927 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
22928 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
22929 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
22930 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
22931 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
22932 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
22934 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
22935 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
22936 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
22937 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
22938 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
22939 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
22940 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
22941 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
22942 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
22943 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
22944 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
22945 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
22947 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
22948 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
22949 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
22950 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
22951 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
22952 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
22953 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
22954 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
22955 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
22956 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
22957 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
22958 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
22960 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22961 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22962 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22963 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22964 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22965 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22966 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22967 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22968 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22969 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22970 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22971 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22973 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22974 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22975 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22976 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22977 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22978 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22979 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22980 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22981 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22982 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22983 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22984 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22986 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22987 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22988 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22989 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22990 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22991 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22992 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22993 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22994 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22995 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22996 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22997 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
22999 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23000 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23001 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23002 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23003 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23004 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23005 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23006 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23007 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23008 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23009 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23010 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23012 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23013 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23014 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23015 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23016 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23017 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23018 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23019 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23020 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23021 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23022 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23023 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23025 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23026 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23027 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23028 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23029 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23030 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23031 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23032 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23033 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23034 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23035 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23036 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23038 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23039 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23040 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23041 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23042 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23043 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23044 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23045 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23046 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23047 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23048 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23049 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23051 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23052 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23053 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23054 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23055 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23056 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23057 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23058 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23059 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23060 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23061 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23062 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23064 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23065 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23066 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23067 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23068 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23069 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23070 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23071 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23072 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23073 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23074 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23075 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23077 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23078 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23079 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23080 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23081 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23082 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23083 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23084 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23085 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23086 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23087 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23088 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23090 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23091 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23092 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23093 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23094 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23095 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23096 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23097 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23098 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23099 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23100 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23101 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23103 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23104 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23105 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23106 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23107 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23108 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23109 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23110 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23111 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23112 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23113 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23114 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23116 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23117 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23118 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23119 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23120 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23121 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23122 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23123 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23124 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23125 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23126 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23127 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23129 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23130 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23131 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23132 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23134 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
23135 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
23136 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
23137 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
23138 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
23139 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
23140 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
23141 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
23142 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
23143 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
23144 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
23145 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
23147 /* The implementation of the FIX instruction is broken on some
23148 assemblers, in that it accepts a precision specifier as well as a
23149 rounding specifier, despite the fact that this is meaningless.
23150 To be more compatible, we accept it as well, though of course it
23151 does not set any bits. */
23152 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
23153 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
23154 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
23155 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
23156 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
23157 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
23158 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
23159 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
23160 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
23161 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
23162 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
23163 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
23164 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
23166 /* Instructions that were new with the real FPA, call them V2. */
23168 #define ARM_VARIANT & fpu_fpa_ext_v2
23170 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23171 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23172 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23173 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23174 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23175 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23178 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23180 /* Moves and type conversions. */
23181 cCE("fmstat", ef1fa10
, 0, (), noargs
),
23182 cCE("vmrs", ef00a10
, 2, (APSR_RR
, RVC
), vmrs
),
23183 cCE("vmsr", ee00a10
, 2, (RVC
, RR
), vmsr
),
23184 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23185 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23186 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23187 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23188 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23189 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23190 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
23191 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
23193 /* Memory operations. */
23194 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23195 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23196 cCE("fldmias", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23197 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23198 cCE("fldmdbs", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23199 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23200 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23201 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23202 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23203 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23204 cCE("fstmias", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23205 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23206 cCE("fstmdbs", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23207 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23208 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23209 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23210 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23211 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23213 /* Monadic operations. */
23214 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23215 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23216 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23218 /* Dyadic operations. */
23219 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23220 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23221 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23222 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23223 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23224 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23225 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23226 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23227 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23230 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23231 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
23232 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23233 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
23235 /* Double precision load/store are still present on single precision
23236 implementations. */
23237 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23238 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23239 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23240 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23241 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23242 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23243 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23244 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23245 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23246 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23249 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23251 /* Moves and type conversions. */
23252 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23253 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23254 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
23255 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
23256 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
23257 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
23258 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23259 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23260 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23261 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23262 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23263 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23265 /* Monadic operations. */
23266 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23267 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23268 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23270 /* Dyadic operations. */
23271 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23272 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23273 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23274 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23275 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23276 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23277 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23278 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23279 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23282 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23283 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
23284 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23285 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
23287 /* Instructions which may belong to either the Neon or VFP instruction sets.
23288 Individual encoder functions perform additional architecture checks. */
23290 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23291 #undef THUMB_VARIANT
23292 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23294 /* These mnemonics are unique to VFP. */
23295 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
23296 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
23297 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23298 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23299 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23300 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
23301 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
23302 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
23304 /* Mnemonics shared by Neon and VFP. */
23305 nCEF(vmul
, _vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
23306 nCEF(vmla
, _vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
23307 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
23309 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23310 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23311 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23312 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23313 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23314 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
23316 mnCEF(vcvt
, _vcvt
, 3, (RNSDQMQ
, RNSDQMQ
, oI32z
), neon_cvt
),
23317 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
23318 MNCEF(vcvtb
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtb
),
23319 MNCEF(vcvtt
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtt
),
23322 /* NOTE: All VMOV encoding is special-cased! */
23323 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
23325 #undef THUMB_VARIANT
23326 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23327 by different feature bits. Since we are setting the Thumb guard, we can
23328 require Thumb-1 which makes it a nop guard and set the right feature bit in
23329 do_vldr_vstr (). */
23330 #define THUMB_VARIANT & arm_ext_v4t
23331 NCE(vldr
, d100b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
23332 NCE(vstr
, d000b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
23335 #define ARM_VARIANT & arm_ext_fp16
23336 #undef THUMB_VARIANT
23337 #define THUMB_VARIANT & arm_ext_fp16
23338 /* New instructions added from v8.2, allowing the extraction and insertion of
23339 the upper 16 bits of a 32-bit vector register. */
23340 NCE (vmovx
, eb00a40
, 2, (RVS
, RVS
), neon_movhf
),
23341 NCE (vins
, eb00ac0
, 2, (RVS
, RVS
), neon_movhf
),
23343 /* New backported fma/fms instructions optional in v8.2. */
23344 NCE (vfmal
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmal
),
23345 NCE (vfmsl
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmsl
),
23347 #undef THUMB_VARIANT
23348 #define THUMB_VARIANT & fpu_neon_ext_v1
23350 #define ARM_VARIANT & fpu_neon_ext_v1
23352 /* Data processing with three registers of the same length. */
23353 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23354 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
23355 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
23356 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
23357 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
23358 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
23359 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
23360 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
23361 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
23362 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23363 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
23364 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
23365 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
23366 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
23367 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
23368 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
23369 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
23370 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
23371 /* If not immediate, fall back to neon_dyadic_i64_su.
23372 shl_imm should accept I8 I16 I32 I64,
23373 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23374 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
23375 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
23376 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
23377 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
23378 /* Logic ops, types optional & ignored. */
23379 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23380 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23381 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23382 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
23383 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
23384 /* Bitfield ops, untyped. */
23385 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
23386 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
23387 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
23388 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
23389 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
23390 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
23391 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23392 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
23393 nUF(vmax
, _vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
23394 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
23395 nUF(vmin
, _vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
23396 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
23397 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23398 back to neon_dyadic_if_su. */
23399 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
23400 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
23401 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
23402 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
23403 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
23404 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
23405 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
23406 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
23407 /* Comparison. Type I8 I16 I32 F32. */
23408 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
23409 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
23410 /* As above, D registers only. */
23411 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
23412 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
23413 /* Int and float variants, signedness unimportant. */
23414 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
23415 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
23416 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
23417 /* Add/sub take types I8 I16 I32 I64 F32. */
23418 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
23419 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
23420 /* vtst takes sizes 8, 16, 32. */
23421 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
23422 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
23423 /* VMUL takes I8 I16 I32 F32 P8. */
23424 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
23425 /* VQD{R}MULH takes S16 S32. */
23426 nUF(vqdmulh
, _vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
23427 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
23428 nUF(vqrdmulh
, _vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
23429 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
23430 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
23431 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
23432 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
23433 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
23434 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
23435 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
23436 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
23437 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
23438 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
23439 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
23440 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
23441 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
23442 /* ARM v8.1 extension. */
23443 nUF (vqrdmlah
, _vqrdmlah
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
23444 nUF (vqrdmlahq
, _vqrdmlah
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
23445 nUF (vqrdmlsh
, _vqrdmlsh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
23446 nUF (vqrdmlshq
, _vqrdmlsh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
23448 /* Two address, int/float. Types S8 S16 S32 F32. */
23449 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
23450 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
23452 /* Data processing with two registers and a shift amount. */
23453 /* Right shifts, and variants with rounding.
23454 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23455 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
23456 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
23457 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
23458 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
23459 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
23460 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
23461 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
23462 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
23463 /* Shift and insert. Sizes accepted 8 16 32 64. */
23464 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
23465 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
23466 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
23467 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
23468 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23469 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
23470 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
23471 /* Right shift immediate, saturating & narrowing, with rounding variants.
23472 Types accepted S16 S32 S64 U16 U32 U64. */
23473 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
23474 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
23475 /* As above, unsigned. Types accepted S16 S32 S64. */
23476 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
23477 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
23478 /* Right shift narrowing. Types accepted I16 I32 I64. */
23479 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
23480 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
23481 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23482 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
23483 /* CVT with optional immediate for fixed-point variant. */
23484 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
23486 nUF(vmvn
, _vmvn
, 2, (RNDQ
, RNDQ_Ibig
), neon_mvn
),
23487 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
23489 /* Data processing, three registers of different lengths. */
23490 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23491 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
23492 /* If not scalar, fall back to neon_dyadic_long.
23493 Vector types as above, scalar types S16 S32 U16 U32. */
23494 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
23495 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
23496 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23497 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
23498 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
23499 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23500 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23501 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23502 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23503 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
23504 /* Saturating doubling multiplies. Types S16 S32. */
23505 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
23506 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
23507 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
23508 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23509 S16 S32 U16 U32. */
23510 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
23512 /* Extract. Size 8. */
23513 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
23514 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
23516 /* Two registers, miscellaneous. */
23517 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23518 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
23519 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
23520 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
23521 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
23522 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
23523 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
23524 /* Vector replicate. Sizes 8 16 32. */
23525 nCE(vdup
, _vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
23526 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
23527 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23528 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
23529 /* VMOVN. Types I16 I32 I64. */
23530 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
23531 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23532 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
23533 /* VQMOVUN. Types S16 S32 S64. */
23534 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
23535 /* VZIP / VUZP. Sizes 8 16 32. */
23536 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
23537 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
23538 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
23539 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
23540 /* VQABS / VQNEG. Types S8 S16 S32. */
23541 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
23542 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
23543 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
23544 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
23545 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23546 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
23547 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
23548 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
23549 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
23550 /* Reciprocal estimates. Types U32 F16 F32. */
23551 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
23552 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
23553 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
23554 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
23555 /* VCLS. Types S8 S16 S32. */
23556 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
23557 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
23558 /* VCLZ. Types I8 I16 I32. */
23559 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
23560 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
23561 /* VCNT. Size 8. */
23562 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
23563 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
23564 /* Two address, untyped. */
23565 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
23566 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
23567 /* VTRN. Sizes 8 16 32. */
23568 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
23569 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
23571 /* Table lookup. Size 8. */
23572 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
23573 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
23575 #undef THUMB_VARIANT
23576 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23578 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23580 /* Neon element/structure load/store. */
23581 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23582 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23583 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23584 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23585 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23586 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23587 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23588 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
23590 #undef THUMB_VARIANT
23591 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23593 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23594 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
23595 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23596 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23597 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23598 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23599 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23600 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23601 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
23602 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
23604 #undef THUMB_VARIANT
23605 #define THUMB_VARIANT & fpu_vfp_ext_v3
23607 #define ARM_VARIANT & fpu_vfp_ext_v3
23609 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
23610 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23611 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23612 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23613 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23614 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23615 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23616 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
23617 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
23620 #define ARM_VARIANT & fpu_vfp_ext_fma
23621 #undef THUMB_VARIANT
23622 #define THUMB_VARIANT & fpu_vfp_ext_fma
23623 /* Mnemonics shared by Neon and VFP. These are included in the
23624 VFP FMA variant; NEON and VFP FMA always includes the NEON
23625 FMA instructions. */
23626 nCEF(vfma
, _vfma
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
23627 nCEF(vfms
, _vfms
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
23628 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23629 the v form should always be used. */
23630 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23631 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23632 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23633 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23634 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23635 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
23637 #undef THUMB_VARIANT
23639 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23641 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23642 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23643 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23644 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23645 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23646 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
23647 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
23648 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
23651 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23653 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
23654 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
23655 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
23656 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
23657 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
23658 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
23659 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
23660 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
23661 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
23662 cCE("textrmub",e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23663 cCE("textrmuh",e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23664 cCE("textrmuw",e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23665 cCE("textrmsb",e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23666 cCE("textrmsh",e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23667 cCE("textrmsw",e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
23668 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
23669 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
23670 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
23671 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
23672 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
23673 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23674 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23675 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23676 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23677 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23678 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
23679 cCE("tmovmskb",e100030
, 2, (RR
, RIWR
), rd_rn
),
23680 cCE("tmovmskh",e500030
, 2, (RR
, RIWR
), rd_rn
),
23681 cCE("tmovmskw",e900030
, 2, (RR
, RIWR
), rd_rn
),
23682 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
23683 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
23684 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
23685 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
23686 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
23687 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23688 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23689 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23690 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23691 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23692 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23693 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23694 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23695 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23696 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23697 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23698 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23699 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
23700 cCE("walignr0",e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23701 cCE("walignr1",e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23702 cCE("walignr2",ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23703 cCE("walignr3",eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23704 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23705 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23706 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23707 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23708 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23709 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23710 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23711 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23712 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23713 cCE("wcmpgtub",e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23714 cCE("wcmpgtuh",e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23715 cCE("wcmpgtuw",e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23716 cCE("wcmpgtsb",e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23717 cCE("wcmpgtsh",e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23718 cCE("wcmpgtsw",eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23719 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23720 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23721 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
23722 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
23723 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23724 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23725 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23726 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23727 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23728 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23729 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23730 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23731 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23732 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23733 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23734 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23735 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23736 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23737 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23738 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23739 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23740 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23741 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
23742 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23743 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23744 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23745 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23746 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23747 cCE("wpackhss",e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23748 cCE("wpackhus",e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23749 cCE("wpackwss",eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23750 cCE("wpackwus",e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23751 cCE("wpackdss",ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23752 cCE("wpackdus",ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23753 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23754 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23755 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23756 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23757 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23758 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23759 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23760 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23761 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23762 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23763 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
23764 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23765 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23766 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23767 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23768 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23769 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23770 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23771 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23772 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23773 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23774 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23775 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23776 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23777 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23778 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23779 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23780 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
23781 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
23782 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23783 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
23784 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
23785 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
23786 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23787 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23788 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23789 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23790 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23791 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23792 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23793 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23794 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23795 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23796 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23797 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23798 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23799 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23800 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
23801 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23802 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23803 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23804 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23805 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23806 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23807 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23808 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23809 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
23810 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23811 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23812 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23813 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23814 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
23817 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23819 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
23820 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
23821 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
23822 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23823 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23824 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
23825 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23826 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23827 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23828 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23829 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23830 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23831 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23832 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23833 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23834 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23835 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23836 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23837 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23838 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23839 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
23840 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23841 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23842 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23843 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23844 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23845 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23846 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23847 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23848 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23849 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23850 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23851 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23852 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23853 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23854 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23855 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23856 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23857 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23858 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23859 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23860 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23861 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23862 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23863 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23864 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23865 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23866 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23867 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23868 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23869 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23870 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23871 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23872 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23873 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23874 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23875 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
23878 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23880 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
23881 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
23882 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
23883 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
23884 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
23885 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
23886 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
23887 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
23888 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
23889 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
23890 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
23891 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
23892 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
23893 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
23894 cCE("cfmv64lr",e000510
, 2, (RMDX
, RR
), rn_rd
),
23895 cCE("cfmvr64l",e100510
, 2, (RR
, RMDX
), rd_rn
),
23896 cCE("cfmv64hr",e000530
, 2, (RMDX
, RR
), rn_rd
),
23897 cCE("cfmvr64h",e100530
, 2, (RR
, RMDX
), rd_rn
),
23898 cCE("cfmval32",e200440
, 2, (RMAX
, RMFX
), rd_rn
),
23899 cCE("cfmv32al",e100440
, 2, (RMFX
, RMAX
), rd_rn
),
23900 cCE("cfmvam32",e200460
, 2, (RMAX
, RMFX
), rd_rn
),
23901 cCE("cfmv32am",e100460
, 2, (RMFX
, RMAX
), rd_rn
),
23902 cCE("cfmvah32",e200480
, 2, (RMAX
, RMFX
), rd_rn
),
23903 cCE("cfmv32ah",e100480
, 2, (RMFX
, RMAX
), rd_rn
),
23904 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
23905 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
23906 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
23907 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
23908 cCE("cfmvsc32",e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
23909 cCE("cfmv32sc",e1004e0
, 2, (RMDX
, RMDS
), rd
),
23910 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
23911 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
23912 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
23913 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
23914 cCE("cfcvt32s",e000480
, 2, (RMF
, RMFX
), rd_rn
),
23915 cCE("cfcvt32d",e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
23916 cCE("cfcvt64s",e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
23917 cCE("cfcvt64d",e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
23918 cCE("cfcvts32",e100580
, 2, (RMFX
, RMF
), rd_rn
),
23919 cCE("cfcvtd32",e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
23920 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
23921 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
23922 cCE("cfrshl32",e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
23923 cCE("cfrshl64",e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
23924 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
23925 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
23926 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
23927 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
23928 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
23929 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
23930 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
23931 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
23932 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
23933 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
23934 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
23935 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
23936 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
23937 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
23938 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
23939 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
23940 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
23941 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
23942 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
23943 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
23944 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23945 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
23946 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23947 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
23948 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23949 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
23950 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23951 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
23952 cCE("cfmadd32",e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
23953 cCE("cfmsub32",e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
23954 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
23955 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
23957 /* ARMv8.5-A instructions. */
23959 #define ARM_VARIANT & arm_ext_sb
23960 #undef THUMB_VARIANT
23961 #define THUMB_VARIANT & arm_ext_sb
23962 TUF("sb", 57ff070
, f3bf8f70
, 0, (), noargs
, noargs
),
23965 #define ARM_VARIANT & arm_ext_predres
23966 #undef THUMB_VARIANT
23967 #define THUMB_VARIANT & arm_ext_predres
23968 CE("cfprctx", e070f93
, 1, (RRnpc
), rd
),
23969 CE("dvprctx", e070fb3
, 1, (RRnpc
), rd
),
23970 CE("cpprctx", e070ff3
, 1, (RRnpc
), rd
),
23972 /* ARMv8-M instructions. */
23974 #define ARM_VARIANT NULL
23975 #undef THUMB_VARIANT
23976 #define THUMB_VARIANT & arm_ext_v8m
23977 ToU("sg", e97fe97f
, 0, (), noargs
),
23978 ToC("blxns", 4784, 1, (RRnpc
), t_blx
),
23979 ToC("bxns", 4704, 1, (RRnpc
), t_bx
),
23980 ToC("tt", e840f000
, 2, (RRnpc
, RRnpc
), tt
),
23981 ToC("ttt", e840f040
, 2, (RRnpc
, RRnpc
), tt
),
23982 ToC("tta", e840f080
, 2, (RRnpc
, RRnpc
), tt
),
23983 ToC("ttat", e840f0c0
, 2, (RRnpc
, RRnpc
), tt
),
23985 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
23986 instructions behave as nop if no VFP is present. */
23987 #undef THUMB_VARIANT
23988 #define THUMB_VARIANT & arm_ext_v8m_main
23989 ToC("vlldm", ec300a00
, 1, (RRnpc
), rn
),
23990 ToC("vlstm", ec200a00
, 1, (RRnpc
), rn
),
23992 /* Armv8.1-M Mainline instructions. */
23993 #undef THUMB_VARIANT
23994 #define THUMB_VARIANT & arm_ext_v8_1m_main
23995 toC("bf", _bf
, 2, (EXPs
, EXPs
), t_branch_future
),
23996 toU("bfcsel", _bfcsel
, 4, (EXPs
, EXPs
, EXPs
, COND
), t_branch_future
),
23997 toC("bfx", _bfx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
23998 toC("bfl", _bfl
, 2, (EXPs
, EXPs
), t_branch_future
),
23999 toC("bflx", _bflx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
24001 toU("dls", _dls
, 2, (LR
, RRnpcsp
), t_loloop
),
24002 toU("wls", _wls
, 3, (LR
, RRnpcsp
, EXP
), t_loloop
),
24003 toU("le", _le
, 2, (oLR
, EXP
), t_loloop
),
24005 ToC("clrm", e89f0000
, 1, (CLRMLST
), t_clrm
),
24006 ToC("vscclrm", ec9f0a00
, 1, (VRSDVLST
), t_vscclrm
),
24008 #undef THUMB_VARIANT
24009 #define THUMB_VARIANT & mve_ext
24011 ToC("vpt", ee410f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24012 ToC("vptt", ee018f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24013 ToC("vpte", ee418f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24014 ToC("vpttt", ee014f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24015 ToC("vptte", ee01cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24016 ToC("vptet", ee41cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24017 ToC("vptee", ee414f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24018 ToC("vptttt", ee012f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24019 ToC("vpttte", ee016f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24020 ToC("vpttet", ee01ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24021 ToC("vpttee", ee01af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24022 ToC("vptett", ee41af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24023 ToC("vptete", ee41ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24024 ToC("vpteet", ee416f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24025 ToC("vpteee", ee412f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24027 ToC("vpst", fe710f4d
, 0, (), mve_vpt
),
24028 ToC("vpstt", fe318f4d
, 0, (), mve_vpt
),
24029 ToC("vpste", fe718f4d
, 0, (), mve_vpt
),
24030 ToC("vpsttt", fe314f4d
, 0, (), mve_vpt
),
24031 ToC("vpstte", fe31cf4d
, 0, (), mve_vpt
),
24032 ToC("vpstet", fe71cf4d
, 0, (), mve_vpt
),
24033 ToC("vpstee", fe714f4d
, 0, (), mve_vpt
),
24034 ToC("vpstttt", fe312f4d
, 0, (), mve_vpt
),
24035 ToC("vpsttte", fe316f4d
, 0, (), mve_vpt
),
24036 ToC("vpsttet", fe31ef4d
, 0, (), mve_vpt
),
24037 ToC("vpsttee", fe31af4d
, 0, (), mve_vpt
),
24038 ToC("vpstett", fe71af4d
, 0, (), mve_vpt
),
24039 ToC("vpstete", fe71ef4d
, 0, (), mve_vpt
),
24040 ToC("vpsteet", fe716f4d
, 0, (), mve_vpt
),
24041 ToC("vpsteee", fe712f4d
, 0, (), mve_vpt
),
24043 /* MVE and MVE FP only. */
24044 mCEF(vadc
, _vadc
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
24045 mCEF(vadci
, _vadci
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
24046 mToC("vsbc", fe300f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
24047 mToC("vsbci", fe301f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
24048 mCEF(vmullb
, _vmullb
, 3, (RMQ
, RMQ
, RMQ
), mve_vmull
),
24049 mCEF(vabav
, _vabav
, 3, (RRnpcsp
, RMQ
, RMQ
), mve_vabav
),
24050 mCEF(vmladav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24051 mCEF(vmladava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24052 mCEF(vmladavx
, _vmladavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24053 mCEF(vmladavax
, _vmladavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24054 mCEF(vmlav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24055 mCEF(vmlava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24056 mCEF(vmlsdav
, _vmlsdav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24057 mCEF(vmlsdava
, _vmlsdava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24058 mCEF(vmlsdavx
, _vmlsdavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24059 mCEF(vmlsdavax
, _vmlsdavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24061 mCEF(vst20
, _vst20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24062 mCEF(vst21
, _vst21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24063 mCEF(vst40
, _vst40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24064 mCEF(vst41
, _vst41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24065 mCEF(vst42
, _vst42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24066 mCEF(vst43
, _vst43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24067 mCEF(vld20
, _vld20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24068 mCEF(vld21
, _vld21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24069 mCEF(vld40
, _vld40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24070 mCEF(vld41
, _vld41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24071 mCEF(vld42
, _vld42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24072 mCEF(vld43
, _vld43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24073 mCEF(vstrb
, _vstrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24074 mCEF(vstrh
, _vstrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24075 mCEF(vstrw
, _vstrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24076 mCEF(vstrd
, _vstrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24077 mCEF(vldrb
, _vldrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24078 mCEF(vldrh
, _vldrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24079 mCEF(vldrw
, _vldrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24080 mCEF(vldrd
, _vldrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24082 mCEF(vmovnt
, _vmovnt
, 2, (RMQ
, RMQ
), mve_movn
),
24083 mCEF(vmovnb
, _vmovnb
, 2, (RMQ
, RMQ
), mve_movn
),
24084 mCEF(vbrsr
, _vbrsr
, 3, (RMQ
, RMQ
, RR
), mve_vbrsr
),
24085 mCEF(vaddlv
, _vaddlv
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
24086 mCEF(vaddlva
, _vaddlva
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
24087 mCEF(vaddv
, _vaddv
, 2, (RRe
, RMQ
), mve_vaddv
),
24088 mCEF(vaddva
, _vaddva
, 2, (RRe
, RMQ
), mve_vaddv
),
24091 #define ARM_VARIANT & fpu_vfp_ext_v1
24092 #undef THUMB_VARIANT
24093 #define THUMB_VARIANT & arm_ext_v6t2
24095 mcCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24098 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24100 MNCE(vmov
, 0, 1, (VMOV
), neon_mov
),
24101 mcCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
24102 mcCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
24103 mcCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
24105 mCEF(vmullt
, _vmullt
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ
), mve_vmull
),
24106 mnCEF(vadd
, _vadd
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24107 mnCEF(vsub
, _vsub
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24109 MNCEF(vabs
, 1b10300
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24110 MNCEF(vneg
, 1b10380
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24112 mCEF(vmovlt
, _vmovlt
, 1, (VMOV
), mve_movl
),
24113 mCEF(vmovlb
, _vmovlb
, 1, (VMOV
), mve_movl
),
24115 mnCE(vcmp
, _vcmp
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24116 mnCE(vcmpe
, _vcmpe
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24119 #define ARM_VARIANT & fpu_vfp_ext_v2
24121 mcCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
24122 mcCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
24123 mcCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
24124 mcCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
24127 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24128 mnUF(vcvta
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvta
),
24129 mnUF(vcvtp
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtp
),
24130 mnUF(vcvtn
, _vcvta
, 3, (RNSDQMQ
, oRNSDQMQ
, oI32z
), neon_cvtn
),
24131 mnUF(vcvtm
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtm
),
24134 #define ARM_VARIANT & fpu_neon_ext_v1
24135 mnUF(vabd
, _vabd
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24136 mnUF(vabdl
, _vabdl
, 3, (RNQMQ
, RNDMQ
, RNDMQ
), neon_dyadic_long
),
24137 mnUF(vaddl
, _vaddl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24138 mnUF(vsubl
, _vsubl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24139 mnUF(vand
, _vand
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24140 mnUF(vbic
, _vbic
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24141 mnUF(vorr
, _vorr
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24142 mnUF(vorn
, _vorn
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24143 mnUF(veor
, _veor
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_logic
),
24146 #undef THUMB_VARIANT
24178 /* MD interface: bits in the object file. */
24180 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24181 for use in the a.out file, and stores them in the array pointed to by buf.
