gprofng: fix build with -mx32
[binutils-gdb/blckswan.git] / bfd / elfxx-mips.c
blob97a406a8d1a982662d6eb2937fd9d995a116942b
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
48 #include "hashtab.h"
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
123 long symndx;
124 union
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
154 /* This structure is used to hold .got information when linking. */
156 struct mips_got_info
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
188 /* Structure passed when merging bfds' gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
218 struct mips_elf_traverse_got_arg
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
225 struct _mips_elf_section_data
227 struct bfd_elf_section_data elf;
228 union
230 bfd_byte *tdata;
231 } u;
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
269 immediately before a PIC function "func". The second is to add:
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
275 to a separate trampoline section.
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
292 /* Macros for populating a mips_elf_la25_stub. */
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
308 struct mips_elf_hash_sort_data
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
338 struct plt_entry
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
362 struct mips_elf_link_hash_entry
364 struct elf_link_hash_entry root;
366 /* External symbol information. */
367 EXTR esym;
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
431 /* MIPS ELF linker hash table. */
433 struct mips_elf_link_hash_table
435 struct elf_link_hash_table root;
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bool use_rld_obj_head;
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
450 /* This is set if we see any mips16 stub sections. */
451 bool mips16_stubs_seen;
453 /* True if we can generate copy relocs and PLTs. */
454 bool use_plts_and_copy_relocs;
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bool insn32;
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bool ignore_branch_isa;
462 /* True if we are targetting R6 compact branches. */
463 bool compact_branches;
465 /* True if we already reported the small-data section overflow. */
466 bool small_data_overflow_reported;
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bool use_absolute_zero;
471 /* True if we have been configured for a GNU target. */
472 bool gnu_target;
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bool error;
552 /* MIPS ELF private object data. */
554 struct mips_elf_obj_tdata
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bool abiflags_valid;
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
589 /* Get MIPS ELF private object data from BFD's tdata. */
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
623 /* Structure used to pass information to mips_elf_output_extsym. */
625 struct extsym_info
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bool failed;
634 /* The names of the runtime procedure table symbols used on IRIX5. */
636 static const char * const mips_elf_dynsym_rtproc_names[] =
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
647 typedef struct
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
657 typedef struct
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
667 typedef struct
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
677 typedef struct
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
686 typedef struct
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
693 typedef struct
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
699 /* These are the constants used to swap the bitfields in a crinfo. */
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bool mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bool mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1027 We record any stubs that we find in the symbol table. */
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1033 #define FN_STUB_P(name) startswith (name, FN_STUB)
1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB)
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1256 /* microMIPS 32-bit opcode helper installer. */
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1265 /* microMIPS 32-bit opcode helper retriever. */
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1280 /* Traverse a MIPS ELF linker hash table. */
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1312 /* Create an entry in a MIPS ELF linker hash table. */
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = true;
1347 ret->readonly_reloc = false;
1348 ret->has_static_relocs = false;
1349 ret->no_fn_stub = false;
1350 ret->need_fn_stub = false;
1351 ret->has_nonpic_branches = false;
1352 ret->needs_lazy_stub = false;
1353 ret->use_plt_entry = false;
1356 return (struct bfd_hash_entry *) ret;
1359 /* Allocate MIPS ELF private object data. */
1361 bool
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1368 bool
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1371 if (!sec->used_by_bfd)
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return false;
1379 sec->used_by_bfd = sdata;
1382 return _bfd_elf_new_section_hook (abfd, sec);
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1388 bool
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1445 debug->fdr = NULL;
1447 return true;
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return false;
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1483 /* Create a runtime procedure table from the .mdebug section. */
1485 static bool
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1519 size = swap->external_pdr_size;
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return true;
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return false;
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1625 static bool
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1631 bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bool res;
1637 if (micromips_p)
1638 value |= 1;
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 true, false, &bh);
1646 free (name);
1647 if (! res)
1648 return false;
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return true;
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1664 static bool
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bool res;
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 true, false, &bh);
1688 free (name);
1689 if (! res)
1690 return false;
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return true;
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1704 static bool
1705 section_allows_mips16_refs_p (asection *section)
1707 const char *name;
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1740 return 0;
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = true;
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1804 const struct mips_elf_la25_stub *entry;
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1828 bool
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1833 struct mips_elf_link_hash_table *htab;
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return false;
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return false;
1845 return true;
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1854 static bool
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1881 else
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1892 static bool
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return false;
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return false;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return false;
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return false;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return true;
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1939 static bool
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return false;
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return false;
1959 htab->strampoline = s;
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return true;
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1975 static bool
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bool use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return false;
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return false;
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return true;
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return false;
2012 *stub = search;
2013 *slot = stub;
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2031 static bool
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2034 struct mips_htab_traverse_info *hti;
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2040 if (mips_elf_local_pic_function_p (h))
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return true;
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2059 hti->error = true;
2060 return false;
2063 return true;
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2070 The format of these instructions is:
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2136 A typical instruction will have a format like this:
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2155 static inline bool
2156 mips16_reloc_p (int r_type)
2158 switch (r_type)
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return true;
2176 default:
2177 return false;
2181 /* Check if a microMIPS reloc. */
2183 static inline bool
2184 micromips_reloc_p (unsigned int r_type)
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2193 static inline bool
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2201 static inline bool
2202 got16_reloc_p (int r_type)
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2209 static inline bool
2210 call16_reloc_p (int r_type)
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2217 static inline bool
2218 got_disp_reloc_p (unsigned int r_type)
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2223 static inline bool
2224 got_page_reloc_p (unsigned int r_type)
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2229 static inline bool
2230 got_lo16_reloc_p (unsigned int r_type)
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2235 static inline bool
2236 call_hi16_reloc_p (unsigned int r_type)
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2241 static inline bool
2242 call_lo16_reloc_p (unsigned int r_type)
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2247 static inline bool
2248 hi16_reloc_p (int r_type)
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2256 static inline bool
2257 lo16_reloc_p (int r_type)
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2265 static inline bool
2266 mips16_call_reloc_p (int r_type)
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2271 static inline bool
2272 jal_reloc_p (int r_type)
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2279 static inline bool
2280 b_reloc_p (int r_type)
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2292 static inline bool
2293 aligned_pcrel_reloc_p (int r_type)
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2299 static inline bool
2300 branch_reloc_p (int r_type)
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2309 static inline bool
2310 mips16_branch_reloc_p (int r_type)
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2316 static inline bool
2317 micromips_branch_reloc_p (int r_type)
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2325 static inline bool
2326 tls_gd_reloc_p (unsigned int r_type)
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2333 static inline bool
2334 tls_ldm_reloc_p (unsigned int r_type)
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2341 static inline bool
2342 tls_gottprel_reloc_p (unsigned int r_type)
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bool jal_shuffle, bfd_byte *data)
2353 bfd_vma first, second, val;
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bool jal_shuffle, bfd_byte *data)
2376 bfd_vma first, second, val;
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2384 second = val & 0xffff;
2385 first = val >> 16;
2387 else if (r_type != R_MIPS16_26)
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2392 else
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bool relocatable, void *data, bfd_vma gp)
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2425 _bfd_mips_elf_sign_extend (val, 16);
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2434 if (reloc_entry->howto->partial_inplace)
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2442 else
2443 reloc_entry->addend = val;
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2448 return bfd_reloc_ok;
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2456 struct mips_hi16
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2464 /* FIXME: This should not be a static variable. */
2466 static struct mips_hi16 *mips_hi16_list;
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2483 struct mips_hi16 *n;
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2501 return bfd_reloc_ok;
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2544 location);
2546 while (mips_hi16_list != NULL)
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2551 hi = mips_hi16_list;
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false);
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2575 mips_hi16_list = hi->next;
2576 free (hi);
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bool relocatable;
2598 relocatable = (output_bfd != NULL);
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2614 if (!relocatable)
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2646 location);
2648 if (status != bfd_reloc_ok)
2649 return status;
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2655 return bfd_reloc_ok;
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2693 unsigned long l;
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2764 /* Swap in an options header. */
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2776 /* Swap out an options header. */
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2788 /* Swap in an abiflags structure. */
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2808 /* Swap out an abiflags structure. */
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2897 static bool
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2900 struct extsym_info *einfo = data;
2901 bool strip;
2902 asection *sec, *output_section;
2904 if (h->root.indx == -2)
2905 strip = false;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = true;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 false, false) == NULL))
2917 strip = true;
2918 else
2919 strip = false;
2921 if (strip)
2922 return true;
2924 if (h->esym.ifd == -2)
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2937 const char *name;
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2956 else
2957 h->esym.asym.sc = scUndefined;
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2964 const char *name;
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2975 name = bfd_section_name (output_section);
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3022 else
3024 struct mips_elf_link_hash_entry *hd = h;
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3029 if (hd->needs_lazy_stub)
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3055 einfo->failed = true;
3056 return false;
3059 return true;
3062 /* A comparison routine used to sort .gptab entries. */
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3073 /* Functions to manage the got entry hash table. */
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3078 static inline hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? true
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3120 const struct mips_got_page_ref *ref;
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3132 const struct mips_got_page_ref *ref1, *ref2;
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3146 const struct mips_got_page_entry *entry;
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3155 const struct mips_got_page_entry *entry1, *entry2;
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3162 /* Create and return a new mips_got_info structure. */
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3167 struct mips_got_info *g;
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3183 return g;
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bool create_p)
3192 struct mips_elf_obj_tdata *tdata;
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3203 /* Record that ABFD should use output GOT G. */
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3208 struct mips_elf_obj_tdata *tdata;
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3221 tdata->got = g;
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p)
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3252 return sreloc;
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3269 return GOT_TLS_NONE;
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3277 switch (type)
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3283 case GOT_TLS_IE:
3284 return 1;
3286 case GOT_TLS_NONE:
3287 return 0;
3289 abort ();
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3300 int indx = 0;
3301 bool need_relocs = false;
3302 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = true;
3316 if (!need_relocs)
3317 return 0;
3319 switch (tls_type)
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3324 case GOT_TLS_IE:
3325 return 1;
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3330 default:
3331 return 0;
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3343 if (entry->tls_type)
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3356 /* Output a simple dynamic relocation into SRELOC. */
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3366 Elf_Internal_Rela rel[3];
3368 memset (rel, 0, sizeof (rel));
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3373 if (ABI_64_P (output_bfd))
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3395 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bool need_relocs = false;
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3406 sgot = htab->root.sgot;
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3415 if (entry->tls_initialized)
3416 return;
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = true;
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, false);
3432 got_offset = entry->gotidx;
3434 switch (entry->tls_type)
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3440 if (need_relocs)
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3456 else
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3463 break;
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3503 default:
3504 abort ();
3507 entry->tls_initialized = true;
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3538 return got_address - got_value;
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, false);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3595 return got_index;
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3613 g = mips_elf_bfd_got (ibfd, false);
3614 BFD_ASSERT (g);
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3629 if (lookup.tls_type)
3631 bfd_vma value = MINUS_ONE;
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3642 return gotidx;
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3662 if (!entry)
3663 return MINUS_ONE;
3665 got_index = entry->gotidx;
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3670 return got_index;
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bool external)
3681 struct mips_got_entry *entry;
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3743 g = mips_elf_bfd_got (ibfd, false);
3744 if (g == NULL)
3746 g = mips_elf_bfd_got (abfd, false);
3747 BFD_ASSERT (g != NULL);
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3763 else if (h == NULL)
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3768 else
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3780 return entry;
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3815 *entry = lookup;
3816 *loc = entry;
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3828 s = mips_elf_rel_dyn_section (info, false);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3840 return entry;
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3851 bfd_size_type count;
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3857 asection *p;
3858 const struct elf_backend_data *bed;
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3868 return count;
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3874 static bool
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3884 if (htab->root.dynsymcount == 0)
3885 return true;
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return true;
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3924 return true;
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3931 static bool
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3934 struct mips_elf_hash_sort_data *hsd = data;
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return true;
3941 switch (h->global_got_area)
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3968 return true;
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3975 static bool
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return false;
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return false;
3999 lookup->tls_initialized = false;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, true);
4007 if (!g)
4008 return false;
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return false;
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return true;
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4023 static bool
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bool for_call, int r_type)
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = false;
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4044 switch (ELF_ST_VISIBILITY (h->other))
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, true);
4049 break;
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return false;
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4069 static bool
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4094 static bool
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4110 if (h)
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4115 else
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return false;
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return false;
4132 *entry = lookup;
4133 *loc = entry;
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, true);
4138 if (!g2)
4139 return false;
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return false;
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4148 return true;
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4163 s = mips_elf_rel_dyn_section (info, false);
4164 BFD_ASSERT (s != NULL);
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4170 if (s->size == 0)
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4195 struct mips_elf_link_hash_entry *h;
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4201 arg->value = true;
4202 return 0;
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4228 struct mips_elf_link_hash_entry *h;
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4245 arg->g = NULL;
4246 return 0;
4248 if (*slot == NULL)
4250 if (entry == &new_entry)
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4255 arg->g = NULL;
4256 return 0;
4258 *entry = new_entry;
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4263 return 1;
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4276 static bool
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return false;
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return false;
4301 entry->sec = sec;
4302 *loc = entry;
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return false;
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return true;
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4345 else
4346 range->max_addend = addend;
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4357 return true;
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4365 static int
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4378 if (ref->symndx < 0)
4380 struct mips_elf_link_hash_entry *h;
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4397 else
4399 Elf_Internal_Sym *isym;
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4406 arg->g = NULL;
4407 return 0;
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4414 arg->g = NULL;
4415 return 0;
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4424 void *secinfo;
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4434 else
4435 addend = isym->st_value + ref->addend;
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4439 arg->g = NULL;
4440 return 0;
4442 return 1;
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4450 static bool
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4457 oldg = *g;
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = false;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return false;
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return false;
4476 htab_delete (oldg.got_entries);
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return false;
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4488 return true;
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4494 static bool
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return true;
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return false;
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return true;
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return true;
4524 return false;
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4533 static bool
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4565 return 1;
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4583 arg->g = NULL;
4584 return 0;
4586 if (!*slot)
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4591 return 1;
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4609 arg->g = NULL;
4610 return 0;
4612 if (!*slot)
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4617 return 1;
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4678 static bool
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4682 unsigned int estimate;
4683 int result;
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return false;
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4700 if (estimate <= arg->max_count)
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4706 arg->primary = g;
4707 return true;
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4730 return true;
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4737 static bool
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4740 struct mips_got_entry *entry;
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4745 struct mips_got_entry *new_entry;
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return false;
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4755 entry->gotidx = gotidx;
4756 return true;
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4777 arg->g = NULL;
4778 return 0;
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4824 arg->g = NULL;
4825 return 0;
4827 arg->g->assigned_low_gotno += 1;
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4836 return 1;
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4859 entry->d.h->needs_lazy_stub = false;
4860 htab->lazy_stub_count--;
4863 return 1;
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4871 if (!g->next)
4872 return 0;
4874 g = mips_elf_bfd_got (ibfd, false);
4875 if (! g)
4876 return 0;
4878 BFD_ASSERT (g->next);
4880 g = g->next;
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4889 static bool
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4904 g = htab->got_info;
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4924 gg = mips_elf_bfd_got (ibfd, false);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return false;
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4980 struct mips_got_info *gn;
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return false;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5014 while (g);
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5021 unsigned int save_assign;
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return false;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5036 if (bfd_link_pic (info))
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5044 needed_relocs += g->relocs;
5046 needed_relocs += g->relocs;
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5052 return true;
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5066 while (relocation < relend)
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5072 ++relocation;
5075 /* We didn't find it. */
5076 return NULL;
5079 /* Return whether an input relocation is against a local symbol. */
5081 static bool
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5094 if (r_symndx < extsymoff)
5095 return true;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return true;
5099 return false;
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5111 return value;
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5118 static bool
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return true;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return true;
5130 /* All is well. */
5131 return false;
5134 /* Calculate the %high function. */
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5142 /* Calculate the %higher function. */
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5155 /* Calculate the %highest function. */
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5168 /* Create the .compact_rel section. */
5170 static bool
5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5174 flagword flags;
5175 register asection *s;
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return false;
5187 s->size = sizeof (Elf32_External_compact_rel);
5190 return true;
5193 /* Create the .got section to hold the global offset table. */
5195 static bool
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return true;
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return false;
5220 htab->root.sgot = s;
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
5229 return false;
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return false;
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return false;
5254 htab->root.sgotplt = s;
5256 return true;
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5263 static bool
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5277 static bool
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bool target_is_16_bit_code_p)
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return false;
5289 switch (r_type)
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return true;
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5305 default:
5306 return false;
5310 /* Obtain the field relocated by RELOCATION. */
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5325 return x;
5328 /* Store the field relocated by RELOCATION. */
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5350 static bool
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bool doit)
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bool nullified = true;
5358 bfd_vma x;
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = false;
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location);
5386 return nullified;
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bool *cross_mode_jump_p,
5412 bool save_addend)
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bool local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bool section_p = false;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bool gp_disp_p = false;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bool gnu_local_gp_p = false;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bool overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bool target_is_16_bit_code_p = false;
5455 bool target_is_micromips_code_p = false;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bool resolved_to_zero;
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = false;
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5492 bool micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5542 else
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5567 gp_disp_p = true;
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = true;
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5624 else
5626 bool reject_undefined
5627 = ((info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5638 symbol = 0;
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5648 (a) the relocation is for a MIPS16 JAL;
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5672 else
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5682 else
5684 sec = h->fn_stub;
5685 value = 0;
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = false;
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5713 asection *o;
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5720 sec = h->call_fp_stub;
5721 break;
5724 if (sec == NULL)
5725 sec = h->call_stub;
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5761 bool micromips_p = MICROMIPS_P (abfd);
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5804 switch (r_type)
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, true))
5824 return bfd_reloc_continue;
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 false, false, false);
5838 BFD_ASSERT (h != NULL);
5840 break;
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5900 else if (!local_p)
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5913 else
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5949 s = mips_elf_rel_dyn_section (info, false);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6015 else
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6022 value &= howto->dst_mask;
6023 break;
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6039 unsigned int shift;
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6064 break;
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6104 else
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6126 break;
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6162 break;
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6171 /* Fall through. */
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6218 /* Fall through. */
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6507 Returns FALSE if anything goes wrong. */
6509 static bool
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bool cross_mode_jump_p)
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6538 bfd_vma opcode = x >> 26;
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return true;
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6552 bool ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6562 else if (r_type == R_MICROMIPS_26_S1)
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6567 else
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return true;
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6589 bool ok = false;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6596 if (r_type == R_MICROMIPS_PC16_S1)
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6611 if (ok && !bfd_link_pic (info))
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return true;
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return true;
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6683 return true;
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6691 static bool
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bool defined_p;
6705 struct mips_elf_link_hash_table *htab;
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, false);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return true;
6732 if (outrel[0].r_offset == MINUS_TWO)
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return true;
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = false;
6757 else
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6763 bfd_set_error (bfd_error_bad_value);
6764 return false;
6766 else
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6774 if (indx == 0)
6775 abort ();
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = true;
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6851 else if (htab->root.target_os == is_vxworks)
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6879 if (scpt)
6881 Elf32_crinfo cptrel;
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6910 return true;
6913 /* Return the MACH for a MIPS e_flags value. */
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6918 switch (flags & EF_MIPS_MACH)
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7022 return 0;
7025 /* Return printable name for ABI. */
7027 static inline char *
7028 elf_mips_abi_name (bfd *abfd)
7030 flagword flags;
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7079 void
7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7082 elf_symbol_type *elfsym;
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym->section = &mips_elf_acom_section;
7095 break;
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7114 case SHN_MIPS_TEXT:
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7118 if (section != NULL)
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7127 break;
7129 case SHN_MIPS_DATA:
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7133 if (section != NULL)
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7142 break;
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7150 asym->value--;
7151 if (MICROMIPS_P (abfd))
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7185 - Otherwise punt.
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7197 unsigned int
7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7204 bool long32_p, long64_p;
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7221 return 0;
7223 return 4;
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7240 bool
7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7251 bool
7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7257 bfd_byte buf[4];
7259 BFD_ASSERT (hdr->contents == NULL);
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7263 _bfd_error_handler
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
7268 bfd_set_error (bfd_error_bad_value);
7269 return false;
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
7275 return false;
7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
7277 if (bfd_bwrite (buf, 4, abfd) != 4)
7278 return false;
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7286 bfd_byte *contents, *l, *lend;
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7300 Elf_Internal_Options intopt;
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
7304 if (intopt.size < sizeof (Elf_External_Options))
7306 _bfd_error_handler
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7309 " its header"),
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7315 bfd_byte buf[8];
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
7323 return false;
7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 if (bfd_bwrite (buf, 8, abfd) != 8)
7326 return false;
7328 else if (intopt.kind == ODK_REGINFO)
7330 bfd_byte buf[4];
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
7338 return false;
7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 if (bfd_bwrite (buf, 4, abfd) != 4)
7341 return false;
7343 l += intopt.size;
7347 if (hdr->bfd_section != NULL)
7349 const char *name = bfd_section_name (hdr->bfd_section);
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362 else if (strcmp (name, ".srdata") == 0)
7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364 else if (strcmp (name, ".compact_rel") == 0)
7365 hdr->sh_flags = 0;
7366 else if (strcmp (name, ".rtproc") == 0)
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7370 unsigned int adjust;
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7379 return true;
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7386 bool
7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
7392 flagword flags = 0;
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
7403 return false;
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
7407 return false;
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
7411 return false;
7412 break;
7413 case SHT_MIPS_GPTAB:
7414 if (! startswith (name, ".gptab."))
7415 return false;
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
7419 return false;
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
7423 return false;
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 return false;
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
7434 return false;
7435 break;
7436 case SHT_MIPS_CONTENT:
7437 if (! startswith (name, ".MIPS.content"))
7438 return false;
7439 break;
7440 case SHT_MIPS_OPTIONS:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 return false;
7443 break;
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return false;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_DWARF:
7450 if (! startswith (name, ".debug_")
7451 && ! startswith (name, ".gnu.debuglto_.debug_")
7452 && ! startswith (name, ".zdebug_")
7453 && ! startswith (name, ".gnu.debuglto_.zdebug_"))
7454 return false;
7455 break;
7456 case SHT_MIPS_SYMBOL_LIB:
7457 if (strcmp (name, ".MIPS.symlib") != 0)
7458 return false;
7459 break;
7460 case SHT_MIPS_EVENTS:
7461 if (! startswith (name, ".MIPS.events")
7462 && ! startswith (name, ".MIPS.post_rel"))
7463 return false;
7464 break;
7465 case SHT_MIPS_XHASH:
7466 if (strcmp (name, ".MIPS.xhash") != 0)
7467 return false;
7468 default:
7469 break;
7472 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7473 return false;
7475 if (hdr->sh_flags & SHF_MIPS_GPREL)
7476 flags |= SEC_SMALL_DATA;
7478 if (flags)
7480 if (!bfd_set_section_flags (hdr->bfd_section,
7481 (bfd_section_flags (hdr->bfd_section)
7482 | flags)))
7483 return false;
7486 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7488 Elf_External_ABIFlags_v0 ext;
7490 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7491 &ext, 0, sizeof ext))
7492 return false;
7493 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7494 &mips_elf_tdata (abfd)->abiflags);
7495 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7496 return false;
7497 mips_elf_tdata (abfd)->abiflags_valid = true;
7500 /* FIXME: We should record sh_info for a .gptab section. */
7502 /* For a .reginfo section, set the gp value in the tdata information
7503 from the contents of this section. We need the gp value while
7504 processing relocs, so we just get it now. The .reginfo section
7505 is not used in the 64-bit MIPS ELF ABI. */
7506 if (hdr->sh_type == SHT_MIPS_REGINFO)
7508 Elf32_External_RegInfo ext;
7509 Elf32_RegInfo s;
7511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7512 &ext, 0, sizeof ext))
7513 return false;
7514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7515 elf_gp (abfd) = s.ri_gp_value;
7518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7519 set the gp value based on what we find. We may see both
7520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7521 they should agree. */
7522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7524 bfd_byte *contents, *l, *lend;
7526 contents = bfd_malloc (hdr->sh_size);
7527 if (contents == NULL)
7528 return false;
7529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7530 0, hdr->sh_size))
7532 free (contents);
7533 return false;
7535 l = contents;
7536 lend = contents + hdr->sh_size;
7537 while (l + sizeof (Elf_External_Options) <= lend)
7539 Elf_Internal_Options intopt;
7541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7542 &intopt);
7543 if (intopt.size < sizeof (Elf_External_Options))
7545 _bfd_error_handler
7546 /* xgettext:c-format */
7547 (_("%pB: warning: bad `%s' option size %u smaller than"
7548 " its header"),
7549 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7550 break;
7552 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7554 Elf64_Internal_RegInfo intreg;
7556 bfd_mips_elf64_swap_reginfo_in
7557 (abfd,
7558 ((Elf64_External_RegInfo *)
7559 (l + sizeof (Elf_External_Options))),
7560 &intreg);
7561 elf_gp (abfd) = intreg.ri_gp_value;
7563 else if (intopt.kind == ODK_REGINFO)
7565 Elf32_RegInfo intreg;
7567 bfd_mips_elf32_swap_reginfo_in
7568 (abfd,
7569 ((Elf32_External_RegInfo *)
7570 (l + sizeof (Elf_External_Options))),
7571 &intreg);
7572 elf_gp (abfd) = intreg.ri_gp_value;
7574 l += intopt.size;
7576 free (contents);
7579 return true;
7582 /* Set the correct type for a MIPS ELF section. We do this by the
7583 section name, which is a hack, but ought to work. This routine is
7584 used by both the 32-bit and the 64-bit ABI. */
7586 bool
7587 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7589 const char *name = bfd_section_name (sec);
7591 if (strcmp (name, ".liblist") == 0)
7593 hdr->sh_type = SHT_MIPS_LIBLIST;
7594 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7595 /* The sh_link field is set in final_write_processing. */
7597 else if (strcmp (name, ".conflict") == 0)
7598 hdr->sh_type = SHT_MIPS_CONFLICT;
7599 else if (startswith (name, ".gptab."))