24182 This knows about the endian-ness of the target machine and does
24183 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24184 2 (short) and 4 (long) Floating numbers are put out as a series of
24185 LITTLENUMS (shorts, here at least). */
24188 md_number_to_chars (char * buf
, valueT val
, int n
)
24190 if (target_big_endian
)
24191 number_to_chars_bigendian (buf
, val
, n
);
24193 number_to_chars_littleendian (buf
, val
, n
);
24197 md_chars_to_number (char * buf
, int n
)
24200 unsigned char * where
= (unsigned char *) buf
;
24202 if (target_big_endian
)
24207 result
|= (*where
++ & 255);
24215 result
|= (where
[n
] & 255);
24222 /* MD interface: Sections. */
24224 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24225 that an rs_machine_dependent frag may reach. */
24228 arm_frag_max_var (fragS
*fragp
)
24230 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24231 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24233 Note that we generate relaxable instructions even for cases that don't
24234 really need it, like an immediate that's a trivial constant. So we're
24235 overestimating the instruction size for some of those cases. Rather
24236 than putting more intelligence here, it would probably be better to
24237 avoid generating a relaxation frag in the first place when it can be
24238 determined up front that a short instruction will suffice. */
24240 gas_assert (fragp
->fr_type
== rs_machine_dependent
);
24244 /* Estimate the size of a frag before relaxing. Assume everything fits in
24248 md_estimate_size_before_relax (fragS
* fragp
,
24249 segT segtype ATTRIBUTE_UNUSED
)
24255 /* Convert a machine dependent frag. */
24258 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
24260 unsigned long insn
;
24261 unsigned long old_op
;
24269 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
24271 old_op
= bfd_get_16(abfd
, buf
);
24272 if (fragp
->fr_symbol
)
24274 exp
.X_op
= O_symbol
;
24275 exp
.X_add_symbol
= fragp
->fr_symbol
;
24279 exp
.X_op
= O_constant
;
24281 exp
.X_add_number
= fragp
->fr_offset
;
24282 opcode
= fragp
->fr_subtype
;
24285 case T_MNEM_ldr_pc
:
24286 case T_MNEM_ldr_pc2
:
24287 case T_MNEM_ldr_sp
:
24288 case T_MNEM_str_sp
:
24295 if (fragp
->fr_var
== 4)
24297 insn
= THUMB_OP32 (opcode
);
24298 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
24300 insn
|= (old_op
& 0x700) << 4;
24304 insn
|= (old_op
& 7) << 12;
24305 insn
|= (old_op
& 0x38) << 13;
24307 insn
|= 0x00000c00;
24308 put_thumb32_insn (buf
, insn
);
24309 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
24313 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
24315 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
24318 if (fragp
->fr_var
== 4)
24320 insn
= THUMB_OP32 (opcode
);
24321 insn
|= (old_op
& 0xf0) << 4;
24322 put_thumb32_insn (buf
, insn
);
24323 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
24327 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
24328 exp
.X_add_number
-= 4;
24336 if (fragp
->fr_var
== 4)
24338 int r0off
= (opcode
== T_MNEM_mov
24339 || opcode
== T_MNEM_movs
) ? 0 : 8;
24340 insn
= THUMB_OP32 (opcode
);
24341 insn
= (insn
& 0xe1ffffff) | 0x10000000;
24342 insn
|= (old_op
& 0x700) << r0off
;
24343 put_thumb32_insn (buf
, insn
);
24344 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
24348 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
24353 if (fragp
->fr_var
== 4)
24355 insn
= THUMB_OP32(opcode
);
24356 put_thumb32_insn (buf
, insn
);
24357 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
24360 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
24364 if (fragp
->fr_var
== 4)
24366 insn
= THUMB_OP32(opcode
);
24367 insn
|= (old_op
& 0xf00) << 14;
24368 put_thumb32_insn (buf
, insn
);
24369 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
24372 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
24375 case T_MNEM_add_sp
:
24376 case T_MNEM_add_pc
:
24377 case T_MNEM_inc_sp
:
24378 case T_MNEM_dec_sp
:
24379 if (fragp
->fr_var
== 4)
24381 /* ??? Choose between add and addw. */
24382 insn
= THUMB_OP32 (opcode
);
24383 insn
|= (old_op
& 0xf0) << 4;
24384 put_thumb32_insn (buf
, insn
);
24385 if (opcode
== T_MNEM_add_pc
)
24386 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
24388 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
24391 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
24399 if (fragp
->fr_var
== 4)
24401 insn
= THUMB_OP32 (opcode
);
24402 insn
|= (old_op
& 0xf0) << 4;
24403 insn
|= (old_op
& 0xf) << 16;
24404 put_thumb32_insn (buf
, insn
);
24405 if (insn
& (1 << 20))
24406 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
24408 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
24411 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
24417 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
24418 (enum bfd_reloc_code_real
) reloc_type
);
24419 fixp
->fx_file
= fragp
->fr_file
;
24420 fixp
->fx_line
= fragp
->fr_line
;
24421 fragp
->fr_fix
+= fragp
->fr_var
;
24423 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24424 if (thumb_mode
&& fragp
->fr_var
== 4 && no_cpu_selected ()
24425 && !ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
))
24426 ARM_MERGE_FEATURE_SETS (arm_arch_used
, thumb_arch_used
, arm_ext_v6t2
);
24429 /* Return the size of a relaxable immediate operand instruction.
24430 SHIFT and SIZE specify the form of the allowable immediate. */
24432 relax_immediate (fragS
*fragp
, int size
, int shift
)
24438 /* ??? Should be able to do better than this. */
24439 if (fragp
->fr_symbol
)
24442 low
= (1 << shift
) - 1;
24443 mask
= (1 << (shift
+ size
)) - (1 << shift
);
24444 offset
= fragp
->fr_offset
;
24445 /* Force misaligned offsets to 32-bit variant. */
24448 if (offset
& ~mask
)
24453 /* Get the address of a symbol during relaxation. */
24455 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
24461 sym
= fragp
->fr_symbol
;
24462 sym_frag
= symbol_get_frag (sym
);
24463 know (S_GET_SEGMENT (sym
) != absolute_section
24464 || sym_frag
== &zero_address_frag
);
24465 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
24467 /* If frag has yet to be reached on this pass, assume it will
24468 move by STRETCH just as we did. If this is not so, it will
24469 be because some frag between grows, and that will force
24473 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
24477 /* Adjust stretch for any alignment frag. Note that if have
24478 been expanding the earlier code, the symbol may be
24479 defined in what appears to be an earlier frag. FIXME:
24480 This doesn't handle the fr_subtype field, which specifies
24481 a maximum number of bytes to skip when doing an
24483 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
24485 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
24488 stretch
= - ((- stretch
)
24489 & ~ ((1 << (int) f
->fr_offset
) - 1));
24491 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
24503 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24506 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
24511 /* Assume worst case for symbols not known to be in the same section. */
24512 if (fragp
->fr_symbol
== NULL
24513 || !S_IS_DEFINED (fragp
->fr_symbol
)
24514 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
24515 || S_IS_WEAK (fragp
->fr_symbol
))
24518 val
= relaxed_symbol_addr (fragp
, stretch
);
24519 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
24520 addr
= (addr
+ 4) & ~3;
24521 /* Force misaligned targets to 32-bit variant. */
24525 if (val
< 0 || val
> 1020)
24530 /* Return the size of a relaxable add/sub immediate instruction. */
24532 relax_addsub (fragS
*fragp
, asection
*sec
)
24537 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
24538 op
= bfd_get_16(sec
->owner
, buf
);
24539 if ((op
& 0xf) == ((op
>> 4) & 0xf))
24540 return relax_immediate (fragp
, 8, 0);
24542 return relax_immediate (fragp
, 3, 0);
24545 /* Return TRUE iff the definition of symbol S could be pre-empted
24546 (overridden) at link or load time. */
24548 symbol_preemptible (symbolS
*s
)
24550 /* Weak symbols can always be pre-empted. */
24554 /* Non-global symbols cannot be pre-empted. */
24555 if (! S_IS_EXTERNAL (s
))
24559 /* In ELF, a global symbol can be marked protected, or private. In that
24560 case it can't be pre-empted (other definitions in the same link unit
24561 would violate the ODR). */
24562 if (ELF_ST_VISIBILITY (S_GET_OTHER (s
)) > STV_DEFAULT
)
24566 /* Other global symbols might be pre-empted. */
24570 /* Return the size of a relaxable branch instruction. BITS is the
24571 size of the offset field in the narrow instruction. */
24574 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
24580 /* Assume worst case for symbols not known to be in the same section. */
24581 if (!S_IS_DEFINED (fragp
->fr_symbol
)
24582 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
24583 || S_IS_WEAK (fragp
->fr_symbol
))
24587 /* A branch to a function in ARM state will require interworking. */
24588 if (S_IS_DEFINED (fragp
->fr_symbol
)
24589 && ARM_IS_FUNC (fragp
->fr_symbol
))
24593 if (symbol_preemptible (fragp
->fr_symbol
))
24596 val
= relaxed_symbol_addr (fragp
, stretch
);
24597 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
24600 /* Offset is a signed value *2 */
24602 if (val
>= limit
|| val
< -limit
)
24608 /* Relax a machine dependent frag. This returns the amount by which
24609 the current size of the frag should change. */
24612 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
24617 oldsize
= fragp
->fr_var
;
24618 switch (fragp
->fr_subtype
)
24620 case T_MNEM_ldr_pc2
:
24621 newsize
= relax_adr (fragp
, sec
, stretch
);
24623 case T_MNEM_ldr_pc
:
24624 case T_MNEM_ldr_sp
:
24625 case T_MNEM_str_sp
:
24626 newsize
= relax_immediate (fragp
, 8, 2);
24630 newsize
= relax_immediate (fragp
, 5, 2);
24634 newsize
= relax_immediate (fragp
, 5, 1);
24638 newsize
= relax_immediate (fragp
, 5, 0);
24641 newsize
= relax_adr (fragp
, sec
, stretch
);
24647 newsize
= relax_immediate (fragp
, 8, 0);
24650 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
24653 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
24655 case T_MNEM_add_sp
:
24656 case T_MNEM_add_pc
:
24657 newsize
= relax_immediate (fragp
, 8, 2);
24659 case T_MNEM_inc_sp
:
24660 case T_MNEM_dec_sp
:
24661 newsize
= relax_immediate (fragp
, 7, 2);
24667 newsize
= relax_addsub (fragp
, sec
);
24673 fragp
->fr_var
= newsize
;
24674 /* Freeze wide instructions that are at or before the same location as
24675 in the previous pass. This avoids infinite loops.
24676 Don't freeze them unconditionally because targets may be artificially
24677 misaligned by the expansion of preceding frags. */
24678 if (stretch
<= 0 && newsize
> 2)
24680 md_convert_frag (sec
->owner
, sec
, fragp
);
24684 return newsize
- oldsize
;
24687 /* Round up a section size to the appropriate boundary. */
24690 md_section_align (segT segment ATTRIBUTE_UNUSED
,
24696 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24697 of an rs_align_code fragment. */
24700 arm_handle_align (fragS
* fragP
)
24702 static unsigned char const arm_noop
[2][2][4] =
24705 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24706 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24709 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24710 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24713 static unsigned char const thumb_noop
[2][2][2] =
24716 {0xc0, 0x46}, /* LE */
24717 {0x46, 0xc0}, /* BE */
24720 {0x00, 0xbf}, /* LE */
24721 {0xbf, 0x00} /* BE */
24724 static unsigned char const wide_thumb_noop
[2][4] =
24725 { /* Wide Thumb-2 */
24726 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24727 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24730 unsigned bytes
, fix
, noop_size
;
24732 const unsigned char * noop
;
24733 const unsigned char *narrow_noop
= NULL
;
24738 if (fragP
->fr_type
!= rs_align_code
)
24741 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
24742 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
24745 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
24746 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
24748 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
24750 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
24752 if (ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
24753 ? selected_cpu
: arm_arch_none
, arm_ext_v6t2
))
24755 narrow_noop
= thumb_noop
[1][target_big_endian
];
24756 noop
= wide_thumb_noop
[target_big_endian
];
24759 noop
= thumb_noop
[0][target_big_endian
];
24767 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
24768 ? selected_cpu
: arm_arch_none
,
24770 [target_big_endian
];
24777 fragP
->fr_var
= noop_size
;
24779 if (bytes
& (noop_size
- 1))
24781 fix
= bytes
& (noop_size
- 1);
24783 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
24785 memset (p
, 0, fix
);
24792 if (bytes
& noop_size
)
24794 /* Insert a narrow noop. */
24795 memcpy (p
, narrow_noop
, noop_size
);
24797 bytes
-= noop_size
;
24801 /* Use wide noops for the remainder */
24805 while (bytes
>= noop_size
)
24807 memcpy (p
, noop
, noop_size
);
24809 bytes
-= noop_size
;
24813 fragP
->fr_fix
+= fix
;
24816 /* Called from md_do_align. Used to create an alignment
24817 frag in a code section. */
24820 arm_frag_align_code (int n
, int max
)
24824 /* We assume that there will never be a requirement
24825 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
24826 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
24831 _("alignments greater than %d bytes not supported in .text sections."),
24832 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
24833 as_fatal ("%s", err_msg
);
24836 p
= frag_var (rs_align_code
,
24837 MAX_MEM_FOR_RS_ALIGN_CODE
,
24839 (relax_substateT
) max
,
24846 /* Perform target specific initialisation of a frag.
24847 Note - despite the name this initialisation is not done when the frag
24848 is created, but only when its type is assigned. A frag can be created
24849 and used a long time before its type is set, so beware of assuming that
24850 this initialisation is performed first. */
24854 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
24856 /* Record whether this frag is in an ARM or a THUMB area. */
24857 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
24860 #else /* OBJ_ELF is defined. */
24862 arm_init_frag (fragS
* fragP
, int max_chars
)
24864 bfd_boolean frag_thumb_mode
;
24866 /* If the current ARM vs THUMB mode has not already
24867 been recorded into this frag then do so now. */
24868 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
24869 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
24871 /* PR 21809: Do not set a mapping state for debug sections
24872 - it just confuses other tools. */
24873 if (bfd_get_section_flags (NULL
, now_seg
) & SEC_DEBUGGING
)
24876 frag_thumb_mode
= fragP
->tc_frag_data
.thumb_mode
^ MODE_RECORDED
;
24878 /* Record a mapping symbol for alignment frags. We will delete this
24879 later if the alignment ends up empty. */
24880 switch (fragP
->fr_type
)
24883 case rs_align_test
:
24885 mapping_state_2 (MAP_DATA
, max_chars
);
24887 case rs_align_code
:
24888 mapping_state_2 (frag_thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
24895 /* When we change sections we need to issue a new mapping symbol. */
24898 arm_elf_change_section (void)
24900 /* Link an unlinked unwind index table section to the .text section. */
24901 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
24902 && elf_linked_to_section (now_seg
) == NULL
)
24903 elf_linked_to_section (now_seg
) = text_section
;
24907 arm_elf_section_type (const char * str
, size_t len
)
24909 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
24910 return SHT_ARM_EXIDX
;
24915 /* Code to deal with unwinding tables. */
24917 static void add_unwind_adjustsp (offsetT
);
24919 /* Generate any deferred unwind frame offset. */
24922 flush_pending_unwind (void)
24926 offset
= unwind
.pending_offset
;
24927 unwind
.pending_offset
= 0;
24929 add_unwind_adjustsp (offset
);
24932 /* Add an opcode to this list for this function. Two-byte opcodes should
24933 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
24937 add_unwind_opcode (valueT op
, int length
)
24939 /* Add any deferred stack adjustment. */
24940 if (unwind
.pending_offset
)
24941 flush_pending_unwind ();
24943 unwind
.sp_restored
= 0;
24945 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
24947 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
24948 if (unwind
.opcodes
)
24949 unwind
.opcodes
= XRESIZEVEC (unsigned char, unwind
.opcodes
,
24950 unwind
.opcode_alloc
);
24952 unwind
.opcodes
= XNEWVEC (unsigned char, unwind
.opcode_alloc
);
24957 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
24959 unwind
.opcode_count
++;
24963 /* Add unwind opcodes to adjust the stack pointer. */
24966 add_unwind_adjustsp (offsetT offset
)
24970 if (offset
> 0x200)
24972 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
24977 /* Long form: 0xb2, uleb128. */
24978 /* This might not fit in a word so add the individual bytes,
24979 remembering the list is built in reverse order. */
24980 o
= (valueT
) ((offset
- 0x204) >> 2);
24982 add_unwind_opcode (0, 1);
24984 /* Calculate the uleb128 encoding of the offset. */
24988 bytes
[n
] = o
& 0x7f;
24994 /* Add the insn. */
24996 add_unwind_opcode (bytes
[n
- 1], 1);
24997 add_unwind_opcode (0xb2, 1);
24999 else if (offset
> 0x100)
25001 /* Two short opcodes. */
25002 add_unwind_opcode (0x3f, 1);
25003 op
= (offset
- 0x104) >> 2;
25004 add_unwind_opcode (op
, 1);
25006 else if (offset
> 0)
25008 /* Short opcode. */
25009 op
= (offset
- 4) >> 2;
25010 add_unwind_opcode (op
, 1);
25012 else if (offset
< 0)
25015 while (offset
> 0x100)
25017 add_unwind_opcode (0x7f, 1);
25020 op
= ((offset
- 4) >> 2) | 0x40;
25021 add_unwind_opcode (op
, 1);
25025 /* Finish the list of unwind opcodes for this function. */
25028 finish_unwind_opcodes (void)
25032 if (unwind
.fp_used
)
25034 /* Adjust sp as necessary. */
25035 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
25036 flush_pending_unwind ();
25038 /* After restoring sp from the frame pointer. */
25039 op
= 0x90 | unwind
.fp_reg
;
25040 add_unwind_opcode (op
, 1);
25043 flush_pending_unwind ();
25047 /* Start an exception table entry. If idx is nonzero this is an index table
25051 start_unwind_section (const segT text_seg
, int idx
)
25053 const char * text_name
;
25054 const char * prefix
;
25055 const char * prefix_once
;
25056 const char * group_name
;
25064 prefix
= ELF_STRING_ARM_unwind
;
25065 prefix_once
= ELF_STRING_ARM_unwind_once
;
25066 type
= SHT_ARM_EXIDX
;
25070 prefix
= ELF_STRING_ARM_unwind_info
;
25071 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
25072 type
= SHT_PROGBITS
;
25075 text_name
= segment_name (text_seg
);
25076 if (streq (text_name
, ".text"))
25079 if (strncmp (text_name
, ".gnu.linkonce.t.",
25080 strlen (".gnu.linkonce.t.")) == 0)
25082 prefix
= prefix_once
;
25083 text_name
+= strlen (".gnu.linkonce.t.");
25086 sec_name
= concat (prefix
, text_name
, (char *) NULL
);
25092 /* Handle COMDAT group. */
25093 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
25095 group_name
= elf_group_name (text_seg
);
25096 if (group_name
== NULL
)
25098 as_bad (_("Group section `%s' has no group signature"),
25099 segment_name (text_seg
));
25100 ignore_rest_of_line ();
25103 flags
|= SHF_GROUP
;
25107 obj_elf_change_section (sec_name
, type
, 0, flags
, 0, group_name
,
25110 /* Set the section link for index tables. */
25112 elf_linked_to_section (now_seg
) = text_seg
;
25116 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25117 personality routine data. Returns zero, or the index table value for
25118 an inline entry. */
25121 create_unwind_entry (int have_data
)
25126 /* The current word of data. */
25128 /* The number of bytes left in this word. */
25131 finish_unwind_opcodes ();
25133 /* Remember the current text section. */
25134 unwind
.saved_seg
= now_seg
;
25135 unwind
.saved_subseg
= now_subseg
;
25137 start_unwind_section (now_seg
, 0);
25139 if (unwind
.personality_routine
== NULL
)
25141 if (unwind
.personality_index
== -2)
25144 as_bad (_("handlerdata in cantunwind frame"));
25145 return 1; /* EXIDX_CANTUNWIND. */
25148 /* Use a default personality routine if none is specified. */
25149 if (unwind
.personality_index
== -1)
25151 if (unwind
.opcode_count
> 3)
25152 unwind
.personality_index
= 1;
25154 unwind
.personality_index
= 0;
25157 /* Space for the personality routine entry. */
25158 if (unwind
.personality_index
== 0)
25160 if (unwind
.opcode_count
> 3)
25161 as_bad (_("too many unwind opcodes for personality routine 0"));
25165 /* All the data is inline in the index table. */
25168 while (unwind
.opcode_count
> 0)
25170 unwind
.opcode_count
--;
25171 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
25175 /* Pad with "finish" opcodes. */
25177 data
= (data
<< 8) | 0xb0;
25184 /* We get two opcodes "free" in the first word. */
25185 size
= unwind
.opcode_count
- 2;
25189 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25190 if (unwind
.personality_index
!= -1)
25192 as_bad (_("attempt to recreate an unwind entry"));
25196 /* An extra byte is required for the opcode count. */
25197 size
= unwind
.opcode_count
+ 1;
25200 size
= (size
+ 3) >> 2;
25202 as_bad (_("too many unwind opcodes"));
25204 frag_align (2, 0, 0);
25205 record_alignment (now_seg
, 2);
25206 unwind
.table_entry
= expr_build_dot ();
25208 /* Allocate the table entry. */
25209 ptr
= frag_more ((size
<< 2) + 4);
25210 /* PR 13449: Zero the table entries in case some of them are not used. */
25211 memset (ptr
, 0, (size
<< 2) + 4);
25212 where
= frag_now_fix () - ((size
<< 2) + 4);
25214 switch (unwind
.personality_index
)
25217 /* ??? Should this be a PLT generating relocation? */
25218 /* Custom personality routine. */
25219 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
25220 BFD_RELOC_ARM_PREL31
);
25225 /* Set the first byte to the number of additional words. */
25226 data
= size
> 0 ? size
- 1 : 0;
25230 /* ABI defined personality routines. */
25232 /* Three opcodes bytes are packed into the first word. */
25239 /* The size and first two opcode bytes go in the first word. */
25240 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
25245 /* Should never happen. */
25249 /* Pack the opcodes into words (MSB first), reversing the list at the same
25251 while (unwind
.opcode_count
> 0)
25255 md_number_to_chars (ptr
, data
, 4);
25260 unwind
.opcode_count
--;
25262 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
25265 /* Finish off the last word. */
25268 /* Pad with "finish" opcodes. */
25270 data
= (data
<< 8) | 0xb0;
25272 md_number_to_chars (ptr
, data
, 4);
25277 /* Add an empty descriptor if there is no user-specified data. */
25278 ptr
= frag_more (4);
25279 md_number_to_chars (ptr
, 0, 4);
25286 /* Initialize the DWARF-2 unwind information for this procedure. */
25289 tc_arm_frame_initial_instructions (void)
25291 cfi_add_CFA_def_cfa (REG_SP
, 0);
25293 #endif /* OBJ_ELF */
25295 /* Convert REGNAME to a DWARF-2 register number. */
25298 tc_arm_regname_to_dw2regnum (char *regname
)
25300 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
25304 /* PR 16694: Allow VFP registers as well. */
25305 reg
= arm_reg_parse (®name
, REG_TYPE_VFS
);
25309 reg
= arm_reg_parse (®name
, REG_TYPE_VFD
);
25318 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
25322 exp
.X_op
= O_secrel
;
25323 exp
.X_add_symbol
= symbol
;
25324 exp
.X_add_number
= 0;
25325 emit_expr (&exp
, size
);
25329 /* MD interface: Symbol and relocation handling. */
25331 /* Return the address within the segment that a PC-relative fixup is
25332 relative to. For ARM, PC-relative fixups applied to instructions
25333 are generally relative to the location of the fixup plus 8 bytes.
25334 Thumb branches are offset by 4, and Thumb loads relative to PC
25335 require special handling. */
25338 md_pcrel_from_section (fixS
* fixP
, segT seg
)
25340 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25342 /* If this is pc-relative and we are going to emit a relocation
25343 then we just want to put out any pipeline compensation that the linker
25344 will need. Otherwise we want to use the calculated base.
25345 For WinCE we skip the bias for externals as well, since this
25346 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25348 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
25349 || (arm_force_relocation (fixP
)
25351 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
25357 switch (fixP
->fx_r_type
)
25359 /* PC relative addressing on the Thumb is slightly odd as the
25360 bottom two bits of the PC are forced to zero for the
25361 calculation. This happens *after* application of the
25362 pipeline offset. However, Thumb adrl already adjusts for
25363 this, so we need not do it again. */
25364 case BFD_RELOC_ARM_THUMB_ADD
:
25367 case BFD_RELOC_ARM_THUMB_OFFSET
:
25368 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
25369 case BFD_RELOC_ARM_T32_ADD_PC12
:
25370 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
25371 return (base
+ 4) & ~3;
25373 /* Thumb branches are simply offset by +4. */
25374 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
25375 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
25376 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
25377 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
25378 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
25379 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
25380 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
25381 case BFD_RELOC_ARM_THUMB_BF17
:
25382 case BFD_RELOC_ARM_THUMB_BF19
:
25383 case BFD_RELOC_ARM_THUMB_BF13
:
25384 case BFD_RELOC_ARM_THUMB_LOOP12
:
25387 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
25389 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25390 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25391 && ARM_IS_FUNC (fixP
->fx_addsy
)
25392 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25393 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25396 /* BLX is like branches above, but forces the low two bits of PC to
25398 case BFD_RELOC_THUMB_PCREL_BLX
:
25400 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25401 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25402 && THUMB_IS_FUNC (fixP
->fx_addsy
)
25403 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25404 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25405 return (base
+ 4) & ~3;
25407 /* ARM mode branches are offset by +8. However, the Windows CE
25408 loader expects the relocation not to take this into account. */
25409 case BFD_RELOC_ARM_PCREL_BLX
:
25411 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25412 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25413 && ARM_IS_FUNC (fixP
->fx_addsy
)
25414 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25415 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25418 case BFD_RELOC_ARM_PCREL_CALL
:
25420 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25421 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
25422 && THUMB_IS_FUNC (fixP
->fx_addsy
)
25423 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
25424 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
25427 case BFD_RELOC_ARM_PCREL_BRANCH
:
25428 case BFD_RELOC_ARM_PCREL_JUMP
:
25429 case BFD_RELOC_ARM_PLT32
:
25431 /* When handling fixups immediately, because we have already
25432 discovered the value of a symbol, or the address of the frag involved
25433 we must account for the offset by +8, as the OS loader will never see the reloc.
25434 see fixup_segment() in write.c
25435 The S_IS_EXTERNAL test handles the case of global symbols.
25436 Those need the calculated base, not just the pipe compensation the linker will need. */
25438 && fixP
->fx_addsy
!= NULL
25439 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
25440 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
25448 /* ARM mode loads relative to PC are also offset by +8. Unlike
25449 branches, the Windows CE loader *does* expect the relocation
25450 to take this into account. */
25451 case BFD_RELOC_ARM_OFFSET_IMM
:
25452 case BFD_RELOC_ARM_OFFSET_IMM8
:
25453 case BFD_RELOC_ARM_HWLITERAL
:
25454 case BFD_RELOC_ARM_LITERAL
:
25455 case BFD_RELOC_ARM_CP_OFF_IMM
:
25459 /* Other PC-relative relocations are un-offset. */
25465 static bfd_boolean flag_warn_syms
= TRUE
;
25468 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED
, char * name
)
25470 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25471 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25472 does mean that the resulting code might be very confusing to the reader.
25473 Also this warning can be triggered if the user omits an operand before
25474 an immediate address, eg:
25478 GAS treats this as an assignment of the value of the symbol foo to a
25479 symbol LDR, and so (without this code) it will not issue any kind of
25480 warning or error message.
25482 Note - ARM instructions are case-insensitive but the strings in the hash
25483 table are all stored in lower case, so we must first ensure that name is
25485 if (flag_warn_syms
&& arm_ops_hsh
)
25487 char * nbuf
= strdup (name
);
25490 for (p
= nbuf
; *p
; p
++)
25492 if (hash_find (arm_ops_hsh
, nbuf
) != NULL
)
25494 static struct hash_control
* already_warned
= NULL
;
25496 if (already_warned
== NULL
)
25497 already_warned
= hash_new ();
25498 /* Only warn about the symbol once. To keep the code
25499 simple we let hash_insert do the lookup for us. */
25500 if (hash_insert (already_warned
, nbuf
, NULL
) == NULL
)
25501 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name
);
25510 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25511 Otherwise we have no need to default values of symbols. */
25514 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
25517 if (name
[0] == '_' && name
[1] == 'G'
25518 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
25522 if (symbol_find (name
))
25523 as_bad (_("GOT already in the symbol table"));
25525 GOT_symbol
= symbol_new (name
, undefined_section
,
25526 (valueT
) 0, & zero_address_frag
);
25536 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25537 computed as two separate immediate values, added together. We
25538 already know that this value cannot be computed by just one ARM
25541 static unsigned int
25542 validate_immediate_twopart (unsigned int val
,
25543 unsigned int * highpart
)
25548 for (i
= 0; i
< 32; i
+= 2)
25549 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
25555 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
25557 else if (a
& 0xff0000)
25559 if (a
& 0xff000000)
25561 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
25565 gas_assert (a
& 0xff000000);
25566 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
25569 return (a
& 0xff) | (i
<< 7);
25576 validate_offset_imm (unsigned int val
, int hwse
)
25578 if ((hwse
&& val
> 255) || val
> 4095)
25583 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25584 negative immediate constant by altering the instruction. A bit of
25589 by inverting the second operand, and
25592 by negating the second operand. */
25595 negate_data_op (unsigned long * instruction
,
25596 unsigned long value
)
25599 unsigned long negated
, inverted
;
25601 negated
= encode_arm_immediate (-value
);
25602 inverted
= encode_arm_immediate (~value
);
25604 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
25607 /* First negates. */
25608 case OPCODE_SUB
: /* ADD <-> SUB */
25609 new_inst
= OPCODE_ADD
;
25614 new_inst
= OPCODE_SUB
;
25618 case OPCODE_CMP
: /* CMP <-> CMN */
25619 new_inst
= OPCODE_CMN
;
25624 new_inst
= OPCODE_CMP
;
25628 /* Now Inverted ops. */
25629 case OPCODE_MOV
: /* MOV <-> MVN */
25630 new_inst
= OPCODE_MVN
;
25635 new_inst
= OPCODE_MOV
;
25639 case OPCODE_AND
: /* AND <-> BIC */
25640 new_inst
= OPCODE_BIC
;
25645 new_inst
= OPCODE_AND
;
25649 case OPCODE_ADC
: /* ADC <-> SBC */
25650 new_inst
= OPCODE_SBC
;
25655 new_inst
= OPCODE_ADC
;
25659 /* We cannot do anything. */
25664 if (value
== (unsigned) FAIL
)
25667 *instruction
&= OPCODE_MASK
;
25668 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
25672 /* Like negate_data_op, but for Thumb-2. */
25674 static unsigned int
25675 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
25679 unsigned int negated
, inverted
;
25681 negated
= encode_thumb32_immediate (-value
);
25682 inverted
= encode_thumb32_immediate (~value
);
25684 rd
= (*instruction
>> 8) & 0xf;
25685 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
25688 /* ADD <-> SUB. Includes CMP <-> CMN. */
25689 case T2_OPCODE_SUB
:
25690 new_inst
= T2_OPCODE_ADD
;
25694 case T2_OPCODE_ADD
:
25695 new_inst
= T2_OPCODE_SUB
;
25699 /* ORR <-> ORN. Includes MOV <-> MVN. */
25700 case T2_OPCODE_ORR
:
25701 new_inst
= T2_OPCODE_ORN
;
25705 case T2_OPCODE_ORN
:
25706 new_inst
= T2_OPCODE_ORR
;
25710 /* AND <-> BIC. TST has no inverted equivalent. */
25711 case T2_OPCODE_AND
:
25712 new_inst
= T2_OPCODE_BIC
;
25719 case T2_OPCODE_BIC
:
25720 new_inst
= T2_OPCODE_AND
;
25725 case T2_OPCODE_ADC
:
25726 new_inst
= T2_OPCODE_SBC
;
25730 case T2_OPCODE_SBC
:
25731 new_inst
= T2_OPCODE_ADC
;
25735 /* We cannot do anything. */
25740 if (value
== (unsigned int)FAIL
)
25743 *instruction
&= T2_OPCODE_MASK
;
25744 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
25748 /* Read a 32-bit thumb instruction from buf. */
25750 static unsigned long
25751 get_thumb32_insn (char * buf
)
25753 unsigned long insn
;
25754 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
25755 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
25760 /* We usually want to set the low bit on the address of thumb function
25761 symbols. In particular .word foo - . should have the low bit set.
25762 Generic code tries to fold the difference of two symbols to
25763 a constant. Prevent this and force a relocation when the first symbols
25764 is a thumb function. */
25767 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
25769 if (op
== O_subtract
25770 && l
->X_op
== O_symbol
25771 && r
->X_op
== O_symbol
25772 && THUMB_IS_FUNC (l
->X_add_symbol
))
25774 l
->X_op
= O_subtract
;
25775 l
->X_op_symbol
= r
->X_add_symbol
;
25776 l
->X_add_number
-= r
->X_add_number
;
25780 /* Process as normal. */
25784 /* Encode Thumb2 unconditional branches and calls. The encoding
25785 for the 2 are identical for the immediate values. */
25788 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
25790 #define T2I1I2MASK ((1 << 13) | (1 << 11))
25793 addressT S
, I1
, I2
, lo
, hi
;
25795 S
= (value
>> 24) & 0x01;
25796 I1
= (value
>> 23) & 0x01;
25797 I2
= (value
>> 22) & 0x01;
25798 hi
= (value
>> 12) & 0x3ff;
25799 lo
= (value
>> 1) & 0x7ff;
25800 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
25801 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
25802 newval
|= (S
<< 10) | hi
;
25803 newval2
&= ~T2I1I2MASK
;
25804 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
25805 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
25806 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
25810 md_apply_fix (fixS
* fixP
,
25814 offsetT value
= * valP
;
25816 unsigned int newimm
;
25817 unsigned long temp
;
25819 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
25821 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
25823 /* Note whether this will delete the relocation. */
25825 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
25828 /* On a 64-bit host, silently truncate 'value' to 32 bits for
25829 consistency with the behaviour on 32-bit hosts. Remember value
25831 value
&= 0xffffffff;
25832 value
^= 0x80000000;
25833 value
-= 0x80000000;
25836 fixP
->fx_addnumber
= value
;
25838 /* Same treatment for fixP->fx_offset. */
25839 fixP
->fx_offset
&= 0xffffffff;
25840 fixP
->fx_offset
^= 0x80000000;
25841 fixP
->fx_offset
-= 0x80000000;
25843 switch (fixP
->fx_r_type
)
25845 case BFD_RELOC_NONE
:
25846 /* This will need to go in the object file. */
25850 case BFD_RELOC_ARM_IMMEDIATE
:
25851 /* We claim that this fixup has been processed here,
25852 even if in fact we generate an error because we do
25853 not have a reloc for it, so tc_gen_reloc will reject it. */
25856 if (fixP
->fx_addsy
)
25858 const char *msg
= 0;
25860 if (! S_IS_DEFINED (fixP
->fx_addsy
))
25861 msg
= _("undefined symbol %s used as an immediate value");
25862 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
25863 msg
= _("symbol %s is in a different section");
25864 else if (S_IS_WEAK (fixP
->fx_addsy
))
25865 msg
= _("symbol %s is weak and may be overridden later");
25869 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25870 msg
, S_GET_NAME (fixP
->fx_addsy
));
25875 temp
= md_chars_to_number (buf
, INSN_SIZE
);
25877 /* If the offset is negative, we should use encoding A2 for ADR. */
25878 if ((temp
& 0xfff0000) == 0x28f0000 && value
< 0)
25879 newimm
= negate_data_op (&temp
, value
);
25882 newimm
= encode_arm_immediate (value
);
25884 /* If the instruction will fail, see if we can fix things up by
25885 changing the opcode. */
25886 if (newimm
== (unsigned int) FAIL
)
25887 newimm
= negate_data_op (&temp
, value
);
25888 /* MOV accepts both ARM modified immediate (A1 encoding) and
25889 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25890 When disassembling, MOV is preferred when there is no encoding
25892 if (newimm
== (unsigned int) FAIL
25893 && ((temp
>> DATA_OP_SHIFT
) & 0xf) == OPCODE_MOV
25894 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
25895 && !((temp
>> SBIT_SHIFT
) & 0x1)
25896 && value
>= 0 && value
<= 0xffff)
25898 /* Clear bits[23:20] to change encoding from A1 to A2. */
25899 temp
&= 0xff0fffff;
25900 /* Encoding high 4bits imm. Code below will encode the remaining
25902 temp
|= (value
& 0x0000f000) << 4;
25903 newimm
= value
& 0x00000fff;
25907 if (newimm
== (unsigned int) FAIL
)
25909 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25910 _("invalid constant (%lx) after fixup"),
25911 (unsigned long) value
);
25915 newimm
|= (temp
& 0xfffff000);
25916 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
25919 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
25921 unsigned int highpart
= 0;
25922 unsigned int newinsn
= 0xe1a00000; /* nop. */
25924 if (fixP
->fx_addsy
)
25926 const char *msg
= 0;
25928 if (! S_IS_DEFINED (fixP
->fx_addsy
))
25929 msg
= _("undefined symbol %s used as an immediate value");
25930 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
25931 msg
= _("symbol %s is in a different section");
25932 else if (S_IS_WEAK (fixP
->fx_addsy
))
25933 msg
= _("symbol %s is weak and may be overridden later");
25937 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25938 msg
, S_GET_NAME (fixP
->fx_addsy
));
25943 newimm
= encode_arm_immediate (value
);
25944 temp
= md_chars_to_number (buf
, INSN_SIZE
);
25946 /* If the instruction will fail, see if we can fix things up by
25947 changing the opcode. */
25948 if (newimm
== (unsigned int) FAIL
25949 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
25951 /* No ? OK - try using two ADD instructions to generate
25953 newimm
= validate_immediate_twopart (value
, & highpart
);
25955 /* Yes - then make sure that the second instruction is
25957 if (newimm
!= (unsigned int) FAIL
)
25959 /* Still No ? Try using a negated value. */
25960 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
25961 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
25962 /* Otherwise - give up. */
25965 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
25966 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
25971 /* Replace the first operand in the 2nd instruction (which
25972 is the PC) with the destination register. We have
25973 already added in the PC in the first instruction and we
25974 do not want to do it again. */
25975 newinsn
&= ~ 0xf0000;
25976 newinsn
|= ((newinsn
& 0x0f000) << 4);
25979 newimm
|= (temp
& 0xfffff000);
25980 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
25982 highpart
|= (newinsn
& 0xfffff000);
25983 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
25987 case BFD_RELOC_ARM_OFFSET_IMM
:
25988 if (!fixP
->fx_done
&& seg
->use_rela_p
)
25990 /* Fall through. */
25992 case BFD_RELOC_ARM_LITERAL
:
25998 if (validate_offset_imm (value
, 0) == FAIL
)
26000 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
26001 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26002 _("invalid literal constant: pool needs to be closer"));
26004 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26005 _("bad immediate value for offset (%ld)"),
26010 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26012 newval
&= 0xfffff000;
26015 newval
&= 0xff7ff000;
26016 newval
|= value
| (sign
? INDEX_UP
: 0);
26018 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26021 case BFD_RELOC_ARM_OFFSET_IMM8
:
26022 case BFD_RELOC_ARM_HWLITERAL
:
26028 if (validate_offset_imm (value
, 1) == FAIL
)
26030 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
26031 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26032 _("invalid literal constant: pool needs to be closer"));
26034 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26035 _("bad immediate value for 8-bit offset (%ld)"),
26040 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26042 newval
&= 0xfffff0f0;
26045 newval
&= 0xff7ff0f0;
26046 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
26048 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26051 case BFD_RELOC_ARM_T32_OFFSET_U8
:
26052 if (value
< 0 || value
> 1020 || value
% 4 != 0)
26053 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26054 _("bad immediate value for offset (%ld)"), (long) value
);
26057 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
26059 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
26062 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
26063 /* This is a complicated relocation used for all varieties of Thumb32
26064 load/store instruction with immediate offset:
26066 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26067 *4, optional writeback(W)
26068 (doubleword load/store)
26070 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26071 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26072 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26073 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26074 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26076 Uppercase letters indicate bits that are already encoded at
26077 this point. Lowercase letters are our problem. For the