7601 hdr->sh_type = SHT_MIPS_GPTAB;
7602 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7603 /* The sh_info field is set in final_write_processing. */
7605 else if (strcmp (name, ".ucode") == 0)
7606 hdr->sh_type = SHT_MIPS_UCODE;
7607 else if (strcmp (name, ".mdebug") == 0)
7609 hdr->sh_type = SHT_MIPS_DEBUG;
7610 /* In a shared object on IRIX 5.3, the .mdebug section has an
7611 entsize of 0. FIXME: Does this matter? */
7612 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7613 hdr->sh_entsize = 0;
7614 else
7615 hdr->sh_entsize = 1;
7617 else if (strcmp (name, ".reginfo") == 0)
7619 hdr->sh_type = SHT_MIPS_REGINFO;
7620 /* In a shared object on IRIX 5.3, the .reginfo section has an
7621 entsize of 0x18. FIXME: Does this matter? */
7622 if (SGI_COMPAT (abfd))
7624 if ((abfd->flags & DYNAMIC) != 0)
7625 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7626 else
7627 hdr->sh_entsize = 1;
7629 else
7630 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7632 else if (SGI_COMPAT (abfd)
7633 && (strcmp (name, ".hash") == 0
7634 || strcmp (name, ".dynamic") == 0
7635 || strcmp (name, ".dynstr") == 0))
7637 if (SGI_COMPAT (abfd))
7638 hdr->sh_entsize = 0;
7639 #if 0
7640 /* This isn't how the IRIX6 linker behaves. */
7641 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7642 #endif
7644 else if (strcmp (name, ".got") == 0
7645 || strcmp (name, ".srdata") == 0
7646 || strcmp (name, ".sdata") == 0
7647 || strcmp (name, ".sbss") == 0
7648 || strcmp (name, ".lit4") == 0
7649 || strcmp (name, ".lit8") == 0)
7650 hdr->sh_flags |= SHF_MIPS_GPREL;
7651 else if (strcmp (name, ".MIPS.interfaces") == 0)
7653 hdr->sh_type = SHT_MIPS_IFACE;
7654 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7656 else if (startswith (name, ".MIPS.content"))
7658 hdr->sh_type = SHT_MIPS_CONTENT;
7659 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7660 /* The sh_info field is set in final_write_processing. */
7662 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7664 hdr->sh_type = SHT_MIPS_OPTIONS;
7665 hdr->sh_entsize = 1;
7666 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7668 else if (startswith (name, ".MIPS.abiflags"))
7670 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7671 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7673 else if (startswith (name, ".debug_")
7674 || startswith (name, ".gnu.debuglto_.debug_")
7675 || startswith (name, ".zdebug_")
7676 || startswith (name, ".gnu.debuglto_.zdebug_"))
7678 hdr->sh_type = SHT_MIPS_DWARF;
7680 /* Irix facilities such as libexc expect a single .debug_frame
7681 per executable, the system ones have NOSTRIP set and the linker
7682 doesn't merge sections with different flags so ... */
7683 if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame"))
7684 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7686 else if (strcmp (name, ".MIPS.symlib") == 0)
7688 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7689 /* The sh_link and sh_info fields are set in
7690 final_write_processing. */
7692 else if (startswith (name, ".MIPS.events")
7693 || startswith (name, ".MIPS.post_rel"))
7695 hdr->sh_type = SHT_MIPS_EVENTS;
7696 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7697 /* The sh_link field is set in final_write_processing. */
7699 else if (strcmp (name, ".msym") == 0)
7701 hdr->sh_type = SHT_MIPS_MSYM;
7702 hdr->sh_flags |= SHF_ALLOC;
7703 hdr->sh_entsize = 8;
7705 else if (strcmp (name, ".MIPS.xhash") == 0)
7707 hdr->sh_type = SHT_MIPS_XHASH;
7708 hdr->sh_flags |= SHF_ALLOC;
7709 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7712 /* The generic elf_fake_sections will set up REL_HDR using the default
7713 kind of relocations. We used to set up a second header for the
7714 non-default kind of relocations here, but only NewABI would use
7715 these, and the IRIX ld doesn't like resulting empty RELA sections.
7716 Thus we create those header only on demand now. */
7718 return true;
7721 /* Given a BFD section, try to locate the corresponding ELF section
7722 index. This is used by both the 32-bit and the 64-bit ABI.
7723 Actually, it's not clear to me that the 64-bit ABI supports these,
7724 but for non-PIC objects we will certainly want support for at least
7725 the .scommon section. */
7727 bool
7728 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7729 asection *sec, int *retval)
7731 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7733 *retval = SHN_MIPS_SCOMMON;
7734 return true;
7736 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7738 *retval = SHN_MIPS_ACOMMON;
7739 return true;
7741 return false;
7744 /* Hook called by the linker routine which adds symbols from an object
7745 file. We must handle the special MIPS section numbers here. */
7747 bool
7748 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7749 Elf_Internal_Sym *sym, const char **namep,
7750 flagword *flagsp ATTRIBUTE_UNUSED,
7751 asection **secp, bfd_vma *valp)
7753 if (SGI_COMPAT (abfd)
7754 && (abfd->flags & DYNAMIC) != 0
7755 && strcmp (*namep, "_rld_new_interface") == 0)
7757 /* Skip IRIX5 rld entry name. */
7758 *namep = NULL;
7759 return true;
7762 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7763 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7764 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7765 a magic symbol resolved by the linker, we ignore this bogus definition
7766 of _gp_disp. New ABI objects do not suffer from this problem so this
7767 is not done for them. */
7768 if (!NEWABI_P(abfd)
7769 && (sym->st_shndx == SHN_ABS)
7770 && (strcmp (*namep, "_gp_disp") == 0))
7772 *namep = NULL;
7773 return true;
7776 switch (sym->st_shndx)
7778 case SHN_COMMON:
7779 /* Common symbols less than the GP size are automatically
7780 treated as SHN_MIPS_SCOMMON symbols. */
7781 if (sym->st_size > elf_gp_size (abfd)
7782 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7783 || IRIX_COMPAT (abfd) == ict_irix6)
7784 break;
7785 /* Fall through. */
7786 case SHN_MIPS_SCOMMON:
7787 *secp = bfd_make_section_old_way (abfd, ".scommon");
7788 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7789 *valp = sym->st_size;
7790 break;
7792 case SHN_MIPS_TEXT:
7793 /* This section is used in a shared object. */
7794 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7796 asymbol *elf_text_symbol;
7797 asection *elf_text_section;
7798 size_t amt = sizeof (asection);
7800 elf_text_section = bfd_zalloc (abfd, amt);
7801 if (elf_text_section == NULL)
7802 return false;
7804 amt = sizeof (asymbol);
7805 elf_text_symbol = bfd_zalloc (abfd, amt);
7806 if (elf_text_symbol == NULL)
7807 return false;
7809 /* Initialize the section. */
7811 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7812 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7814 elf_text_section->symbol = elf_text_symbol;
7815 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7817 elf_text_section->name = ".text";
7818 elf_text_section->flags = SEC_NO_FLAGS;
7819 elf_text_section->output_section = NULL;
7820 elf_text_section->owner = abfd;
7821 elf_text_symbol->name = ".text";
7822 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7823 elf_text_symbol->section = elf_text_section;
7825 /* This code used to do *secp = bfd_und_section_ptr if
7826 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7827 so I took it out. */
7828 *secp = mips_elf_tdata (abfd)->elf_text_section;
7829 break;
7831 case SHN_MIPS_ACOMMON:
7832 /* Fall through. XXX Can we treat this as allocated data? */
7833 case SHN_MIPS_DATA:
7834 /* This section is used in a shared object. */
7835 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7837 asymbol *elf_data_symbol;
7838 asection *elf_data_section;
7839 size_t amt = sizeof (asection);
7841 elf_data_section = bfd_zalloc (abfd, amt);
7842 if (elf_data_section == NULL)
7843 return false;
7845 amt = sizeof (asymbol);
7846 elf_data_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_data_symbol == NULL)
7848 return false;
7850 /* Initialize the section. */
7852 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7853 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7855 elf_data_section->symbol = elf_data_symbol;
7856 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7858 elf_data_section->name = ".data";
7859 elf_data_section->flags = SEC_NO_FLAGS;
7860 elf_data_section->output_section = NULL;
7861 elf_data_section->owner = abfd;
7862 elf_data_symbol->name = ".data";
7863 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_data_symbol->section = elf_data_section;
7866 /* This code used to do *secp = bfd_und_section_ptr if
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
7869 *secp = mips_elf_tdata (abfd)->elf_data_section;
7870 break;
7872 case SHN_MIPS_SUNDEFINED:
7873 *secp = bfd_und_section_ptr;
7874 break;
7877 if (SGI_COMPAT (abfd)
7878 && ! bfd_link_pic (info)
7879 && info->output_bfd->xvec == abfd->xvec
7880 && strcmp (*namep, "__rld_obj_head") == 0)
7882 struct elf_link_hash_entry *h;
7883 struct bfd_link_hash_entry *bh;
7885 /* Mark __rld_obj_head as dynamic. */
7886 bh = NULL;
7887 if (! (_bfd_generic_link_add_one_symbol
7888 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false,
7889 get_elf_backend_data (abfd)->collect, &bh)))
7890 return false;
7892 h = (struct elf_link_hash_entry *) bh;
7893 h->non_elf = 0;
7894 h->def_regular = 1;
7895 h->type = STT_OBJECT;
7897 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7898 return false;
7900 mips_elf_hash_table (info)->use_rld_obj_head = true;
7901 mips_elf_hash_table (info)->rld_symbol = h;
7904 /* If this is a mips16 text symbol, add 1 to the value to make it
7905 odd. This will cause something like .word SYM to come up with
7906 the right value when it is loaded into the PC. */
7907 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7908 ++*valp;
7910 return true;
7913 /* This hook function is called before the linker writes out a global
7914 symbol. We mark symbols as small common if appropriate. This is
7915 also where we undo the increment of the value for a mips16 symbol. */
7918 _bfd_mips_elf_link_output_symbol_hook
7919 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7920 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7921 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7923 /* If we see a common symbol, which implies a relocatable link, then
7924 if a symbol was small common in an input file, mark it as small
7925 common in the output file. */
7926 if (sym->st_shndx == SHN_COMMON
7927 && strcmp (input_sec->name, ".scommon") == 0)
7928 sym->st_shndx = SHN_MIPS_SCOMMON;
7930 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7931 sym->st_value &= ~1;
7933 return 1;
7936 /* Functions for the dynamic linker. */
7938 /* Create dynamic sections when linking against a dynamic object. */
7940 bool
7941 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7943 struct elf_link_hash_entry *h;
7944 struct bfd_link_hash_entry *bh;
7945 flagword flags;
7946 register asection *s;
7947 const char * const *namep;
7948 struct mips_elf_link_hash_table *htab;
7950 htab = mips_elf_hash_table (info);
7951 BFD_ASSERT (htab != NULL);
7953 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7954 | SEC_LINKER_CREATED | SEC_READONLY);
7956 /* The psABI requires a read-only .dynamic section, but the VxWorks
7957 EABI doesn't. */
7958 if (htab->root.target_os != is_vxworks)
7960 s = bfd_get_linker_section (abfd, ".dynamic");
7961 if (s != NULL)
7963 if (!bfd_set_section_flags (s, flags))
7964 return false;
7968 /* We need to create .got section. */
7969 if (!mips_elf_create_got_section (abfd, info))
7970 return false;
7972 if (! mips_elf_rel_dyn_section (info, true))
7973 return false;
7975 /* Create .stub section. */
7976 s = bfd_make_section_anyway_with_flags (abfd,
7977 MIPS_ELF_STUB_SECTION_NAME (abfd),
7978 flags | SEC_CODE);
7979 if (s == NULL
7980 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7981 return false;
7982 htab->sstubs = s;
7984 if (!mips_elf_hash_table (info)->use_rld_obj_head
7985 && bfd_link_executable (info)
7986 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7988 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7989 flags &~ (flagword) SEC_READONLY);
7990 if (s == NULL
7991 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7992 return false;
7995 /* Create .MIPS.xhash section. */
7996 if (info->emit_gnu_hash)
7997 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
7998 flags | SEC_READONLY);
8000 /* On IRIX5, we adjust add some additional symbols and change the
8001 alignments of several sections. There is no ABI documentation
8002 indicating that this is necessary on IRIX6, nor any evidence that
8003 the linker takes such action. */
8004 if (IRIX_COMPAT (abfd) == ict_irix5)
8006 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8008 bh = NULL;
8009 if (! (_bfd_generic_link_add_one_symbol
8010 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8011 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8012 return false;
8014 h = (struct elf_link_hash_entry *) bh;
8015 h->mark = 1;
8016 h->non_elf = 0;
8017 h->def_regular = 1;
8018 h->type = STT_SECTION;
8020 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8021 return false;
8024 /* We need to create a .compact_rel section. */
8025 if (SGI_COMPAT (abfd))
8027 if (!mips_elf_create_compact_rel_section (abfd, info))
8028 return false;
8031 /* Change alignments of some sections. */
8032 s = bfd_get_linker_section (abfd, ".hash");
8033 if (s != NULL)
8034 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8036 s = bfd_get_linker_section (abfd, ".dynsym");
8037 if (s != NULL)
8038 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8040 s = bfd_get_linker_section (abfd, ".dynstr");
8041 if (s != NULL)
8042 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8044 /* ??? */
8045 s = bfd_get_section_by_name (abfd, ".reginfo");
8046 if (s != NULL)
8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8049 s = bfd_get_linker_section (abfd, ".dynamic");
8050 if (s != NULL)
8051 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8054 if (bfd_link_executable (info))
8056 const char *name;
8058 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8059 bh = NULL;
8060 if (!(_bfd_generic_link_add_one_symbol
8061 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8062 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8063 return false;
8065 h = (struct elf_link_hash_entry *) bh;
8066 h->non_elf = 0;
8067 h->def_regular = 1;
8068 h->type = STT_SECTION;
8070 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8071 return false;
8073 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8075 /* __rld_map is a four byte word located in the .data section
8076 and is filled in by the rtld to contain a pointer to
8077 the _r_debug structure. Its symbol value will be set in
8078 _bfd_mips_elf_finish_dynamic_symbol. */
8079 s = bfd_get_linker_section (abfd, ".rld_map");
8080 BFD_ASSERT (s != NULL);
8082 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8083 bh = NULL;
8084 if (!(_bfd_generic_link_add_one_symbol
8085 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false,
8086 get_elf_backend_data (abfd)->collect, &bh)))
8087 return false;
8089 h = (struct elf_link_hash_entry *) bh;
8090 h->non_elf = 0;
8091 h->def_regular = 1;
8092 h->type = STT_OBJECT;
8094 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8095 return false;
8096 mips_elf_hash_table (info)->rld_symbol = h;
8100 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8101 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8102 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8103 return false;
8105 /* Do the usual VxWorks handling. */
8106 if (htab->root.target_os == is_vxworks
8107 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8108 return false;
8110 return true;
8113 /* Return true if relocation REL against section SEC is a REL rather than
8114 RELA relocation. RELOCS is the first relocation in the section and
8115 ABFD is the bfd that contains SEC. */
8117 static bool
8118 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8119 const Elf_Internal_Rela *relocs,
8120 const Elf_Internal_Rela *rel)
8122 Elf_Internal_Shdr *rel_hdr;
8123 const struct elf_backend_data *bed;
8125 /* To determine which flavor of relocation this is, we depend on the
8126 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8127 rel_hdr = elf_section_data (sec)->rel.hdr;
8128 if (rel_hdr == NULL)
8129 return false;
8130 bed = get_elf_backend_data (abfd);
8131 return ((size_t) (rel - relocs)
8132 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8135 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8136 HOWTO is the relocation's howto and CONTENTS points to the contents
8137 of the section that REL is against. */
8139 static bfd_vma
8140 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8141 reloc_howto_type *howto, bfd_byte *contents)
8143 bfd_byte *location;
8144 unsigned int r_type;
8145 bfd_vma addend;
8146 bfd_vma bytes;
8148 r_type = ELF_R_TYPE (abfd, rel->r_info);
8149 location = contents + rel->r_offset;
8151 /* Get the addend, which is stored in the input file. */
8152 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location);
8153 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8154 _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location);
8156 addend = bytes & howto->src_mask;
8158 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8159 accordingly. */
8160 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8161 addend <<= 1;
8163 return addend;
8166 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8167 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8168 and update *ADDEND with the final addend. Return true on success
8169 or false if the LO16 could not be found. RELEND is the exclusive
8170 upper bound on the relocations for REL's section. */
8172 static bool
8173 mips_elf_add_lo16_rel_addend (bfd *abfd,
8174 const Elf_Internal_Rela *rel,
8175 const Elf_Internal_Rela *relend,
8176 bfd_byte *contents, bfd_vma *addend)
8178 unsigned int r_type, lo16_type;
8179 const Elf_Internal_Rela *lo16_relocation;
8180 reloc_howto_type *lo16_howto;
8181 bfd_vma l;
8183 r_type = ELF_R_TYPE (abfd, rel->r_info);
8184 if (mips16_reloc_p (r_type))
8185 lo16_type = R_MIPS16_LO16;
8186 else if (micromips_reloc_p (r_type))
8187 lo16_type = R_MICROMIPS_LO16;
8188 else if (r_type == R_MIPS_PCHI16)
8189 lo16_type = R_MIPS_PCLO16;
8190 else
8191 lo16_type = R_MIPS_LO16;
8193 /* The combined value is the sum of the HI16 addend, left-shifted by
8194 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8195 code does a `lui' of the HI16 value, and then an `addiu' of the
8196 LO16 value.)
8198 Scan ahead to find a matching LO16 relocation.
8200 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8201 be immediately following. However, for the IRIX6 ABI, the next
8202 relocation may be a composed relocation consisting of several
8203 relocations for the same address. In that case, the R_MIPS_LO16
8204 relocation may occur as one of these. We permit a similar
8205 extension in general, as that is useful for GCC.
8207 In some cases GCC dead code elimination removes the LO16 but keeps
8208 the corresponding HI16. This is strictly speaking a violation of
8209 the ABI but not immediately harmful. */
8210 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8211 if (lo16_relocation == NULL)
8212 return false;
8214 /* Obtain the addend kept there. */
8215 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false);
8216 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8218 l <<= lo16_howto->rightshift;
8219 l = _bfd_mips_elf_sign_extend (l, 16);
8221 *addend <<= 16;
8222 *addend += l;
8223 return true;
8226 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8227 store the contents in *CONTENTS on success. Assume that *CONTENTS
8228 already holds the contents if it is nonull on entry. */
8230 static bool
8231 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8233 if (*contents)
8234 return true;
8236 /* Get cached copy if it exists. */
8237 if (elf_section_data (sec)->this_hdr.contents != NULL)
8239 *contents = elf_section_data (sec)->this_hdr.contents;
8240 return true;
8243 return bfd_malloc_and_get_section (abfd, sec, contents);
8246 /* Make a new PLT record to keep internal data. */
8248 static struct plt_entry *
8249 mips_elf_make_plt_record (bfd *abfd)
8251 struct plt_entry *entry;
8253 entry = bfd_zalloc (abfd, sizeof (*entry));
8254 if (entry == NULL)
8255 return NULL;
8257 entry->stub_offset = MINUS_ONE;
8258 entry->mips_offset = MINUS_ONE;
8259 entry->comp_offset = MINUS_ONE;
8260 entry->gotplt_index = MINUS_ONE;
8261 return entry;
8264 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8265 for PIC code, as otherwise there is no load-time relocation involved
8266 and local GOT entries whose value is zero at static link time will
8267 retain their value at load time. */
8269 static bool
8270 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8271 struct mips_elf_link_hash_table *htab,
8272 unsigned int r_type)
8274 union
8276 struct elf_link_hash_entry *eh;
8277 struct bfd_link_hash_entry *bh;
8279 hzero;
8281 BFD_ASSERT (!htab->use_absolute_zero);
8282 BFD_ASSERT (bfd_link_pic (info));
8284 hzero.bh = NULL;
8285 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8286 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8287 NULL, false, false, &hzero.bh))
8288 return false;
8290 BFD_ASSERT (hzero.bh != NULL);
8291 hzero.eh->size = 0;
8292 hzero.eh->type = STT_NOTYPE;
8293 hzero.eh->other = STV_PROTECTED;
8294 hzero.eh->def_regular = 1;
8295 hzero.eh->non_elf = 0;
8297 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type))
8298 return false;
8300 htab->use_absolute_zero = true;
8302 return true;
8305 /* Look through the relocs for a section during the first phase, and
8306 allocate space in the global offset table and record the need for
8307 standard MIPS and compressed procedure linkage table entries. */
8309 bool
8310 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8311 asection *sec, const Elf_Internal_Rela *relocs)
8313 const char *name;
8314 bfd *dynobj;
8315 Elf_Internal_Shdr *symtab_hdr;
8316 struct elf_link_hash_entry **sym_hashes;
8317 size_t extsymoff;
8318 const Elf_Internal_Rela *rel;
8319 const Elf_Internal_Rela *rel_end;
8320 asection *sreloc;
8321 const struct elf_backend_data *bed;
8322 struct mips_elf_link_hash_table *htab;
8323 bfd_byte *contents;
8324 bfd_vma addend;
8325 reloc_howto_type *howto;
8327 if (bfd_link_relocatable (info))
8328 return true;
8330 htab = mips_elf_hash_table (info);
8331 BFD_ASSERT (htab != NULL);
8333 dynobj = elf_hash_table (info)->dynobj;
8334 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8335 sym_hashes = elf_sym_hashes (abfd);
8336 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8338 bed = get_elf_backend_data (abfd);
8339 rel_end = relocs + sec->reloc_count;
8341 /* Check for the mips16 stub sections. */
8343 name = bfd_section_name (sec);
8344 if (FN_STUB_P (name))
8346 unsigned long r_symndx;
8348 /* Look at the relocation information to figure out which symbol
8349 this is for. */
8351 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8352 if (r_symndx == 0)
8354 _bfd_error_handler
8355 /* xgettext:c-format */
8356 (_("%pB: warning: cannot determine the target function for"
8357 " stub section `%s'"),
8358 abfd, name);
8359 bfd_set_error (bfd_error_bad_value);
8360 return false;
8363 if (r_symndx < extsymoff
8364 || sym_hashes[r_symndx - extsymoff] == NULL)
8366 asection *o;
8368 /* This stub is for a local symbol. This stub will only be
8369 needed if there is some relocation in this BFD, other
8370 than a 16 bit function call, which refers to this symbol. */
8371 for (o = abfd->sections; o != NULL; o = o->next)
8373 Elf_Internal_Rela *sec_relocs;
8374 const Elf_Internal_Rela *r, *rend;
8376 /* We can ignore stub sections when looking for relocs. */
8377 if ((o->flags & SEC_RELOC) == 0
8378 || o->reloc_count == 0
8379 || section_allows_mips16_refs_p (o))
8380 continue;
8382 sec_relocs
8383 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8384 info->keep_memory);
8385 if (sec_relocs == NULL)
8386 return false;
8388 rend = sec_relocs + o->reloc_count;
8389 for (r = sec_relocs; r < rend; r++)
8390 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8391 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8392 break;
8394 if (elf_section_data (o)->relocs != sec_relocs)
8395 free (sec_relocs);
8397 if (r < rend)
8398 break;
8401 if (o == NULL)
8403 /* There is no non-call reloc for this stub, so we do
8404 not need it. Since this function is called before
8405 the linker maps input sections to output sections, we
8406 can easily discard it by setting the SEC_EXCLUDE
8407 flag. */
8408 sec->flags |= SEC_EXCLUDE;
8409 return true;
8412 /* Record this stub in an array of local symbol stubs for
8413 this BFD. */
8414 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8416 unsigned long symcount;
8417 asection **n;
8418 bfd_size_type amt;
8420 if (elf_bad_symtab (abfd))
8421 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8422 else
8423 symcount = symtab_hdr->sh_info;
8424 amt = symcount * sizeof (asection *);
8425 n = bfd_zalloc (abfd, amt);
8426 if (n == NULL)
8427 return false;
8428 mips_elf_tdata (abfd)->local_stubs = n;
8431 sec->flags |= SEC_KEEP;
8432 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8434 /* We don't need to set mips16_stubs_seen in this case.