26078 second block of instructions, the secondary opcode nybble
26079 (bits 8..11) is present, and bit 23 is zero, even if this is
26080 a PC-relative operation. */
26081 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26083 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
26085 if ((newval
& 0xf0000000) == 0xe0000000)
26087 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26089 newval
|= (1 << 23);
26092 if (value
% 4 != 0)
26094 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26095 _("offset not a multiple of 4"));
26101 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26102 _("offset out of range"));
26107 else if ((newval
& 0x000f0000) == 0x000f0000)
26109 /* PC-relative, 12-bit offset. */
26111 newval
|= (1 << 23);
26116 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26117 _("offset out of range"));
26122 else if ((newval
& 0x00000100) == 0x00000100)
26124 /* Writeback: 8-bit, +/- offset. */
26126 newval
|= (1 << 9);
26131 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26132 _("offset out of range"));
26137 else if ((newval
& 0x00000f00) == 0x00000e00)
26139 /* T-instruction: positive 8-bit offset. */
26140 if (value
< 0 || value
> 0xff)
26142 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26143 _("offset out of range"));
26151 /* Positive 12-bit or negative 8-bit offset. */
26155 newval
|= (1 << 23);
26165 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26166 _("offset out of range"));
26173 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
26174 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
26177 case BFD_RELOC_ARM_SHIFT_IMM
:
26178 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26179 if (((unsigned long) value
) > 32
26181 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
26183 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26184 _("shift expression is too large"));
26189 /* Shifts of zero must be done as lsl. */
26191 else if (value
== 32)
26193 newval
&= 0xfffff07f;
26194 newval
|= (value
& 0x1f) << 7;
26195 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26198 case BFD_RELOC_ARM_T32_IMMEDIATE
:
26199 case BFD_RELOC_ARM_T32_ADD_IMM
:
26200 case BFD_RELOC_ARM_T32_IMM12
:
26201 case BFD_RELOC_ARM_T32_ADD_PC12
:
26202 /* We claim that this fixup has been processed here,
26203 even if in fact we generate an error because we do
26204 not have a reloc for it, so tc_gen_reloc will reject it. */
26208 && ! S_IS_DEFINED (fixP
->fx_addsy
))
26210 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26211 _("undefined symbol %s used as an immediate value"),
26212 S_GET_NAME (fixP
->fx_addsy
));
26216 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26218 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
26221 if ((fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
26222 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26223 Thumb2 modified immediate encoding (T2). */
26224 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
26225 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
26227 newimm
= encode_thumb32_immediate (value
);
26228 if (newimm
== (unsigned int) FAIL
)
26229 newimm
= thumb32_negate_data_op (&newval
, value
);
26231 if (newimm
== (unsigned int) FAIL
)
26233 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
)
26235 /* Turn add/sum into addw/subw. */
26236 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
26237 newval
= (newval
& 0xfeffffff) | 0x02000000;
26238 /* No flat 12-bit imm encoding for addsw/subsw. */
26239 if ((newval
& 0x00100000) == 0)
26241 /* 12 bit immediate for addw/subw. */
26245 newval
^= 0x00a00000;
26248 newimm
= (unsigned int) FAIL
;
26255 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26256 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26257 disassembling, MOV is preferred when there is no encoding
26259 if (((newval
>> T2_DATA_OP_SHIFT
) & 0xf) == T2_OPCODE_ORR
26260 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26261 but with the Rn field [19:16] set to 1111. */
26262 && (((newval
>> 16) & 0xf) == 0xf)
26263 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
)
26264 && !((newval
>> T2_SBIT_SHIFT
) & 0x1)
26265 && value
>= 0 && value
<= 0xffff)
26267 /* Toggle bit[25] to change encoding from T2 to T3. */
26269 /* Clear bits[19:16]. */
26270 newval
&= 0xfff0ffff;
26271 /* Encoding high 4bits imm. Code below will encode the
26272 remaining low 12bits. */
26273 newval
|= (value
& 0x0000f000) << 4;
26274 newimm
= value
& 0x00000fff;
26279 if (newimm
== (unsigned int)FAIL
)
26281 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26282 _("invalid constant (%lx) after fixup"),
26283 (unsigned long) value
);
26287 newval
|= (newimm
& 0x800) << 15;
26288 newval
|= (newimm
& 0x700) << 4;
26289 newval
|= (newimm
& 0x0ff);
26291 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
26292 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
26295 case BFD_RELOC_ARM_SMC
:
26296 if (((unsigned long) value
) > 0xffff)
26297 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26298 _("invalid smc expression"));
26299 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26300 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
26301 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26304 case BFD_RELOC_ARM_HVC
:
26305 if (((unsigned long) value
) > 0xffff)
26306 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26307 _("invalid hvc expression"));
26308 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26309 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
26310 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26313 case BFD_RELOC_ARM_SWI
:
26314 if (fixP
->tc_fix_data
!= 0)
26316 if (((unsigned long) value
) > 0xff)
26317 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26318 _("invalid swi expression"));
26319 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26321 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26325 if (((unsigned long) value
) > 0x00ffffff)
26326 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26327 _("invalid swi expression"));
26328 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26330 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26334 case BFD_RELOC_ARM_MULTI
:
26335 if (((unsigned long) value
) > 0xffff)
26336 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26337 _("invalid expression in load/store multiple"));
26338 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
26339 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26343 case BFD_RELOC_ARM_PCREL_CALL
:
26345 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
26347 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26348 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26349 && THUMB_IS_FUNC (fixP
->fx_addsy
))
26350 /* Flip the bl to blx. This is a simple flip
26351 bit here because we generate PCREL_CALL for
26352 unconditional bls. */
26354 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26355 newval
= newval
| 0x10000000;
26356 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26362 goto arm_branch_common
;
26364 case BFD_RELOC_ARM_PCREL_JUMP
:
26365 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
26367 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26368 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26369 && THUMB_IS_FUNC (fixP
->fx_addsy
))
26371 /* This would map to a bl<cond>, b<cond>,
26372 b<always> to a Thumb function. We
26373 need to force a relocation for this particular
26375 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26378 /* Fall through. */
26380 case BFD_RELOC_ARM_PLT32
:
26382 case BFD_RELOC_ARM_PCREL_BRANCH
:
26384 goto arm_branch_common
;
26386 case BFD_RELOC_ARM_PCREL_BLX
:
26389 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
26391 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26392 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26393 && ARM_IS_FUNC (fixP
->fx_addsy
))
26395 /* Flip the blx to a bl and warn. */
26396 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
26397 newval
= 0xeb000000;
26398 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
26399 _("blx to '%s' an ARM ISA state function changed to bl"),
26401 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26407 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
26408 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
26412 /* We are going to store value (shifted right by two) in the
26413 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26414 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26417 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26418 _("misaligned branch destination"));
26419 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
26420 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
26421 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26423 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26425 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26426 newval
|= (value
>> 2) & 0x00ffffff;
26427 /* Set the H bit on BLX instructions. */
26431 newval
|= 0x01000000;
26433 newval
&= ~0x01000000;
26435 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26439 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
26440 /* CBZ can only branch forward. */
26442 /* Attempts to use CBZ to branch to the next instruction
26443 (which, strictly speaking, are prohibited) will be turned into
26446 FIXME: It may be better to remove the instruction completely and
26447 perform relaxation. */
26450 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26451 newval
= 0xbf00; /* NOP encoding T1 */
26452 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26457 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26459 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26461 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26462 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
26463 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26468 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
26469 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
26470 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26472 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26474 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26475 newval
|= (value
& 0x1ff) >> 1;
26476 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26480 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
26481 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
26482 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26484 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26486 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26487 newval
|= (value
& 0xfff) >> 1;
26488 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26492 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
26494 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26495 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26496 && ARM_IS_FUNC (fixP
->fx_addsy
)
26497 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26499 /* Force a relocation for a branch 20 bits wide. */
26502 if ((value
& ~0x1fffff) && ((value
& ~0x0fffff) != ~0x0fffff))
26503 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26504 _("conditional branch out of range"));
26506 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26509 addressT S
, J1
, J2
, lo
, hi
;
26511 S
= (value
& 0x00100000) >> 20;
26512 J2
= (value
& 0x00080000) >> 19;
26513 J1
= (value
& 0x00040000) >> 18;
26514 hi
= (value
& 0x0003f000) >> 12;
26515 lo
= (value
& 0x00000ffe) >> 1;
26517 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26518 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26519 newval
|= (S
<< 10) | hi
;
26520 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
26521 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26522 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
26526 case BFD_RELOC_THUMB_PCREL_BLX
:
26527 /* If there is a blx from a thumb state function to
26528 another thumb function flip this to a bl and warn
26532 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26533 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26534 && THUMB_IS_FUNC (fixP
->fx_addsy
))
26536 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
26537 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
26538 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26540 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26541 newval
= newval
| 0x1000;
26542 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
26543 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
26548 goto thumb_bl_common
;
26550 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
26551 /* A bl from Thumb state ISA to an internal ARM state function
26552 is converted to a blx. */
26554 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26555 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26556 && ARM_IS_FUNC (fixP
->fx_addsy
)
26557 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26559 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26560 newval
= newval
& ~0x1000;
26561 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
26562 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
26568 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
26569 /* For a BLX instruction, make sure that the relocation is rounded up
26570 to a word boundary. This follows the semantics of the instruction
26571 which specifies that bit 1 of the target address will come from bit
26572 1 of the base address. */
26573 value
= (value
+ 3) & ~ 3;
26576 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
26577 && fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
26578 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
26581 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
26583 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)))
26584 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26585 else if ((value
& ~0x1ffffff)
26586 && ((value
& ~0x1ffffff) != ~0x1ffffff))
26587 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26588 _("Thumb2 branch out of range"));
26591 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26592 encode_thumb2_b_bl_offset (buf
, value
);
26596 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
26597 if ((value
& ~0x0ffffff) && ((value
& ~0x0ffffff) != ~0x0ffffff))
26598 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
26600 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26601 encode_thumb2_b_bl_offset (buf
, value
);
26606 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26611 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26612 md_number_to_chars (buf
, value
, 2);
26616 case BFD_RELOC_ARM_TLS_CALL
:
26617 case BFD_RELOC_ARM_THM_TLS_CALL
:
26618 case BFD_RELOC_ARM_TLS_DESCSEQ
:
26619 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
26620 case BFD_RELOC_ARM_TLS_GOTDESC
:
26621 case BFD_RELOC_ARM_TLS_GD32
:
26622 case BFD_RELOC_ARM_TLS_LE32
:
26623 case BFD_RELOC_ARM_TLS_IE32
:
26624 case BFD_RELOC_ARM_TLS_LDM32
:
26625 case BFD_RELOC_ARM_TLS_LDO32
:
26626 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
26629 /* Same handling as above, but with the arm_fdpic guard. */
26630 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
26631 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
26632 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
26635 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
26639 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26640 _("Relocation supported only in FDPIC mode"));
26644 case BFD_RELOC_ARM_GOT32
:
26645 case BFD_RELOC_ARM_GOTOFF
:
26648 case BFD_RELOC_ARM_GOT_PREL
:
26649 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26650 md_number_to_chars (buf
, value
, 4);
26653 case BFD_RELOC_ARM_TARGET2
:
26654 /* TARGET2 is not partial-inplace, so we need to write the
26655 addend here for REL targets, because it won't be written out
26656 during reloc processing later. */
26657 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26658 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
26661 /* Relocations for FDPIC. */
26662 case BFD_RELOC_ARM_GOTFUNCDESC
:
26663 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
26664 case BFD_RELOC_ARM_FUNCDESC
:
26667 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26668 md_number_to_chars (buf
, 0, 4);
26672 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26673 _("Relocation supported only in FDPIC mode"));
26678 case BFD_RELOC_RVA
:
26680 case BFD_RELOC_ARM_TARGET1
:
26681 case BFD_RELOC_ARM_ROSEGREL32
:
26682 case BFD_RELOC_ARM_SBREL32
:
26683 case BFD_RELOC_32_PCREL
:
26685 case BFD_RELOC_32_SECREL
:
26687 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26689 /* For WinCE we only do this for pcrel fixups. */
26690 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
26692 md_number_to_chars (buf
, value
, 4);
26696 case BFD_RELOC_ARM_PREL31
:
26697 if (fixP
->fx_done
|| !seg
->use_rela_p
)
26699 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
26700 if ((value
^ (value
>> 1)) & 0x40000000)
26702 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26703 _("rel31 relocation overflow"));
26705 newval
|= value
& 0x7fffffff;
26706 md_number_to_chars (buf
, newval
, 4);
26711 case BFD_RELOC_ARM_CP_OFF_IMM
:
26712 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
26713 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
:
26714 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
)
26715 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26717 newval
= get_thumb32_insn (buf
);
26718 if ((newval
& 0x0f200f00) == 0x0d000900)
26720 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26721 has permitted values that are multiples of 2, in the range 0
26723 if (value
< -510 || value
> 510 || (value
& 1))
26724 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26725 _("co-processor offset out of range"));
26727 else if ((newval
& 0xfe001f80) == 0xec000f80)
26729 if (value
< -511 || value
> 512 || (value
& 3))
26730 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26731 _("co-processor offset out of range"));
26733 else if (value
< -1023 || value
> 1023 || (value
& 3))
26734 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26735 _("co-processor offset out of range"));
26740 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
26741 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
26742 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26744 newval
= get_thumb32_insn (buf
);
26747 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
26748 newval
&= 0xffffff80;
26750 newval
&= 0xffffff00;
26754 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
26755 newval
&= 0xff7fff80;
26757 newval
&= 0xff7fff00;
26758 if ((newval
& 0x0f200f00) == 0x0d000900)
26760 /* This is a fp16 vstr/vldr.
26762 It requires the immediate offset in the instruction is shifted
26763 left by 1 to be a half-word offset.
26765 Here, left shift by 1 first, and later right shift by 2
26766 should get the right offset. */
26769 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
26771 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
26772 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
26773 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26775 put_thumb32_insn (buf
, newval
);
26778 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
26779 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
26780 if (value
< -255 || value
> 255)
26781 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26782 _("co-processor offset out of range"));
26784 goto cp_off_common
;
26786 case BFD_RELOC_ARM_THUMB_OFFSET
:
26787 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26788 /* Exactly what ranges, and where the offset is inserted depends
26789 on the type of instruction, we can establish this from the
26791 switch (newval
>> 12)
26793 case 4: /* PC load. */
26794 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26795 forced to zero for these loads; md_pcrel_from has already
26796 compensated for this. */
26798 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26799 _("invalid offset, target not word aligned (0x%08lX)"),
26800 (((unsigned long) fixP
->fx_frag
->fr_address
26801 + (unsigned long) fixP
->fx_where
) & ~3)
26802 + (unsigned long) value
);
26804 if (value
& ~0x3fc)
26805 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26806 _("invalid offset, value too big (0x%08lX)"),
26809 newval
|= value
>> 2;
26812 case 9: /* SP load/store. */
26813 if (value
& ~0x3fc)
26814 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26815 _("invalid offset, value too big (0x%08lX)"),
26817 newval
|= value
>> 2;
26820 case 6: /* Word load/store. */
26822 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26823 _("invalid offset, value too big (0x%08lX)"),
26825 newval
|= value
<< 4; /* 6 - 2. */
26828 case 7: /* Byte load/store. */
26830 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26831 _("invalid offset, value too big (0x%08lX)"),
26833 newval
|= value
<< 6;
26836 case 8: /* Halfword load/store. */
26838 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26839 _("invalid offset, value too big (0x%08lX)"),
26841 newval
|= value
<< 5; /* 6 - 1. */
26845 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26846 "Unable to process relocation for thumb opcode: %lx",
26847 (unsigned long) newval
);
26850 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26853 case BFD_RELOC_ARM_THUMB_ADD
:
26854 /* This is a complicated relocation, since we use it for all of
26855 the following immediate relocations:
26859 9bit ADD/SUB SP word-aligned
26860 10bit ADD PC/SP word-aligned
26862 The type of instruction being processed is encoded in the
26869 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26871 int rd
= (newval
>> 4) & 0xf;
26872 int rs
= newval
& 0xf;
26873 int subtract
= !!(newval
& 0x8000);
26875 /* Check for HI regs, only very restricted cases allowed:
26876 Adjusting SP, and using PC or SP to get an address. */
26877 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
26878 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
26879 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26880 _("invalid Hi register with immediate"));
26882 /* If value is negative, choose the opposite instruction. */
26886 subtract
= !subtract
;
26888 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26889 _("immediate value out of range"));
26894 if (value
& ~0x1fc)
26895 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26896 _("invalid immediate for stack address calculation"));
26897 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
26898 newval
|= value
>> 2;
26900 else if (rs
== REG_PC
|| rs
== REG_SP
)
26902 /* PR gas/18541. If the addition is for a defined symbol
26903 within range of an ADR instruction then accept it. */
26906 && fixP
->fx_addsy
!= NULL
)
26910 if (! S_IS_DEFINED (fixP
->fx_addsy
)
26911 || S_GET_SEGMENT (fixP
->fx_addsy
) != seg
26912 || S_IS_WEAK (fixP
->fx_addsy
))
26914 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26915 _("address calculation needs a strongly defined nearby symbol"));
26919 offsetT v
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26921 /* Round up to the next 4-byte boundary. */
26926 v
= S_GET_VALUE (fixP
->fx_addsy
) - v
;
26930 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26931 _("symbol too far away"));
26941 if (subtract
|| value
& ~0x3fc)
26942 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26943 _("invalid immediate for address calculation (value = 0x%08lX)"),
26944 (unsigned long) (subtract
? - value
: value
));
26945 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
26947 newval
|= value
>> 2;
26952 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26953 _("immediate value out of range"));
26954 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
26955 newval
|= (rd
<< 8) | value
;
26960 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26961 _("immediate value out of range"));
26962 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
26963 newval
|= rd
| (rs
<< 3) | (value
<< 6);
26966 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26969 case BFD_RELOC_ARM_THUMB_IMM
:
26970 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26971 if (value
< 0 || value
> 255)
26972 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26973 _("invalid immediate: %ld is out of range"),
26976 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26979 case BFD_RELOC_ARM_THUMB_SHIFT
:
26980 /* 5bit shift value (0..32). LSL cannot take 32. */
26981 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
26982 temp
= newval
& 0xf800;
26983 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
26984 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26985 _("invalid shift value: %ld"), (long) value
);
26986 /* Shifts of zero must be encoded as LSL. */
26988 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
26989 /* Shifts of 32 are encoded as zero. */
26990 else if (value
== 32)
26992 newval
|= value
<< 6;
26993 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26996 case BFD_RELOC_VTABLE_INHERIT
:
26997 case BFD_RELOC_VTABLE_ENTRY
:
27001 case BFD_RELOC_ARM_MOVW
:
27002 case BFD_RELOC_ARM_MOVT
:
27003 case BFD_RELOC_ARM_THUMB_MOVW
:
27004 case BFD_RELOC_ARM_THUMB_MOVT
:
27005 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27007 /* REL format relocations are limited to a 16-bit addend. */
27008 if (!fixP
->fx_done
)
27010 if (value
< -0x8000 || value
> 0x7fff)
27011 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27012 _("offset out of range"));
27014 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
27015 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
27020 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
27021 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
27023 newval
= get_thumb32_insn (buf
);
27024 newval
&= 0xfbf08f00;
27025 newval
|= (value
& 0xf000) << 4;
27026 newval
|= (value
& 0x0800) << 15;
27027 newval
|= (value
& 0x0700) << 4;
27028 newval
|= (value
& 0x00ff);
27029 put_thumb32_insn (buf
, newval
);
27033 newval
= md_chars_to_number (buf
, 4);
27034 newval
&= 0xfff0f000;
27035 newval
|= value
& 0x0fff;
27036 newval
|= (value
& 0xf000) << 4;
27037 md_number_to_chars (buf
, newval
, 4);
27042 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
27043 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
27044 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
27045 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
27046 gas_assert (!fixP
->fx_done
);
27049 bfd_boolean is_mov
;
27050 bfd_vma encoded_addend
= value
;
27052 /* Check that addend can be encoded in instruction. */
27053 if (!seg
->use_rela_p
&& (value
< 0 || value
> 255))
27054 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27055 _("the offset 0x%08lX is not representable"),
27056 (unsigned long) encoded_addend
);
27058 /* Extract the instruction. */
27059 insn
= md_chars_to_number (buf
, THUMB_SIZE
);
27060 is_mov
= (insn
& 0xf800) == 0x2000;
27065 if (!seg
->use_rela_p
)
27066 insn
|= encoded_addend
;
27072 /* Extract the instruction. */
27073 /* Encoding is the following
27078 /* The following conditions must be true :
27083 rd
= (insn
>> 4) & 0xf;
27085 if ((insn
& 0x8000) || (rd
!= rs
) || rd
> 7)
27086 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27087 _("Unable to process relocation for thumb opcode: %lx"),
27088 (unsigned long) insn
);
27090 /* Encode as ADD immediate8 thumb 1 code. */
27091 insn
= 0x3000 | (rd
<< 8);
27093 /* Place the encoded addend into the first 8 bits of the
27095 if (!seg
->use_rela_p
)
27096 insn
|= encoded_addend
;
27099 /* Update the instruction. */
27100 md_number_to_chars (buf
, insn
, THUMB_SIZE
);
27104 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
27105 case BFD_RELOC_ARM_ALU_PC_G0
:
27106 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
27107 case BFD_RELOC_ARM_ALU_PC_G1
:
27108 case BFD_RELOC_ARM_ALU_PC_G2
:
27109 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
27110 case BFD_RELOC_ARM_ALU_SB_G0
:
27111 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
27112 case BFD_RELOC_ARM_ALU_SB_G1
:
27113 case BFD_RELOC_ARM_ALU_SB_G2
:
27114 gas_assert (!fixP
->fx_done
);
27115 if (!seg
->use_rela_p
)
27118 bfd_vma encoded_addend
;
27119 bfd_vma addend_abs
= llabs (value
);
27121 /* Check that the absolute value of the addend can be
27122 expressed as an 8-bit constant plus a rotation. */
27123 encoded_addend
= encode_arm_immediate (addend_abs
);
27124 if (encoded_addend
== (unsigned int) FAIL
)
27125 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27126 _("the offset 0x%08lX is not representable"),
27127 (unsigned long) addend_abs
);
27129 /* Extract the instruction. */
27130 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27132 /* If the addend is positive, use an ADD instruction.
27133 Otherwise use a SUB. Take care not to destroy the S bit. */
27134 insn
&= 0xff1fffff;
27140 /* Place the encoded addend into the first 12 bits of the
27142 insn
&= 0xfffff000;
27143 insn
|= encoded_addend
;
27145 /* Update the instruction. */
27146 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27150 case BFD_RELOC_ARM_LDR_PC_G0
:
27151 case BFD_RELOC_ARM_LDR_PC_G1
:
27152 case BFD_RELOC_ARM_LDR_PC_G2
:
27153 case BFD_RELOC_ARM_LDR_SB_G0
:
27154 case BFD_RELOC_ARM_LDR_SB_G1
:
27155 case BFD_RELOC_ARM_LDR_SB_G2
:
27156 gas_assert (!fixP
->fx_done
);
27157 if (!seg
->use_rela_p
)
27160 bfd_vma addend_abs
= llabs (value
);
27162 /* Check that the absolute value of the addend can be
27163 encoded in 12 bits. */
27164 if (addend_abs
>= 0x1000)
27165 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27166 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27167 (unsigned long) addend_abs
);
27169 /* Extract the instruction. */
27170 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27172 /* If the addend is negative, clear bit 23 of the instruction.
27173 Otherwise set it. */
27175 insn
&= ~(1 << 23);
27179 /* Place the absolute value of the addend into the first 12 bits
27180 of the instruction. */
27181 insn
&= 0xfffff000;
27182 insn
|= addend_abs
;
27184 /* Update the instruction. */
27185 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27189 case BFD_RELOC_ARM_LDRS_PC_G0
:
27190 case BFD_RELOC_ARM_LDRS_PC_G1
:
27191 case BFD_RELOC_ARM_LDRS_PC_G2
:
27192 case BFD_RELOC_ARM_LDRS_SB_G0
:
27193 case BFD_RELOC_ARM_LDRS_SB_G1
:
27194 case BFD_RELOC_ARM_LDRS_SB_G2
:
27195 gas_assert (!fixP
->fx_done
);
27196 if (!seg
->use_rela_p
)
27199 bfd_vma addend_abs
= llabs (value
);
27201 /* Check that the absolute value of the addend can be
27202 encoded in 8 bits. */
27203 if (addend_abs
>= 0x100)
27204 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27205 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27206 (unsigned long) addend_abs
);
27208 /* Extract the instruction. */
27209 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27211 /* If the addend is negative, clear bit 23 of the instruction.
27212 Otherwise set it. */
27214 insn
&= ~(1 << 23);
27218 /* Place the first four bits of the absolute value of the addend
27219 into the first 4 bits of the instruction, and the remaining
27220 four into bits 8 .. 11. */
27221 insn
&= 0xfffff0f0;
27222 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
27224 /* Update the instruction. */
27225 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27229 case BFD_RELOC_ARM_LDC_PC_G0
:
27230 case BFD_RELOC_ARM_LDC_PC_G1
:
27231 case BFD_RELOC_ARM_LDC_PC_G2
:
27232 case BFD_RELOC_ARM_LDC_SB_G0
:
27233 case BFD_RELOC_ARM_LDC_SB_G1
:
27234 case BFD_RELOC_ARM_LDC_SB_G2
:
27235 gas_assert (!fixP
->fx_done
);
27236 if (!seg
->use_rela_p
)
27239 bfd_vma addend_abs
= llabs (value
);
27241 /* Check that the absolute value of the addend is a multiple of
27242 four and, when divided by four, fits in 8 bits. */
27243 if (addend_abs
& 0x3)
27244 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27245 _("bad offset 0x%08lX (must be word-aligned)"),
27246 (unsigned long) addend_abs
);
27248 if ((addend_abs
>> 2) > 0xff)
27249 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27250 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27251 (unsigned long) addend_abs
);
27253 /* Extract the instruction. */
27254 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27256 /* If the addend is negative, clear bit 23 of the instruction.
27257 Otherwise set it. */
27259 insn
&= ~(1 << 23);
27263 /* Place the addend (divided by four) into the first eight
27264 bits of the instruction. */
27265 insn
&= 0xfffffff0;
27266 insn
|= addend_abs
>> 2;
27268 /* Update the instruction. */
27269 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27273 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
27275 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27276 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27277 && ARM_IS_FUNC (fixP
->fx_addsy
)
27278 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27280 /* Force a relocation for a branch 5 bits wide. */
27283 if (v8_1_branch_value_check (value
, 5, FALSE
) == FAIL
)
27284 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27287 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27289 addressT boff
= value
>> 1;
27291 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27292 newval
|= (boff
<< 7);
27293 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27297 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
27299 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27300 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27301 && ARM_IS_FUNC (fixP
->fx_addsy
)
27302 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27306 if ((value
& ~0x7f) && ((value
& ~0x3f) != ~0x3f))
27307 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27308 _("branch out of range"));
27310 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27312 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27314 addressT boff
= ((newval
& 0x0780) >> 7) << 1;
27315 addressT diff
= value
- boff
;
27319 newval
|= 1 << 1; /* T bit. */
27321 else if (diff
!= 2)
27323 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27324 _("out of range label-relative fixup value"));
27326 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27330 case BFD_RELOC_ARM_THUMB_BF17
:
27332 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27333 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27334 && ARM_IS_FUNC (fixP
->fx_addsy
)
27335 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27337 /* Force a relocation for a branch 17 bits wide. */
27341 if (v8_1_branch_value_check (value
, 17, TRUE
) == FAIL
)
27342 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27345 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27348 addressT immA
, immB
, immC
;
27350 immA
= (value
& 0x0001f000) >> 12;
27351 immB
= (value
& 0x00000ffc) >> 2;
27352 immC
= (value
& 0x00000002) >> 1;
27354 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27355 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27357 newval2
|= (immC
<< 11) | (immB
<< 1);
27358 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27359 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27363 case BFD_RELOC_ARM_THUMB_BF19
:
27365 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27366 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27367 && ARM_IS_FUNC (fixP
->fx_addsy
)
27368 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27370 /* Force a relocation for a branch 19 bits wide. */
27374 if (v8_1_branch_value_check (value
, 19, TRUE
) == FAIL
)
27375 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27378 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27381 addressT immA
, immB
, immC
;
27383 immA
= (value
& 0x0007f000) >> 12;
27384 immB
= (value
& 0x00000ffc) >> 2;
27385 immC
= (value
& 0x00000002) >> 1;
27387 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27388 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27390 newval2
|= (immC
<< 11) | (immB
<< 1);
27391 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27392 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27396 case BFD_RELOC_ARM_THUMB_BF13
:
27398 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27399 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27400 && ARM_IS_FUNC (fixP
->fx_addsy
)
27401 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27403 /* Force a relocation for a branch 13 bits wide. */
27407 if (v8_1_branch_value_check (value
, 13, TRUE
) == FAIL
)
27408 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27411 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27414 addressT immA
, immB
, immC
;
27416 immA
= (value
& 0x00001000) >> 12;
27417 immB
= (value
& 0x00000ffc) >> 2;
27418 immC
= (value
& 0x00000002) >> 1;
27420 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27421 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27423 newval2
|= (immC
<< 11) | (immB
<< 1);
27424 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27425 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27429 case BFD_RELOC_ARM_THUMB_LOOP12
:
27431 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27432 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27433 && ARM_IS_FUNC (fixP
->fx_addsy
)
27434 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
27436 /* Force a relocation for a branch 12 bits wide. */
27440 bfd_vma insn
= get_thumb32_insn (buf
);
27441 /* le lr, <label> or le <label> */
27442 if (((insn
& 0xffffffff) == 0xf00fc001)
27443 || ((insn
& 0xffffffff) == 0xf02fc001))
27446 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
27447 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27449 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27451 addressT imml
, immh
;
27453 immh
= (value
& 0x00000ffc) >> 2;
27454 imml
= (value
& 0x00000002) >> 1;
27456 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27457 newval
|= (imml
<< 11) | (immh
<< 1);
27458 md_number_to_chars (buf
+ THUMB_SIZE
, newval
, THUMB_SIZE
);
27462 case BFD_RELOC_ARM_V4BX
:
27463 /* This will need to go in the object file. */
27467 case BFD_RELOC_UNUSED
:
27469 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27470 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
27474 /* Translate internal representation of relocation info to BFD target
27478 tc_gen_reloc (asection
*section
, fixS
*fixp
)
27481 bfd_reloc_code_real_type code
;
27483 reloc
= XNEW (arelent
);
27485 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
27486 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
27487 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
27489 if (fixp
->fx_pcrel
)
27491 if (section
->use_rela_p
)
27492 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
27494 fixp
->fx_offset
= reloc
->address
;
27496 reloc
->addend
= fixp
->fx_offset
;
27498 switch (fixp
->fx_r_type
)
27501 if (fixp
->fx_pcrel
)
27503 code
= BFD_RELOC_8_PCREL
;
27506 /* Fall through. */
27509 if (fixp
->fx_pcrel
)
27511 code
= BFD_RELOC_16_PCREL
;
27514 /* Fall through. */
27517 if (fixp
->fx_pcrel
)
27519 code
= BFD_RELOC_32_PCREL
;
27522 /* Fall through. */
27524 case BFD_RELOC_ARM_MOVW
:
27525 if (fixp
->fx_pcrel
)
27527 code
= BFD_RELOC_ARM_MOVW_PCREL
;
27530 /* Fall through. */
27532 case BFD_RELOC_ARM_MOVT
:
27533 if (fixp
->fx_pcrel
)
27535 code
= BFD_RELOC_ARM_MOVT_PCREL
;
27538 /* Fall through. */
27540 case BFD_RELOC_ARM_THUMB_MOVW
:
27541 if (fixp
->fx_pcrel
)
27543 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
27546 /* Fall through. */
27548 case BFD_RELOC_ARM_THUMB_MOVT
:
27549 if (fixp
->fx_pcrel
)
27551 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
27554 /* Fall through. */
27556 case BFD_RELOC_NONE
:
27557 case BFD_RELOC_ARM_PCREL_BRANCH
:
27558 case BFD_RELOC_ARM_PCREL_BLX
:
27559 case BFD_RELOC_RVA
:
27560 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
27561 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
27562 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
27563 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27564 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27565 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27566 case BFD_RELOC_VTABLE_ENTRY
:
27567 case BFD_RELOC_VTABLE_INHERIT
:
27569 case BFD_RELOC_32_SECREL
:
27571 code
= fixp
->fx_r_type
;
27574 case BFD_RELOC_THUMB_PCREL_BLX
:
27576 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
27577 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
27580 code
= BFD_RELOC_THUMB_PCREL_BLX
;
27583 case BFD_RELOC_ARM_LITERAL
:
27584 case BFD_RELOC_ARM_HWLITERAL
:
27585 /* If this is called then the a literal has
27586 been referenced across a section boundary. */
27587 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27588 _("literal referenced across section boundary"));
27592 case BFD_RELOC_ARM_TLS_CALL
:
27593 case BFD_RELOC_ARM_THM_TLS_CALL
:
27594 case BFD_RELOC_ARM_TLS_DESCSEQ
:
27595 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
27596 case BFD_RELOC_ARM_GOT32
:
27597 case BFD_RELOC_ARM_GOTOFF
:
27598 case BFD_RELOC_ARM_GOT_PREL
:
27599 case BFD_RELOC_ARM_PLT32
:
27600 case BFD_RELOC_ARM_TARGET1
:
27601 case BFD_RELOC_ARM_ROSEGREL32
:
27602 case BFD_RELOC_ARM_SBREL32
:
27603 case BFD_RELOC_ARM_PREL31
:
27604 case BFD_RELOC_ARM_TARGET2
:
27605 case BFD_RELOC_ARM_TLS_LDO32
:
27606 case BFD_RELOC_ARM_PCREL_CALL
:
27607 case BFD_RELOC_ARM_PCREL_JUMP
:
27608 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
27609 case BFD_RELOC_ARM_ALU_PC_G0
:
27610 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
27611 case BFD_RELOC_ARM_ALU_PC_G1
:
27612 case BFD_RELOC_ARM_ALU_PC_G2
:
27613 case BFD_RELOC_ARM_LDR_PC_G0
:
27614 case BFD_RELOC_ARM_LDR_PC_G1
:
27615 case BFD_RELOC_ARM_LDR_PC_G2
:
27616 case BFD_RELOC_ARM_LDRS_PC_G0
:
27617 case BFD_RELOC_ARM_LDRS_PC_G1
:
27618 case BFD_RELOC_ARM_LDRS_PC_G2
:
27619 case BFD_RELOC_ARM_LDC_PC_G0
:
27620 case BFD_RELOC_ARM_LDC_PC_G1
:
27621 case BFD_RELOC_ARM_LDC_PC_G2
:
27622 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
27623 case BFD_RELOC_ARM_ALU_SB_G0
:
27624 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
27625 case BFD_RELOC_ARM_ALU_SB_G1
:
27626 case BFD_RELOC_ARM_ALU_SB_G2
:
27627 case BFD_RELOC_ARM_LDR_SB_G0
:
27628 case BFD_RELOC_ARM_LDR_SB_G1
:
27629 case BFD_RELOC_ARM_LDR_SB_G2
:
27630 case BFD_RELOC_ARM_LDRS_SB_G0
:
27631 case BFD_RELOC_ARM_LDRS_SB_G1
:
27632 case BFD_RELOC_ARM_LDRS_SB_G2
:
27633 case BFD_RELOC_ARM_LDC_SB_G0
:
27634 case BFD_RELOC_ARM_LDC_SB_G1
:
27635 case BFD_RELOC_ARM_LDC_SB_G2
:
27636 case BFD_RELOC_ARM_V4BX
:
27637 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
27638 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
27639 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
27640 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
27641 case BFD_RELOC_ARM_GOTFUNCDESC
:
27642 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
27643 case BFD_RELOC_ARM_FUNCDESC
:
27644 case BFD_RELOC_ARM_THUMB_BF17
:
27645 case BFD_RELOC_ARM_THUMB_BF19
:
27646 case BFD_RELOC_ARM_THUMB_BF13
:
27647 code
= fixp
->fx_r_type
;
27650 case BFD_RELOC_ARM_TLS_GOTDESC
:
27651 case BFD_RELOC_ARM_TLS_GD32
:
27652 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
27653 case BFD_RELOC_ARM_TLS_LE32
:
27654 case BFD_RELOC_ARM_TLS_IE32
:
27655 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
27656 case BFD_RELOC_ARM_TLS_LDM32
:
27657 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
27658 /* BFD will include the symbol's address in the addend.
27659 But we don't want that, so subtract it out again here. */
27660 if (!S_IS_COMMON (fixp
->fx_addsy
))
27661 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
27662 code
= fixp
->fx_r_type
;
27666 case BFD_RELOC_ARM_IMMEDIATE
:
27667 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27668 _("internal relocation (type: IMMEDIATE) not fixed up"));
27671 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
27672 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27673 _("ADRL used for a symbol not defined in the same file"));
27676 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
27677 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
27678 case BFD_RELOC_ARM_THUMB_LOOP12
:
27679 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27680 _("%s used for a symbol not defined in the same file"),
27681 bfd_get_reloc_code_name (fixp
->fx_r_type
));
27684 case BFD_RELOC_ARM_OFFSET_IMM
:
27685 if (section
->use_rela_p
)
27687 code
= fixp
->fx_r_type
;
27691 if (fixp
->fx_addsy
!= NULL
27692 && !S_IS_DEFINED (fixp
->fx_addsy
)
27693 && S_IS_LOCAL (fixp
->fx_addsy
))
27695 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27696 _("undefined local label `%s'"),
27697 S_GET_NAME (fixp
->fx_addsy
));
27701 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27702 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27709 switch (fixp
->fx_r_type
)
27711 case BFD_RELOC_NONE
: type
= "NONE"; break;
27712 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
27713 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
27714 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
27715 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
27716 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
27717 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
27718 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
27719 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
27720 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
27721 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
27722 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
27723 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
27724 default: type
= _("<unknown>"); break;
27726 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27727 _("cannot represent %s relocation in this object file format"),
27734 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
27736 && fixp
->fx_addsy
== GOT_symbol
)
27738 code
= BFD_RELOC_ARM_GOTPC
;
27739 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
27743 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
27745 if (reloc
->howto
== NULL
)
27747 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
27748 _("cannot represent %s relocation in this object file format"),
27749 bfd_get_reloc_code_name (code
));
27753 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27754 vtable entry to be used in the relocation's section offset. */
27755 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
27756 reloc
->address
= fixp
->fx_offset
;
27761 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
27764 cons_fix_new_arm (fragS
* frag
,
27768 bfd_reloc_code_real_type reloc
)
27773 FIXME: @@ Should look at CPU word size. */
27777 reloc
= BFD_RELOC_8
;
27780 reloc
= BFD_RELOC_16
;
27784 reloc
= BFD_RELOC_32
;
27787 reloc
= BFD_RELOC_64
;
27792 if (exp
->X_op
== O_secrel
)
27794 exp
->X_op
= O_symbol
;
27795 reloc
= BFD_RELOC_32_SECREL
;
27799 fix_new_exp (frag
, where
, size
, exp
, pcrel
, reloc
);
27802 #if defined (OBJ_COFF)
27804 arm_validate_fix (fixS
* fixP
)
27806 /* If the destination of the branch is a defined symbol which does not have
27807 the THUMB_FUNC attribute, then we must be calling a function which has
27808 the (interfacearm) attribute. We look for the Thumb entry point to that
27809 function and change the branch to refer to that function instead. */
27810 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
27811 && fixP
->fx_addsy
!= NULL
27812 && S_IS_DEFINED (fixP
->fx_addsy
)
27813 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
27815 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
27822 arm_force_relocation (struct fix
* fixp
)
27824 #if defined (OBJ_COFF) && defined (TE_PE)
27825 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
27829 /* In case we have a call or a branch to a function in ARM ISA mode from
27830 a thumb function or vice-versa force the relocation. These relocations
27831 are cleared off for some cores that might have blx and simple transformations
27835 switch (fixp
->fx_r_type
)
27837 case BFD_RELOC_ARM_PCREL_JUMP
:
27838 case BFD_RELOC_ARM_PCREL_CALL
:
27839 case BFD_RELOC_THUMB_PCREL_BLX
:
27840 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
27844 case BFD_RELOC_ARM_PCREL_BLX
:
27845 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27846 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27847 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27848 if (ARM_IS_FUNC (fixp
->fx_addsy
))
27857 /* Resolve these relocations even if the symbol is extern or weak.
27858 Technically this is probably wrong due to symbol preemption.
27859 In practice these relocations do not have enough range to be useful
27860 at dynamic link time, and some code (e.g. in the Linux kernel)
27861 expects these references to be resolved. */
27862 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
27863 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
27864 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
27865 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
27866 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
27867 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
27868 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
27869 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
27870 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
27871 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
27872 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
27873 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
27874 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
27875 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
27878 /* Always leave these relocations for the linker. */
27879 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
27880 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
27881 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
27884 /* Always generate relocations against function symbols. */
27885 if (fixp
->fx_r_type
== BFD_RELOC_32
27887 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
27890 return generic_force_reloc (fixp
);
27893 #if defined (OBJ_ELF) || defined (OBJ_COFF)
27894 /* Relocations against function names must be left unadjusted,
27895 so that the linker can use this information to generate interworking
27896 stubs. The MIPS version of this function
27897 also prevents relocations that are mips-16 specific, but I do not
27898 know why it does this.