8435 That flag is used to see whether we need to look through
8436 the global symbol table for stubs. We don't need to set
8437 it here, because we just have a local stub. */
8439 else
8441 struct mips_elf_link_hash_entry *h;
8443 h = ((struct mips_elf_link_hash_entry *)
8444 sym_hashes[r_symndx - extsymoff]);
8446 while (h->root.root.type == bfd_link_hash_indirect
8447 || h->root.root.type == bfd_link_hash_warning)
8448 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8450 /* H is the symbol this stub is for. */
8452 /* If we already have an appropriate stub for this function, we
8453 don't need another one, so we can discard this one. Since
8454 this function is called before the linker maps input sections
8455 to output sections, we can easily discard it by setting the
8456 SEC_EXCLUDE flag. */
8457 if (h->fn_stub != NULL)
8459 sec->flags |= SEC_EXCLUDE;
8460 return true;
8463 sec->flags |= SEC_KEEP;
8464 h->fn_stub = sec;
8465 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8468 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8470 unsigned long r_symndx;
8471 struct mips_elf_link_hash_entry *h;
8472 asection **loc;
8474 /* Look at the relocation information to figure out which symbol
8475 this is for. */
8477 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8478 if (r_symndx == 0)
8480 _bfd_error_handler
8481 /* xgettext:c-format */
8482 (_("%pB: warning: cannot determine the target function for"
8483 " stub section `%s'"),
8484 abfd, name);
8485 bfd_set_error (bfd_error_bad_value);
8486 return false;
8489 if (r_symndx < extsymoff
8490 || sym_hashes[r_symndx - extsymoff] == NULL)
8492 asection *o;
8494 /* This stub is for a local symbol. This stub will only be
8495 needed if there is some relocation (R_MIPS16_26) in this BFD
8496 that refers to this symbol. */
8497 for (o = abfd->sections; o != NULL; o = o->next)
8499 Elf_Internal_Rela *sec_relocs;
8500 const Elf_Internal_Rela *r, *rend;
8502 /* We can ignore stub sections when looking for relocs. */
8503 if ((o->flags & SEC_RELOC) == 0
8504 || o->reloc_count == 0
8505 || section_allows_mips16_refs_p (o))
8506 continue;
8508 sec_relocs
8509 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8510 info->keep_memory);
8511 if (sec_relocs == NULL)
8512 return false;
8514 rend = sec_relocs + o->reloc_count;
8515 for (r = sec_relocs; r < rend; r++)
8516 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8517 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8518 break;
8520 if (elf_section_data (o)->relocs != sec_relocs)
8521 free (sec_relocs);
8523 if (r < rend)
8524 break;
8527 if (o == NULL)
8529 /* There is no non-call reloc for this stub, so we do
8530 not need it. Since this function is called before
8531 the linker maps input sections to output sections, we
8532 can easily discard it by setting the SEC_EXCLUDE
8533 flag. */
8534 sec->flags |= SEC_EXCLUDE;
8535 return true;
8538 /* Record this stub in an array of local symbol call_stubs for
8539 this BFD. */
8540 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8542 unsigned long symcount;
8543 asection **n;
8544 bfd_size_type amt;
8546 if (elf_bad_symtab (abfd))
8547 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8548 else
8549 symcount = symtab_hdr->sh_info;
8550 amt = symcount * sizeof (asection *);
8551 n = bfd_zalloc (abfd, amt);
8552 if (n == NULL)
8553 return false;
8554 mips_elf_tdata (abfd)->local_call_stubs = n;
8557 sec->flags |= SEC_KEEP;
8558 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8560 /* We don't need to set mips16_stubs_seen in this case.
8561 That flag is used to see whether we need to look through
8562 the global symbol table for stubs. We don't need to set
8563 it here, because we just have a local stub. */
8565 else
8567 h = ((struct mips_elf_link_hash_entry *)
8568 sym_hashes[r_symndx - extsymoff]);
8570 /* H is the symbol this stub is for. */
8572 if (CALL_FP_STUB_P (name))
8573 loc = &h->call_fp_stub;
8574 else
8575 loc = &h->call_stub;
8577 /* If we already have an appropriate stub for this function, we
8578 don't need another one, so we can discard this one. Since
8579 this function is called before the linker maps input sections
8580 to output sections, we can easily discard it by setting the
8581 SEC_EXCLUDE flag. */
8582 if (*loc != NULL)
8584 sec->flags |= SEC_EXCLUDE;
8585 return true;
8588 sec->flags |= SEC_KEEP;
8589 *loc = sec;
8590 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8594 sreloc = NULL;
8595 contents = NULL;
8596 for (rel = relocs; rel < rel_end; ++rel)
8598 unsigned long r_symndx;
8599 unsigned int r_type;
8600 struct elf_link_hash_entry *h;
8601 bool can_make_dynamic_p;
8602 bool call_reloc_p;
8603 bool constrain_symbol_p;
8605 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8606 r_type = ELF_R_TYPE (abfd, rel->r_info);
8608 if (r_symndx < extsymoff)
8609 h = NULL;
8610 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8612 _bfd_error_handler
8613 /* xgettext:c-format */
8614 (_("%pB: malformed reloc detected for section %s"),
8615 abfd, name);
8616 bfd_set_error (bfd_error_bad_value);
8617 return false;
8619 else
8621 h = sym_hashes[r_symndx - extsymoff];
8622 if (h != NULL)
8624 while (h->root.type == bfd_link_hash_indirect
8625 || h->root.type == bfd_link_hash_warning)
8626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8630 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8631 relocation into a dynamic one. */
8632 can_make_dynamic_p = false;
8634 /* Set CALL_RELOC_P to true if the relocation is for a call,
8635 and if pointer equality therefore doesn't matter. */
8636 call_reloc_p = false;
8638 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8639 into account when deciding how to define the symbol. */
8640 constrain_symbol_p = true;
8642 switch (r_type)
8644 case R_MIPS_CALL16:
8645 case R_MIPS_CALL_HI16:
8646 case R_MIPS_CALL_LO16:
8647 case R_MIPS16_CALL16:
8648 case R_MICROMIPS_CALL16:
8649 case R_MICROMIPS_CALL_HI16:
8650 case R_MICROMIPS_CALL_LO16:
8651 call_reloc_p = true;
8652 /* Fall through. */
8654 case R_MIPS_GOT16:
8655 case R_MIPS_GOT_LO16:
8656 case R_MIPS_GOT_PAGE:
8657 case R_MIPS_GOT_DISP:
8658 case R_MIPS16_GOT16:
8659 case R_MICROMIPS_GOT16:
8660 case R_MICROMIPS_GOT_LO16:
8661 case R_MICROMIPS_GOT_PAGE:
8662 case R_MICROMIPS_GOT_DISP:
8663 /* If we have a symbol that will resolve to zero at static link
8664 time and it is used by a GOT relocation applied to code we
8665 cannot relax to an immediate zero load, then we will be using
8666 the special `__gnu_absolute_zero' symbol whose value is zero
8667 at dynamic load time. We ignore HI16-type GOT relocations at
8668 this stage, because their handling will depend entirely on
8669 the corresponding LO16-type GOT relocation. */
8670 if (!call_hi16_reloc_p (r_type)
8671 && h != NULL
8672 && bfd_link_pic (info)
8673 && !htab->use_absolute_zero
8674 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8676 bool rel_reloc;
8678 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8679 return false;
8681 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8682 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8684 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8685 false))
8686 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8687 return false;
8690 /* Fall through. */
8691 case R_MIPS_GOT_HI16:
8692 case R_MIPS_GOT_OFST:
8693 case R_MIPS_TLS_GOTTPREL:
8694 case R_MIPS_TLS_GD:
8695 case R_MIPS_TLS_LDM:
8696 case R_MIPS16_TLS_GOTTPREL:
8697 case R_MIPS16_TLS_GD:
8698 case R_MIPS16_TLS_LDM:
8699 case R_MICROMIPS_GOT_HI16:
8700 case R_MICROMIPS_GOT_OFST:
8701 case R_MICROMIPS_TLS_GOTTPREL:
8702 case R_MICROMIPS_TLS_GD:
8703 case R_MICROMIPS_TLS_LDM:
8704 if (dynobj == NULL)
8705 elf_hash_table (info)->dynobj = dynobj = abfd;
8706 if (!mips_elf_create_got_section (dynobj, info))
8707 return false;
8708 if (htab->root.target_os == is_vxworks
8709 && !bfd_link_pic (info))
8711 _bfd_error_handler
8712 /* xgettext:c-format */
8713 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8714 abfd, (uint64_t) rel->r_offset);
8715 bfd_set_error (bfd_error_bad_value);
8716 return false;
8718 can_make_dynamic_p = true;
8719 break;
8721 case R_MIPS_NONE:
8722 case R_MIPS_JALR:
8723 case R_MICROMIPS_JALR:
8724 /* These relocations have empty fields and are purely there to
8725 provide link information. The symbol value doesn't matter. */
8726 constrain_symbol_p = false;
8727 break;
8729 case R_MIPS_GPREL16:
8730 case R_MIPS_GPREL32:
8731 case R_MIPS16_GPREL:
8732 case R_MICROMIPS_GPREL16:
8733 /* GP-relative relocations always resolve to a definition in a
8734 regular input file, ignoring the one-definition rule. This is
8735 important for the GP setup sequence in NewABI code, which
8736 always resolves to a local function even if other relocations
8737 against the symbol wouldn't. */
8738 constrain_symbol_p = false;
8739 break;
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 must be handled using copy relocs or PLT entries; it is not
8746 possible to convert this relocation into a dynamic one.
8748 For executables that use PLTs and copy-relocs, we have a
8749 choice between converting the relocation into a dynamic
8750 one or using copy relocations or PLT entries. It is
8751 usually better to do the former, unless the relocation is
8752 against a read-only section. */
8753 if ((bfd_link_pic (info)
8754 || (h != NULL
8755 && htab->root.target_os != is_vxworks
8756 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8757 && !(!info->nocopyreloc
8758 && !PIC_OBJECT_P (abfd)
8759 && MIPS_ELF_READONLY_SECTION (sec))))
8760 && (sec->flags & SEC_ALLOC) != 0)
8762 can_make_dynamic_p = true;
8763 if (dynobj == NULL)
8764 elf_hash_table (info)->dynobj = dynobj = abfd;
8766 break;
8768 case R_MIPS_26:
8769 case R_MIPS_PC16:
8770 case R_MIPS_PC21_S2:
8771 case R_MIPS_PC26_S2:
8772 case R_MIPS16_26:
8773 case R_MIPS16_PC16_S1:
8774 case R_MICROMIPS_26_S1:
8775 case R_MICROMIPS_PC7_S1:
8776 case R_MICROMIPS_PC10_S1:
8777 case R_MICROMIPS_PC16_S1:
8778 case R_MICROMIPS_PC23_S2:
8779 call_reloc_p = true;
8780 break;
8783 if (h)
8785 if (constrain_symbol_p)
8787 if (!can_make_dynamic_p)
8788 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8790 if (!call_reloc_p)
8791 h->pointer_equality_needed = 1;
8793 /* We must not create a stub for a symbol that has
8794 relocations related to taking the function's address.
8795 This doesn't apply to VxWorks, where CALL relocs refer
8796 to a .got.plt entry instead of a normal .got entry. */
8797 if (htab->root.target_os != is_vxworks
8798 && (!can_make_dynamic_p || !call_reloc_p))
8799 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true;
8802 /* Relocations against the special VxWorks __GOTT_BASE__ and
8803 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8804 room for them in .rela.dyn. */
8805 if (is_gott_symbol (info, h))
8807 if (sreloc == NULL)
8809 sreloc = mips_elf_rel_dyn_section (info, true);
8810 if (sreloc == NULL)
8811 return false;
8813 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8814 if (MIPS_ELF_READONLY_SECTION (sec))
8815 /* We tell the dynamic linker that there are
8816 relocations against the text segment. */
8817 info->flags |= DF_TEXTREL;
8820 else if (call_lo16_reloc_p (r_type)
8821 || got_lo16_reloc_p (r_type)
8822 || got_disp_reloc_p (r_type)
8823 || (got16_reloc_p (r_type)
8824 && htab->root.target_os == is_vxworks))
8826 /* We may need a local GOT entry for this relocation. We
8827 don't count R_MIPS_GOT_PAGE because we can estimate the
8828 maximum number of pages needed by looking at the size of
8829 the segment. Similar comments apply to R_MIPS*_GOT16 and
8830 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8831 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8832 R_MIPS_CALL_HI16 because these are always followed by an
8833 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8834 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8835 rel->r_addend, info, r_type))
8836 return false;
8839 if (h != NULL
8840 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8841 ELF_ST_IS_MIPS16 (h->other)))
8842 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true;
8844 switch (r_type)
8846 case R_MIPS_CALL16:
8847 case R_MIPS16_CALL16:
8848 case R_MICROMIPS_CALL16:
8849 if (h == NULL)
8851 _bfd_error_handler
8852 /* xgettext:c-format */
8853 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8854 abfd, (uint64_t) rel->r_offset);
8855 bfd_set_error (bfd_error_bad_value);
8856 return false;
8858 /* Fall through. */
8860 case R_MIPS_CALL_HI16:
8861 case R_MIPS_CALL_LO16:
8862 case R_MICROMIPS_CALL_HI16:
8863 case R_MICROMIPS_CALL_LO16:
8864 if (h != NULL)
8866 /* Make sure there is room in the regular GOT to hold the
8867 function's address. We may eliminate it in favour of
8868 a .got.plt entry later; see mips_elf_count_got_symbols. */
8869 if (!mips_elf_record_global_got_symbol (h, abfd, info, true,
8870 r_type))
8871 return false;
8873 /* We need a stub, not a plt entry for the undefined
8874 function. But we record it as if it needs plt. See
8875 _bfd_elf_adjust_dynamic_symbol. */
8876 h->needs_plt = 1;
8877 h->type = STT_FUNC;
8879 break;
8881 case R_MIPS_GOT_PAGE:
8882 case R_MICROMIPS_GOT_PAGE:
8883 case R_MIPS16_GOT16:
8884 case R_MIPS_GOT16:
8885 case R_MIPS_GOT_HI16:
8886 case R_MIPS_GOT_LO16:
8887 case R_MICROMIPS_GOT16:
8888 case R_MICROMIPS_GOT_HI16:
8889 case R_MICROMIPS_GOT_LO16:
8890 if (!h || got_page_reloc_p (r_type))
8892 /* This relocation needs (or may need, if h != NULL) a
8893 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8894 know for sure until we know whether the symbol is
8895 preemptible. */
8896 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8898 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8899 return false;
8900 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false);
8901 addend = mips_elf_read_rel_addend (abfd, rel,
8902 howto, contents);
8903 if (got16_reloc_p (r_type))
8904 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8905 contents, &addend);
8906 else
8907 addend <<= howto->rightshift;
8909 else
8910 addend = rel->r_addend;
8911 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8912 h, addend))
8913 return false;
8915 if (h)
8917 struct mips_elf_link_hash_entry *hmips =
8918 (struct mips_elf_link_hash_entry *) h;
8920 /* This symbol is definitely not overridable. */
8921 if (hmips->root.def_regular
8922 && ! (bfd_link_pic (info) && ! info->symbolic
8923 && ! hmips->root.forced_local))
8924 h = NULL;
8927 /* If this is a global, overridable symbol, GOT_PAGE will
8928 decay to GOT_DISP, so we'll need a GOT entry for it. */
8929 /* Fall through. */
8931 case R_MIPS_GOT_DISP:
8932 case R_MICROMIPS_GOT_DISP:
8933 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8934 false, r_type))
8935 return false;
8936 break;
8938 case R_MIPS_TLS_GOTTPREL:
8939 case R_MIPS16_TLS_GOTTPREL:
8940 case R_MICROMIPS_TLS_GOTTPREL:
8941 if (bfd_link_pic (info))
8942 info->flags |= DF_STATIC_TLS;
8943 /* Fall through */
8945 case R_MIPS_TLS_LDM:
8946 case R_MIPS16_TLS_LDM:
8947 case R_MICROMIPS_TLS_LDM:
8948 if (tls_ldm_reloc_p (r_type))
8950 r_symndx = STN_UNDEF;
8951 h = NULL;
8953 /* Fall through */
8955 case R_MIPS_TLS_GD:
8956 case R_MIPS16_TLS_GD:
8957 case R_MICROMIPS_TLS_GD:
8958 /* This symbol requires a global offset table entry, or two
8959 for TLS GD relocations. */
8960 if (h != NULL)
8962 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8963 false, r_type))
8964 return false;
8966 else
8968 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8969 rel->r_addend,
8970 info, r_type))
8971 return false;
8973 break;
8975 case R_MIPS_32:
8976 case R_MIPS_REL32:
8977 case R_MIPS_64:
8978 /* In VxWorks executables, references to external symbols
8979 are handled using copy relocs or PLT stubs, so there's
8980 no need to add a .rela.dyn entry for this relocation. */
8981 if (can_make_dynamic_p)
8983 if (sreloc == NULL)
8985 sreloc = mips_elf_rel_dyn_section (info, true);
8986 if (sreloc == NULL)
8987 return false;
8989 if (bfd_link_pic (info) && h == NULL)
8991 /* When creating a shared object, we must copy these
8992 reloc types into the output file as R_MIPS_REL32
8993 relocs. Make room for this reloc in .rel(a).dyn. */
8994 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8995 if (MIPS_ELF_READONLY_SECTION (sec))
8996 /* We tell the dynamic linker that there are
8997 relocations against the text segment. */
8998 info->flags |= DF_TEXTREL;
9000 else
9002 struct mips_elf_link_hash_entry *hmips;
9004 /* For a shared object, we must copy this relocation
9005 unless the symbol turns out to be undefined and
9006 weak with non-default visibility, in which case
9007 it will be left as zero.
9009 We could elide R_MIPS_REL32 for locally binding symbols
9010 in shared libraries, but do not yet do so.
9012 For an executable, we only need to copy this
9013 reloc if the symbol is defined in a dynamic
9014 object. */
9015 hmips = (struct mips_elf_link_hash_entry *) h;
9016 ++hmips->possibly_dynamic_relocs;
9017 if (MIPS_ELF_READONLY_SECTION (sec))
9018 /* We need it to tell the dynamic linker if there
9019 are relocations against the text segment. */
9020 hmips->readonly_reloc = true;
9024 if (SGI_COMPAT (abfd))
9025 mips_elf_hash_table (info)->compact_rel_size +=
9026 sizeof (Elf32_External_crinfo);
9027 break;
9029 case R_MIPS_26:
9030 case R_MIPS_GPREL16:
9031 case R_MIPS_LITERAL:
9032 case R_MIPS_GPREL32:
9033 case R_MICROMIPS_26_S1:
9034 case R_MICROMIPS_GPREL16:
9035 case R_MICROMIPS_LITERAL:
9036 case R_MICROMIPS_GPREL7_S2:
9037 if (SGI_COMPAT (abfd))
9038 mips_elf_hash_table (info)->compact_rel_size +=
9039 sizeof (Elf32_External_crinfo);
9040 break;
9042 /* This relocation describes the C++ object vtable hierarchy.
9043 Reconstruct it for later use during GC. */
9044 case R_MIPS_GNU_VTINHERIT:
9045 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9046 return false;
9047 break;
9049 /* This relocation describes which C++ vtable entries are actually
9050 used. Record for later use during GC. */
9051 case R_MIPS_GNU_VTENTRY:
9052 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9053 return false;
9054 break;
9056 default:
9057 break;
9060 /* Record the need for a PLT entry. At this point we don't know
9061 yet if we are going to create a PLT in the first place, but
9062 we only record whether the relocation requires a standard MIPS
9063 or a compressed code entry anyway. If we don't make a PLT after
9064 all, then we'll just ignore these arrangements. Likewise if
9065 a PLT entry is not created because the symbol is satisfied
9066 locally. */
9067 if (h != NULL
9068 && (branch_reloc_p (r_type)
9069 || mips16_branch_reloc_p (r_type)
9070 || micromips_branch_reloc_p (r_type))
9071 && !SYMBOL_CALLS_LOCAL (info, h))
9073 if (h->plt.plist == NULL)
9074 h->plt.plist = mips_elf_make_plt_record (abfd);
9075 if (h->plt.plist == NULL)
9076 return false;
9078 if (branch_reloc_p (r_type))
9079 h->plt.plist->need_mips = true;
9080 else
9081 h->plt.plist->need_comp = true;
9084 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9085 if there is one. We only need to handle global symbols here;
9086 we decide whether to keep or delete stubs for local symbols
9087 when processing the stub's relocations. */
9088 if (h != NULL
9089 && !mips16_call_reloc_p (r_type)
9090 && !section_allows_mips16_refs_p (sec))
9092 struct mips_elf_link_hash_entry *mh;
9094 mh = (struct mips_elf_link_hash_entry *) h;
9095 mh->need_fn_stub = true;
9098 /* Refuse some position-dependent relocations when creating a
9099 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9100 not PIC, but we can create dynamic relocations and the result
9101 will be fine. Also do not refuse R_MIPS_LO16, which can be
9102 combined with R_MIPS_GOT16. */
9103 if (bfd_link_pic (info))
9105 switch (r_type)
9107 case R_MIPS_TLS_TPREL_HI16:
9108 case R_MIPS16_TLS_TPREL_HI16:
9109 case R_MICROMIPS_TLS_TPREL_HI16:
9110 case R_MIPS_TLS_TPREL_LO16:
9111 case R_MIPS16_TLS_TPREL_LO16:
9112 case R_MICROMIPS_TLS_TPREL_LO16:
9113 /* These are okay in PIE, but not in a shared library. */
9114 if (bfd_link_executable (info))
9115 break;
9117 /* FALLTHROUGH */
9119 case R_MIPS16_HI16:
9120 case R_MIPS_HI16:
9121 case R_MIPS_HIGHER:
9122 case R_MIPS_HIGHEST:
9123 case R_MICROMIPS_HI16:
9124 case R_MICROMIPS_HIGHER:
9125 case R_MICROMIPS_HIGHEST:
9126 /* Don't refuse a high part relocation if it's against
9127 no symbol (e.g. part of a compound relocation). */
9128 if (r_symndx == STN_UNDEF)
9129 break;
9131 /* Likewise an absolute symbol. */
9132 if (h != NULL && bfd_is_abs_symbol (&h->root))
9133 break;
9135 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9136 and has a special meaning. */
9137 if (!NEWABI_P (abfd) && h != NULL
9138 && strcmp (h->root.root.string, "_gp_disp") == 0)
9139 break;
9141 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9142 if (is_gott_symbol (info, h))
9143 break;
9145 /* FALLTHROUGH */
9147 case R_MIPS16_26:
9148 case R_MIPS_26:
9149 case R_MICROMIPS_26_S1:
9150 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9151 /* An error for unsupported relocations is raised as part
9152 of the above search, so we can skip the following. */
9153 if (howto != NULL)
9154 info->callbacks->einfo
9155 /* xgettext:c-format */
9156 (_("%X%H: relocation %s against `%s' cannot be used"
9157 " when making a shared object; recompile with -fPIC\n"),
9158 abfd, sec, rel->r_offset, howto->name,
9159 (h) ? h->root.root.string : "a local symbol");
9160 break;
9161 default:
9162 break;
9167 return true;
9170 /* Allocate space for global sym dynamic relocs. */
9172 static bool
9173 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9175 struct bfd_link_info *info = inf;
9176 bfd *dynobj;
9177 struct mips_elf_link_hash_entry *hmips;
9178 struct mips_elf_link_hash_table *htab;
9180 htab = mips_elf_hash_table (info);
9181 BFD_ASSERT (htab != NULL);
9183 dynobj = elf_hash_table (info)->dynobj;
9184 hmips = (struct mips_elf_link_hash_entry *) h;
9186 /* VxWorks executables are handled elsewhere; we only need to
9187 allocate relocations in shared objects. */
9188 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9189 return true;
9191 /* Ignore indirect symbols. All relocations against such symbols
9192 will be redirected to the target symbol. */
9193 if (h->root.type == bfd_link_hash_indirect)
9194 return true;
9196 /* If this symbol is defined in a dynamic object, or we are creating
9197 a shared library, we will need to copy any R_MIPS_32 or
9198 R_MIPS_REL32 relocs against it into the output file. */
9199 if (! bfd_link_relocatable (info)
9200 && hmips->possibly_dynamic_relocs != 0
9201 && (h->root.type == bfd_link_hash_defweak
9202 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9203 || bfd_link_pic (info)))
9205 bool do_copy = true;
9207 if (h->root.type == bfd_link_hash_undefweak)
9209 /* Do not copy relocations for undefined weak symbols that
9210 we are not going to export. */
9211 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9212 do_copy = false;
9214 /* Make sure undefined weak symbols are output as a dynamic
9215 symbol in PIEs. */
9216 else if (h->dynindx == -1 && !h->forced_local)
9218 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9219 return false;
9223 if (do_copy)
9225 /* Even though we don't directly need a GOT entry for this symbol,
9226 the SVR4 psABI requires it to have a dynamic symbol table
9227 index greater that DT_MIPS_GOTSYM if there are dynamic
9228 relocations against it.
9230 VxWorks does not enforce the same mapping between the GOT
9231 and the symbol table, so the same requirement does not
9232 apply there. */
9233 if (htab->root.target_os != is_vxworks)
9235 if (hmips->global_got_area > GGA_RELOC_ONLY)
9236 hmips->global_got_area = GGA_RELOC_ONLY;
9237 hmips->got_only_for_calls = false;
9240 mips_elf_allocate_dynamic_relocations
9241 (dynobj, info, hmips->possibly_dynamic_relocs);
9242 if (hmips->readonly_reloc)
9243 /* We tell the dynamic linker that there are relocations
9244 against the text segment. */
9245 info->flags |= DF_TEXTREL;
9249 return true;
9252 /* Adjust a symbol defined by a dynamic object and referenced by a
9253 regular object. The current definition is in some section of the
9254 dynamic object, but we're not including those sections. We have to
9255 change the definition to something the rest of the link can
9256 understand. */
9258 bool
9259 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9260 struct elf_link_hash_entry *h)
9262 bfd *dynobj;
9263 struct mips_elf_link_hash_entry *hmips;
9264 struct mips_elf_link_hash_table *htab;
9265 asection *s, *srel;
9267 htab = mips_elf_hash_table (info);
9268 BFD_ASSERT (htab != NULL);
9270 dynobj = elf_hash_table (info)->dynobj;
9271 hmips = (struct mips_elf_link_hash_entry *) h;
9273 /* Make sure we know what is going on here. */
9274 if (dynobj == NULL
9275 || (! h->needs_plt
9276 && ! h->is_weakalias
9277 && (! h->def_dynamic
9278 || ! h->ref_regular
9279 || h->def_regular)))
9281 if (h->type == STT_GNU_IFUNC)
9282 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9283 h->root.root.string);
9284 else
9285 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9286 h->root.root.string);
9287 return true;
9290 hmips = (struct mips_elf_link_hash_entry *) h;
9292 /* If there are call relocations against an externally-defined symbol,
9293 see whether we can create a MIPS lazy-binding stub for it. We can
9294 only do this if all references to the function are through call
9295 relocations, and in that case, the traditional lazy-binding stubs
9296 are much more efficient than PLT entries.