27901 There is one other problem that ought to be addressed here, but
27902 which currently is not: Taking the address of a label (rather
27903 than a function) and then later jumping to that address. Such
27904 addresses also ought to have their bottom bit set (assuming that
27905 they reside in Thumb code), but at the moment they will not. */
27908 arm_fix_adjustable (fixS
* fixP
)
27910 if (fixP
->fx_addsy
== NULL
)
27913 /* Preserve relocations against symbols with function type. */
27914 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
27917 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
27918 && fixP
->fx_subsy
== NULL
)
27921 /* We need the symbol name for the VTABLE entries. */
27922 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
27923 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
27926 /* Don't allow symbols to be discarded on GOT related relocs. */
27927 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
27928 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
27929 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
27930 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
27931 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32_FDPIC
27932 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
27933 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
27934 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32_FDPIC
27935 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
27936 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32_FDPIC
27937 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
27938 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
27939 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
27940 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
27941 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
27942 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
27943 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
27946 /* Similarly for group relocations. */
27947 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
27948 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
27949 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
27952 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
27953 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
27954 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
27955 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
27956 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
27957 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
27958 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
27959 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
27960 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
27963 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
27964 offsets, so keep these symbols. */
27965 if (fixP
->fx_r_type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
27966 && fixP
->fx_r_type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
27971 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
27975 elf32_arm_target_format (void)
27978 return (target_big_endian
27979 ? "elf32-bigarm-symbian"
27980 : "elf32-littlearm-symbian");
27981 #elif defined (TE_VXWORKS)
27982 return (target_big_endian
27983 ? "elf32-bigarm-vxworks"
27984 : "elf32-littlearm-vxworks");
27985 #elif defined (TE_NACL)
27986 return (target_big_endian
27987 ? "elf32-bigarm-nacl"
27988 : "elf32-littlearm-nacl");
27992 if (target_big_endian
)
27993 return "elf32-bigarm-fdpic";
27995 return "elf32-littlearm-fdpic";
27999 if (target_big_endian
)
28000 return "elf32-bigarm";
28002 return "elf32-littlearm";
28008 armelf_frob_symbol (symbolS
* symp
,
28011 elf_frob_symbol (symp
, puntp
);
28015 /* MD interface: Finalization. */
28020 literal_pool
* pool
;
28022 /* Ensure that all the predication blocks are properly closed. */
28023 check_pred_blocks_finished ();
28025 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
28027 /* Put it at the end of the relevant section. */
28028 subseg_set (pool
->section
, pool
->sub_section
);
28030 arm_elf_change_section ();
28037 /* Remove any excess mapping symbols generated for alignment frags in
28038 SEC. We may have created a mapping symbol before a zero byte
28039 alignment; remove it if there's a mapping symbol after the
28042 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
28043 void *dummy ATTRIBUTE_UNUSED
)
28045 segment_info_type
*seginfo
= seg_info (sec
);
28048 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
28051 for (fragp
= seginfo
->frchainP
->frch_root
;
28053 fragp
= fragp
->fr_next
)
28055 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
28056 fragS
*next
= fragp
->fr_next
;
28058 /* Variable-sized frags have been converted to fixed size by
28059 this point. But if this was variable-sized to start with,
28060 there will be a fixed-size frag after it. So don't handle
28062 if (sym
== NULL
|| next
== NULL
)
28065 if (S_GET_VALUE (sym
) < next
->fr_address
)
28066 /* Not at the end of this frag. */
28068 know (S_GET_VALUE (sym
) == next
->fr_address
);
28072 if (next
->tc_frag_data
.first_map
!= NULL
)
28074 /* Next frag starts with a mapping symbol. Discard this
28076 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
28080 if (next
->fr_next
== NULL
)
28082 /* This mapping symbol is at the end of the section. Discard
28084 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
28085 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
28089 /* As long as we have empty frags without any mapping symbols,
28091 /* If the next frag is non-empty and does not start with a
28092 mapping symbol, then this mapping symbol is required. */
28093 if (next
->fr_address
!= next
->fr_next
->fr_address
)
28096 next
= next
->fr_next
;
28098 while (next
!= NULL
);
28103 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28107 arm_adjust_symtab (void)
28112 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28114 if (ARM_IS_THUMB (sym
))
28116 if (THUMB_IS_FUNC (sym
))
28118 /* Mark the symbol as a Thumb function. */
28119 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
28120 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
28121 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
28123 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
28124 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
28126 as_bad (_("%s: unexpected function type: %d"),
28127 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
28129 else switch (S_GET_STORAGE_CLASS (sym
))
28132 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
28135 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
28138 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
28146 if (ARM_IS_INTERWORK (sym
))
28147 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
28154 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28156 if (ARM_IS_THUMB (sym
))
28158 elf_symbol_type
* elf_sym
;
28160 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
28161 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
28163 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
28164 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
28166 /* If it's a .thumb_func, declare it as so,
28167 otherwise tag label as .code 16. */
28168 if (THUMB_IS_FUNC (sym
))
28169 ARM_SET_SYM_BRANCH_TYPE (elf_sym
->internal_elf_sym
.st_target_internal
,
28170 ST_BRANCH_TO_THUMB
);
28171 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
28172 elf_sym
->internal_elf_sym
.st_info
=
28173 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
28178 /* Remove any overlapping mapping symbols generated by alignment frags. */
28179 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
28180 /* Now do generic ELF adjustments. */
28181 elf_adjust_symtab ();
28185 /* MD interface: Initialization. */
28188 set_constant_flonums (void)
28192 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
28193 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
28197 /* Auto-select Thumb mode if it's the only available instruction set for the
28198 given architecture. */
28201 autoselect_thumb_from_cpu_variant (void)
28203 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
28204 opcode_select (16);
28213 if ( (arm_ops_hsh
= hash_new ()) == NULL
28214 || (arm_cond_hsh
= hash_new ()) == NULL
28215 || (arm_vcond_hsh
= hash_new ()) == NULL
28216 || (arm_shift_hsh
= hash_new ()) == NULL
28217 || (arm_psr_hsh
= hash_new ()) == NULL
28218 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
28219 || (arm_reg_hsh
= hash_new ()) == NULL
28220 || (arm_reloc_hsh
= hash_new ()) == NULL
28221 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
28222 as_fatal (_("virtual memory exhausted"));
28224 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
28225 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
28226 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
28227 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
28228 for (i
= 0; i
< sizeof (vconds
) / sizeof (struct asm_cond
); i
++)
28229 hash_insert (arm_vcond_hsh
, vconds
[i
].template_name
, (void *) (vconds
+ i
));
28230 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
28231 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
28232 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
28233 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
28234 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
28235 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
28236 (void *) (v7m_psrs
+ i
));
28237 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
28238 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
28240 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
28242 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
28243 (void *) (barrier_opt_names
+ i
));
28245 for (i
= 0; i
< ARRAY_SIZE (reloc_names
); i
++)
28247 struct reloc_entry
* entry
= reloc_names
+ i
;
28249 if (arm_is_eabi() && entry
->reloc
== BFD_RELOC_ARM_PLT32
)
28250 /* This makes encode_branch() use the EABI versions of this relocation. */
28251 entry
->reloc
= BFD_RELOC_UNUSED
;
28253 hash_insert (arm_reloc_hsh
, entry
->name
, (void *) entry
);
28257 set_constant_flonums ();
28259 /* Set the cpu variant based on the command-line options. We prefer
28260 -mcpu= over -march= if both are set (as for GCC); and we prefer
28261 -mfpu= over any other way of setting the floating point unit.
28262 Use of legacy options with new options are faulted. */
28265 if (mcpu_cpu_opt
|| march_cpu_opt
)
28266 as_bad (_("use of old and new-style options to set CPU type"));
28268 selected_arch
= *legacy_cpu
;
28270 else if (mcpu_cpu_opt
)
28272 selected_arch
= *mcpu_cpu_opt
;
28273 selected_ext
= *mcpu_ext_opt
;
28275 else if (march_cpu_opt
)
28277 selected_arch
= *march_cpu_opt
;
28278 selected_ext
= *march_ext_opt
;
28280 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
28285 as_bad (_("use of old and new-style options to set FPU type"));
28287 selected_fpu
= *legacy_fpu
;
28290 selected_fpu
= *mfpu_opt
;
28293 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28294 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28295 /* Some environments specify a default FPU. If they don't, infer it
28296 from the processor. */
28298 selected_fpu
= *mcpu_fpu_opt
;
28299 else if (march_fpu_opt
)
28300 selected_fpu
= *march_fpu_opt
;
28302 selected_fpu
= fpu_default
;
28306 if (ARM_FEATURE_ZERO (selected_fpu
))
28308 if (!no_cpu_selected ())
28309 selected_fpu
= fpu_default
;
28311 selected_fpu
= fpu_arch_fpa
;
28315 if (ARM_FEATURE_ZERO (selected_arch
))
28317 selected_arch
= cpu_default
;
28318 selected_cpu
= selected_arch
;
28320 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
28322 /* Autodection of feature mode: allow all features in cpu_variant but leave
28323 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28324 after all instruction have been processed and we can decide what CPU
28325 should be selected. */
28326 if (ARM_FEATURE_ZERO (selected_arch
))
28327 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
28329 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
28332 autoselect_thumb_from_cpu_variant ();
28334 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
28336 #if defined OBJ_COFF || defined OBJ_ELF
28338 unsigned int flags
= 0;
28340 #if defined OBJ_ELF
28341 flags
= meabi_flags
;
28343 switch (meabi_flags
)
28345 case EF_ARM_EABI_UNKNOWN
:
28347 /* Set the flags in the private structure. */
28348 if (uses_apcs_26
) flags
|= F_APCS26
;
28349 if (support_interwork
) flags
|= F_INTERWORK
;
28350 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
28351 if (pic_code
) flags
|= F_PIC
;
28352 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
28353 flags
|= F_SOFT_FLOAT
;
28355 switch (mfloat_abi_opt
)
28357 case ARM_FLOAT_ABI_SOFT
:
28358 case ARM_FLOAT_ABI_SOFTFP
:
28359 flags
|= F_SOFT_FLOAT
;
28362 case ARM_FLOAT_ABI_HARD
:
28363 if (flags
& F_SOFT_FLOAT
)
28364 as_bad (_("hard-float conflicts with specified fpu"));
28368 /* Using pure-endian doubles (even if soft-float). */
28369 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
28370 flags
|= F_VFP_FLOAT
;
28372 #if defined OBJ_ELF
28373 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
28374 flags
|= EF_ARM_MAVERICK_FLOAT
;
28377 case EF_ARM_EABI_VER4
:
28378 case EF_ARM_EABI_VER5
:
28379 /* No additional flags to set. */
28386 bfd_set_private_flags (stdoutput
, flags
);
28388 /* We have run out flags in the COFF header to encode the
28389 status of ATPCS support, so instead we create a dummy,
28390 empty, debug section called .arm.atpcs. */
28395 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
28399 bfd_set_section_flags
28400 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
28401 bfd_set_section_size (stdoutput
, sec
, 0);
28402 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
28408 /* Record the CPU type as well. */
28409 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
28410 mach
= bfd_mach_arm_iWMMXt2
;
28411 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
28412 mach
= bfd_mach_arm_iWMMXt
;
28413 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
28414 mach
= bfd_mach_arm_XScale
;
28415 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
28416 mach
= bfd_mach_arm_ep9312
;
28417 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
28418 mach
= bfd_mach_arm_5TE
;
28419 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
28421 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
28422 mach
= bfd_mach_arm_5T
;
28424 mach
= bfd_mach_arm_5
;
28426 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
28428 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
28429 mach
= bfd_mach_arm_4T
;
28431 mach
= bfd_mach_arm_4
;
28433 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
28434 mach
= bfd_mach_arm_3M
;
28435 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
28436 mach
= bfd_mach_arm_3
;
28437 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
28438 mach
= bfd_mach_arm_2a
;
28439 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
28440 mach
= bfd_mach_arm_2
;
28442 mach
= bfd_mach_arm_unknown
;
28444 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
28447 /* Command line processing. */
28450 Invocation line includes a switch not recognized by the base assembler.
28451 See if it's a processor-specific option.
28453 This routine is somewhat complicated by the need for backwards
28454 compatibility (since older releases of gcc can't be changed).
28455 The new options try to make the interface as compatible as
28458 New options (supported) are:
28460 -mcpu=<cpu name> Assemble for selected processor
28461 -march=<architecture name> Assemble for selected architecture
28462 -mfpu=<fpu architecture> Assemble for selected FPU.
28463 -EB/-mbig-endian Big-endian
28464 -EL/-mlittle-endian Little-endian
28465 -k Generate PIC code
28466 -mthumb Start in Thumb mode
28467 -mthumb-interwork Code supports ARM/Thumb interworking
28469 -m[no-]warn-deprecated Warn about deprecated features
28470 -m[no-]warn-syms Warn when symbols match instructions
28472 For now we will also provide support for:
28474 -mapcs-32 32-bit Program counter
28475 -mapcs-26 26-bit Program counter
28476 -macps-float Floats passed in FP registers
28477 -mapcs-reentrant Reentrant code
28479 (sometime these will probably be replaced with -mapcs=<list of options>
28480 and -matpcs=<list of options>)
28482 The remaining options are only supported for back-wards compatibility.
28483 Cpu variants, the arm part is optional:
28484 -m[arm]1 Currently not supported.
28485 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28486 -m[arm]3 Arm 3 processor
28487 -m[arm]6[xx], Arm 6 processors
28488 -m[arm]7[xx][t][[d]m] Arm 7 processors
28489 -m[arm]8[10] Arm 8 processors
28490 -m[arm]9[20][tdmi] Arm 9 processors
28491 -mstrongarm[110[0]] StrongARM processors
28492 -mxscale XScale processors
28493 -m[arm]v[2345[t[e]]] Arm architectures
28494 -mall All (except the ARM1)
28496 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28497 -mfpe-old (No float load/store multiples)
28498 -mvfpxd VFP Single precision
28500 -mno-fpu Disable all floating point instructions
28502 The following CPU names are recognized:
28503 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28504 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28505 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28506 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28507 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28508 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28509 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28513 const char * md_shortopts
= "m:k";
28515 #ifdef ARM_BI_ENDIAN
28516 #define OPTION_EB (OPTION_MD_BASE + 0)
28517 #define OPTION_EL (OPTION_MD_BASE + 1)
28519 #if TARGET_BYTES_BIG_ENDIAN
28520 #define OPTION_EB (OPTION_MD_BASE + 0)
28522 #define OPTION_EL (OPTION_MD_BASE + 1)
28525 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28526 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28528 struct option md_longopts
[] =
28531 {"EB", no_argument
, NULL
, OPTION_EB
},
28534 {"EL", no_argument
, NULL
, OPTION_EL
},
28536 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
28538 {"fdpic", no_argument
, NULL
, OPTION_FDPIC
},
28540 {NULL
, no_argument
, NULL
, 0}
28543 size_t md_longopts_size
= sizeof (md_longopts
);
28545 struct arm_option_table
28547 const char * option
; /* Option name to match. */
28548 const char * help
; /* Help information. */
28549 int * var
; /* Variable to change. */
28550 int value
; /* What to change it to. */
28551 const char * deprecated
; /* If non-null, print this message. */
28554 struct arm_option_table arm_opts
[] =
28556 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
28557 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
28558 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28559 &support_interwork
, 1, NULL
},
28560 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
28561 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
28562 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
28564 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
28565 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
28566 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
28567 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
28570 /* These are recognized by the assembler, but have no affect on code. */
28571 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
28572 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
28574 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
28575 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28576 &warn_on_deprecated
, 0, NULL
},
28577 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms
), TRUE
, NULL
},
28578 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms
), FALSE
, NULL
},
28579 {NULL
, NULL
, NULL
, 0, NULL
}
28582 struct arm_legacy_option_table
28584 const char * option
; /* Option name to match. */
28585 const arm_feature_set
** var
; /* Variable to change. */
28586 const arm_feature_set value
; /* What to change it to. */
28587 const char * deprecated
; /* If non-null, print this message. */
28590 const struct arm_legacy_option_table arm_legacy_opts
[] =
28592 /* DON'T add any new processors to this list -- we want the whole list
28593 to go away... Add them to the processors table instead. */
28594 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
28595 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
28596 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
28597 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
28598 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
28599 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
28600 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
28601 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
28602 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
28603 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
28604 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
28605 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
28606 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
28607 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
28608 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
28609 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
28610 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
28611 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
28612 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
28613 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
28614 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
28615 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
28616 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
28617 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
28618 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
28619 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
28620 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
28621 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
28622 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
28623 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
28624 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
28625 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
28626 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
28627 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
28628 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
28629 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
28630 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
28631 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
28632 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
28633 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
28634 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
28635 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
28636 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
28637 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
28638 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
28639 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
28640 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28641 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28642 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28643 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
28644 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
28645 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
28646 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
28647 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
28648 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
28649 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
28650 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
28651 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
28652 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
28653 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
28654 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
28655 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
28656 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
28657 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
28658 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
28659 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
28660 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
28661 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
28662 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
28663 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
28664 N_("use -mcpu=strongarm110")},
28665 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
28666 N_("use -mcpu=strongarm1100")},
28667 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
28668 N_("use -mcpu=strongarm1110")},
28669 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
28670 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
28671 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
28673 /* Architecture variants -- don't add any more to this list either. */
28674 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
28675 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
28676 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
28677 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
28678 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
28679 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
28680 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
28681 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
28682 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
28683 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
28684 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
28685 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
28686 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
28687 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
28688 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
28689 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
28690 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
28691 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
28693 /* Floating point variants -- don't add any more to this list either. */
28694 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
28695 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
28696 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
28697 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
28698 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
28700 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
28703 struct arm_cpu_option_table
28707 const arm_feature_set value
;
28708 const arm_feature_set ext
;
28709 /* For some CPUs we assume an FPU unless the user explicitly sets
28711 const arm_feature_set default_fpu
;
28712 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28714 const char * canonical_name
;
28717 /* This list should, at a minimum, contain all the cpu names
28718 recognized by GCC. */
28719 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
28721 static const struct arm_cpu_option_table arm_cpus
[] =
28723 ARM_CPU_OPT ("all", NULL
, ARM_ANY
,
28726 ARM_CPU_OPT ("arm1", NULL
, ARM_ARCH_V1
,
28729 ARM_CPU_OPT ("arm2", NULL
, ARM_ARCH_V2
,
28732 ARM_CPU_OPT ("arm250", NULL
, ARM_ARCH_V2S
,
28735 ARM_CPU_OPT ("arm3", NULL
, ARM_ARCH_V2S
,
28738 ARM_CPU_OPT ("arm6", NULL
, ARM_ARCH_V3
,
28741 ARM_CPU_OPT ("arm60", NULL
, ARM_ARCH_V3
,
28744 ARM_CPU_OPT ("arm600", NULL
, ARM_ARCH_V3
,
28747 ARM_CPU_OPT ("arm610", NULL
, ARM_ARCH_V3
,
28750 ARM_CPU_OPT ("arm620", NULL
, ARM_ARCH_V3
,
28753 ARM_CPU_OPT ("arm7", NULL
, ARM_ARCH_V3
,
28756 ARM_CPU_OPT ("arm7m", NULL
, ARM_ARCH_V3M
,
28759 ARM_CPU_OPT ("arm7d", NULL
, ARM_ARCH_V3
,
28762 ARM_CPU_OPT ("arm7dm", NULL
, ARM_ARCH_V3M
,
28765 ARM_CPU_OPT ("arm7di", NULL
, ARM_ARCH_V3
,
28768 ARM_CPU_OPT ("arm7dmi", NULL
, ARM_ARCH_V3M
,
28771 ARM_CPU_OPT ("arm70", NULL
, ARM_ARCH_V3
,
28774 ARM_CPU_OPT ("arm700", NULL
, ARM_ARCH_V3
,
28777 ARM_CPU_OPT ("arm700i", NULL
, ARM_ARCH_V3
,
28780 ARM_CPU_OPT ("arm710", NULL
, ARM_ARCH_V3
,
28783 ARM_CPU_OPT ("arm710t", NULL
, ARM_ARCH_V4T
,
28786 ARM_CPU_OPT ("arm720", NULL
, ARM_ARCH_V3
,
28789 ARM_CPU_OPT ("arm720t", NULL
, ARM_ARCH_V4T
,
28792 ARM_CPU_OPT ("arm740t", NULL
, ARM_ARCH_V4T
,
28795 ARM_CPU_OPT ("arm710c", NULL
, ARM_ARCH_V3
,
28798 ARM_CPU_OPT ("arm7100", NULL
, ARM_ARCH_V3
,
28801 ARM_CPU_OPT ("arm7500", NULL
, ARM_ARCH_V3
,
28804 ARM_CPU_OPT ("arm7500fe", NULL
, ARM_ARCH_V3
,
28807 ARM_CPU_OPT ("arm7t", NULL
, ARM_ARCH_V4T
,
28810 ARM_CPU_OPT ("arm7tdmi", NULL
, ARM_ARCH_V4T
,
28813 ARM_CPU_OPT ("arm7tdmi-s", NULL
, ARM_ARCH_V4T
,
28816 ARM_CPU_OPT ("arm8", NULL
, ARM_ARCH_V4
,
28819 ARM_CPU_OPT ("arm810", NULL
, ARM_ARCH_V4
,
28822 ARM_CPU_OPT ("strongarm", NULL
, ARM_ARCH_V4
,
28825 ARM_CPU_OPT ("strongarm1", NULL
, ARM_ARCH_V4
,
28828 ARM_CPU_OPT ("strongarm110", NULL
, ARM_ARCH_V4
,
28831 ARM_CPU_OPT ("strongarm1100", NULL
, ARM_ARCH_V4
,
28834 ARM_CPU_OPT ("strongarm1110", NULL
, ARM_ARCH_V4
,
28837 ARM_CPU_OPT ("arm9", NULL
, ARM_ARCH_V4T
,
28840 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T
,
28843 ARM_CPU_OPT ("arm920t", NULL
, ARM_ARCH_V4T
,
28846 ARM_CPU_OPT ("arm922t", NULL
, ARM_ARCH_V4T
,
28849 ARM_CPU_OPT ("arm940t", NULL
, ARM_ARCH_V4T
,
28852 ARM_CPU_OPT ("arm9tdmi", NULL
, ARM_ARCH_V4T
,
28855 ARM_CPU_OPT ("fa526", NULL
, ARM_ARCH_V4
,
28858 ARM_CPU_OPT ("fa626", NULL
, ARM_ARCH_V4
,
28862 /* For V5 or later processors we default to using VFP; but the user
28863 should really set the FPU type explicitly. */
28864 ARM_CPU_OPT ("arm9e-r0", NULL
, ARM_ARCH_V5TExP
,
28867 ARM_CPU_OPT ("arm9e", NULL
, ARM_ARCH_V5TE
,
28870 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
28873 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
28876 ARM_CPU_OPT ("arm926ej-s", NULL
, ARM_ARCH_V5TEJ
,
28879 ARM_CPU_OPT ("arm946e-r0", NULL
, ARM_ARCH_V5TExP
,
28882 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE
,
28885 ARM_CPU_OPT ("arm946e-s", NULL
, ARM_ARCH_V5TE
,
28888 ARM_CPU_OPT ("arm966e-r0", NULL
, ARM_ARCH_V5TExP
,
28891 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE
,
28894 ARM_CPU_OPT ("arm966e-s", NULL
, ARM_ARCH_V5TE
,
28897 ARM_CPU_OPT ("arm968e-s", NULL
, ARM_ARCH_V5TE
,
28900 ARM_CPU_OPT ("arm10t", NULL
, ARM_ARCH_V5T
,
28903 ARM_CPU_OPT ("arm10tdmi", NULL
, ARM_ARCH_V5T
,
28906 ARM_CPU_OPT ("arm10e", NULL
, ARM_ARCH_V5TE
,
28909 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE
,
28912 ARM_CPU_OPT ("arm1020t", NULL
, ARM_ARCH_V5T
,
28915 ARM_CPU_OPT ("arm1020e", NULL
, ARM_ARCH_V5TE
,
28918 ARM_CPU_OPT ("arm1022e", NULL
, ARM_ARCH_V5TE
,
28921 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ
,
28924 ARM_CPU_OPT ("arm1026ej-s", NULL
, ARM_ARCH_V5TEJ
,
28927 ARM_CPU_OPT ("fa606te", NULL
, ARM_ARCH_V5TE
,
28930 ARM_CPU_OPT ("fa616te", NULL
, ARM_ARCH_V5TE
,
28933 ARM_CPU_OPT ("fa626te", NULL
, ARM_ARCH_V5TE
,
28936 ARM_CPU_OPT ("fmp626", NULL
, ARM_ARCH_V5TE
,
28939 ARM_CPU_OPT ("fa726te", NULL
, ARM_ARCH_V5TE
,
28942 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6
,
28945 ARM_CPU_OPT ("arm1136j-s", NULL
, ARM_ARCH_V6
,
28948 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6
,
28951 ARM_CPU_OPT ("arm1136jf-s", NULL
, ARM_ARCH_V6
,
28954 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K
,
28957 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K
,
28960 ARM_CPU_OPT ("arm1156t2-s", NULL
, ARM_ARCH_V6T2
,
28963 ARM_CPU_OPT ("arm1156t2f-s", NULL
, ARM_ARCH_V6T2
,
28966 ARM_CPU_OPT ("arm1176jz-s", NULL
, ARM_ARCH_V6KZ
,
28969 ARM_CPU_OPT ("arm1176jzf-s", NULL
, ARM_ARCH_V6KZ
,
28972 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A
,
28973 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
28975 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE
,
28977 FPU_ARCH_NEON_VFP_V4
),
28978 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A
,
28979 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
28980 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
28981 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A
,
28982 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
28983 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
28984 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE
,
28986 FPU_ARCH_NEON_VFP_V4
),
28987 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE
,
28989 FPU_ARCH_NEON_VFP_V4
),
28990 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE
,
28992 FPU_ARCH_NEON_VFP_V4
),
28993 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A
,
28994 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28995 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28996 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A
,
28997 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
28998 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
28999 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A
,
29000 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29001 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29002 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A
,
29003 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29004 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29005 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A
,
29006 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29007 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29008 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A
,
29009 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29010 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29011 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A
,
29012 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29013 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29014 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A
,
29015 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29016 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29017 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A
,
29018 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29019 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29020 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A
,
29021 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29022 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29023 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R
,
29026 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R
,
29028 FPU_ARCH_VFP_V3D16
),
29029 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R
,
29030 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29032 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R
,
29033 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29034 FPU_ARCH_VFP_V3D16
),
29035 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R
,
29036 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29037 FPU_ARCH_VFP_V3D16
),
29038 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R
,
29039 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29040 FPU_ARCH_NEON_VFP_ARMV8
),
29041 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN
,
29042 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29044 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE
,
29047 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM
,
29050 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM
,
29053 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M
,
29056 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM
,
29059 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM
,
29062 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM
,
29065 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A