9298 Traditional stubs are only available on SVR4 psABI-based systems;
9299 VxWorks always uses PLTs instead. */
9300 if (htab->root.target_os != is_vxworks
9301 && h->needs_plt
9302 && !hmips->no_fn_stub)
9304 if (! elf_hash_table (info)->dynamic_sections_created)
9305 return true;
9307 /* If this symbol is not defined in a regular file, then set
9308 the symbol to the stub location. This is required to make
9309 function pointers compare as equal between the normal
9310 executable and the shared library. */
9311 if (!h->def_regular
9312 && !bfd_is_abs_section (htab->sstubs->output_section))
9314 hmips->needs_lazy_stub = true;
9315 htab->lazy_stub_count++;
9316 return true;
9319 /* As above, VxWorks requires PLT entries for externally-defined
9320 functions that are only accessed through call relocations.
9322 Both VxWorks and non-VxWorks targets also need PLT entries if there
9323 are static-only relocations against an externally-defined function.
9324 This can technically occur for shared libraries if there are
9325 branches to the symbol, although it is unlikely that this will be
9326 used in practice due to the short ranges involved. It can occur
9327 for any relative or absolute relocation in executables; in that
9328 case, the PLT entry becomes the function's canonical address. */
9329 else if (((h->needs_plt && !hmips->no_fn_stub)
9330 || (h->type == STT_FUNC && hmips->has_static_relocs))
9331 && htab->use_plts_and_copy_relocs
9332 && !SYMBOL_CALLS_LOCAL (info, h)
9333 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9334 && h->root.type == bfd_link_hash_undefweak))
9336 bool micromips_p = MICROMIPS_P (info->output_bfd);
9337 bool newabi_p = NEWABI_P (info->output_bfd);
9339 /* If this is the first symbol to need a PLT entry, then make some
9340 basic setup. Also work out PLT entry sizes. We'll need them
9341 for PLT offset calculations. */
9342 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9344 BFD_ASSERT (htab->root.sgotplt->size == 0);
9345 BFD_ASSERT (htab->plt_got_index == 0);
9347 /* If we're using the PLT additions to the psABI, each PLT
9348 entry is 16 bytes and the PLT0 entry is 32 bytes.
9349 Encourage better cache usage by aligning. We do this
9350 lazily to avoid pessimizing traditional objects. */
9351 if (htab->root.target_os != is_vxworks
9352 && !bfd_set_section_alignment (htab->root.splt, 5))
9353 return false;
9355 /* Make sure that .got.plt is word-aligned. We do this lazily
9356 for the same reason as above. */
9357 if (!bfd_set_section_alignment (htab->root.sgotplt,
9358 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9359 return false;
9361 /* On non-VxWorks targets, the first two entries in .got.plt
9362 are reserved. */
9363 if (htab->root.target_os != is_vxworks)
9364 htab->plt_got_index
9365 += (get_elf_backend_data (dynobj)->got_header_size
9366 / MIPS_ELF_GOT_SIZE (dynobj));
9368 /* On VxWorks, also allocate room for the header's
9369 .rela.plt.unloaded entries. */
9370 if (htab->root.target_os == is_vxworks
9371 && !bfd_link_pic (info))
9372 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9374 /* Now work out the sizes of individual PLT entries. */
9375 if (htab->root.target_os == is_vxworks
9376 && bfd_link_pic (info))
9377 htab->plt_mips_entry_size
9378 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9379 else if (htab->root.target_os == is_vxworks)
9380 htab->plt_mips_entry_size
9381 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9382 else if (newabi_p)
9383 htab->plt_mips_entry_size
9384 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9385 else if (!micromips_p)
9387 htab->plt_mips_entry_size
9388 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9389 htab->plt_comp_entry_size
9390 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9392 else if (htab->insn32)
9394 htab->plt_mips_entry_size
9395 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9396 htab->plt_comp_entry_size
9397 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9399 else
9401 htab->plt_mips_entry_size
9402 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9403 htab->plt_comp_entry_size
9404 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9408 if (h->plt.plist == NULL)
9409 h->plt.plist = mips_elf_make_plt_record (dynobj);
9410 if (h->plt.plist == NULL)
9411 return false;
9413 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9414 n32 or n64, so always use a standard entry there.
9416 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9417 all MIPS16 calls will go via that stub, and there is no benefit
9418 to having a MIPS16 entry. And in the case of call_stub a
9419 standard entry actually has to be used as the stub ends with a J
9420 instruction. */
9421 if (newabi_p
9422 || htab->root.target_os == is_vxworks
9423 || hmips->call_stub
9424 || hmips->call_fp_stub)
9426 h->plt.plist->need_mips = true;
9427 h->plt.plist->need_comp = false;
9430 /* Otherwise, if there are no direct calls to the function, we
9431 have a free choice of whether to use standard or compressed
9432 entries. Prefer microMIPS entries if the object is known to
9433 contain microMIPS code, so that it becomes possible to create
9434 pure microMIPS binaries. Prefer standard entries otherwise,
9435 because MIPS16 ones are no smaller and are usually slower. */
9436 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9438 if (micromips_p)
9439 h->plt.plist->need_comp = true;
9440 else
9441 h->plt.plist->need_mips = true;
9444 if (h->plt.plist->need_mips)
9446 h->plt.plist->mips_offset = htab->plt_mips_offset;
9447 htab->plt_mips_offset += htab->plt_mips_entry_size;
9449 if (h->plt.plist->need_comp)
9451 h->plt.plist->comp_offset = htab->plt_comp_offset;
9452 htab->plt_comp_offset += htab->plt_comp_entry_size;
9455 /* Reserve the corresponding .got.plt entry now too. */
9456 h->plt.plist->gotplt_index = htab->plt_got_index++;
9458 /* If the output file has no definition of the symbol, set the
9459 symbol's value to the address of the stub. */
9460 if (!bfd_link_pic (info) && !h->def_regular)
9461 hmips->use_plt_entry = true;
9463 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9464 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9465 ? MIPS_ELF_RELA_SIZE (dynobj)
9466 : MIPS_ELF_REL_SIZE (dynobj));
9468 /* Make room for the .rela.plt.unloaded relocations. */
9469 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9470 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9472 /* All relocations against this symbol that could have been made
9473 dynamic will now refer to the PLT entry instead. */
9474 hmips->possibly_dynamic_relocs = 0;
9476 return true;
9479 /* If this is a weak symbol, and there is a real definition, the
9480 processor independent code will have arranged for us to see the
9481 real definition first, and we can just use the same value. */
9482 if (h->is_weakalias)
9484 struct elf_link_hash_entry *def = weakdef (h);
9485 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9486 h->root.u.def.section = def->root.u.def.section;
9487 h->root.u.def.value = def->root.u.def.value;
9488 return true;
9491 /* Otherwise, there is nothing further to do for symbols defined
9492 in regular objects. */
9493 if (h->def_regular)
9494 return true;
9496 /* There's also nothing more to do if we'll convert all relocations
9497 against this symbol into dynamic relocations. */
9498 if (!hmips->has_static_relocs)
9499 return true;
9501 /* We're now relying on copy relocations. Complain if we have
9502 some that we can't convert. */
9503 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9505 _bfd_error_handler (_("non-dynamic relocations refer to "
9506 "dynamic symbol %s"),
9507 h->root.root.string);
9508 bfd_set_error (bfd_error_bad_value);
9509 return false;
9512 /* We must allocate the symbol in our .dynbss section, which will
9513 become part of the .bss section of the executable. There will be
9514 an entry for this symbol in the .dynsym section. The dynamic
9515 object will contain position independent code, so all references
9516 from the dynamic object to this symbol will go through the global
9517 offset table. The dynamic linker will use the .dynsym entry to
9518 determine the address it must put in the global offset table, so
9519 both the dynamic object and the regular object will refer to the
9520 same memory location for the variable. */
9522 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9524 s = htab->root.sdynrelro;
9525 srel = htab->root.sreldynrelro;
9527 else
9529 s = htab->root.sdynbss;
9530 srel = htab->root.srelbss;
9532 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9534 if (htab->root.target_os == is_vxworks)
9535 srel->size += sizeof (Elf32_External_Rela);
9536 else
9537 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9538 h->needs_copy = 1;
9541 /* All relocations against this symbol that could have been made
9542 dynamic will now refer to the local copy instead. */
9543 hmips->possibly_dynamic_relocs = 0;
9545 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9548 /* This function is called after all the input files have been read,
9549 and the input sections have been assigned to output sections. We
9550 check for any mips16 stub sections that we can discard. */
9552 bool
9553 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9554 struct bfd_link_info *info)
9556 asection *sect;
9557 struct mips_elf_link_hash_table *htab;
9558 struct mips_htab_traverse_info hti;
9560 htab = mips_elf_hash_table (info);
9561 BFD_ASSERT (htab != NULL);
9563 /* The .reginfo section has a fixed size. */
9564 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9565 if (sect != NULL)
9567 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9568 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9571 /* The .MIPS.abiflags section has a fixed size. */
9572 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9573 if (sect != NULL)
9575 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9576 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9579 hti.info = info;
9580 hti.output_bfd = output_bfd;
9581 hti.error = false;
9582 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9583 mips_elf_check_symbols, &hti);
9584 if (hti.error)
9585 return false;
9587 return true;
9590 /* If the link uses a GOT, lay it out and work out its size. */
9592 static bool
9593 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9595 bfd *dynobj;
9596 asection *s;
9597 struct mips_got_info *g;
9598 bfd_size_type loadable_size = 0;
9599 bfd_size_type page_gotno;
9600 bfd *ibfd;
9601 struct mips_elf_traverse_got_arg tga;
9602 struct mips_elf_link_hash_table *htab;
9604 htab = mips_elf_hash_table (info);
9605 BFD_ASSERT (htab != NULL);
9607 s = htab->root.sgot;
9608 if (s == NULL)
9609 return true;
9611 dynobj = elf_hash_table (info)->dynobj;
9612 g = htab->got_info;
9614 /* Allocate room for the reserved entries. VxWorks always reserves
9615 3 entries; other objects only reserve 2 entries. */
9616 BFD_ASSERT (g->assigned_low_gotno == 0);
9617 if (htab->root.target_os == is_vxworks)
9618 htab->reserved_gotno = 3;
9619 else
9620 htab->reserved_gotno = 2;
9621 g->local_gotno += htab->reserved_gotno;
9622 g->assigned_low_gotno = htab->reserved_gotno;
9624 /* Decide which symbols need to go in the global part of the GOT and
9625 count the number of reloc-only GOT symbols. */
9626 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9628 if (!mips_elf_resolve_final_got_entries (info, g))
9629 return false;
9631 /* Calculate the total loadable size of the output. That
9632 will give us the maximum number of GOT_PAGE entries
9633 required. */
9634 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9636 asection *subsection;
9638 for (subsection = ibfd->sections;
9639 subsection;
9640 subsection = subsection->next)
9642 if ((subsection->flags & SEC_ALLOC) == 0)
9643 continue;
9644 loadable_size += ((subsection->size + 0xf)
9645 &~ (bfd_size_type) 0xf);
9649 if (htab->root.target_os == is_vxworks)
9650 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9651 relocations against local symbols evaluate to "G", and the EABI does
9652 not include R_MIPS_GOT_PAGE. */
9653 page_gotno = 0;
9654 else
9655 /* Assume there are two loadable segments consisting of contiguous
9656 sections. Is 5 enough? */
9657 page_gotno = (loadable_size >> 16) + 5;
9659 /* Choose the smaller of the two page estimates; both are intended to be
9660 conservative. */
9661 if (page_gotno > g->page_gotno)
9662 page_gotno = g->page_gotno;
9664 g->local_gotno += page_gotno;
9665 g->assigned_high_gotno = g->local_gotno - 1;
9667 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9668 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9669 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9671 /* VxWorks does not support multiple GOTs. It initializes $gp to
9672 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9673 dynamic loader. */
9674 if (htab->root.target_os != is_vxworks
9675 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9677 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9678 return false;
9680 else
9682 /* Record that all bfds use G. This also has the effect of freeing
9683 the per-bfd GOTs, which we no longer need. */
9684 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9685 if (mips_elf_bfd_got (ibfd, false))
9686 mips_elf_replace_bfd_got (ibfd, g);
9687 mips_elf_replace_bfd_got (output_bfd, g);
9689 /* Set up TLS entries. */
9690 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9691 tga.info = info;
9692 tga.g = g;
9693 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9694 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9695 if (!tga.g)
9696 return false;
9697 BFD_ASSERT (g->tls_assigned_gotno
9698 == g->global_gotno + g->local_gotno + g->tls_gotno);
9700 /* Each VxWorks GOT entry needs an explicit relocation. */
9701 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9702 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9704 /* Allocate room for the TLS relocations. */
9705 if (g->relocs)
9706 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9709 return true;
9712 /* Estimate the size of the .MIPS.stubs section. */
9714 static void
9715 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9717 struct mips_elf_link_hash_table *htab;
9718 bfd_size_type dynsymcount;
9720 htab = mips_elf_hash_table (info);
9721 BFD_ASSERT (htab != NULL);
9723 if (htab->lazy_stub_count == 0)
9724 return;
9726 /* IRIX rld assumes that a function stub isn't at the end of the .text
9727 section, so add a dummy entry to the end. */
9728 htab->lazy_stub_count++;
9730 /* Get a worst-case estimate of the number of dynamic symbols needed.
9731 At this point, dynsymcount does not account for section symbols
9732 and count_section_dynsyms may overestimate the number that will
9733 be needed. */
9734 dynsymcount = (elf_hash_table (info)->dynsymcount
9735 + count_section_dynsyms (output_bfd, info));
9737 /* Determine the size of one stub entry. There's no disadvantage
9738 from using microMIPS code here, so for the sake of pure-microMIPS
9739 binaries we prefer it whenever there's any microMIPS code in
9740 output produced at all. This has a benefit of stubs being
9741 shorter by 4 bytes each too, unless in the insn32 mode. */
9742 if (!MICROMIPS_P (output_bfd))
9743 htab->function_stub_size = (dynsymcount > 0x10000
9744 ? MIPS_FUNCTION_STUB_BIG_SIZE
9745 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9746 else if (htab->insn32)
9747 htab->function_stub_size = (dynsymcount > 0x10000
9748 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9749 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9750 else
9751 htab->function_stub_size = (dynsymcount > 0x10000
9752 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9753 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9755 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9758 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9759 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9760 stub, allocate an entry in the stubs section. */
9762 static bool
9763 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9765 struct mips_htab_traverse_info *hti = data;
9766 struct mips_elf_link_hash_table *htab;
9767 struct bfd_link_info *info;
9768 bfd *output_bfd;
9770 info = hti->info;
9771 output_bfd = hti->output_bfd;
9772 htab = mips_elf_hash_table (info);
9773 BFD_ASSERT (htab != NULL);
9775 if (h->needs_lazy_stub)
9777 bool micromips_p = MICROMIPS_P (output_bfd);
9778 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9779 bfd_vma isa_bit = micromips_p;
9781 BFD_ASSERT (htab->root.dynobj != NULL);
9782 if (h->root.plt.plist == NULL)
9783 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9784 if (h->root.plt.plist == NULL)
9786 hti->error = true;
9787 return false;
9789 h->root.root.u.def.section = htab->sstubs;
9790 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9791 h->root.plt.plist->stub_offset = htab->sstubs->size;
9792 h->root.other = other;
9793 htab->sstubs->size += htab->function_stub_size;
9795 return true;
9798 /* Allocate offsets in the stubs section to each symbol that needs one.
9799 Set the final size of the .MIPS.stub section. */
9801 static bool
9802 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9804 bfd *output_bfd = info->output_bfd;
9805 bool micromips_p = MICROMIPS_P (output_bfd);
9806 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9807 bfd_vma isa_bit = micromips_p;
9808 struct mips_elf_link_hash_table *htab;
9809 struct mips_htab_traverse_info hti;
9810 struct elf_link_hash_entry *h;
9811 bfd *dynobj;
9813 htab = mips_elf_hash_table (info);
9814 BFD_ASSERT (htab != NULL);
9816 if (htab->lazy_stub_count == 0)
9817 return true;
9819 htab->sstubs->size = 0;
9820 hti.info = info;
9821 hti.output_bfd = output_bfd;
9822 hti.error = false;
9823 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9824 if (hti.error)
9825 return false;
9826 htab->sstubs->size += htab->function_stub_size;
9827 BFD_ASSERT (htab->sstubs->size
9828 == htab->lazy_stub_count * htab->function_stub_size);
9830 dynobj = elf_hash_table (info)->dynobj;
9831 BFD_ASSERT (dynobj != NULL);
9832 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9833 if (h == NULL)
9834 return false;
9835 h->root.u.def.value = isa_bit;
9836 h->other = other;
9837 h->type = STT_FUNC;
9839 return true;
9842 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9843 bfd_link_info. If H uses the address of a PLT entry as the value
9844 of the symbol, then set the entry in the symbol table now. Prefer
9845 a standard MIPS PLT entry. */
9847 static bool
9848 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9850 struct bfd_link_info *info = data;
9851 bool micromips_p = MICROMIPS_P (info->output_bfd);
9852 struct mips_elf_link_hash_table *htab;
9853 unsigned int other;
9854 bfd_vma isa_bit;
9855 bfd_vma val;
9857 htab = mips_elf_hash_table (info);
9858 BFD_ASSERT (htab != NULL);
9860 if (h->use_plt_entry)
9862 BFD_ASSERT (h->root.plt.plist != NULL);
9863 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9864 || h->root.plt.plist->comp_offset != MINUS_ONE);
9866 val = htab->plt_header_size;
9867 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9869 isa_bit = 0;
9870 val += h->root.plt.plist->mips_offset;
9871 other = 0;
9873 else
9875 isa_bit = 1;
9876 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9877 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9879 val += isa_bit;
9880 /* For VxWorks, point at the PLT load stub rather than the lazy
9881 resolution stub; this stub will become the canonical function
9882 address. */
9883 if (htab->root.target_os == is_vxworks)
9884 val += 8;
9886 h->root.root.u.def.section = htab->root.splt;
9887 h->root.root.u.def.value = val;
9888 h->root.other = other;
9891 return true;
9894 /* Set the sizes of the dynamic sections. */
9896 bool
9897 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9898 struct bfd_link_info *info)
9900 bfd *dynobj;
9901 asection *s, *sreldyn;
9902 bool reltext;
9903 struct mips_elf_link_hash_table *htab;
9905 htab = mips_elf_hash_table (info);
9906 BFD_ASSERT (htab != NULL);
9907 dynobj = elf_hash_table (info)->dynobj;
9908 BFD_ASSERT (dynobj != NULL);
9910 if (elf_hash_table (info)->dynamic_sections_created)
9912 /* Set the contents of the .interp section to the interpreter. */
9913 if (bfd_link_executable (info) && !info->nointerp)
9915 s = bfd_get_linker_section (dynobj, ".interp");
9916 BFD_ASSERT (s != NULL);
9917 s->size
9918 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9919 s->contents
9920 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9923 /* Figure out the size of the PLT header if we know that we
9924 are using it. For the sake of cache alignment always use
9925 a standard header whenever any standard entries are present
9926 even if microMIPS entries are present as well. This also
9927 lets the microMIPS header rely on the value of $v0 only set
9928 by microMIPS entries, for a small size reduction.
9930 Set symbol table entry values for symbols that use the
9931 address of their PLT entry now that we can calculate it.
9933 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9934 haven't already in _bfd_elf_create_dynamic_sections. */
9935 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9937 bool micromips_p = (MICROMIPS_P (output_bfd)
9938 && !htab->plt_mips_offset);
9939 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9940 bfd_vma isa_bit = micromips_p;
9941 struct elf_link_hash_entry *h;
9942 bfd_vma size;
9944 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9945 BFD_ASSERT (htab->root.sgotplt->size == 0);
9946 BFD_ASSERT (htab->root.splt->size == 0);
9948 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9949 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9950 else if (htab->root.target_os == is_vxworks)
9951 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9952 else if (ABI_64_P (output_bfd))
9953 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9954 else if (ABI_N32_P (output_bfd))
9955 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9956 else if (!micromips_p)
9957 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9958 else if (htab->insn32)
9959 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9960 else
9961 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9963 htab->plt_header_is_comp = micromips_p;
9964 htab->plt_header_size = size;
9965 htab->root.splt->size = (size
9966 + htab->plt_mips_offset
9967 + htab->plt_comp_offset);
9968 htab->root.sgotplt->size = (htab->plt_got_index
9969 * MIPS_ELF_GOT_SIZE (dynobj));
9971 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9973 if (htab->root.hplt == NULL)
9975 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9976 "_PROCEDURE_LINKAGE_TABLE_");
9977 htab->root.hplt = h;
9978 if (h == NULL)
9979 return false;
9982 h = htab->root.hplt;
9983 h->root.u.def.value = isa_bit;
9984 h->other = other;
9985 h->type = STT_FUNC;
9989 /* Allocate space for global sym dynamic relocs. */
9990 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9992 mips_elf_estimate_stub_size (output_bfd, info);
9994 if (!mips_elf_lay_out_got (output_bfd, info))
9995 return false;
9997 mips_elf_lay_out_lazy_stubs (info);
9999 /* The check_relocs and adjust_dynamic_symbol entry points have
10000 determined the sizes of the various dynamic sections. Allocate
10001 memory for them. */
10002 reltext = false;
10003 for (s = dynobj->sections; s != NULL; s = s->next)
10005 const char *name;
10007 /* It's OK to base decisions on the section name, because none
10008 of the dynobj section names depend upon the input files. */
10009 name = bfd_section_name (s);
10011 if ((s->flags & SEC_LINKER_CREATED) == 0)
10012 continue;
10014 if (startswith (name, ".rel"))
10016 if (s->size != 0)
10018 const char *outname;
10019 asection *target;
10021 /* If this relocation section applies to a read only
10022 section, then we probably need a DT_TEXTREL entry.
10023 If the relocation section is .rel(a).dyn, we always
10024 assert a DT_TEXTREL entry rather than testing whether
10025 there exists a relocation to a read only section or
10026 not. */
10027 outname = bfd_section_name (s->output_section);
10028 target = bfd_get_section_by_name (output_bfd, outname + 4);
10029 if ((target != NULL
10030 && (target->flags & SEC_READONLY) != 0
10031 && (target->flags & SEC_ALLOC) != 0)
10032 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10033 reltext = true;
10035 /* We use the reloc_count field as a counter if we need
10036 to copy relocs into the output file. */
10037 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10038 s->reloc_count = 0;
10040 /* If combreloc is enabled, elf_link_sort_relocs() will
10041 sort relocations, but in a different way than we do,
10042 and before we're done creating relocations. Also, it
10043 will move them around between input sections'
10044 relocation's contents, so our sorting would be
10045 broken, so don't let it run. */
10046 info->combreloc = 0;
10049 else if (bfd_link_executable (info)
10050 && ! mips_elf_hash_table (info)->use_rld_obj_head
10051 && startswith (name, ".rld_map"))
10053 /* We add a room for __rld_map. It will be filled in by the
10054 rtld to contain a pointer to the _r_debug structure. */
10055 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10057 else if (SGI_COMPAT (output_bfd)
10058 && startswith (name, ".compact_rel"))
10059 s->size += mips_elf_hash_table (info)->compact_rel_size;
10060 else if (s == htab->root.splt)
10062 /* If the last PLT entry has a branch delay slot, allocate
10063 room for an extra nop to fill the delay slot. This is
10064 for CPUs without load interlocking. */
10065 if (! LOAD_INTERLOCKS_P (output_bfd)
10066 && htab->root.target_os != is_vxworks
10067 && s->size > 0)
10068 s->size += 4;
10070 else if (! startswith (name, ".init")
10071 && s != htab->root.sgot
10072 && s != htab->root.sgotplt
10073 && s != htab->sstubs
10074 && s != htab->root.sdynbss
10075 && s != htab->root.sdynrelro)
10077 /* It's not one of our sections, so don't allocate space. */
10078 continue;
10081 if (s->size == 0)
10083 s->flags |= SEC_EXCLUDE;
10084 continue;
10087 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10088 continue;
10090 /* Allocate memory for the section contents. */
10091 s->contents = bfd_zalloc (dynobj, s->size);
10092 if (s->contents == NULL)
10094 bfd_set_error (bfd_error_no_memory);
10095 return false;
10099 if (elf_hash_table (info)->dynamic_sections_created)
10101 /* Add some entries to the .dynamic section. We fill in the
10102 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10103 must add the entries now so that we get the correct size for
10104 the .dynamic section. */
10106 /* SGI object has the equivalence of DT_DEBUG in the
10107 DT_MIPS_RLD_MAP entry. This must come first because glibc
10108 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10109 may only look at the first one they see. */
10110 if (!bfd_link_pic (info)
10111 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10112 return false;
10114 if (bfd_link_executable (info)
10115 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10116 return false;
10118 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10119 used by the debugger. */
10120 if (bfd_link_executable (info)
10121 && !SGI_COMPAT (output_bfd)
10122 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10123 return false;
10125 if (reltext
10126 && (SGI_COMPAT (output_bfd)
10127 || htab->root.target_os == is_vxworks))
10128 info->flags |= DF_TEXTREL;
10130 if ((info->flags & DF_TEXTREL) != 0)
10132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10133 return false;
10135 /* Clear the DF_TEXTREL flag. It will be set again if we
10136 write out an actual text relocation; we may not, because
10137 at this point we do not know whether e.g. any .eh_frame
10138 absolute relocations have been converted to PC-relative. */
10139 info->flags &= ~DF_TEXTREL;
10142 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10143 return false;
10145 sreldyn = mips_elf_rel_dyn_section (info, false);
10146 if (htab->root.target_os == is_vxworks)
10148 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10149 use any of the DT_MIPS_* tags. */
10150 if (sreldyn && sreldyn->size > 0)
10152 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10153 return false;
10155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10156 return false;
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10159 return false;
10162 else
10164 if (sreldyn && sreldyn->size > 0
10165 && !bfd_is_abs_section (sreldyn->output_section))
10167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10168 return false;
10170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10171 return false;
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10174 return false;
10177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10178 return false;
10180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10181 return false;
10183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10184 return false;
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10187 return false;
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10190 return false;
10192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10193 return false;
10195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10196 return false;
10198 if (info->emit_gnu_hash
10199 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10200 return false;
10202 if (IRIX_COMPAT (dynobj) == ict_irix5
10203 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10204 return false;
10206 if (IRIX_COMPAT (dynobj) == ict_irix6
10207 && (bfd_get_section_by_name
10208 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10210 return false;
10212 if (htab->root.splt->size > 0)
10214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10215 return false;
10217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10218 return false;
10220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10221 return false;
10223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10224 return false;
10226 if (htab->root.target_os == is_vxworks
10227 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10228 return false;
10231 return true;
10234 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10235 Adjust its R_ADDEND field so that it is correct for the output file.
10236 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10237 and sections respectively; both use symbol indexes. */
10239 static void
10240 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10241 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10242 asection **local_sections, Elf_Internal_Rela *rel)
10244 unsigned int r_type, r_symndx;
10245 Elf_Internal_Sym *sym;
10246 asection *sec;
10248 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10250 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10251 if (gprel16_reloc_p (r_type)
10252 || r_type == R_MIPS_GPREL32
10253 || literal_reloc_p (r_type))
10255 rel->r_addend += _bfd_get_gp_value (input_bfd);
10256 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10259 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10260 sym = local_syms + r_symndx;
10262 /* Adjust REL's addend to account for section merging. */
10263 if (!bfd_link_relocatable (info))
10265 sec = local_sections[r_symndx];
10266 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10269 /* This would normally be done by the rela_normal code in elflink.c. */
10270 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10271 rel->r_addend += local_sections[r_symndx]->output_offset;
10275 /* Handle relocations against symbols from removed linkonce sections,
10276 or sections discarded by a linker script. We use this wrapper around
10277 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10278 on 64-bit ELF targets. In this case for any relocation handled, which
10279 always be the first in a triplet, the remaining two have to be processed
10280 together with the first, even if they are R_MIPS_NONE. It is the symbol
10281 index referred by the first reloc that applies to all the three and the
10282 remaining two never refer to an object symbol. And it is the final
10283 relocation (the last non-null one) that determines the output field of
10284 the whole relocation so retrieve the corresponding howto structure for
10285 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10287 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10288 and therefore requires to be pasted in a loop. It also defines a block
10289 and does not protect any of its arguments, hence the extra brackets. */
10291 static void
10292 mips_reloc_against_discarded_section (bfd *output_bfd,
10293 struct bfd_link_info *info,
10294 bfd *input_bfd, asection *input_section,
10295 Elf_Internal_Rela **rel,
10296 const Elf_Internal_Rela **relend,
10297 bool rel_reloc,
10298 reloc_howto_type *howto,
10299 bfd_byte *contents)
10301 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10302 int count = bed->s->int_rels_per_ext_rel;
10303 unsigned int r_type;
10304 int i;
10306 for (i = count - 1; i > 0; i--)
10308 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10309 if (r_type != R_MIPS_NONE)
10311 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10312 break;
10317 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10318 (*rel), count, (*relend),
10319 howto, i, contents);
10321 while (0);
10324 /* Relocate a MIPS ELF section. */
10327 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10328 bfd *input_bfd, asection *input_section,
10329 bfd_byte *contents, Elf_Internal_Rela *relocs,
10330 Elf_Internal_Sym *local_syms,
10331 asection **local_sections)
10333 Elf_Internal_Rela *rel;
10334 const Elf_Internal_Rela *relend;
10335 bfd_vma addend = 0;
10336 bool use_saved_addend_p = false;
10338 relend = relocs + input_section->reloc_count;
10339 for (rel = relocs; rel < relend; ++rel)
10341 const char *name;
10342 bfd_vma value = 0;
10343 reloc_howto_type *howto;
10344 bool cross_mode_jump_p = false;
10345 /* TRUE if the relocation is a RELA relocation, rather than a
10346 REL relocation. */
10347 bool rela_relocation_p = true;
10348 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10349 const char *msg;
10350 unsigned long r_symndx;
10351 asection *sec;
10352 Elf_Internal_Shdr *symtab_hdr;
10353 struct elf_link_hash_entry *h;
10354 bool rel_reloc;
10356 rel_reloc = (NEWABI_P (input_bfd)
10357 && mips_elf_rel_relocation_p (input_bfd, input_section,
10358 relocs, rel));
10359 /* Find the relocation howto for this relocation. */
10360 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10362 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10363 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10364 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10366 sec = local_sections[r_symndx];
10367 h = NULL;
10369 else
10371 unsigned long extsymoff;
10373 extsymoff = 0;
10374 if (!elf_bad_symtab (input_bfd))
10375 extsymoff = symtab_hdr->sh_info;
10376 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10377 while (h->root.type == bfd_link_hash_indirect
10378 || h->root.type == bfd_link_hash_warning)
10379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10381 sec = NULL;
10382 if (h->root.type == bfd_link_hash_defined
10383 || h->root.type == bfd_link_hash_defweak)
10384 sec = h->root.u.def.section;
10387 if (sec != NULL && discarded_section (sec))
10389 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10390 input_section, &rel, &relend,
10391 rel_reloc, howto, contents);
10392 continue;
10395 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10397 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10398 64-bit code, but make sure all their addresses are in the
10399 lowermost or uppermost 32-bit section of the 64-bit address
10400 space. Thus, when they use an R_MIPS_64 they mean what is
10401 usually meant by R_MIPS_32, with the exception that the
10402 stored value is sign-extended to 64 bits. */
10403 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
10405 /* On big-endian systems, we need to lie about the position
10406 of the reloc. */
10407 if (bfd_big_endian (input_bfd))
10408 rel->r_offset += 4;
10411 if (!use_saved_addend_p)
10413 /* If these relocations were originally of the REL variety,
10414 we must pull the addend out of the field that will be
10415 relocated. Otherwise, we simply use the contents of the
10416 RELA relocation. */
10417 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10418 relocs, rel))
10420 rela_relocation_p = false;
10421 addend = mips_elf_read_rel_addend (input_bfd, rel,
10422 howto, contents);
10423 if (hi16_reloc_p (r_type)
10424 || (got16_reloc_p (r_type)
10425 && mips_elf_local_relocation_p (input_bfd, rel,
10426 local_sections)))
10428 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10429 contents, &addend))
10431 if (h)
10432 name = h->root.root.string;
10433 else
10434 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10435 local_syms + r_symndx,
10436 sec);
10437 _bfd_error_handler
10438 /* xgettext:c-format */
10439 (_("%pB: can't find matching LO16 reloc against `%s'"
10440 " for %s at %#" PRIx64 " in section `%pA'"),
10441 input_bfd, name,
10442 howto->name, (uint64_t) rel->r_offset, input_section);
10445 else
10446 addend <<= howto->rightshift;
10448 else
10449 addend = rel->r_addend;
10450 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10451 local_syms, local_sections, rel);
10454 if (bfd_link_relocatable (info))
10456 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10457 && bfd_big_endian (input_bfd))
10458 rel->r_offset -= 4;
10460 if (!rela_relocation_p && rel->r_addend)
10462 addend += rel->r_addend;
10463 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10464 addend = mips_elf_high (addend);
10465 else if (r_type == R_MIPS_HIGHER)
10466 addend = mips_elf_higher (addend);
10467 else if (r_type == R_MIPS_HIGHEST)
10468 addend = mips_elf_highest (addend);
10469 else
10470 addend >>= howto->rightshift;
10472 /* We use the source mask, rather than the destination
10473 mask because the place to which we are writing will be
10474 source of the addend in the final link. */
10475 addend &= howto->src_mask;
10477 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10478 /* See the comment above about using R_MIPS_64 in the 32-bit
10479 ABI. Here, we need to update the addend. It would be
10480 possible to get away with just using the R_MIPS_32 reloc
10481 but for endianness. */
10483 bfd_vma sign_bits;
10484 bfd_vma low_bits;
10485 bfd_vma high_bits;
10487 if (addend & ((bfd_vma) 1 << 31))
10488 #ifdef BFD64
10489 sign_bits = ((bfd_vma) 1 << 32) - 1;
10490 #else
10491 sign_bits = -1;
10492 #endif
10493 else
10494 sign_bits = 0;
10496 /* If we don't know that we have a 64-bit type,
10497 do two separate stores. */
10498 if (bfd_big_endian (input_bfd))
10500 /* Store the sign-bits (which are most significant)
10501 first. */
10502 low_bits = sign_bits;
10503 high_bits = addend;
10505 else
10507 low_bits = addend;
10508 high_bits = sign_bits;
10510 bfd_put_32 (input_bfd, low_bits,
10511 contents + rel->r_offset);
10512 bfd_put_32 (input_bfd, high_bits,
10513 contents + rel->r_offset + 4);
10514 continue;
10517 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10518 input_bfd, input_section,
10519 contents, false))
10520 return false;
10523 /* Go on to the next relocation. */
10524 continue;
10527 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10528 relocations for the same offset. In that case we are
10529 supposed to treat the output of each relocation as the addend
10530 for the next. */
10531 if (rel + 1 < relend
10532 && rel->r_offset == rel[1].r_offset
10533 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10534 use_saved_addend_p = true;
10535 else
10536 use_saved_addend_p = false;
10538 /* Figure out what value we are supposed to relocate. */
10539 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10540 input_section, contents,
10541 info, rel, addend, howto,
10542 local_syms, local_sections,
10543 &value, &name, &cross_mode_jump_p,
10544 use_saved_addend_p))
10546 case bfd_reloc_continue:
10547 /* There's nothing to do. */
10548 continue;
10550 case bfd_reloc_undefined:
10551 /* mips_elf_calculate_relocation already called the
10552 undefined_symbol callback. There's no real point in
10553 trying to perform the relocation at this point, so we
10554 just skip ahead to the next relocation. */
10555 continue;
10557 case bfd_reloc_notsupported:
10558 msg = _("internal error: unsupported relocation error");
10559 info->callbacks->warning
10560 (info, msg, name, input_bfd, input_section, rel->r_offset);
10561 return false;
10563 case bfd_reloc_overflow:
10564 if (use_saved_addend_p)
10565 /* Ignore overflow until we reach the last relocation for
10566 a given location. */
10568 else
10570 struct mips_elf_link_hash_table *htab;
10572 htab = mips_elf_hash_table (info);
10573 BFD_ASSERT (htab != NULL);
10574 BFD_ASSERT (name != NULL);
10575 if (!htab->small_data_overflow_reported
10576 && (gprel16_reloc_p (howto->type)
10577 || literal_reloc_p (howto->type)))
10579 msg = _("small-data section exceeds 64KB;"
10580 " lower small-data size limit (see option -G)");
10582 htab->small_data_overflow_reported = true;
10583 (*info->callbacks->einfo) ("%P: %s\n", msg);
10585 (*info->callbacks->reloc_overflow)
10586 (info, NULL, name, howto->name, (bfd_vma) 0,
10587 input_bfd, input_section, rel->r_offset);
10589 break;
10591 case bfd_reloc_ok:
10592 break;
10594 case bfd_reloc_outofrange:
10595 msg = NULL;
10596 if (jal_reloc_p (howto->type))
10597 msg = (cross_mode_jump_p
10598 ? _("cannot convert a jump to JALX "
10599 "for a non-word-aligned address")
10600 : (howto->type == R_MIPS16_26
10601 ? _("jump to a non-word-aligned address")
10602 : _("jump to a non-instruction-aligned address")));
10603 else if (b_reloc_p (howto->type))
10604 msg = (cross_mode_jump_p
10605 ? _("cannot convert a branch to JALX "
10606 "for a non-word-aligned address")
10607 : _("branch to a non-instruction-aligned address"));
10608 else if (aligned_pcrel_reloc_p (howto->type))
10609 msg = _("PC-relative load from unaligned address");
10610 if (msg)
10612 info->callbacks->einfo
10613 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10614 break;
10616 /* Fall through. */
10618 default:
10619 abort ();
10620 break;
10623 /* If we've got another relocation for the address, keep going
10624 until we reach the last one. */
10625 if (use_saved_addend_p)
10627 addend = value;
10628 continue;
10631 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10632 /* See the comment above about using R_MIPS_64 in the 32-bit
10633 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10634 that calculated the right value. Now, however, we
10635 sign-extend the 32-bit result to 64-bits, and store it as a
10636 64-bit value. We are especially generous here in that we
10637 go to extreme lengths to support this usage on systems with
10638 only a 32-bit VMA. */
10640 bfd_vma sign_bits;
10641 bfd_vma low_bits;
10642 bfd_vma high_bits;
10644 if (value & ((bfd_vma) 1 << 31))
10645 #ifdef BFD64
10646 sign_bits = ((bfd_vma) 1 << 32) - 1;
10647 #else
10648 sign_bits = -1;
10649 #endif
10650 else
10651 sign_bits = 0;
10653 /* If we don't know that we have a 64-bit type,
10654 do two separate stores. */
10655 if (bfd_big_endian (input_bfd))
10657 /* Undo what we did above. */
10658 rel->r_offset -= 4;
10659 /* Store the sign-bits (which are most significant)
10660 first. */
10661 low_bits = sign_bits;
10662 high_bits = value;
10664 else
10666 low_bits = value;
10667 high_bits = sign_bits;
10669 bfd_put_32 (input_bfd, low_bits,
10670 contents + rel->r_offset);
10671 bfd_put_32 (input_bfd, high_bits,
10672 contents + rel->r_offset + 4);
10673 continue;
10676 /* Actually perform the relocation. */
10677 if (! mips_elf_perform_relocation (info, howto, rel, value,
10678 input_bfd, input_section,
10679 contents, cross_mode_jump_p))
10680 return false;
10683 return true;
10686 /* A function that iterates over each entry in la25_stubs and fills
10687 in the code for each one. DATA points to a mips_htab_traverse_info. */
10689 static int
10690 mips_elf_create_la25_stub (void **slot, void *data)
10692 struct mips_htab_traverse_info *hti;
10693 struct mips_elf_link_hash_table *htab;
10694 struct mips_elf_la25_stub *stub;
10695 asection *s;
10696 bfd_byte *loc;
10697 bfd_vma offset, target, target_high, target_low;
10698 bfd_vma branch_pc;
10699 bfd_signed_vma pcrel_offset = 0;
10701 stub = (struct mips_elf_la25_stub *) *slot;
10702 hti = (struct mips_htab_traverse_info *) data;
10703 htab = mips_elf_hash_table (hti->info);
10704 BFD_ASSERT (htab != NULL);
10706 /* Create the section contents, if we haven't already. */
10707 s = stub->stub_section;
10708 loc = s->contents;
10709 if (loc == NULL)
10711 loc = bfd_malloc (s->size);
10712 if (loc == NULL)
10714 hti->error = true;
10715 return false;
10717 s->contents = loc;
10720 /* Work out where in the section this stub should go. */
10721 offset = stub->offset;
10723 /* We add 8 here to account for the LUI/ADDIU instructions
10724 before the branch instruction. This cannot be moved down to
10725 where pcrel_offset is calculated as 's' is updated in
10726 mips_elf_get_la25_target. */
10727 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10729 /* Work out the target address. */
10730 target = mips_elf_get_la25_target (stub, &s);
10731 target += s->output_section->vma + s->output_offset;
10733 target_high = ((target + 0x8000) >> 16) & 0xffff;
10734 target_low = (target & 0xffff);
10736 /* Calculate the PC of the compact branch instruction (for the case where
10737 compact branches are used for either microMIPSR6 or MIPSR6 with
10738 compact branches. Add 4-bytes to account for BC using the PC of the
10739 next instruction as the base. */
10740 pcrel_offset = target - (branch_pc + 4);
10742 if (stub->stub_section != htab->strampoline)
10744 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10745 of the section and write the two instructions at the end. */
10746 memset (loc, 0, offset);
10747 loc += offset;
10748 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10750 bfd_put_micromips_32 (hti->output_bfd,
10751 LA25_LUI_MICROMIPS (target_high),
10752 loc);
10753 bfd_put_micromips_32 (hti->output_bfd,
10754 LA25_ADDIU_MICROMIPS (target_low),
10755 loc + 4);
10757 else
10759 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10760 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10763 else
10765 /* This is trampoline. */
10766 loc += offset;
10767 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_LUI_MICROMIPS (target_high), loc);
10771 bfd_put_micromips_32 (hti->output_bfd,
10772 LA25_J_MICROMIPS (target), loc + 4);
10773 bfd_put_micromips_32 (hti->output_bfd,
10774 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10775 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10777 else
10779 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10780 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10782 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10783 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10785 else
10787 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10788 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10790 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10793 return true;
10796 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10797 adjust it appropriately now. */
10799 static void
10800 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10801 const char *name, Elf_Internal_Sym *sym)
10803 /* The linker script takes care of providing names and values for
10804 these, but we must place them into the right sections. */
10805 static const char* const text_section_symbols[] = {
10806 "_ftext",
10807 "_etext",
10808 "__dso_displacement",
10809 "__elf_header",
10810 "__program_header_table",
10811 NULL
10814 static const char* const data_section_symbols[] = {
10815 "_fdata",
10816 "_edata",
10817 "_end",
10818 "_fbss",
10819 NULL
10822 const char* const *p;
10823 int i;
10825 for (i = 0; i < 2; ++i)
10826 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10828 ++p)
10829 if (strcmp (*p, name) == 0)
10831 /* All of these symbols are given type STT_SECTION by the
10832 IRIX6 linker. */
10833 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10834 sym->st_other = STO_PROTECTED;
10836 /* The IRIX linker puts these symbols in special sections. */
10837 if (i == 0)
10838 sym->st_shndx = SHN_MIPS_TEXT;
10839 else
10840 sym->st_shndx = SHN_MIPS_DATA;
10842 break;
10846 /* Finish up dynamic symbol handling. We set the contents of various
10847 dynamic sections here. */
10849 bool
10850 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10851 struct bfd_link_info *info,
10852 struct elf_link_hash_entry *h,
10853 Elf_Internal_Sym *sym)
10855 bfd *dynobj;
10856 asection *sgot;
10857 struct mips_got_info *g, *gg;
10858 const char *name;
10859 int idx;
10860 struct mips_elf_link_hash_table *htab;
10861 struct mips_elf_link_hash_entry *hmips;
10863 htab = mips_elf_hash_table (info);
10864 BFD_ASSERT (htab != NULL);
10865 dynobj = elf_hash_table (info)->dynobj;
10866 hmips = (struct mips_elf_link_hash_entry *) h;
10868 BFD_ASSERT (htab->root.target_os != is_vxworks);
10870 if (h->plt.plist != NULL
10871 && (h->plt.plist->mips_offset != MINUS_ONE
10872 || h->plt.plist->comp_offset != MINUS_ONE))
10874 /* We've decided to create a PLT entry for this symbol. */
10875 bfd_byte *loc;
10876 bfd_vma header_address, got_address;
10877 bfd_vma got_address_high, got_address_low, load;
10878 bfd_vma got_index;
10879 bfd_vma isa_bit;
10881 got_index = h->plt.plist->gotplt_index;
10883 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10884 BFD_ASSERT (h->dynindx != -1);
10885 BFD_ASSERT (htab->root.splt != NULL);
10886 BFD_ASSERT (got_index != MINUS_ONE);
10887 BFD_ASSERT (!h->def_regular);
10889 /* Calculate the address of the PLT header. */
10890 isa_bit = htab->plt_header_is_comp;
10891 header_address = (htab->root.splt->output_section->vma
10892 + htab->root.splt->output_offset + isa_bit);
10894 /* Calculate the address of the .got.plt entry. */
10895 got_address = (htab->root.sgotplt->output_section->vma
10896 + htab->root.sgotplt->output_offset
10897 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10899 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10900 got_address_low = got_address & 0xffff;
10902 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10903 cannot be loaded in two instructions. */
10904 if (ABI_64_P (output_bfd)
10905 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10907 _bfd_error_handler
10908 /* xgettext:c-format */
10909 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10910 "supported; consider using `-Ttext-segment=...'"),
10911 output_bfd,
10912 htab->root.sgotplt->output_section,
10913 (int64_t) got_address);
10914 bfd_set_error (bfd_error_no_error);
10915 return false;
10918 /* Initially point the .got.plt entry at the PLT header. */
10919 loc = (htab->root.sgotplt->contents
10920 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10921 if (ABI_64_P (output_bfd))
10922 bfd_put_64 (output_bfd, header_address, loc);
10923 else
10924 bfd_put_32 (output_bfd, header_address, loc);
10926 /* Now handle the PLT itself. First the standard entry (the order
10927 does not matter, we just have to pick one). */
10928 if (h->plt.plist->mips_offset != MINUS_ONE)
10930 const bfd_vma *plt_entry;
10931 bfd_vma plt_offset;
10933 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10935 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10937 /* Find out where the .plt entry should go. */
10938 loc = htab->root.splt->contents + plt_offset;
10940 /* Pick the load opcode. */
10941 load = MIPS_ELF_LOAD_WORD (output_bfd);
10943 /* Fill in the PLT entry itself. */
10945 if (MIPSR6_P (output_bfd))
10946 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10947 : mipsr6_exec_plt_entry;
10948 else
10949 plt_entry = mips_exec_plt_entry;
10950 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10951 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10952 loc + 4);
10954 if (! LOAD_INTERLOCKS_P (output_bfd)
10955 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10957 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10958 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10960 else
10962 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10963 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10964 loc + 12);
10968 /* Now the compressed entry. They come after any standard ones. */
10969 if (h->plt.plist->comp_offset != MINUS_ONE)
10971 bfd_vma plt_offset;
10973 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10974 + h->plt.plist->comp_offset);
10976 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10978 /* Find out where the .plt entry should go. */
10979 loc = htab->root.splt->contents + plt_offset;
10981 /* Fill in the PLT entry itself. */
10982 if (!MICROMIPS_P (output_bfd))
10984 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10986 bfd_put_16 (output_bfd, plt_entry[0], loc);
10987 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10988 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10989 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10990 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10991 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10992 bfd_put_32 (output_bfd, got_address, loc + 12);
10994 else if (htab->insn32)
10996 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10998 bfd_put_16 (output_bfd, plt_entry[0], loc);
10999 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11000 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11001 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11002 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11003 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11004 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11005 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11007 else
11009 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11010 bfd_signed_vma gotpc_offset;
11011 bfd_vma loc_address;
11013 BFD_ASSERT (got_address % 4 == 0);
11015 loc_address = (htab->root.splt->output_section->vma
11016 + htab->root.splt->output_offset + plt_offset);
11017 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11019 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11020 if (gotpc_offset + 0x1000000 >= 0x2000000)
11022 _bfd_error_handler
11023 /* xgettext:c-format */
11024 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11025 "beyond the range of ADDIUPC"),
11026 output_bfd,
11027 htab->root.sgotplt->output_section,
11028 (int64_t) gotpc_offset,
11029 htab->root.splt->output_section);
11030 bfd_set_error (bfd_error_no_error);
11031 return false;
11033 bfd_put_16 (output_bfd,
11034 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11035 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11036 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11037 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11038 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11039 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11043 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11044 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11045 got_index - 2, h->dynindx,
11046 R_MIPS_JUMP_SLOT, got_address);
11048 /* We distinguish between PLT entries and lazy-binding stubs by
11049 giving the former an st_other value of STO_MIPS_PLT. Set the
11050 flag and leave the value if there are any relocations in the
11051 binary where pointer equality matters. */
11052 sym->st_shndx = SHN_UNDEF;
11053 if (h->pointer_equality_needed)
11054 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11055 else
11057 sym->st_value = 0;
11058 sym->st_other = 0;
11062 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11064 /* We've decided to create a lazy-binding stub. */
11065 bool micromips_p = MICROMIPS_P (output_bfd);
11066 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11067 bfd_vma stub_size = htab->function_stub_size;
11068 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11069 bfd_vma isa_bit = micromips_p;
11070 bfd_vma stub_big_size;
11072 if (!micromips_p)
11073 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11074 else if (htab->insn32)
11075 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11076 else
11077 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11079 /* This symbol has a stub. Set it up. */
11081 BFD_ASSERT (h->dynindx != -1);
11083 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11085 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11086 sign extension at runtime in the stub, resulting in a negative
11087 index value. */
11088 if (h->dynindx & ~0x7fffffff)
11089 return false;
11091 /* Fill the stub. */
11092 if (micromips_p)
11094 idx = 0;
11095 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11096 stub + idx);
11097 idx += 4;
11098 if (htab->insn32)
11100 bfd_put_micromips_32 (output_bfd,
11101 STUB_MOVE32_MICROMIPS, stub + idx);
11102 idx += 4;
11104 else
11106 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11107 idx += 2;
11109 if (stub_size == stub_big_size)
11111 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11113 bfd_put_micromips_32 (output_bfd,
11114 STUB_LUI_MICROMIPS (dynindx_hi),
11115 stub + idx);
11116 idx += 4;
11118 if (htab->insn32)
11120 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11121 stub + idx);
11122 idx += 4;
11124 else
11126 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11127 idx += 2;
11130 /* If a large stub is not required and sign extension is not a
11131 problem, then use legacy code in the stub. */
11132 if (stub_size == stub_big_size)
11133 bfd_put_micromips_32 (output_bfd,