,
29066 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29067 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29068 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A
,
29069 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29070 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29071 /* ??? XSCALE is really an architecture. */
29072 ARM_CPU_OPT ("xscale", NULL
, ARM_ARCH_XSCALE
,
29076 /* ??? iwmmxt is not a processor. */
29077 ARM_CPU_OPT ("iwmmxt", NULL
, ARM_ARCH_IWMMXT
,
29080 ARM_CPU_OPT ("iwmmxt2", NULL
, ARM_ARCH_IWMMXT2
,
29083 ARM_CPU_OPT ("i80200", NULL
, ARM_ARCH_XSCALE
,
29088 ARM_CPU_OPT ("ep9312", "ARM920T",
29089 ARM_FEATURE_LOW (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
),
29090 ARM_ARCH_NONE
, FPU_ARCH_MAVERICK
),
29092 /* Marvell processors. */
29093 ARM_CPU_OPT ("marvell-pj4", NULL
, ARM_ARCH_V7A
,
29094 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29095 FPU_ARCH_VFP_V3D16
),
29096 ARM_CPU_OPT ("marvell-whitney", NULL
, ARM_ARCH_V7A
,
29097 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29098 FPU_ARCH_NEON_VFP_V4
),
29100 /* APM X-Gene family. */
29101 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A
,
29103 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29104 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A
,
29105 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29106 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29108 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
29112 struct arm_ext_table
29116 const arm_feature_set merge
;
29117 const arm_feature_set clear
;
29120 struct arm_arch_option_table
29124 const arm_feature_set value
;
29125 const arm_feature_set default_fpu
;
29126 const struct arm_ext_table
* ext_table
;
29129 /* Used to add support for +E and +noE extension. */
29130 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29131 /* Used to add support for a +E extension. */
29132 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29133 /* Used to add support for a +noE extension. */
29134 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29136 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29137 ~0 & ~FPU_ENDIAN_PURE)
29139 static const struct arm_ext_table armv5te_ext_table
[] =
29141 ARM_EXT ("fp", FPU_ARCH_VFP_V2
, ALL_FP
),
29142 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29145 static const struct arm_ext_table armv7_ext_table
[] =
29147 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29148 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29151 static const struct arm_ext_table armv7ve_ext_table
[] =
29153 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16
, ALL_FP
),
29154 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
),
29155 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29156 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29157 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29158 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
), /* Alias for +fp. */
29159 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29161 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4
,
29162 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29164 /* Aliases for +simd. */
29165 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29167 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29168 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29169 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29171 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29174 static const struct arm_ext_table armv7a_ext_table
[] =
29176 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29177 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
29178 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29179 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29180 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29181 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
),
29182 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29184 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1
,
29185 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29187 /* Aliases for +simd. */
29188 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29189 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29191 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29192 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29194 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
)),
29195 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
)),
29196 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29199 static const struct arm_ext_table armv7r_ext_table
[] =
29201 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD
),
29202 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD
), /* Alias for +fp.sp. */
29203 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29204 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
29205 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
),
29206 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29207 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29208 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
)),
29209 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29212 static const struct arm_ext_table armv7em_ext_table
[] =
29214 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16
, ALL_FP
),
29215 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29216 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
),
29217 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16
),
29218 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
29219 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16
),
29220 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29223 static const struct arm_ext_table armv8a_ext_table
[] =
29225 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
29226 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
29227 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
29228 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29230 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29231 should use the +simd option to turn on FP. */
29232 ARM_REMOVE ("fp", ALL_FP
),
29233 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29234 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29235 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29239 static const struct arm_ext_table armv81a_ext_table
[] =
29241 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
29242 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
29243 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29245 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29246 should use the +simd option to turn on FP. */
29247 ARM_REMOVE ("fp", ALL_FP
),
29248 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29249 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29250 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29253 static const struct arm_ext_table armv82a_ext_table
[] =
29255 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
29256 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16
),
29257 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML
),
29258 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
29259 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29260 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
29262 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29263 should use the +simd option to turn on FP. */
29264 ARM_REMOVE ("fp", ALL_FP
),
29265 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29266 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29267 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29270 static const struct arm_ext_table armv84a_ext_table
[] =
29272 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
29273 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
29274 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
29275 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29277 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29278 should use the +simd option to turn on FP. */
29279 ARM_REMOVE ("fp", ALL_FP
),
29280 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
29281 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
29282 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29285 static const struct arm_ext_table armv85a_ext_table
[] =
29287 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
29288 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
29289 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
29290 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29292 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29293 should use the +simd option to turn on FP. */
29294 ARM_REMOVE ("fp", ALL_FP
),
29295 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29298 static const struct arm_ext_table armv8m_main_ext_table
[] =
29300 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29301 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
29302 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16
, ALL_FP
),
29303 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
29304 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29307 static const struct arm_ext_table armv8_1m_main_ext_table
[] =
29309 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29310 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
29312 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
29313 FPU_VFP_V5_SP_D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
),
29316 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
29317 FPU_VFP_V5D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
29318 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE
),
29319 ARM_FEATURE_COPROC (FPU_MVE
| FPU_MVE_FP
)),
29321 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
29322 FPU_MVE
| FPU_MVE_FP
| FPU_VFP_V5_SP_D16
|
29323 FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
29324 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29327 static const struct arm_ext_table armv8r_ext_table
[] =
29329 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
29330 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
29331 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
29332 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
29333 ARM_REMOVE ("fp", ALL_FP
),
29334 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16
),
29335 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29338 /* This list should, at a minimum, contain all the architecture names
29339 recognized by GCC. */
29340 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29341 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29342 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29344 static const struct arm_arch_option_table arm_archs
[] =
29346 ARM_ARCH_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
),
29347 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
),
29348 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
),
29349 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
29350 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
29351 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
),
29352 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
),
29353 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
),
29354 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
),
29355 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
),
29356 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
),
29357 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
),
29358 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
),
29359 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
),
29360 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
, armv5te
),
29361 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
, armv5te
),
29362 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
, armv5te
),
29363 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
29364 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
29365 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
, armv5te
),
29366 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
, armv5te
),
29367 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29368 kept to preserve existing behaviour. */
29369 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
29370 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
29371 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
, armv5te
),
29372 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
, armv5te
),
29373 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
, armv5te
),
29374 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29375 kept to preserve existing behaviour. */
29376 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
29377 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
29378 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
),
29379 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
),
29380 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
, armv7
),
29381 /* The official spelling of the ARMv7 profile variants is the dashed form.
29382 Accept the non-dashed form for compatibility with old toolchains. */
29383 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
29384 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE
, FPU_ARCH_VFP
, armv7ve
),
29385 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
29386 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
29387 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
29388 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
29389 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
29390 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
, armv7em
),
29391 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE
, FPU_ARCH_VFP
),
29392 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN
, FPU_ARCH_VFP
,
29394 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN
, FPU_ARCH_VFP
,
29396 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A
, FPU_ARCH_VFP
, armv8a
),
29397 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A
, FPU_ARCH_VFP
, armv81a
),
29398 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A
, FPU_ARCH_VFP
, armv82a
),
29399 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A
, FPU_ARCH_VFP
, armv82a
),
29400 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R
, FPU_ARCH_VFP
, armv8r
),
29401 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A
, FPU_ARCH_VFP
, armv84a
),
29402 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A
, FPU_ARCH_VFP
, armv85a
),
29403 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
),
29404 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
),
29405 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
, FPU_ARCH_VFP
),
29406 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
29408 #undef ARM_ARCH_OPT
29410 /* ISA extensions in the co-processor and main instruction set space. */
29412 struct arm_option_extension_value_table
29416 const arm_feature_set merge_value
;
29417 const arm_feature_set clear_value
;
29418 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29419 indicates that an extension is available for all architectures while
29420 ARM_ANY marks an empty entry. */
29421 const arm_feature_set allowed_archs
[2];
29424 /* The following table must be in alphabetical order with a NULL last entry. */
29426 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29427 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29429 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29430 use the context sensitive approach using arm_ext_table's. */
29431 static const struct arm_option_extension_value_table arm_extensions
[] =
29433 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8
, ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29434 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29435 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
29436 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
),
29437 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29438 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
,
29439 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
),
29441 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29442 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29443 ARM_FEATURE_CORE (ARM_EXT_V7M
, ARM_EXT2_V8M
)),
29444 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8
, ARM_FEATURE_COPROC (FPU_VFP_ARMV8
),
29445 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29446 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29447 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29449 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29450 | ARM_EXT2_FP16_FML
),
29451 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29452 | ARM_EXT2_FP16_FML
),
29454 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29455 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29456 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
29457 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
29458 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29459 Thumb divide instruction. Due to this having the same name as the
29460 previous entry, this will be ignored when doing command-line parsing and
29461 only considered by build attribute selection code. */
29462 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
29463 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
29464 ARM_FEATURE_CORE_LOW (ARM_EXT_V7
)),
29465 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
),
29466 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
), ARM_ARCH_NONE
),
29467 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
),
29468 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
), ARM_ARCH_NONE
),
29469 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
),
29470 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
), ARM_ARCH_NONE
),
29471 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
29472 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
29473 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
29474 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
29475 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
29476 ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
29477 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M
)),
29478 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
),
29479 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_PAN
, 0),
29480 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
29481 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
29482 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
29484 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
),
29485 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_RAS
, 0),
29486 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
29487 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1
,
29488 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
| FPU_NEON_EXT_RDMA
),
29489 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
29490 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
29491 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
29493 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
29494 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
29495 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
),
29496 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
29497 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8
,
29498 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
),
29499 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
29500 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
| ARM_EXT_ADIV
29502 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
),
29503 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
29504 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
),
29505 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
), ARM_ARCH_NONE
),
29506 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, { ARM_ARCH_NONE
, ARM_ARCH_NONE
} }
29510 /* ISA floating-point and Advanced SIMD extensions. */
29511 struct arm_option_fpu_value_table
29514 const arm_feature_set value
;
29517 /* This list should, at a minimum, contain all the fpu names
29518 recognized by GCC. */
29519 static const struct arm_option_fpu_value_table arm_fpus
[] =
29521 {"softfpa", FPU_NONE
},
29522 {"fpe", FPU_ARCH_FPE
},
29523 {"fpe2", FPU_ARCH_FPE
},
29524 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
29525 {"fpa", FPU_ARCH_FPA
},
29526 {"fpa10", FPU_ARCH_FPA
},
29527 {"fpa11", FPU_ARCH_FPA
},
29528 {"arm7500fe", FPU_ARCH_FPA
},
29529 {"softvfp", FPU_ARCH_VFP
},
29530 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
29531 {"vfp", FPU_ARCH_VFP_V2
},
29532 {"vfp9", FPU_ARCH_VFP_V2
},
29533 {"vfp3", FPU_ARCH_VFP_V3
}, /* Undocumented, use vfpv3. */
29534 {"vfp10", FPU_ARCH_VFP_V2
},
29535 {"vfp10-r0", FPU_ARCH_VFP_V1
},
29536 {"vfpxd", FPU_ARCH_VFP_V1xD
},
29537 {"vfpv2", FPU_ARCH_VFP_V2
},
29538 {"vfpv3", FPU_ARCH_VFP_V3
},
29539 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
29540 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
29541 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
29542 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
29543 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
29544 {"arm1020t", FPU_ARCH_VFP_V1
},
29545 {"arm1020e", FPU_ARCH_VFP_V2
},
29546 {"arm1136jfs", FPU_ARCH_VFP_V2
}, /* Undocumented, use arm1136jf-s. */
29547 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
29548 {"maverick", FPU_ARCH_MAVERICK
},
29549 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
29550 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
29551 {"neon-fp16", FPU_ARCH_NEON_FP16
},
29552 {"vfpv4", FPU_ARCH_VFP_V4
},
29553 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
29554 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
29555 {"fpv5-d16", FPU_ARCH_VFP_V5D16
},
29556 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16
},
29557 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
29558 {"fp-armv8", FPU_ARCH_VFP_ARMV8
},
29559 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8
},
29560 {"crypto-neon-fp-armv8",
29561 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
},
29562 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1
},
29563 {"crypto-neon-fp-armv8.1",
29564 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
},
29565 {NULL
, ARM_ARCH_NONE
}
29568 struct arm_option_value_table
29574 static const struct arm_option_value_table arm_float_abis
[] =
29576 {"hard", ARM_FLOAT_ABI_HARD
},
29577 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
29578 {"soft", ARM_FLOAT_ABI_SOFT
},
29583 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29584 static const struct arm_option_value_table arm_eabis
[] =
29586 {"gnu", EF_ARM_EABI_UNKNOWN
},
29587 {"4", EF_ARM_EABI_VER4
},
29588 {"5", EF_ARM_EABI_VER5
},
29593 struct arm_long_option_table
29595 const char * option
; /* Substring to match. */
29596 const char * help
; /* Help information. */
29597 int (* func
) (const char * subopt
); /* Function to decode sub-option. */
29598 const char * deprecated
; /* If non-null, print this message. */
29602 arm_parse_extension (const char *str
, const arm_feature_set
*opt_set
,
29603 arm_feature_set
*ext_set
,
29604 const struct arm_ext_table
*ext_table
)
29606 /* We insist on extensions being specified in alphabetical order, and with
29607 extensions being added before being removed. We achieve this by having
29608 the global ARM_EXTENSIONS table in alphabetical order, and using the
29609 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29610 or removing it (0) and only allowing it to change in the order
29612 const struct arm_option_extension_value_table
* opt
= NULL
;
29613 const arm_feature_set arm_any
= ARM_ANY
;
29614 int adding_value
= -1;
29616 while (str
!= NULL
&& *str
!= 0)
29623 as_bad (_("invalid architectural extension"));
29628 ext
= strchr (str
, '+');
29633 len
= strlen (str
);
29635 if (len
>= 2 && strncmp (str
, "no", 2) == 0)
29637 if (adding_value
!= 0)
29640 opt
= arm_extensions
;
29648 if (adding_value
== -1)
29651 opt
= arm_extensions
;
29653 else if (adding_value
!= 1)
29655 as_bad (_("must specify extensions to add before specifying "
29656 "those to remove"));
29663 as_bad (_("missing architectural extension"));
29667 gas_assert (adding_value
!= -1);
29668 gas_assert (opt
!= NULL
);
29670 if (ext_table
!= NULL
)
29672 const struct arm_ext_table
* ext_opt
= ext_table
;
29673 bfd_boolean found
= FALSE
;
29674 for (; ext_opt
->name
!= NULL
; ext_opt
++)
29675 if (ext_opt
->name_len
== len
29676 && strncmp (ext_opt
->name
, str
, len
) == 0)
29680 if (ARM_FEATURE_ZERO (ext_opt
->merge
))
29681 /* TODO: Option not supported. When we remove the
29682 legacy table this case should error out. */
29685 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, ext_opt
->merge
);
29689 if (ARM_FEATURE_ZERO (ext_opt
->clear
))
29690 /* TODO: Option not supported. When we remove the
29691 legacy table this case should error out. */
29693 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, ext_opt
->clear
);
29705 /* Scan over the options table trying to find an exact match. */
29706 for (; opt
->name
!= NULL
; opt
++)
29707 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29709 int i
, nb_allowed_archs
=
29710 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
29711 /* Check we can apply the extension to this architecture. */
29712 for (i
= 0; i
< nb_allowed_archs
; i
++)
29715 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_any
))
29717 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *opt_set
))
29720 if (i
== nb_allowed_archs
)
29722 as_bad (_("extension does not apply to the base architecture"));
29726 /* Add or remove the extension. */
29728 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->merge_value
);
29730 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->clear_value
);
29732 /* Allowing Thumb division instructions for ARMv7 in autodetection
29733 rely on this break so that duplicate extensions (extensions
29734 with the same name as a previous extension in the list) are not
29735 considered for command-line parsing. */
29739 if (opt
->name
== NULL
)
29741 /* Did we fail to find an extension because it wasn't specified in
29742 alphabetical order, or because it does not exist? */
29744 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
29745 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29748 if (opt
->name
== NULL
)
29749 as_bad (_("unknown architectural extension `%s'"), str
);
29751 as_bad (_("architectural extensions must be specified in "
29752 "alphabetical order"));
29758 /* We should skip the extension we've just matched the next time
29770 arm_parse_cpu (const char *str
)
29772 const struct arm_cpu_option_table
*opt
;
29773 const char *ext
= strchr (str
, '+');
29779 len
= strlen (str
);
29783 as_bad (_("missing cpu name `%s'"), str
);
29787 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
29788 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29790 mcpu_cpu_opt
= &opt
->value
;
29791 if (mcpu_ext_opt
== NULL
)
29792 mcpu_ext_opt
= XNEW (arm_feature_set
);
29793 *mcpu_ext_opt
= opt
->ext
;
29794 mcpu_fpu_opt
= &opt
->default_fpu
;
29795 if (opt
->canonical_name
)
29797 gas_assert (sizeof selected_cpu_name
> strlen (opt
->canonical_name
));
29798 strcpy (selected_cpu_name
, opt
->canonical_name
);
29804 if (len
>= sizeof selected_cpu_name
)
29805 len
= (sizeof selected_cpu_name
) - 1;
29807 for (i
= 0; i
< len
; i
++)
29808 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
29809 selected_cpu_name
[i
] = 0;
29813 return arm_parse_extension (ext
, mcpu_cpu_opt
, mcpu_ext_opt
, NULL
);
29818 as_bad (_("unknown cpu `%s'"), str
);
29823 arm_parse_arch (const char *str
)
29825 const struct arm_arch_option_table
*opt
;
29826 const char *ext
= strchr (str
, '+');
29832 len
= strlen (str
);
29836 as_bad (_("missing architecture name `%s'"), str
);
29840 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
29841 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
29843 march_cpu_opt
= &opt
->value
;
29844 if (march_ext_opt
== NULL
)
29845 march_ext_opt
= XNEW (arm_feature_set
);
29846 *march_ext_opt
= arm_arch_none
;
29847 march_fpu_opt
= &opt
->default_fpu
;
29848 strcpy (selected_cpu_name
, opt
->name
);
29851 return arm_parse_extension (ext
, march_cpu_opt
, march_ext_opt
,
29857 as_bad (_("unknown architecture `%s'\n"), str
);
29862 arm_parse_fpu (const char * str
)
29864 const struct arm_option_fpu_value_table
* opt
;
29866 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
29867 if (streq (opt
->name
, str
))
29869 mfpu_opt
= &opt
->value
;
29873 as_bad (_("unknown floating point format `%s'\n"), str
);
29878 arm_parse_float_abi (const char * str
)
29880 const struct arm_option_value_table
* opt
;
29882 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
29883 if (streq (opt
->name
, str
))
29885 mfloat_abi_opt
= opt
->value
;
29889 as_bad (_("unknown floating point abi `%s'\n"), str
);
29895 arm_parse_eabi (const char * str
)
29897 const struct arm_option_value_table
*opt
;
29899 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
29900 if (streq (opt
->name
, str
))
29902 meabi_flags
= opt
->value
;
29905 as_bad (_("unknown EABI `%s'\n"), str
);
29911 arm_parse_it_mode (const char * str
)
29913 bfd_boolean ret
= TRUE
;
29915 if (streq ("arm", str
))
29916 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
29917 else if (streq ("thumb", str
))
29918 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
29919 else if (streq ("always", str
))
29920 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
29921 else if (streq ("never", str
))
29922 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
29925 as_bad (_("unknown implicit IT mode `%s', should be "\
29926 "arm, thumb, always, or never."), str
);
29934 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED
)
29936 codecomposer_syntax
= TRUE
;
29937 arm_comment_chars
[0] = ';';
29938 arm_line_separator_chars
[0] = 0;
29942 struct arm_long_option_table arm_long_opts
[] =
29944 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
29945 arm_parse_cpu
, NULL
},
29946 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
29947 arm_parse_arch
, NULL
},
29948 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
29949 arm_parse_fpu
, NULL
},
29950 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
29951 arm_parse_float_abi
, NULL
},
29953 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
29954 arm_parse_eabi
, NULL
},
29956 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
29957 arm_parse_it_mode
, NULL
},
29958 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
29959 arm_ccs_mode
, NULL
},
29960 {NULL
, NULL
, 0, NULL
}
29964 md_parse_option (int c
, const char * arg
)
29966 struct arm_option_table
*opt
;
29967 const struct arm_legacy_option_table
*fopt
;
29968 struct arm_long_option_table
*lopt
;
29974 target_big_endian
= 1;
29980 target_big_endian
= 0;
29984 case OPTION_FIX_V4BX
:
29992 #endif /* OBJ_ELF */
29995 /* Listing option. Just ignore these, we don't support additional
30000 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
30002 if (c
== opt
->option
[0]
30003 && ((arg
== NULL
&& opt
->option
[1] == 0)
30004 || streq (arg
, opt
->option
+ 1)))
30006 /* If the option is deprecated, tell the user. */
30007 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
30008 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
30009 arg
? arg
: "", _(opt
->deprecated
));
30011 if (opt
->var
!= NULL
)
30012 *opt
->var
= opt
->value
;
30018 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
30020 if (c
== fopt
->option
[0]
30021 && ((arg
== NULL
&& fopt
->option
[1] == 0)
30022 || streq (arg
, fopt
->option
+ 1)))
30024 /* If the option is deprecated, tell the user. */
30025 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
30026 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
30027 arg
? arg
: "", _(fopt
->deprecated
));
30029 if (fopt
->var
!= NULL
)
30030 *fopt
->var
= &fopt
->value
;
30036 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
30038 /* These options are expected to have an argument. */
30039 if (c
== lopt
->option
[0]
30041 && strncmp (arg
, lopt
->option
+ 1,
30042 strlen (lopt
->option
+ 1)) == 0)
30044 /* If the option is deprecated, tell the user. */
30045 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
30046 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
30047 _(lopt
->deprecated
));
30049 /* Call the sup-option parser. */
30050 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
30061 md_show_usage (FILE * fp
)
30063 struct arm_option_table
*opt
;
30064 struct arm_long_option_table
*lopt
;
30066 fprintf (fp
, _(" ARM-specific assembler options:\n"));
30068 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
30069 if (opt
->help
!= NULL
)
30070 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
30072 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
30073 if (lopt
->help
!= NULL
)
30074 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
30078 -EB assemble code for a big-endian cpu\n"));
30083 -EL assemble code for a little-endian cpu\n"));
30087 --fix-v4bx Allow BX in ARMv4 code\n"));
30091 --fdpic generate an FDPIC object file\n"));
30092 #endif /* OBJ_ELF */
30100 arm_feature_set flags
;
30101 } cpu_arch_ver_table
;
30103 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30104 chronologically for architectures, with an exception for ARMv6-M and
30105 ARMv6S-M due to legacy reasons. No new architecture should have a
30106 special case. This allows for build attribute selection results to be
30107 stable when new architectures are added. */
30108 static const cpu_arch_ver_table cpu_arch_ver
[] =
30110 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V1
},
30111 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2
},
30112 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2S
},
30113 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3
},
30114 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3M
},
30115 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4xM
},
30116 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4
},
30117 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4TxM
},
30118 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4T
},
30119 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5xM
},
30120 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5
},
30121 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5TxM
},
30122 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5T
},
30123 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TExP
},
30124 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TE
},
30125 {TAG_CPU_ARCH_V5TEJ
, ARM_ARCH_V5TEJ
},
30126 {TAG_CPU_ARCH_V6
, ARM_ARCH_V6
},
30127 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6Z
},
30128 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6KZ
},
30129 {TAG_CPU_ARCH_V6K
, ARM_ARCH_V6K
},
30130 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6T2
},
30131 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KT2
},
30132 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6ZT2
},
30133 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KZT2
},
30135 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30136 always selected build attributes to match those of ARMv6-M
30137 (resp. ARMv6S-M). However, due to these architectures being a strict
30138 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30139 would be selected when fully respecting chronology of architectures.