11134 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11135 stub + idx);
11136 else if (h->dynindx & ~0x7fff)
11137 bfd_put_micromips_32 (output_bfd,
11138 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11139 stub + idx);
11140 else
11141 bfd_put_micromips_32 (output_bfd,
11142 STUB_LI16S_MICROMIPS (output_bfd,
11143 h->dynindx),
11144 stub + idx);
11146 else
11148 idx = 0;
11149 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11150 idx += 4;
11151 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11152 idx += 4;
11153 if (stub_size == stub_big_size)
11155 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11156 stub + idx);
11157 idx += 4;
11160 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11162 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11163 idx += 4;
11166 /* If a large stub is not required and sign extension is not a
11167 problem, then use legacy code in the stub. */
11168 if (stub_size == stub_big_size)
11169 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11170 stub + idx);
11171 else if (h->dynindx & ~0x7fff)
11172 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11173 stub + idx);
11174 else
11175 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11176 stub + idx);
11177 idx += 4;
11179 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11180 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11183 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11184 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11185 stub, stub_size);
11187 /* Mark the symbol as undefined. stub_offset != -1 occurs
11188 only for the referenced symbol. */
11189 sym->st_shndx = SHN_UNDEF;
11191 /* The run-time linker uses the st_value field of the symbol
11192 to reset the global offset table entry for this external
11193 to its stub address when unlinking a shared object. */
11194 sym->st_value = (htab->sstubs->output_section->vma
11195 + htab->sstubs->output_offset
11196 + h->plt.plist->stub_offset
11197 + isa_bit);
11198 sym->st_other = other;
11201 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11202 refer to the stub, since only the stub uses the standard calling
11203 conventions. */
11204 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11206 BFD_ASSERT (hmips->need_fn_stub);
11207 sym->st_value = (hmips->fn_stub->output_section->vma
11208 + hmips->fn_stub->output_offset);
11209 sym->st_size = hmips->fn_stub->size;
11210 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11213 BFD_ASSERT (h->dynindx != -1
11214 || h->forced_local);
11216 sgot = htab->root.sgot;
11217 g = htab->got_info;
11218 BFD_ASSERT (g != NULL);
11220 /* Run through the global symbol table, creating GOT entries for all
11221 the symbols that need them. */
11222 if (hmips->global_got_area != GGA_NONE)
11224 bfd_vma offset;
11225 bfd_vma value;
11227 value = sym->st_value;
11228 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11229 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11232 if (hmips->global_got_area != GGA_NONE && g->next)
11234 struct mips_got_entry e, *p;
11235 bfd_vma entry;
11236 bfd_vma offset;
11238 gg = g;
11240 e.abfd = output_bfd;
11241 e.symndx = -1;
11242 e.d.h = hmips;
11243 e.tls_type = GOT_TLS_NONE;
11245 for (g = g->next; g->next != gg; g = g->next)
11247 if (g->got_entries
11248 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11249 &e)))
11251 offset = p->gotidx;
11252 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11253 if (bfd_link_pic (info)
11254 || (elf_hash_table (info)->dynamic_sections_created
11255 && p->d.h != NULL
11256 && p->d.h->root.def_dynamic
11257 && !p->d.h->root.def_regular))
11259 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11260 the various compatibility problems, it's easier to mock
11261 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11262 mips_elf_create_dynamic_relocation to calculate the
11263 appropriate addend. */
11264 Elf_Internal_Rela rel[3];
11266 memset (rel, 0, sizeof (rel));
11267 if (ABI_64_P (output_bfd))
11268 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11269 else
11270 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11271 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11273 entry = 0;
11274 if (! (mips_elf_create_dynamic_relocation
11275 (output_bfd, info, rel,
11276 e.d.h, NULL, sym->st_value, &entry, sgot)))
11277 return false;
11279 else
11280 entry = sym->st_value;
11281 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11286 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11287 name = h->root.root.string;
11288 if (h == elf_hash_table (info)->hdynamic
11289 || h == elf_hash_table (info)->hgot)
11290 sym->st_shndx = SHN_ABS;
11291 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11292 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11294 sym->st_shndx = SHN_ABS;
11295 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11296 sym->st_value = 1;
11298 else if (SGI_COMPAT (output_bfd))
11300 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11301 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11303 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11304 sym->st_other = STO_PROTECTED;
11305 sym->st_value = 0;
11306 sym->st_shndx = SHN_MIPS_DATA;
11308 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11310 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11311 sym->st_other = STO_PROTECTED;
11312 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11313 sym->st_shndx = SHN_ABS;
11315 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11317 if (h->type == STT_FUNC)
11318 sym->st_shndx = SHN_MIPS_TEXT;
11319 else if (h->type == STT_OBJECT)
11320 sym->st_shndx = SHN_MIPS_DATA;
11324 /* Emit a copy reloc, if needed. */
11325 if (h->needs_copy)
11327 asection *s;
11328 bfd_vma symval;
11330 BFD_ASSERT (h->dynindx != -1);
11331 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11333 s = mips_elf_rel_dyn_section (info, false);
11334 symval = (h->root.u.def.section->output_section->vma
11335 + h->root.u.def.section->output_offset
11336 + h->root.u.def.value);
11337 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11338 h->dynindx, R_MIPS_COPY, symval);
11341 /* Handle the IRIX6-specific symbols. */
11342 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11343 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11345 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11346 to treat compressed symbols like any other. */
11347 if (ELF_ST_IS_MIPS16 (sym->st_other))
11349 BFD_ASSERT (sym->st_value & 1);
11350 sym->st_other -= STO_MIPS16;
11352 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11354 BFD_ASSERT (sym->st_value & 1);
11355 sym->st_other -= STO_MICROMIPS;
11358 return true;
11361 /* Likewise, for VxWorks. */
11363 bool
11364 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11365 struct bfd_link_info *info,
11366 struct elf_link_hash_entry *h,
11367 Elf_Internal_Sym *sym)
11369 bfd *dynobj;
11370 asection *sgot;
11371 struct mips_got_info *g;
11372 struct mips_elf_link_hash_table *htab;
11373 struct mips_elf_link_hash_entry *hmips;
11375 htab = mips_elf_hash_table (info);
11376 BFD_ASSERT (htab != NULL);
11377 dynobj = elf_hash_table (info)->dynobj;
11378 hmips = (struct mips_elf_link_hash_entry *) h;
11380 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11382 bfd_byte *loc;
11383 bfd_vma plt_address, got_address, got_offset, branch_offset;
11384 Elf_Internal_Rela rel;
11385 static const bfd_vma *plt_entry;
11386 bfd_vma gotplt_index;
11387 bfd_vma plt_offset;
11389 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11390 gotplt_index = h->plt.plist->gotplt_index;
11392 BFD_ASSERT (h->dynindx != -1);
11393 BFD_ASSERT (htab->root.splt != NULL);
11394 BFD_ASSERT (gotplt_index != MINUS_ONE);
11395 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11397 /* Calculate the address of the .plt entry. */
11398 plt_address = (htab->root.splt->output_section->vma
11399 + htab->root.splt->output_offset
11400 + plt_offset);
11402 /* Calculate the address of the .got.plt entry. */
11403 got_address = (htab->root.sgotplt->output_section->vma
11404 + htab->root.sgotplt->output_offset
11405 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11407 /* Calculate the offset of the .got.plt entry from
11408 _GLOBAL_OFFSET_TABLE_. */
11409 got_offset = mips_elf_gotplt_index (info, h);
11411 /* Calculate the offset for the branch at the start of the PLT
11412 entry. The branch jumps to the beginning of .plt. */
11413 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11415 /* Fill in the initial value of the .got.plt entry. */
11416 bfd_put_32 (output_bfd, plt_address,
11417 (htab->root.sgotplt->contents
11418 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11420 /* Find out where the .plt entry should go. */
11421 loc = htab->root.splt->contents + plt_offset;
11423 if (bfd_link_pic (info))
11425 plt_entry = mips_vxworks_shared_plt_entry;
11426 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11427 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11429 else
11431 bfd_vma got_address_high, got_address_low;
11433 plt_entry = mips_vxworks_exec_plt_entry;
11434 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11435 got_address_low = got_address & 0xffff;
11437 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11438 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11439 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11440 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11441 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11442 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11443 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11444 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11446 loc = (htab->srelplt2->contents
11447 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11449 /* Emit a relocation for the .got.plt entry. */
11450 rel.r_offset = got_address;
11451 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11452 rel.r_addend = plt_offset;
11453 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11455 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11456 loc += sizeof (Elf32_External_Rela);
11457 rel.r_offset = plt_address + 8;
11458 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11459 rel.r_addend = got_offset;
11460 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11462 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11463 loc += sizeof (Elf32_External_Rela);
11464 rel.r_offset += 4;
11465 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11466 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11469 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11470 loc = (htab->root.srelplt->contents
11471 + gotplt_index * sizeof (Elf32_External_Rela));
11472 rel.r_offset = got_address;
11473 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11474 rel.r_addend = 0;
11475 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11477 if (!h->def_regular)
11478 sym->st_shndx = SHN_UNDEF;
11481 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11483 sgot = htab->root.sgot;
11484 g = htab->got_info;
11485 BFD_ASSERT (g != NULL);
11487 /* See if this symbol has an entry in the GOT. */
11488 if (hmips->global_got_area != GGA_NONE)
11490 bfd_vma offset;
11491 Elf_Internal_Rela outrel;
11492 bfd_byte *loc;
11493 asection *s;
11495 /* Install the symbol value in the GOT. */
11496 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11497 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11499 /* Add a dynamic relocation for it. */
11500 s = mips_elf_rel_dyn_section (info, false);
11501 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11502 outrel.r_offset = (sgot->output_section->vma
11503 + sgot->output_offset
11504 + offset);
11505 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11506 outrel.r_addend = 0;
11507 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11510 /* Emit a copy reloc, if needed. */
11511 if (h->needs_copy)
11513 Elf_Internal_Rela rel;
11514 asection *srel;
11515 bfd_byte *loc;
11517 BFD_ASSERT (h->dynindx != -1);
11519 rel.r_offset = (h->root.u.def.section->output_section->vma
11520 + h->root.u.def.section->output_offset
11521 + h->root.u.def.value);
11522 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11523 rel.r_addend = 0;
11524 if (h->root.u.def.section == htab->root.sdynrelro)
11525 srel = htab->root.sreldynrelro;
11526 else
11527 srel = htab->root.srelbss;
11528 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11529 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11530 ++srel->reloc_count;
11533 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11534 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11535 sym->st_value &= ~1;
11537 return true;
11540 /* Write out a plt0 entry to the beginning of .plt. */
11542 static bool
11543 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11545 bfd_byte *loc;
11546 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11547 static const bfd_vma *plt_entry;
11548 struct mips_elf_link_hash_table *htab;
11550 htab = mips_elf_hash_table (info);
11551 BFD_ASSERT (htab != NULL);
11553 if (ABI_64_P (output_bfd))
11554 plt_entry = (htab->compact_branches
11555 ? mipsr6_n64_exec_plt0_entry_compact
11556 : mips_n64_exec_plt0_entry);
11557 else if (ABI_N32_P (output_bfd))
11558 plt_entry = (htab->compact_branches
11559 ? mipsr6_n32_exec_plt0_entry_compact
11560 : mips_n32_exec_plt0_entry);
11561 else if (!htab->plt_header_is_comp)
11562 plt_entry = (htab->compact_branches
11563 ? mipsr6_o32_exec_plt0_entry_compact
11564 : mips_o32_exec_plt0_entry);
11565 else if (htab->insn32)
11566 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11567 else
11568 plt_entry = micromips_o32_exec_plt0_entry;
11570 /* Calculate the value of .got.plt. */
11571 gotplt_value = (htab->root.sgotplt->output_section->vma
11572 + htab->root.sgotplt->output_offset);
11573 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11574 gotplt_value_low = gotplt_value & 0xffff;
11576 /* The PLT sequence is not safe for N64 if .got.plt's address can
11577 not be loaded in two instructions. */
11578 if (ABI_64_P (output_bfd)
11579 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11581 _bfd_error_handler
11582 /* xgettext:c-format */
11583 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11584 "supported; consider using `-Ttext-segment=...'"),
11585 output_bfd,
11586 htab->root.sgotplt->output_section,
11587 (int64_t) gotplt_value);
11588 bfd_set_error (bfd_error_no_error);
11589 return false;
11592 /* Install the PLT header. */
11593 loc = htab->root.splt->contents;
11594 if (plt_entry == micromips_o32_exec_plt0_entry)
11596 bfd_vma gotpc_offset;
11597 bfd_vma loc_address;
11598 size_t i;
11600 BFD_ASSERT (gotplt_value % 4 == 0);
11602 loc_address = (htab->root.splt->output_section->vma
11603 + htab->root.splt->output_offset);
11604 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11606 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11607 if (gotpc_offset + 0x1000000 >= 0x2000000)
11609 _bfd_error_handler
11610 /* xgettext:c-format */
11611 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11612 "beyond the range of ADDIUPC"),
11613 output_bfd,
11614 htab->root.sgotplt->output_section,
11615 (int64_t) gotpc_offset,
11616 htab->root.splt->output_section);
11617 bfd_set_error (bfd_error_no_error);
11618 return false;
11620 bfd_put_16 (output_bfd,
11621 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11622 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11623 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11624 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11626 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11628 size_t i;
11630 bfd_put_16 (output_bfd, plt_entry[0], loc);
11631 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11632 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11633 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11634 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11635 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11636 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11637 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11639 else
11641 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11642 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11643 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11644 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11645 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11646 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11647 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11648 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11651 return true;
11654 /* Install the PLT header for a VxWorks executable and finalize the
11655 contents of .rela.plt.unloaded. */
11657 static void
11658 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11660 Elf_Internal_Rela rela;
11661 bfd_byte *loc;
11662 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11663 static const bfd_vma *plt_entry;
11664 struct mips_elf_link_hash_table *htab;
11666 htab = mips_elf_hash_table (info);
11667 BFD_ASSERT (htab != NULL);
11669 plt_entry = mips_vxworks_exec_plt0_entry;
11671 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11672 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11673 + htab->root.hgot->root.u.def.section->output_offset
11674 + htab->root.hgot->root.u.def.value);
11676 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11677 got_value_low = got_value & 0xffff;
11679 /* Calculate the address of the PLT header. */
11680 plt_address = (htab->root.splt->output_section->vma
11681 + htab->root.splt->output_offset);
11683 /* Install the PLT header. */
11684 loc = htab->root.splt->contents;
11685 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11686 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11687 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11688 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11689 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11690 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11692 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11693 loc = htab->srelplt2->contents;
11694 rela.r_offset = plt_address;
11695 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11696 rela.r_addend = 0;
11697 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11698 loc += sizeof (Elf32_External_Rela);
11700 /* Output the relocation for the following addiu of
11701 %lo(_GLOBAL_OFFSET_TABLE_). */
11702 rela.r_offset += 4;
11703 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11704 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11705 loc += sizeof (Elf32_External_Rela);
11707 /* Fix up the remaining relocations. They may have the wrong
11708 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11709 in which symbols were output. */
11710 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11712 Elf_Internal_Rela rel;
11714 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11715 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11716 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11717 loc += sizeof (Elf32_External_Rela);
11719 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11720 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11721 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11722 loc += sizeof (Elf32_External_Rela);
11724 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11725 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11726 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11727 loc += sizeof (Elf32_External_Rela);
11731 /* Install the PLT header for a VxWorks shared library. */
11733 static void
11734 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11736 unsigned int i;
11737 struct mips_elf_link_hash_table *htab;
11739 htab = mips_elf_hash_table (info);
11740 BFD_ASSERT (htab != NULL);
11742 /* We just need to copy the entry byte-by-byte. */
11743 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11744 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11745 htab->root.splt->contents + i * 4);
11748 /* Finish up the dynamic sections. */
11750 bool
11751 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11752 struct bfd_link_info *info)
11754 bfd *dynobj;
11755 asection *sdyn;
11756 asection *sgot;
11757 struct mips_got_info *gg, *g;
11758 struct mips_elf_link_hash_table *htab;
11760 htab = mips_elf_hash_table (info);
11761 BFD_ASSERT (htab != NULL);
11763 dynobj = elf_hash_table (info)->dynobj;
11765 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11767 sgot = htab->root.sgot;
11768 gg = htab->got_info;
11770 if (elf_hash_table (info)->dynamic_sections_created)
11772 bfd_byte *b;
11773 int dyn_to_skip = 0, dyn_skipped = 0;
11775 BFD_ASSERT (sdyn != NULL);
11776 BFD_ASSERT (gg != NULL);
11778 g = mips_elf_bfd_got (output_bfd, false);
11779 BFD_ASSERT (g != NULL);
11781 for (b = sdyn->contents;
11782 b < sdyn->contents + sdyn->size;
11783 b += MIPS_ELF_DYN_SIZE (dynobj))
11785 Elf_Internal_Dyn dyn;
11786 const char *name;
11787 size_t elemsize;
11788 asection *s;
11789 bool swap_out_p;
11791 /* Read in the current dynamic entry. */
11792 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11794 /* Assume that we're going to modify it and write it out. */
11795 swap_out_p = true;
11797 switch (dyn.d_tag)
11799 case DT_RELENT:
11800 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11801 break;
11803 case DT_RELAENT:
11804 BFD_ASSERT (htab->root.target_os == is_vxworks);
11805 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11806 break;
11808 case DT_STRSZ:
11809 /* Rewrite DT_STRSZ. */
11810 dyn.d_un.d_val =
11811 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11812 break;
11814 case DT_PLTGOT:
11815 s = htab->root.sgot;
11816 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11817 break;
11819 case DT_MIPS_PLTGOT:
11820 s = htab->root.sgotplt;
11821 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11822 break;
11824 case DT_MIPS_RLD_VERSION:
11825 dyn.d_un.d_val = 1; /* XXX */
11826 break;
11828 case DT_MIPS_FLAGS:
11829 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11830 break;
11832 case DT_MIPS_TIME_STAMP:
11834 time_t t;
11835 time (&t);
11836 dyn.d_un.d_val = t;
11838 break;
11840 case DT_MIPS_ICHECKSUM:
11841 /* XXX FIXME: */
11842 swap_out_p = false;
11843 break;
11845 case DT_MIPS_IVERSION:
11846 /* XXX FIXME: */
11847 swap_out_p = false;
11848 break;
11850 case DT_MIPS_BASE_ADDRESS:
11851 s = output_bfd->sections;
11852 BFD_ASSERT (s != NULL);
11853 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11854 break;
11856 case DT_MIPS_LOCAL_GOTNO:
11857 dyn.d_un.d_val = g->local_gotno;
11858 break;
11860 case DT_MIPS_UNREFEXTNO:
11861 /* The index into the dynamic symbol table which is the
11862 entry of the first external symbol that is not
11863 referenced within the same object. */
11864 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11865 break;
11867 case DT_MIPS_GOTSYM:
11868 if (htab->global_gotsym)
11870 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11871 break;
11873 /* In case if we don't have global got symbols we default
11874 to setting DT_MIPS_GOTSYM to the same value as
11875 DT_MIPS_SYMTABNO. */
11876 /* Fall through. */
11878 case DT_MIPS_SYMTABNO:
11879 name = ".dynsym";
11880 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11881 s = bfd_get_linker_section (dynobj, name);
11883 if (s != NULL)
11884 dyn.d_un.d_val = s->size / elemsize;
11885 else
11886 dyn.d_un.d_val = 0;
11887 break;
11889 case DT_MIPS_HIPAGENO:
11890 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11891 break;
11893 case DT_MIPS_RLD_MAP:
11895 struct elf_link_hash_entry *h;
11896 h = mips_elf_hash_table (info)->rld_symbol;
11897 if (!h)
11899 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11900 swap_out_p = false;
11901 break;
11903 s = h->root.u.def.section;
11905 /* The MIPS_RLD_MAP tag stores the absolute address of the
11906 debug pointer. */
11907 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11908 + h->root.u.def.value);
11910 break;
11912 case DT_MIPS_RLD_MAP_REL:
11914 struct elf_link_hash_entry *h;
11915 bfd_vma dt_addr, rld_addr;
11916 h = mips_elf_hash_table (info)->rld_symbol;
11917 if (!h)
11919 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11920 swap_out_p = false;
11921 break;
11923 s = h->root.u.def.section;
11925 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11926 pointer, relative to the address of the tag. */
11927 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11928 + (b - sdyn->contents));
11929 rld_addr = (s->output_section->vma + s->output_offset
11930 + h->root.u.def.value);
11931 dyn.d_un.d_ptr = rld_addr - dt_addr;
11933 break;
11935 case DT_MIPS_OPTIONS:
11936 s = (bfd_get_section_by_name
11937 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11938 dyn.d_un.d_ptr = s->vma;
11939 break;
11941 case DT_PLTREL:
11942 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11943 if (htab->root.target_os == is_vxworks)
11944 dyn.d_un.d_val = DT_RELA;
11945 else
11946 dyn.d_un.d_val = DT_REL;
11947 break;
11949 case DT_PLTRELSZ:
11950 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11951 dyn.d_un.d_val = htab->root.srelplt->size;
11952 break;
11954 case DT_JMPREL:
11955 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11956 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11957 + htab->root.srelplt->output_offset);
11958 break;
11960 case DT_TEXTREL:
11961 /* If we didn't need any text relocations after all, delete
11962 the dynamic tag. */
11963 if (!(info->flags & DF_TEXTREL))
11965 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11966 swap_out_p = false;
11968 break;
11970 case DT_FLAGS:
11971 /* If we didn't need any text relocations after all, clear
11972 DF_TEXTREL from DT_FLAGS. */
11973 if (!(info->flags & DF_TEXTREL))
11974 dyn.d_un.d_val &= ~DF_TEXTREL;
11975 else
11976 swap_out_p = false;
11977 break;
11979 case DT_MIPS_XHASH:
11980 name = ".MIPS.xhash";
11981 s = bfd_get_linker_section (dynobj, name);
11982 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11983 break;
11985 default:
11986 swap_out_p = false;
11987 if (htab->root.target_os == is_vxworks
11988 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11989 swap_out_p = true;
11990 break;
11993 if (swap_out_p || dyn_skipped)
11994 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11995 (dynobj, &dyn, b - dyn_skipped);
11997 if (dyn_to_skip)
11999 dyn_skipped += dyn_to_skip;
12000 dyn_to_skip = 0;
12004 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12005 if (dyn_skipped > 0)
12006 memset (b - dyn_skipped, 0, dyn_skipped);
12009 if (sgot != NULL && sgot->size > 0
12010 && !bfd_is_abs_section (sgot->output_section))
12012 if (htab->root.target_os == is_vxworks)
12014 /* The first entry of the global offset table points to the
12015 ".dynamic" section. The second is initialized by the
12016 loader and contains the shared library identifier.
12017 The third is also initialized by the loader and points
12018 to the lazy resolution stub. */
12019 MIPS_ELF_PUT_WORD (output_bfd,
12020 sdyn->output_offset + sdyn->output_section->vma,
12021 sgot->contents);
12022 MIPS_ELF_PUT_WORD (output_bfd, 0,
12023 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12024 MIPS_ELF_PUT_WORD (output_bfd, 0,
12025 sgot->contents
12026 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12028 else
12030 /* The first entry of the global offset table will be filled at
12031 runtime. The second entry will be used by some runtime loaders.
12032 This isn't the case of IRIX rld. */
12033 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12034 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12035 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12038 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12039 = MIPS_ELF_GOT_SIZE (output_bfd);
12042 /* Generate dynamic relocations for the non-primary gots. */
12043 if (gg != NULL && gg->next)
12045 Elf_Internal_Rela rel[3];
12046 bfd_vma addend = 0;
12048 memset (rel, 0, sizeof (rel));
12049 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12051 for (g = gg->next; g->next != gg; g = g->next)
12053 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12054 + g->next->tls_gotno;
12056 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12057 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12058 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12059 sgot->contents
12060 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12062 if (! bfd_link_pic (info))
12063 continue;
12065 for (; got_index < g->local_gotno; got_index++)
12067 if (got_index >= g->assigned_low_gotno
12068 && got_index <= g->assigned_high_gotno)
12069 continue;
12071 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12072 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12073 if (!(mips_elf_create_dynamic_relocation
12074 (output_bfd, info, rel, NULL,
12075 bfd_abs_section_ptr,
12076 0, &addend, sgot)))
12077 return false;
12078 BFD_ASSERT (addend == 0);
12083 /* The generation of dynamic relocations for the non-primary gots
12084 adds more dynamic relocations. We cannot count them until
12085 here. */
12087 if (elf_hash_table (info)->dynamic_sections_created)
12089 bfd_byte *b;
12090 bool swap_out_p;
12092 BFD_ASSERT (sdyn != NULL);
12094 for (b = sdyn->contents;
12095 b < sdyn->contents + sdyn->size;
12096 b += MIPS_ELF_DYN_SIZE (dynobj))
12098 Elf_Internal_Dyn dyn;
12099 asection *s;
12101 /* Read in the current dynamic entry. */
12102 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12104 /* Assume that we're going to modify it and write it out. */
12105 swap_out_p = true;
12107 switch (dyn.d_tag)
12109 case DT_RELSZ:
12110 /* Reduce DT_RELSZ to account for any relocations we
12111 decided not to make. This is for the n64 irix rld,
12112 which doesn't seem to apply any relocations if there
12113 are trailing null entries. */
12114 s = mips_elf_rel_dyn_section (info, false);
12115 dyn.d_un.d_val = (s->reloc_count
12116 * (ABI_64_P (output_bfd)
12117 ? sizeof (Elf64_Mips_External_Rel)
12118 : sizeof (Elf32_External_Rel)));
12119 /* Adjust the section size too. Tools like the prelinker
12120 can reasonably expect the values to the same. */
12121 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12122 elf_section_data (s->output_section)->this_hdr.sh_size
12123 = dyn.d_un.d_val;
12124 break;
12126 default:
12127 swap_out_p = false;
12128 break;
12131 if (swap_out_p)
12132 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12133 (dynobj, &dyn, b);
12138 asection *s;
12139 Elf32_compact_rel cpt;
12141 if (SGI_COMPAT (output_bfd))
12143 /* Write .compact_rel section out. */
12144 s = bfd_get_linker_section (dynobj, ".compact_rel");
12145 if (s != NULL)
12147 cpt.id1 = 1;
12148 cpt.num = s->reloc_count;
12149 cpt.id2 = 2;
12150 cpt.offset = (s->output_section->filepos
12151 + sizeof (Elf32_External_compact_rel));
12152 cpt.reserved0 = 0;
12153 cpt.reserved1 = 0;
12154 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12155 ((Elf32_External_compact_rel *)
12156 s->contents));
12158 /* Clean up a dummy stub function entry in .text. */
12159 if (htab->sstubs != NULL
12160 && htab->sstubs->contents != NULL)
12162 file_ptr dummy_offset;
12164 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12165 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12166 memset (htab->sstubs->contents + dummy_offset, 0,
12167 htab->function_stub_size);
12172 /* The psABI says that the dynamic relocations must be sorted in
12173 increasing order of r_symndx. The VxWorks EABI doesn't require
12174 this, and because the code below handles REL rather than RELA
12175 relocations, using it for VxWorks would be outright harmful. */
12176 if (htab->root.target_os != is_vxworks)
12178 s = mips_elf_rel_dyn_section (info, false);
12179 if (s != NULL
12180 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12182 reldyn_sorting_bfd = output_bfd;
12184 if (ABI_64_P (output_bfd))
12185 qsort ((Elf64_External_Rel *) s->contents + 1,
12186 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12187 sort_dynamic_relocs_64);
12188 else
12189 qsort ((Elf32_External_Rel *) s->contents + 1,
12190 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12191 sort_dynamic_relocs);
12196 if (htab->root.splt && htab->root.splt->size > 0)
12198 if (htab->root.target_os == is_vxworks)
12200 if (bfd_link_pic (info))
12201 mips_vxworks_finish_shared_plt (output_bfd, info);
12202 else
12203 mips_vxworks_finish_exec_plt (output_bfd, info);
12205 else
12207 BFD_ASSERT (!bfd_link_pic (info));
12208 if (!mips_finish_exec_plt (output_bfd, info))
12209 return false;
12212 return true;
12216 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12218 static void
12219 mips_set_isa_flags (bfd *abfd)
12221 flagword val;
12223 switch (bfd_get_mach (abfd))
12225 default:
12226 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12227 val = E_MIPS_ARCH_3;
12228 else
12229 val = E_MIPS_ARCH_1;
12230 break;
12232 case bfd_mach_mips3000:
12233 val = E_MIPS_ARCH_1;
12234 break;
12236 case bfd_mach_mips3900:
12237 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12238 break;
12240 case bfd_mach_mips6000:
12241 val = E_MIPS_ARCH_2;
12242 break;
12244 case bfd_mach_mips4010:
12245 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12246 break;
12248 case bfd_mach_mips4000:
12249 case bfd_mach_mips4300:
12250 case bfd_mach_mips4400:
12251 case bfd_mach_mips4600:
12252 val = E_MIPS_ARCH_3;
12253 break;
12255 case bfd_mach_mips4100:
12256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12257 break;
12259 case bfd_mach_mips4111:
12260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12261 break;
12263 case bfd_mach_mips4120:
12264 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12265 break;
12267 case bfd_mach_mips4650:
12268 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12269 break;
12271 case bfd_mach_mips5400:
12272 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12273 break;
12275 case bfd_mach_mips5500:
12276 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12277 break;
12279 case bfd_mach_mips5900:
12280 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12281 break;
12283 case bfd_mach_mips9000:
12284 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12285 break;
12287 case bfd_mach_mips5000:
12288 case bfd_mach_mips7000:
12289 case bfd_mach_mips8000:
12290 case bfd_mach_mips10000:
12291 case bfd_mach_mips12000:
12292 case bfd_mach_mips14000:
12293 case bfd_mach_mips16000:
12294 val = E_MIPS_ARCH_4;
12295 break;
12297 case bfd_mach_mips5:
12298 val = E_MIPS_ARCH_5;
12299 break;
12301 case bfd_mach_mips_loongson_2e:
12302 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12303 break;
12305 case bfd_mach_mips_loongson_2f:
12306 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12307 break;
12309 case bfd_mach_mips_sb1:
12310 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12311 break;
12313 case bfd_mach_mips_gs464:
12314 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12315 break;
12317 case bfd_mach_mips_gs464e:
12318 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12319 break;
12321 case bfd_mach_mips_gs264e:
12322 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12323 break;
12325 case bfd_mach_mips_octeon:
12326 case bfd_mach_mips_octeonp:
12327 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12328 break;
12330 case bfd_mach_mips_octeon3:
12331 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12332 break;
12334 case bfd_mach_mips_xlr:
12335 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12336 break;
12338 case bfd_mach_mips_octeon2:
12339 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12340 break;
12342 case bfd_mach_mipsisa32:
12343 val = E_MIPS_ARCH_32;
12344 break;
12346 case bfd_mach_mipsisa64:
12347 val = E_MIPS_ARCH_64;
12348 break;
12350 case bfd_mach_mipsisa32r2:
12351 case bfd_mach_mipsisa32r3:
12352 case bfd_mach_mipsisa32r5:
12353 val = E_MIPS_ARCH_32R2;
12354 break;
12356 case bfd_mach_mips_interaptiv_mr2:
12357 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12358 break;
12360 case bfd_mach_mipsisa64r2:
12361 case bfd_mach_mipsisa64r3:
12362 case bfd_mach_mipsisa64r5:
12363 val = E_MIPS_ARCH_64R2;
12364 break;
12366 case bfd_mach_mipsisa32r6:
12367 val = E_MIPS_ARCH_32R6;
12368 break;
12370 case bfd_mach_mipsisa64r6:
12371 val = E_MIPS_ARCH_64R6;
12372 break;
12374 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12375 elf_elfheader (abfd)->e_flags |= val;
12380 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12381 Don't do so for code sections. We want to keep ordering of HI16/LO16
12382 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12383 relocs to be sorted. */
12385 bool
12386 _bfd_mips_elf_sort_relocs_p (asection *sec)
12388 return (sec->flags & SEC_CODE) == 0;
12392 /* The final processing done just before writing out a MIPS ELF object
12393 file. This gets the MIPS architecture right based on the machine
12394 number. This is used by both the 32-bit and the 64-bit ABI. */
12396 void
12397 _bfd_mips_final_write_processing (bfd *abfd)
12399 unsigned int i;
12400 Elf_Internal_Shdr **hdrpp;
12401 const char *name;
12402 asection *sec;
12404 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12405 is nonzero. This is for compatibility with old objects, which used
12406 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12407 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12408 mips_set_isa_flags (abfd);
12410 /* Set the sh_info field for .gptab sections and other appropriate
12411 info for each special section. */
12412 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12413 i < elf_numsections (abfd);
12414 i++, hdrpp++)
12416 switch ((*hdrpp)->sh_type)
12418 case SHT_MIPS_MSYM:
12419 case SHT_MIPS_LIBLIST:
12420 sec = bfd_get_section_by_name (abfd, ".dynstr");
12421 if (sec != NULL)
12422 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12423 break;
12425 case SHT_MIPS_GPTAB:
12426 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12427 name = bfd_section_name ((*hdrpp)->bfd_section);
12428 BFD_ASSERT (name != NULL
12429 && startswith (name, ".gptab."));
12430 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12431 BFD_ASSERT (sec != NULL);
12432 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12433 break;
12435 case SHT_MIPS_CONTENT:
12436 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12437 name = bfd_section_name ((*hdrpp)->bfd_section);
12438 BFD_ASSERT (name != NULL
12439 && startswith (name, ".MIPS.content"));
12440 sec = bfd_get_section_by_name (abfd,
12441 name + sizeof ".MIPS.content" - 1);
12442 BFD_ASSERT (sec != NULL);
12443 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12444 break;
12446 case SHT_MIPS_SYMBOL_LIB:
12447 sec = bfd_get_section_by_name (abfd, ".dynsym");
12448 if (sec != NULL)
12449 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12450 sec = bfd_get_section_by_name (abfd, ".liblist");
12451 if (sec != NULL)
12452 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12453 break;
12455 case SHT_MIPS_EVENTS:
12456 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12457 name = bfd_section_name ((*hdrpp)->bfd_section);
12458 BFD_ASSERT (name != NULL);
12459 if (startswith (name, ".MIPS.events"))
12460 sec = bfd_get_section_by_name (abfd,
12461 name + sizeof ".MIPS.events" - 1);
12462 else
12464 BFD_ASSERT (startswith (name, ".MIPS.post_rel"));
12465 sec = bfd_get_section_by_name (abfd,
12466 (name
12467 + sizeof ".MIPS.post_rel" - 1));
12469 BFD_ASSERT (sec != NULL);
12470 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12471 break;
12473 case SHT_MIPS_XHASH:
12474 sec = bfd_get_section_by_name (abfd, ".dynsym");
12475 if (sec != NULL)
12476 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12481 bool
12482 _bfd_mips_elf_final_write_processing (bfd *abfd)
12484 _bfd_mips_final_write_processing (abfd);
12485 return _bfd_elf_final_write_processing (abfd);
12488 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12489 segments. */
12492 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12493 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12495 asection *s;
12496 int ret = 0;
12498 /* See if we need a PT_MIPS_REGINFO segment. */
12499 s = bfd_get_section_by_name (abfd, ".reginfo");
12500 if (s && (s->flags & SEC_LOAD))
12501 ++ret;
12503 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12504 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12505 ++ret;
12507 /* See if we need a PT_MIPS_OPTIONS segment. */
12508 if (IRIX_COMPAT (abfd) == ict_irix6
12509 && bfd_get_section_by_name (abfd,
12510 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12511 ++ret;
12513 /* See if we need a PT_MIPS_RTPROC segment. */
12514 if (IRIX_COMPAT (abfd) == ict_irix5
12515 && bfd_get_section_by_name (abfd, ".dynamic")
12516 && bfd_get_section_by_name (abfd, ".mdebug"))
12517 ++ret;
12519 /* Allocate a PT_NULL header in dynamic objects. See
12520 _bfd_mips_elf_modify_segment_map for details. */
12521 if (!SGI_COMPAT (abfd)
12522 && bfd_get_section_by_name (abfd, ".dynamic"))
12523 ++ret;
12525 return ret;
12528 /* Modify the segment map for an IRIX5 executable. */
12530 bool
12531 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12532 struct bfd_link_info *info)
12534 asection *s;
12535 struct elf_segment_map *m, **pm;
12536 size_t amt;
12538 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12539 segment. */
12540 s = bfd_get_section_by_name (abfd, ".reginfo");
12541 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12543 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12544 if (m->p_type == PT_MIPS_REGINFO)
12545 break;
12546 if (m == NULL)
12548 amt = sizeof *m;
12549 m = bfd_zalloc (abfd, amt);
12550 if (m == NULL)
12551 return false;
12553 m->p_type = PT_MIPS_REGINFO;
12554 m->count = 1;
12555 m->sections[0] = s;
12557 /* We want to put it after the PHDR and INTERP segments. */
12558 pm = &elf_seg_map (abfd);
12559 while (*pm != NULL
12560 && ((*pm)->p_type == PT_PHDR
12561 || (*pm)->p_type == PT_INTERP))
12562 pm = &(*pm)->next;
12564 m->next = *pm;
12565 *pm = m;
12569 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12570 segment. */
12571 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12572 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12574 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12575 if (m->p_type == PT_MIPS_ABIFLAGS)
12576 break;
12577 if (m == NULL)
12579 amt = sizeof *m;
12580 m = bfd_zalloc (abfd, amt);
12581 if (m == NULL)
12582 return false;
12584 m->p_type = PT_MIPS_ABIFLAGS;
12585 m->count = 1;
12586 m->sections[0] = s;
12588 /* We want to put it after the PHDR and INTERP segments. */
12589 pm = &elf_seg_map (abfd);
12590 while (*pm != NULL
12591 && ((*pm)->p_type == PT_PHDR
12592 || (*pm)->p_type == PT_INTERP))
12593 pm = &(*pm)->next;
12595 m->next = *pm;
12596 *pm = m;
12600 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12601 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12602 PT_MIPS_OPTIONS segment immediately following the program header
12603 table. */
12604 if (NEWABI_P (abfd)
12605 /* On non-IRIX6 new abi, we'll have already created a segment
12606 for this section, so don't create another. I'm not sure this
12607 is not also the case for IRIX 6, but I can't test it right
12608 now. */
12609 && IRIX_COMPAT (abfd) == ict_irix6)
12611 for (s = abfd->sections; s; s = s->next)
12612 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12613 break;
12615 if (s)
12617 struct elf_segment_map *options_segment;
12619 pm = &elf_seg_map (abfd);
12620 while (*pm != NULL
12621 && ((*pm)->p_type == PT_PHDR
12622 || (*pm)->p_type == PT_INTERP))
12623 pm = &(*pm)->next;
12625 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12627 amt = sizeof (struct elf_segment_map);
12628 options_segment = bfd_zalloc (abfd, amt);
12629 options_segment->next = *pm;
12630 options_segment->p_type = PT_MIPS_OPTIONS;
12631 options_segment->p_flags = PF_R;
12632 options_segment->p_flags_valid = true;
12633 options_segment->count = 1;
12634 options_segment->sections[0] = s;
12635 *pm = options_segment;
12639 else
12641 if (IRIX_COMPAT (abfd) == ict_irix5)
12643 /* If there are .dynamic and .mdebug sections, we make a room
12644 for the RTPROC header. FIXME: Rewrite without section names. */
12645 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12646 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12647 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12649 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12650 if (m->p_type == PT_MIPS_RTPROC)
12651 break;
12652 if (m == NULL)
12654 amt = sizeof *m;
12655 m = bfd_zalloc (abfd, amt);
12656 if (m == NULL)
12657 return false;
12659 m->p_type = PT_MIPS_RTPROC;
12661 s = bfd_get_section_by_name (abfd, ".rtproc");
12662 if (s == NULL)
12664 m->count = 0;
12665 m->p_flags = 0;
12666 m->p_flags_valid = 1;
12668 else
12670 m->count = 1;
12671 m->sections[0] = s;
12674 /* We want to put it after the DYNAMIC segment. */
12675 pm = &elf_seg_map (abfd);
12676 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12677 pm = &(*pm)->next;
12678 if (*pm != NULL)
12679 pm = &(*pm)->next;
12681 m->next = *pm;
12682 *pm = m;
12686 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12687 .dynstr, .dynsym, and .hash sections, and everything in
12688 between. */
12689 for (pm = &elf_seg_map (abfd); *pm != NULL;
12690 pm = &(*pm)->next)
12691 if ((*pm)->p_type == PT_DYNAMIC)
12692 break;
12693 m = *pm;
12694 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12695 glibc's dynamic linker has traditionally derived the number of
12696 tags from the p_filesz field, and sometimes allocates stack
12697 arrays of that size. An overly-big PT_DYNAMIC segment can
12698 be actively harmful in such cases. Making PT_DYNAMIC contain
12699 other sections can also make life hard for the prelinker,
12700 which might move one of the other sections to a different
12701 PT_LOAD segment. */
12702 if (SGI_COMPAT (abfd)
12703 && m != NULL
12704 && m->count == 1
12705 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12707 static const char *sec_names[] =
12709 ".dynamic", ".dynstr", ".dynsym", ".hash"
12711 bfd_vma low, high;
12712 unsigned int i, c;
12713 struct elf_segment_map *n;
12715 low = ~(bfd_vma) 0;
12716 high = 0;
12717 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12719 s = bfd_get_section_by_name (abfd, sec_names[i]);
12720 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12722 bfd_size_type sz;
12724 if (low > s->vma)
12725 low = s->vma;
12726 sz = s->size;
12727 if (high < s->vma + sz)
12728 high = s->vma + sz;
12732 c = 0;
12733 for (s = abfd->sections; s != NULL; s = s->next)
12734 if ((s->flags & SEC_LOAD) != 0
12735 && s->vma >= low
12736 && s->vma + s->size <= high)
12737 ++c;
12739 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12740 n = bfd_zalloc (abfd, amt);
12741 if (n == NULL)
12742 return false;
12743 *n = *m;
12744 n->count = c;
12746 i = 0;
12747 for (s = abfd->sections; s != NULL; s = s->next)
12749 if ((s->flags & SEC_LOAD) != 0
12750 && s->vma >= low
12751 && s->vma + s->size <= high)
12753 n->sections[i] = s;
12754 ++i;
12758 *pm = n;
12762 /* Allocate a spare program header in dynamic objects so that tools
12763 like the prelinker can add an extra PT_LOAD entry.
12765 If the prelinker needs to make room for a new PT_LOAD entry, its
12766 standard procedure is to move the first (read-only) sections into
12767 the new (writable) segment. However, the MIPS ABI requires
12768 .dynamic to be in a read-only segment, and the section will often
12769 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12771 Although the prelinker could in principle move .dynamic to a
12772 writable segment, it seems better to allocate a spare program
12773 header instead, and avoid the need to move any sections.
12774 There is a long tradition of allocating spare dynamic tags,
12775 so allocating a spare program header seems like a natural
12776 extension.
12778 If INFO is NULL, we may be copying an already prelinked binary
12779 with objcopy or strip, so do not add this header. */
12780 if (info != NULL
12781 && !SGI_COMPAT (abfd)
12782 && bfd_get_section_by_name (abfd, ".dynamic"))
12784 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12785 if ((*pm)->p_type == PT_NULL)
12786 break;
12787 if (*pm == NULL)
12789 m = bfd_zalloc (abfd, sizeof (*m));
12790 if (m == NULL)
12791 return false;
12793 m->p_type = PT_NULL;
12794 *pm = m;
12798 return true;
12801 /* Return the section that should be marked against GC for a given
12802 relocation. */
12804 asection *
12805 _bfd_mips_elf_gc_mark_hook (asection *sec,
12806 struct bfd_link_info *info,
12807 Elf_Internal_Rela *rel,
12808 struct elf_link_hash_entry *h,
12809 Elf_Internal_Sym *sym)
12811 /* ??? Do mips16 stub sections need to be handled special? */
12813 if (h != NULL)
12814 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12816 case R_MIPS_GNU_VTINHERIT:
12817 case R_MIPS_GNU_VTENTRY:
12818 return NULL;
12821 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12824 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12826 bool
12827 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12828 elf_gc_mark_hook_fn gc_mark_hook)
12830 bfd *sub;
12832 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12834 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12836 asection *o;
12838 if (! is_mips_elf (sub))
12839 continue;
12841 for (o = sub->sections; o != NULL; o = o->next)
12842 if (!o->gc_mark
12843 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12845 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12846 return false;
12850 return true;
12853 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12854 hiding the old indirect symbol. Process additional relocation
12855 information. Also called for weakdefs, in which case we just let
12856 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12858 void
12859 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12860 struct elf_link_hash_entry *dir,
12861 struct elf_link_hash_entry *ind)
12863 struct mips_elf_link_hash_entry *dirmips, *indmips;
12865 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12867 dirmips = (struct mips_elf_link_hash_entry *) dir;
12868 indmips = (struct mips_elf_link_hash_entry *) ind;
12869 /* Any absolute non-dynamic relocations against an indirect or weak
12870 definition will be against the target symbol. */
12871 if (indmips->has_static_relocs)
12872 dirmips->has_static_relocs = true;
12874 if (ind->root.type != bfd_link_hash_indirect)
12875 return;
12877 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12878 if (indmips->readonly_reloc)
12879 dirmips->readonly_reloc = true;
12880 if (indmips->no_fn_stub)
12881 dirmips->no_fn_stub = true;
12882 if (indmips->fn_stub)
12884 dirmips->fn_stub = indmips->fn_stub;
12885 indmips->fn_stub = NULL;
12887 if (indmips->need_fn_stub)
12889 dirmips->need_fn_stub = true;
12890 indmips->need_fn_stub = false;
12892 if (indmips->call_stub)
12894 dirmips->call_stub = indmips->call_stub;
12895 indmips->call_stub = NULL;
12897 if (indmips->call_fp_stub)
12899 dirmips->call_fp_stub = indmips->call_fp_stub;
12900 indmips->call_fp_stub = NULL;
12902 if (indmips->global_got_area < dirmips->global_got_area)
12903 dirmips->global_got_area = indmips->global_got_area;
12904 if (indmips->global_got_area < GGA_NONE)
12905 indmips->global_got_area = GGA_NONE;
12906 if (indmips->has_nonpic_branches)
12907 dirmips->has_nonpic_branches = true;
12910 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12911 to hide it. It has to remain global (it will also be protected) so as to
12912 be assigned a global GOT entry, which will then remain unchanged at load
12913 time. */
12915 void
12916 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12917 struct elf_link_hash_entry *entry,
12918 bool force_local)
12920 struct mips_elf_link_hash_table *htab;
12922 htab = mips_elf_hash_table (info);
12923 BFD_ASSERT (htab != NULL);
12924 if (htab->use_absolute_zero
12925 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12926 return;
12928 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12931 #define PDR_SIZE 32
12933 bool
12934 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12935 struct bfd_link_info *info)
12937 asection *o;
12938 bool ret = false;
12939 unsigned char *tdata;
12940 size_t i, skip;
12942 o = bfd_get_section_by_name (abfd, ".pdr");
12943 if (! o)
12944 return false;
12945 if (o->size == 0)
12946 return false;
12947 if (o->size % PDR_SIZE != 0)
12948 return false;
12949 if (o->output_section != NULL
12950 && bfd_is_abs_section (o->output_section))
12951 return false;
12953 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12954 if (! tdata)
12955 return false;
12957 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12958 info->keep_memory);
12959 if (!cookie->rels)
12961 free (tdata);
12962 return false;
12965 cookie->rel = cookie->rels;
12966 cookie->relend = cookie->rels + o->reloc_count;
12968 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12970 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12972 tdata[i] = 1;
12973 skip ++;
12977 if (skip != 0)
12979 mips_elf_section_data (o)->u.tdata = tdata;
12980 if (o->rawsize == 0)
12981 o->rawsize = o->size;
12982 o->size -= skip * PDR_SIZE;
12983 ret = true;
12985 else
12986 free (tdata);
12988 if (! info->keep_memory)
12989 free (cookie->rels);
12991 return ret;
12994 bool
12995 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12997 if (strcmp (sec->name, ".pdr") == 0)
12998 return true;
12999 return false;
13002 bool
13003 _bfd_mips_elf_write_section (bfd *output_bfd,
13004 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13005 asection *sec, bfd_byte *contents)
13007 bfd_byte *to, *from, *end;
13008 int i;
13010 if (strcmp (sec->name, ".pdr") != 0)
13011 return false;
13013 if (mips_elf_section_data (sec)->u.tdata == NULL)
13014 return false;
13016 to = contents;
13017 end = contents + sec->size;
13018 for (from = contents, i = 0;
13019 from < end;
13020 from += PDR_SIZE, i++)
13022 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13023 continue;
13024 if (to != from)
13025 memcpy (to, from, PDR_SIZE);
13026 to += PDR_SIZE;
13028 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13029 sec->output_offset, sec->size);
13030 return true;
13033 /* microMIPS code retains local labels for linker relaxation. Omit them
13034 from output by default for clarity. */
13036 bool
13037 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13039 return _bfd_elf_is_local_label_name (abfd, sym->name);
13042 /* MIPS ELF uses a special find_nearest_line routine in order the
13043 handle the ECOFF debugging information. */
13045 struct mips_elf_find_line
13047 struct ecoff_debug_info d;
13048 struct ecoff_find_line i;
13051 bool
13052 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13053 asection *section, bfd_vma offset,
13054 const char **filename_ptr,
13055 const char **functionname_ptr,
13056 unsigned int *line_ptr,
13057 unsigned int *discriminator_ptr)
13059 asection *msec;
13061 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13062 filename_ptr, functionname_ptr,
13063 line_ptr, discriminator_ptr,
13064 dwarf_debug_sections,
13065 &elf_tdata (abfd)->dwarf2_find_line_info)
13066 == 1)
13067 return true;
13069 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13070 filename_ptr, functionname_ptr,
13071 line_ptr))
13073 if (!*functionname_ptr)
13074 _bfd_elf_find_function (abfd, symbols, section, offset,
13075 *filename_ptr ? NULL : filename_ptr,
13076 functionname_ptr);
13077 return true;
13080 msec = bfd_get_section_by_name (abfd, ".mdebug");
13081 if (msec != NULL)
13083 flagword origflags;
13084 struct mips_elf_find_line *fi;
13085 const struct ecoff_debug_swap * const swap =
13086 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13088 /* If we are called during a link, mips_elf_final_link may have
13089 cleared the SEC_HAS_CONTENTS field. We force it back on here
13090 if appropriate (which it normally will be). */
13091 origflags = msec->flags;
13092 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13093 msec->flags |= SEC_HAS_CONTENTS;
13095 fi = mips_elf_tdata (abfd)->find_line_info;
13096 if (fi == NULL)
13098 bfd_size_type external_fdr_size;
13099 char *fraw_src;
13100 char *fraw_end;
13101 struct fdr *fdr_ptr;
13102 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13104 fi = bfd_zalloc (abfd, amt);
13105 if (fi == NULL)
13107 msec->flags = origflags;
13108 return false;
13111 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13113 msec->flags = origflags;
13114 return false;
13117 /* Swap in the FDR information. */
13118 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13119 fi->d.fdr = bfd_alloc (abfd, amt);
13120 if (fi->d.fdr == NULL)
13122 msec->flags = origflags;
13123 return false;
13125 external_fdr_size = swap->external_fdr_size;
13126 fdr_ptr = fi->d.fdr;
13127 fraw_src = (char *) fi->d.external_fdr;
13128 fraw_end = (fraw_src
13129 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13130 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13131 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13133 mips_elf_tdata (abfd)->find_line_info = fi;
13135 /* Note that we don't bother to ever free this information.