30140 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30141 move them before ARMv7 architectures. */
30142 {TAG_CPU_ARCH_V6_M
, ARM_ARCH_V6M
},
30143 {TAG_CPU_ARCH_V6S_M
, ARM_ARCH_V6SM
},
30145 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7
},
30146 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7A
},
30147 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7R
},
30148 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7M
},
30149 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7VE
},
30150 {TAG_CPU_ARCH_V7E_M
, ARM_ARCH_V7EM
},
30151 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8A
},
30152 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_1A
},
30153 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_2A
},
30154 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_3A
},
30155 {TAG_CPU_ARCH_V8M_BASE
, ARM_ARCH_V8M_BASE
},
30156 {TAG_CPU_ARCH_V8M_MAIN
, ARM_ARCH_V8M_MAIN
},
30157 {TAG_CPU_ARCH_V8R
, ARM_ARCH_V8R
},
30158 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_4A
},
30159 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_5A
},
30160 {TAG_CPU_ARCH_V8_1M_MAIN
, ARM_ARCH_V8_1M_MAIN
},
30161 {-1, ARM_ARCH_NONE
}
30164 /* Set an attribute if it has not already been set by the user. */
30167 aeabi_set_attribute_int (int tag
, int value
)
30170 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30171 || !attributes_set_explicitly
[tag
])
30172 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
30176 aeabi_set_attribute_string (int tag
, const char *value
)
30179 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30180 || !attributes_set_explicitly
[tag
])
30181 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
30184 /* Return whether features in the *NEEDED feature set are available via
30185 extensions for the architecture whose feature set is *ARCH_FSET. */
30188 have_ext_for_needed_feat_p (const arm_feature_set
*arch_fset
,
30189 const arm_feature_set
*needed
)
30191 int i
, nb_allowed_archs
;
30192 arm_feature_set ext_fset
;
30193 const struct arm_option_extension_value_table
*opt
;
30195 ext_fset
= arm_arch_none
;
30196 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30198 /* Extension does not provide any feature we need. */
30199 if (!ARM_CPU_HAS_FEATURE (*needed
, opt
->merge_value
))
30203 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
30204 for (i
= 0; i
< nb_allowed_archs
; i
++)
30207 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_arch_any
))
30210 /* Extension is available, add it. */
30211 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *arch_fset
))
30212 ARM_MERGE_FEATURE_SETS (ext_fset
, ext_fset
, opt
->merge_value
);
30216 /* Can we enable all features in *needed? */
30217 return ARM_FSET_CPU_SUBSET (*needed
, ext_fset
);
30220 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30221 a given architecture feature set *ARCH_EXT_FSET including extension feature
30222 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30223 - if true, check for an exact match of the architecture modulo extensions;
30224 - otherwise, select build attribute value of the first superset
30225 architecture released so that results remains stable when new architectures
30227 For -march/-mcpu=all the build attribute value of the most featureful
30228 architecture is returned. Tag_CPU_arch_profile result is returned in
30232 get_aeabi_cpu_arch_from_fset (const arm_feature_set
*arch_ext_fset
,
30233 const arm_feature_set
*ext_fset
,
30234 char *profile
, int exact_match
)
30236 arm_feature_set arch_fset
;
30237 const cpu_arch_ver_table
*p_ver
, *p_ver_ret
= NULL
;
30239 /* Select most featureful architecture with all its extensions if building
30240 for -march=all as the feature sets used to set build attributes. */
30241 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, arm_arch_any
))
30243 /* Force revisiting of decision for each new architecture. */
30244 gas_assert (MAX_TAG_CPU_ARCH
<= TAG_CPU_ARCH_V8_1M_MAIN
);
30246 return TAG_CPU_ARCH_V8
;
30249 ARM_CLEAR_FEATURE (arch_fset
, *arch_ext_fset
, *ext_fset
);
30251 for (p_ver
= cpu_arch_ver
; p_ver
->val
!= -1; p_ver
++)
30253 arm_feature_set known_arch_fset
;
30255 ARM_CLEAR_FEATURE (known_arch_fset
, p_ver
->flags
, fpu_any
);
30258 /* Base architecture match user-specified architecture and
30259 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30260 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, known_arch_fset
))
30265 /* Base architecture match user-specified architecture only
30266 (eg. ARMv6-M in the same case as above). Record it in case we
30267 find a match with above condition. */
30268 else if (p_ver_ret
== NULL
30269 && ARM_FEATURE_EQUAL (arch_fset
, known_arch_fset
))
30275 /* Architecture has all features wanted. */
30276 if (ARM_FSET_CPU_SUBSET (arch_fset
, known_arch_fset
))
30278 arm_feature_set added_fset
;
30280 /* Compute features added by this architecture over the one
30281 recorded in p_ver_ret. */
30282 if (p_ver_ret
!= NULL
)
30283 ARM_CLEAR_FEATURE (added_fset
, known_arch_fset
,
30285 /* First architecture that match incl. with extensions, or the
30286 only difference in features over the recorded match is
30287 features that were optional and are now mandatory. */
30288 if (p_ver_ret
== NULL
30289 || ARM_FSET_CPU_SUBSET (added_fset
, arch_fset
))
30295 else if (p_ver_ret
== NULL
)
30297 arm_feature_set needed_ext_fset
;
30299 ARM_CLEAR_FEATURE (needed_ext_fset
, arch_fset
, known_arch_fset
);
30301 /* Architecture has all features needed when using some
30302 extensions. Record it and continue searching in case there
30303 exist an architecture providing all needed features without
30304 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30306 if (have_ext_for_needed_feat_p (&known_arch_fset
,
30313 if (p_ver_ret
== NULL
)
30317 /* Tag_CPU_arch_profile. */
30318 if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7a
)
30319 || ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8
)
30320 || (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_atomics
)
30321 && !ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8m_m_only
)))
30323 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7r
))
30325 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_m
))
30329 return p_ver_ret
->val
;
30332 /* Set the public EABI object attributes. */
30335 aeabi_set_public_attributes (void)
30337 char profile
= '\0';
30340 int fp16_optional
= 0;
30341 int skip_exact_match
= 0;
30342 arm_feature_set flags
, flags_arch
, flags_ext
;
30344 /* Autodetection mode, choose the architecture based the instructions
30346 if (no_cpu_selected ())
30348 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
30350 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
))
30351 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v1
);
30353 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_any
))
30354 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v4t
);
30356 /* Code run during relaxation relies on selected_cpu being set. */
30357 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
30358 flags_ext
= arm_arch_none
;
30359 ARM_CLEAR_FEATURE (selected_arch
, flags_arch
, flags_ext
);
30360 selected_ext
= flags_ext
;
30361 selected_cpu
= flags
;
30363 /* Otherwise, choose the architecture based on the capabilities of the
30367 ARM_MERGE_FEATURE_SETS (flags_arch
, selected_arch
, selected_ext
);
30368 ARM_CLEAR_FEATURE (flags_arch
, flags_arch
, fpu_any
);
30369 flags_ext
= selected_ext
;
30370 flags
= selected_cpu
;
30372 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_fpu
);
30374 /* Allow the user to override the reported architecture. */
30375 if (!ARM_FEATURE_ZERO (selected_object_arch
))
30377 ARM_CLEAR_FEATURE (flags_arch
, selected_object_arch
, fpu_any
);
30378 flags_ext
= arm_arch_none
;
30381 skip_exact_match
= ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_any
);
30383 /* When this function is run again after relaxation has happened there is no
30384 way to determine whether an architecture or CPU was specified by the user:
30385 - selected_cpu is set above for relaxation to work;
30386 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30387 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30388 Therefore, if not in -march=all case we first try an exact match and fall
30389 back to autodetection. */
30390 if (!skip_exact_match
)
30391 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 1);
30393 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 0);
30395 as_bad (_("no architecture contains all the instructions used\n"));
30397 /* Tag_CPU_name. */
30398 if (selected_cpu_name
[0])
30402 q
= selected_cpu_name
;
30403 if (strncmp (q
, "armv", 4) == 0)
30408 for (i
= 0; q
[i
]; i
++)
30409 q
[i
] = TOUPPER (q
[i
]);
30411 aeabi_set_attribute_string (Tag_CPU_name
, q
);
30414 /* Tag_CPU_arch. */
30415 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
30417 /* Tag_CPU_arch_profile. */
30418 if (profile
!= '\0')
30419 aeabi_set_attribute_int (Tag_CPU_arch_profile
, profile
);
30421 /* Tag_DSP_extension. */
30422 if (ARM_CPU_HAS_FEATURE (selected_ext
, arm_ext_dsp
))
30423 aeabi_set_attribute_int (Tag_DSP_extension
, 1);
30425 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
30426 /* Tag_ARM_ISA_use. */
30427 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
30428 || ARM_FEATURE_ZERO (flags_arch
))
30429 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
30431 /* Tag_THUMB_ISA_use. */
30432 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
30433 || ARM_FEATURE_ZERO (flags_arch
))
30437 if (!ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
30438 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m_m_only
))
30440 else if (ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
))
30444 aeabi_set_attribute_int (Tag_THUMB_ISA_use
, thumb_isa_use
);
30447 /* Tag_VFP_arch. */
30448 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_armv8xd
))
30449 aeabi_set_attribute_int (Tag_VFP_arch
,
30450 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
30452 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
30453 aeabi_set_attribute_int (Tag_VFP_arch
,
30454 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
30456 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
30459 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
30461 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
30463 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
30466 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
30467 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
30468 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
30469 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
30470 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
30472 /* Tag_ABI_HardFP_use. */
30473 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
30474 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
30475 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
30477 /* Tag_WMMX_arch. */
30478 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
30479 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
30480 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
30481 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
30483 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30484 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v8_1
))
30485 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 4);
30486 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_armv8
))
30487 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 3);
30488 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
30490 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
))
30492 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 2);
30496 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 1);
30501 if (ARM_CPU_HAS_FEATURE (flags
, mve_fp_ext
))
30502 aeabi_set_attribute_int (Tag_MVE_arch
, 2);
30503 else if (ARM_CPU_HAS_FEATURE (flags
, mve_ext
))
30504 aeabi_set_attribute_int (Tag_MVE_arch
, 1);
30506 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30507 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
) && fp16_optional
)
30508 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
30512 We set Tag_DIV_use to two when integer divide instructions have been used
30513 in ARM state, or when Thumb integer divide instructions have been used,
30514 but we have no architecture profile set, nor have we any ARM instructions.
30516 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30517 by the base architecture.
30519 For new architectures we will have to check these tests. */
30520 gas_assert (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
30521 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
30522 || ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m
))
30523 aeabi_set_attribute_int (Tag_DIV_use
, 0);
30524 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
)
30525 || (profile
== '\0'
30526 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
)
30527 && !ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
)))
30528 aeabi_set_attribute_int (Tag_DIV_use
, 2);
30530 /* Tag_MP_extension_use. */
30531 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
30532 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
30534 /* Tag Virtualization_use. */
30535 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
30537 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
30540 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
30543 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30544 finished and free extension feature bits which will not be used anymore. */
30547 arm_md_post_relax (void)
30549 aeabi_set_public_attributes ();
30550 XDELETE (mcpu_ext_opt
);
30551 mcpu_ext_opt
= NULL
;
30552 XDELETE (march_ext_opt
);
30553 march_ext_opt
= NULL
;
30556 /* Add the default contents for the .ARM.attributes section. */
30561 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
30564 aeabi_set_public_attributes ();
30566 #endif /* OBJ_ELF */
30568 /* Parse a .cpu directive. */
30571 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
30573 const struct arm_cpu_option_table
*opt
;
30577 name
= input_line_pointer
;
30578 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30579 input_line_pointer
++;
30580 saved_char
= *input_line_pointer
;
30581 *input_line_pointer
= 0;
30583 /* Skip the first "all" entry. */
30584 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
30585 if (streq (opt
->name
, name
))
30587 selected_arch
= opt
->value
;
30588 selected_ext
= opt
->ext
;
30589 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
30590 if (opt
->canonical_name
)
30591 strcpy (selected_cpu_name
, opt
->canonical_name
);
30595 for (i
= 0; opt
->name
[i
]; i
++)
30596 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
30598 selected_cpu_name
[i
] = 0;
30600 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30602 *input_line_pointer
= saved_char
;
30603 demand_empty_rest_of_line ();
30606 as_bad (_("unknown cpu `%s'"), name
);
30607 *input_line_pointer
= saved_char
;
30608 ignore_rest_of_line ();
30611 /* Parse a .arch directive. */
30614 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
30616 const struct arm_arch_option_table
*opt
;
30620 name
= input_line_pointer
;
30621 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30622 input_line_pointer
++;
30623 saved_char
= *input_line_pointer
;
30624 *input_line_pointer
= 0;
30626 /* Skip the first "all" entry. */
30627 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
30628 if (streq (opt
->name
, name
))
30630 selected_arch
= opt
->value
;
30631 selected_ext
= arm_arch_none
;
30632 selected_cpu
= selected_arch
;
30633 strcpy (selected_cpu_name
, opt
->name
);
30634 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30635 *input_line_pointer
= saved_char
;
30636 demand_empty_rest_of_line ();
30640 as_bad (_("unknown architecture `%s'\n"), name
);
30641 *input_line_pointer
= saved_char
;
30642 ignore_rest_of_line ();
30645 /* Parse a .object_arch directive. */
30648 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
30650 const struct arm_arch_option_table
*opt
;
30654 name
= input_line_pointer
;
30655 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30656 input_line_pointer
++;
30657 saved_char
= *input_line_pointer
;
30658 *input_line_pointer
= 0;
30660 /* Skip the first "all" entry. */
30661 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
30662 if (streq (opt
->name
, name
))
30664 selected_object_arch
= opt
->value
;
30665 *input_line_pointer
= saved_char
;
30666 demand_empty_rest_of_line ();
30670 as_bad (_("unknown architecture `%s'\n"), name
);
30671 *input_line_pointer
= saved_char
;
30672 ignore_rest_of_line ();
30675 /* Parse a .arch_extension directive. */
30678 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
30680 const struct arm_option_extension_value_table
*opt
;
30683 int adding_value
= 1;
30685 name
= input_line_pointer
;
30686 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30687 input_line_pointer
++;
30688 saved_char
= *input_line_pointer
;
30689 *input_line_pointer
= 0;
30691 if (strlen (name
) >= 2
30692 && strncmp (name
, "no", 2) == 0)
30698 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30699 if (streq (opt
->name
, name
))
30701 int i
, nb_allowed_archs
=
30702 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[i
]);
30703 for (i
= 0; i
< nb_allowed_archs
; i
++)
30706 if (ARM_CPU_IS_ANY (opt
->allowed_archs
[i
]))
30708 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], selected_arch
))
30712 if (i
== nb_allowed_archs
)
30714 as_bad (_("architectural extension `%s' is not allowed for the "
30715 "current base architecture"), name
);
30720 ARM_MERGE_FEATURE_SETS (selected_ext
, selected_ext
,
30723 ARM_CLEAR_FEATURE (selected_ext
, selected_ext
, opt
->clear_value
);
30725 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
30726 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30727 *input_line_pointer
= saved_char
;
30728 demand_empty_rest_of_line ();
30729 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30730 on this return so that duplicate extensions (extensions with the
30731 same name as a previous extension in the list) are not considered
30732 for command-line parsing. */
30736 if (opt
->name
== NULL
)
30737 as_bad (_("unknown architecture extension `%s'\n"), name
);
30739 *input_line_pointer
= saved_char
;
30740 ignore_rest_of_line ();
30743 /* Parse a .fpu directive. */
30746 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
30748 const struct arm_option_fpu_value_table
*opt
;
30752 name
= input_line_pointer
;
30753 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
30754 input_line_pointer
++;
30755 saved_char
= *input_line_pointer
;
30756 *input_line_pointer
= 0;
30758 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
30759 if (streq (opt
->name
, name
))
30761 selected_fpu
= opt
->value
;
30762 #ifndef CPU_DEFAULT
30763 if (no_cpu_selected ())
30764 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
30767 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
30768 *input_line_pointer
= saved_char
;
30769 demand_empty_rest_of_line ();
30773 as_bad (_("unknown floating point format `%s'\n"), name
);
30774 *input_line_pointer
= saved_char
;
30775 ignore_rest_of_line ();
30778 /* Copy symbol information. */
30781 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
30783 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
30787 /* Given a symbolic attribute NAME, return the proper integer value.
30788 Returns -1 if the attribute is not known. */
30791 arm_convert_symbolic_attribute (const char *name
)
30793 static const struct
30798 attribute_table
[] =
30800 /* When you modify this table you should
30801 also modify the list in doc/c-arm.texi. */
30802 #define T(tag) {#tag, tag}
30803 T (Tag_CPU_raw_name
),
30806 T (Tag_CPU_arch_profile
),
30807 T (Tag_ARM_ISA_use
),
30808 T (Tag_THUMB_ISA_use
),
30812 T (Tag_Advanced_SIMD_arch
),
30813 T (Tag_PCS_config
),
30814 T (Tag_ABI_PCS_R9_use
),
30815 T (Tag_ABI_PCS_RW_data
),
30816 T (Tag_ABI_PCS_RO_data
),
30817 T (Tag_ABI_PCS_GOT_use
),
30818 T (Tag_ABI_PCS_wchar_t
),
30819 T (Tag_ABI_FP_rounding
),
30820 T (Tag_ABI_FP_denormal
),
30821 T (Tag_ABI_FP_exceptions
),
30822 T (Tag_ABI_FP_user_exceptions
),
30823 T (Tag_ABI_FP_number_model
),
30824 T (Tag_ABI_align_needed
),
30825 T (Tag_ABI_align8_needed
),
30826 T (Tag_ABI_align_preserved
),
30827 T (Tag_ABI_align8_preserved
),
30828 T (Tag_ABI_enum_size
),
30829 T (Tag_ABI_HardFP_use
),
30830 T (Tag_ABI_VFP_args
),
30831 T (Tag_ABI_WMMX_args
),
30832 T (Tag_ABI_optimization_goals
),
30833 T (Tag_ABI_FP_optimization_goals
),
30834 T (Tag_compatibility
),
30835 T (Tag_CPU_unaligned_access
),
30836 T (Tag_FP_HP_extension
),
30837 T (Tag_VFP_HP_extension
),
30838 T (Tag_ABI_FP_16bit_format
),
30839 T (Tag_MPextension_use
),
30841 T (Tag_nodefaults
),
30842 T (Tag_also_compatible_with
),
30843 T (Tag_conformance
),
30845 T (Tag_Virtualization_use
),
30846 T (Tag_DSP_extension
),
30848 /* We deliberately do not include Tag_MPextension_use_legacy. */
30856 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
30857 if (streq (name
, attribute_table
[i
].name
))
30858 return attribute_table
[i
].tag
;
30863 /* Apply sym value for relocations only in the case that they are for
30864 local symbols in the same segment as the fixup and you have the
30865 respective architectural feature for blx and simple switches. */
30868 arm_apply_sym_value (struct fix
* fixP
, segT this_seg
)
30871 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
30872 /* PR 17444: If the local symbol is in a different section then a reloc
30873 will always be generated for it, so applying the symbol value now
30874 will result in a double offset being stored in the relocation. */
30875 && (S_GET_SEGMENT (fixP
->fx_addsy
) == this_seg
)
30876 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
30878 switch (fixP
->fx_r_type
)
30880 case BFD_RELOC_ARM_PCREL_BLX
:
30881 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
30882 if (ARM_IS_FUNC (fixP
->fx_addsy
))
30886 case BFD_RELOC_ARM_PCREL_CALL
:
30887 case BFD_RELOC_THUMB_PCREL_BLX
:
30888 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
30899 #endif /* OBJ_ELF */