13136 find_nearest_line is either called all the time, as in
13137 objdump -l, so the information should be saved, or it is
13138 rarely called, as in ld error messages, so the memory
13139 wasted is unimportant. Still, it would probably be a
13140 good idea for free_cached_info to throw it away. */
13143 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13144 &fi->i, filename_ptr, functionname_ptr,
13145 line_ptr))
13147 msec->flags = origflags;
13148 return true;
13151 msec->flags = origflags;
13154 /* Fall back on the generic ELF find_nearest_line routine. */
13156 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13157 filename_ptr, functionname_ptr,
13158 line_ptr, discriminator_ptr);
13161 bool
13162 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13163 const char **filename_ptr,
13164 const char **functionname_ptr,
13165 unsigned int *line_ptr)
13167 bool found;
13168 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13169 functionname_ptr, line_ptr,
13170 & elf_tdata (abfd)->dwarf2_find_line_info);
13171 return found;
13175 /* When are writing out the .options or .MIPS.options section,
13176 remember the bytes we are writing out, so that we can install the
13177 GP value in the section_processing routine. */
13179 bool
13180 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13181 const void *location,
13182 file_ptr offset, bfd_size_type count)
13184 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13186 bfd_byte *c;
13188 if (elf_section_data (section) == NULL)
13190 size_t amt = sizeof (struct bfd_elf_section_data);
13191 section->used_by_bfd = bfd_zalloc (abfd, amt);
13192 if (elf_section_data (section) == NULL)
13193 return false;
13195 c = mips_elf_section_data (section)->u.tdata;
13196 if (c == NULL)
13198 c = bfd_zalloc (abfd, section->size);
13199 if (c == NULL)
13200 return false;
13201 mips_elf_section_data (section)->u.tdata = c;
13204 memcpy (c + offset, location, count);
13207 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13208 count);
13211 /* This is almost identical to bfd_generic_get_... except that some
13212 MIPS relocations need to be handled specially. Sigh. */
13214 bfd_byte *
13215 _bfd_elf_mips_get_relocated_section_contents
13216 (bfd *abfd,
13217 struct bfd_link_info *link_info,
13218 struct bfd_link_order *link_order,
13219 bfd_byte *data,
13220 bool relocatable,
13221 asymbol **symbols)
13223 bfd *input_bfd = link_order->u.indirect.section->owner;
13224 asection *input_section = link_order->u.indirect.section;
13225 long reloc_size;
13226 arelent **reloc_vector;
13227 long reloc_count;
13229 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13230 if (reloc_size < 0)
13231 return NULL;
13233 /* Read in the section. */
13234 if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
13235 return NULL;
13237 if (data == NULL)
13238 return NULL;
13240 if (reloc_size == 0)
13241 return data;
13243 reloc_vector = (arelent **) bfd_malloc (reloc_size);
13244 if (reloc_vector == NULL)
13246 struct mips_hi16 **hip, *hi;
13247 error_return:
13248 /* If we are going to return an error, remove entries on
13249 mips_hi16_list that point into this section's data. Data
13250 will typically be freed on return from this function. */
13251 hip = &mips_hi16_list;
13252 while ((hi = *hip) != NULL)
13254 if (hi->input_section == input_section)
13256 *hip = hi->next;
13257 free (hi);
13259 else
13260 hip = &hi->next;
13262 data = NULL;
13263 goto out;
13266 reloc_count = bfd_canonicalize_reloc (input_bfd,
13267 input_section,
13268 reloc_vector,
13269 symbols);
13270 if (reloc_count < 0)
13271 goto error_return;
13273 if (reloc_count > 0)
13275 arelent **parent;
13276 /* for mips */
13277 int gp_found;
13278 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13281 struct bfd_hash_entry *h;
13282 struct bfd_link_hash_entry *lh;
13283 /* Skip all this stuff if we aren't mixing formats. */
13284 if (abfd && input_bfd
13285 && abfd->xvec == input_bfd->xvec)
13286 lh = 0;
13287 else
13289 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
13290 lh = (struct bfd_link_hash_entry *) h;
13292 lookup:
13293 if (lh)
13295 switch (lh->type)
13297 case bfd_link_hash_undefined:
13298 case bfd_link_hash_undefweak:
13299 case bfd_link_hash_common:
13300 gp_found = 0;
13301 break;
13302 case bfd_link_hash_defined:
13303 case bfd_link_hash_defweak:
13304 gp_found = 1;
13305 gp = lh->u.def.value;
13306 break;
13307 case bfd_link_hash_indirect:
13308 case bfd_link_hash_warning:
13309 lh = lh->u.i.link;
13310 /* @@FIXME ignoring warning for now */
13311 goto lookup;
13312 case bfd_link_hash_new:
13313 default:
13314 abort ();
13317 else
13318 gp_found = 0;
13320 /* end mips */
13322 for (parent = reloc_vector; *parent != NULL; parent++)
13324 char *error_message = NULL;
13325 asymbol *symbol;
13326 bfd_reloc_status_type r;
13328 symbol = *(*parent)->sym_ptr_ptr;
13329 /* PR ld/19628: A specially crafted input file
13330 can result in a NULL symbol pointer here. */
13331 if (symbol == NULL)
13333 link_info->callbacks->einfo
13334 /* xgettext:c-format */
13335 (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"),
13336 abfd, input_section, (* parent)->address);
13337 goto error_return;
13340 /* Zap reloc field when the symbol is from a discarded
13341 section, ignoring any addend. Do the same when called
13342 from bfd_simple_get_relocated_section_contents for
13343 undefined symbols in debug sections. This is to keep
13344 debug info reasonably sane, in particular so that
13345 DW_FORM_ref_addr to another file's .debug_info isn't
13346 confused with an offset into the current file's
13347 .debug_info. */
13348 if ((symbol->section != NULL && discarded_section (symbol->section))
13349 || (symbol->section == bfd_und_section_ptr
13350 && (input_section->flags & SEC_DEBUGGING) != 0
13351 && link_info->input_bfds == link_info->output_bfd))
13353 bfd_vma off;
13354 static reloc_howto_type none_howto
13355 = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL,
13356 "unused", false, 0, 0, false);
13358 off = ((*parent)->address
13359 * bfd_octets_per_byte (input_bfd, input_section));
13360 _bfd_clear_contents ((*parent)->howto, input_bfd,
13361 input_section, data, off);
13362 (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
13363 (*parent)->addend = 0;
13364 (*parent)->howto = &none_howto;
13365 r = bfd_reloc_ok;
13368 /* Specific to MIPS: Deal with relocation types that require
13369 knowing the gp of the output bfd. */
13371 /* If we've managed to find the gp and have a special
13372 function for the relocation then go ahead, else default
13373 to the generic handling. */
13374 else if (gp_found
13375 && ((*parent)->howto->special_function
13376 == _bfd_mips_elf32_gprel16_reloc))
13377 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent,
13378 input_section, relocatable,
13379 data, gp);
13380 else
13381 r = bfd_perform_relocation (input_bfd,
13382 *parent,
13383 data,
13384 input_section,
13385 relocatable ? abfd : NULL,
13386 &error_message);
13388 if (relocatable)
13390 asection *os = input_section->output_section;
13392 /* A partial link, so keep the relocs. */
13393 os->orelocation[os->reloc_count] = *parent;
13394 os->reloc_count++;
13397 if (r != bfd_reloc_ok)
13399 switch (r)
13401 case bfd_reloc_undefined:
13402 (*link_info->callbacks->undefined_symbol)
13403 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13404 input_bfd, input_section, (*parent)->address, true);
13405 break;
13406 case bfd_reloc_dangerous:
13407 BFD_ASSERT (error_message != NULL);
13408 (*link_info->callbacks->reloc_dangerous)
13409 (link_info, error_message,
13410 input_bfd, input_section, (*parent)->address);
13411 break;
13412 case bfd_reloc_overflow:
13413 (*link_info->callbacks->reloc_overflow)
13414 (link_info, NULL,
13415 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13416 (*parent)->howto->name, (*parent)->addend,
13417 input_bfd, input_section, (*parent)->address);
13418 break;
13419 case bfd_reloc_outofrange:
13420 /* PR ld/13730:
13421 This error can result when processing some partially
13422 complete binaries. Do not abort, but issue an error
13423 message instead. */
13424 link_info->callbacks->einfo
13425 /* xgettext:c-format */
13426 (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"),
13427 abfd, input_section, * parent);
13428 goto error_return;
13430 case bfd_reloc_notsupported:
13431 /* PR ld/17512
13432 This error can result when processing a corrupt binary.
13433 Do not abort. Issue an error message instead. */
13434 link_info->callbacks->einfo
13435 /* xgettext:c-format */
13436 (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"),
13437 abfd, input_section, * parent);
13438 goto error_return;
13440 default:
13441 /* PR 17512; file: 90c2a92e.
13442 Report unexpected results, without aborting. */
13443 link_info->callbacks->einfo
13444 /* xgettext:c-format */
13445 (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"),
13446 abfd, input_section, * parent, r);
13447 break;
13454 out:
13455 free (reloc_vector);
13456 return data;
13459 static bool
13460 mips_elf_relax_delete_bytes (bfd *abfd,
13461 asection *sec, bfd_vma addr, int count)
13463 Elf_Internal_Shdr *symtab_hdr;
13464 unsigned int sec_shndx;
13465 bfd_byte *contents;
13466 Elf_Internal_Rela *irel, *irelend;
13467 Elf_Internal_Sym *isym;
13468 Elf_Internal_Sym *isymend;
13469 struct elf_link_hash_entry **sym_hashes;
13470 struct elf_link_hash_entry **end_hashes;
13471 struct elf_link_hash_entry **start_hashes;
13472 unsigned int symcount;
13474 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13475 contents = elf_section_data (sec)->this_hdr.contents;
13477 irel = elf_section_data (sec)->relocs;
13478 irelend = irel + sec->reloc_count;
13480 /* Actually delete the bytes. */
13481 memmove (contents + addr, contents + addr + count,
13482 (size_t) (sec->size - addr - count));
13483 sec->size -= count;
13485 /* Adjust all the relocs. */
13486 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13488 /* Get the new reloc address. */
13489 if (irel->r_offset > addr)
13490 irel->r_offset -= count;
13493 BFD_ASSERT (addr % 2 == 0);
13494 BFD_ASSERT (count % 2 == 0);
13496 /* Adjust the local symbols defined in this section. */
13497 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13498 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13499 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13500 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13501 isym->st_value -= count;
13503 /* Now adjust the global symbols defined in this section. */
13504 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13505 - symtab_hdr->sh_info);
13506 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13507 end_hashes = sym_hashes + symcount;
13509 for (; sym_hashes < end_hashes; sym_hashes++)
13511 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13513 if ((sym_hash->root.type == bfd_link_hash_defined
13514 || sym_hash->root.type == bfd_link_hash_defweak)
13515 && sym_hash->root.u.def.section == sec)
13517 bfd_vma value = sym_hash->root.u.def.value;
13519 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13520 value &= MINUS_TWO;
13521 if (value > addr)
13522 sym_hash->root.u.def.value -= count;
13526 return true;
13530 /* Opcodes needed for microMIPS relaxation as found in
13531 opcodes/micromips-opc.c. */
13533 struct opcode_descriptor {
13534 unsigned long match;
13535 unsigned long mask;
13538 /* The $ra register aka $31. */
13540 #define RA 31
13542 /* 32-bit instruction format register fields. */
13544 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13545 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13547 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13549 #define OP16_VALID_REG(r) \
13550 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13553 /* 32-bit and 16-bit branches. */
13555 static const struct opcode_descriptor b_insns_32[] = {
13556 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13557 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13558 { 0, 0 } /* End marker for find_match(). */
13561 static const struct opcode_descriptor bc_insn_32 =
13562 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13564 static const struct opcode_descriptor bz_insn_32 =
13565 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13567 static const struct opcode_descriptor bzal_insn_32 =
13568 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13570 static const struct opcode_descriptor beq_insn_32 =
13571 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13573 static const struct opcode_descriptor b_insn_16 =
13574 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13576 static const struct opcode_descriptor bz_insn_16 =
13577 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13580 /* 32-bit and 16-bit branch EQ and NE zero. */
13582 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13583 eq and second the ne. This convention is used when replacing a
13584 32-bit BEQ/BNE with the 16-bit version. */
13586 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13588 static const struct opcode_descriptor bz_rs_insns_32[] = {
13589 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13590 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13591 { 0, 0 } /* End marker for find_match(). */
13594 static const struct opcode_descriptor bz_rt_insns_32[] = {
13595 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13596 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13597 { 0, 0 } /* End marker for find_match(). */
13600 static const struct opcode_descriptor bzc_insns_32[] = {
13601 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13602 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13603 { 0, 0 } /* End marker for find_match(). */
13606 static const struct opcode_descriptor bz_insns_16[] = {
13607 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13608 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13609 { 0, 0 } /* End marker for find_match(). */
13612 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13614 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13615 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13618 /* 32-bit instructions with a delay slot. */
13620 static const struct opcode_descriptor jal_insn_32_bd16 =
13621 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13623 static const struct opcode_descriptor jal_insn_32_bd32 =
13624 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13626 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13627 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13629 static const struct opcode_descriptor j_insn_32 =
13630 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13632 static const struct opcode_descriptor jalr_insn_32 =
13633 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13635 /* This table can be compacted, because no opcode replacement is made. */
13637 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13638 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13640 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13641 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13643 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13644 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13645 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13646 { 0, 0 } /* End marker for find_match(). */
13649 /* This table can be compacted, because no opcode replacement is made. */
13651 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13652 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13654 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13655 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13656 { 0, 0 } /* End marker for find_match(). */
13660 /* 16-bit instructions with a delay slot. */
13662 static const struct opcode_descriptor jalr_insn_16_bd16 =
13663 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13665 static const struct opcode_descriptor jalr_insn_16_bd32 =
13666 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13668 static const struct opcode_descriptor jr_insn_16 =
13669 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13671 #define JR16_REG(opcode) ((opcode) & 0x1f)
13673 /* This table can be compacted, because no opcode replacement is made. */
13675 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13676 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13678 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13679 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13680 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13681 { 0, 0 } /* End marker for find_match(). */
13685 /* LUI instruction. */
13687 static const struct opcode_descriptor lui_insn =
13688 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13691 /* ADDIU instruction. */
13693 static const struct opcode_descriptor addiu_insn =
13694 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13696 static const struct opcode_descriptor addiupc_insn =
13697 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13699 #define ADDIUPC_REG_FIELD(r) \
13700 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13703 /* Relaxable instructions in a JAL delay slot: MOVE. */
13705 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13706 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13707 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13708 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13710 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13711 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13713 static const struct opcode_descriptor move_insns_32[] = {
13714 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13715 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13716 { 0, 0 } /* End marker for find_match(). */
13719 static const struct opcode_descriptor move_insn_16 =
13720 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13723 /* NOP instructions. */
13725 static const struct opcode_descriptor nop_insn_32 =
13726 { /* "nop", "", */ 0x00000000, 0xffffffff };
13728 static const struct opcode_descriptor nop_insn_16 =
13729 { /* "nop", "", */ 0x0c00, 0xffff };
13732 /* Instruction match support. */
13734 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13736 static int
13737 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13739 unsigned long indx;
13741 for (indx = 0; insn[indx].mask != 0; indx++)
13742 if (MATCH (opcode, insn[indx]))
13743 return indx;
13745 return -1;
13749 /* Branch and delay slot decoding support. */
13751 /* If PTR points to what *might* be a 16-bit branch or jump, then
13752 return the minimum length of its delay slot, otherwise return 0.
13753 Non-zero results are not definitive as we might be checking against
13754 the second half of another instruction. */
13756 static int
13757 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13759 unsigned long opcode;
13760 int bdsize;
13762 opcode = bfd_get_16 (abfd, ptr);
13763 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13764 /* 16-bit branch/jump with a 32-bit delay slot. */
13765 bdsize = 4;
13766 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13767 || find_match (opcode, ds_insns_16_bd16) >= 0)
13768 /* 16-bit branch/jump with a 16-bit delay slot. */
13769 bdsize = 2;
13770 else
13771 /* No delay slot. */
13772 bdsize = 0;
13774 return bdsize;
13777 /* If PTR points to what *might* be a 32-bit branch or jump, then
13778 return the minimum length of its delay slot, otherwise return 0.
13779 Non-zero results are not definitive as we might be checking against
13780 the second half of another instruction. */
13782 static int
13783 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13785 unsigned long opcode;
13786 int bdsize;
13788 opcode = bfd_get_micromips_32 (abfd, ptr);
13789 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13790 /* 32-bit branch/jump with a 32-bit delay slot. */
13791 bdsize = 4;
13792 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13793 /* 32-bit branch/jump with a 16-bit delay slot. */
13794 bdsize = 2;
13795 else
13796 /* No delay slot. */
13797 bdsize = 0;
13799 return bdsize;
13802 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13803 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13805 static bool
13806 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13808 unsigned long opcode;
13810 opcode = bfd_get_16 (abfd, ptr);
13811 if (MATCH (opcode, b_insn_16)
13812 /* B16 */
13813 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13814 /* JR16 */
13815 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13816 /* BEQZ16, BNEZ16 */
13817 || (MATCH (opcode, jalr_insn_16_bd32)
13818 /* JALR16 */
13819 && reg != JR16_REG (opcode) && reg != RA))
13820 return true;
13822 return false;
13825 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13826 then return TRUE, otherwise FALSE. */
13828 static bool
13829 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13831 unsigned long opcode;
13833 opcode = bfd_get_micromips_32 (abfd, ptr);
13834 if (MATCH (opcode, j_insn_32)
13835 /* J */
13836 || MATCH (opcode, bc_insn_32)
13837 /* BC1F, BC1T, BC2F, BC2T */
13838 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13839 /* JAL, JALX */
13840 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13841 /* BGEZ, BGTZ, BLEZ, BLTZ */
13842 || (MATCH (opcode, bzal_insn_32)
13843 /* BGEZAL, BLTZAL */
13844 && reg != OP32_SREG (opcode) && reg != RA)
13845 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13846 /* JALR, JALR.HB, BEQ, BNE */
13847 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13848 return true;
13850 return false;
13853 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13854 IRELEND) at OFFSET indicate that there must be a compact branch there,
13855 then return TRUE, otherwise FALSE. */
13857 static bool
13858 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13859 const Elf_Internal_Rela *internal_relocs,
13860 const Elf_Internal_Rela *irelend)
13862 const Elf_Internal_Rela *irel;
13863 unsigned long opcode;
13865 opcode = bfd_get_micromips_32 (abfd, ptr);
13866 if (find_match (opcode, bzc_insns_32) < 0)
13867 return false;
13869 for (irel = internal_relocs; irel < irelend; irel++)
13870 if (irel->r_offset == offset
13871 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13872 return true;
13874 return false;
13877 /* Bitsize checking. */
13878 #define IS_BITSIZE(val, N) \
13879 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13880 - (1ULL << ((N) - 1))) == (val))
13883 bool
13884 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13885 struct bfd_link_info *link_info,
13886 bool *again)
13888 bool insn32 = mips_elf_hash_table (link_info)->insn32;
13889 Elf_Internal_Shdr *symtab_hdr;
13890 Elf_Internal_Rela *internal_relocs;
13891 Elf_Internal_Rela *irel, *irelend;
13892 bfd_byte *contents = NULL;
13893 Elf_Internal_Sym *isymbuf = NULL;
13895 /* Assume nothing changes. */
13896 *again = false;
13898 /* We don't have to do anything for a relocatable link, if
13899 this section does not have relocs, or if this is not a
13900 code section. */
13902 if (bfd_link_relocatable (link_info)
13903 || (sec->flags & SEC_RELOC) == 0
13904 || sec->reloc_count == 0
13905 || (sec->flags & SEC_CODE) == 0)
13906 return true;
13908 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13910 /* Get a copy of the native relocations. */
13911 internal_relocs = (_bfd_elf_link_read_relocs
13912 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13913 link_info->keep_memory));
13914 if (internal_relocs == NULL)
13915 goto error_return;
13917 /* Walk through them looking for relaxing opportunities. */
13918 irelend = internal_relocs + sec->reloc_count;
13919 for (irel = internal_relocs; irel < irelend; irel++)
13921 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13922 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13923 bool target_is_micromips_code_p;
13924 unsigned long opcode;
13925 bfd_vma symval;
13926 bfd_vma pcrval;
13927 bfd_byte *ptr;
13928 int fndopc;
13930 /* The number of bytes to delete for relaxation and from where
13931 to delete these bytes starting at irel->r_offset. */
13932 int delcnt = 0;
13933 int deloff = 0;
13935 /* If this isn't something that can be relaxed, then ignore
13936 this reloc. */
13937 if (r_type != R_MICROMIPS_HI16
13938 && r_type != R_MICROMIPS_PC16_S1
13939 && r_type != R_MICROMIPS_26_S1)
13940 continue;
13942 /* Get the section contents if we haven't done so already. */
13943 if (contents == NULL)
13945 /* Get cached copy if it exists. */
13946 if (elf_section_data (sec)->this_hdr.contents != NULL)
13947 contents = elf_section_data (sec)->this_hdr.contents;
13948 /* Go get them off disk. */
13949 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13950 goto error_return;
13952 ptr = contents + irel->r_offset;
13954 /* Read this BFD's local symbols if we haven't done so already. */
13955 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13957 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13958 if (isymbuf == NULL)
13959 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13960 symtab_hdr->sh_info, 0,
13961 NULL, NULL, NULL);
13962 if (isymbuf == NULL)
13963 goto error_return;
13966 /* Get the value of the symbol referred to by the reloc. */
13967 if (r_symndx < symtab_hdr->sh_info)
13969 /* A local symbol. */
13970 Elf_Internal_Sym *isym;
13971 asection *sym_sec;
13973 isym = isymbuf + r_symndx;
13974 if (isym->st_shndx == SHN_UNDEF)
13975 sym_sec = bfd_und_section_ptr;
13976 else if (isym->st_shndx == SHN_ABS)
13977 sym_sec = bfd_abs_section_ptr;
13978 else if (isym->st_shndx == SHN_COMMON)
13979 sym_sec = bfd_com_section_ptr;
13980 else
13981 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13982 symval = (isym->st_value
13983 + sym_sec->output_section->vma
13984 + sym_sec->output_offset);
13985 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13987 else
13989 unsigned long indx;
13990 struct elf_link_hash_entry *h;
13992 /* An external symbol. */
13993 indx = r_symndx - symtab_hdr->sh_info;
13994 h = elf_sym_hashes (abfd)[indx];
13995 BFD_ASSERT (h != NULL);
13997 if (h->root.type != bfd_link_hash_defined
13998 && h->root.type != bfd_link_hash_defweak)
13999 /* This appears to be a reference to an undefined
14000 symbol. Just ignore it -- it will be caught by the
14001 regular reloc processing. */
14002 continue;
14004 symval = (h->root.u.def.value
14005 + h->root.u.def.section->output_section->vma
14006 + h->root.u.def.section->output_offset);
14007 target_is_micromips_code_p = (!h->needs_plt
14008 && ELF_ST_IS_MICROMIPS (h->other));
14012 /* For simplicity of coding, we are going to modify the
14013 section contents, the section relocs, and the BFD symbol
14014 table. We must tell the rest of the code not to free up this
14015 information. It would be possible to instead create a table
14016 of changes which have to be made, as is done in coff-mips.c;
14017 that would be more work, but would require less memory when
14018 the linker is run. */
14020 /* Only 32-bit instructions relaxed. */
14021 if (irel->r_offset + 4 > sec->size)
14022 continue;
14024 opcode = bfd_get_micromips_32 (abfd, ptr);
14026 /* This is the pc-relative distance from the instruction the
14027 relocation is applied to, to the symbol referred. */
14028 pcrval = (symval
14029 - (sec->output_section->vma + sec->output_offset)
14030 - irel->r_offset);
14032 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
14033 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
14034 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
14036 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
14038 where pcrval has first to be adjusted to apply against the LO16
14039 location (we make the adjustment later on, when we have figured
14040 out the offset). */
14041 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
14043 bool bzc = false;
14044 unsigned long nextopc;
14045 unsigned long reg;
14046 bfd_vma offset;
14048 /* Give up if the previous reloc was a HI16 against this symbol
14049 too. */
14050 if (irel > internal_relocs
14051 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
14052 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
14053 continue;
14055 /* Or if the next reloc is not a LO16 against this symbol. */
14056 if (irel + 1 >= irelend
14057 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14058 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14059 continue;
14061 /* Or if the second next reloc is a LO16 against this symbol too. */
14062 if (irel + 2 >= irelend
14063 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14064 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14065 continue;
14067 /* See if the LUI instruction *might* be in a branch delay slot.
14068 We check whether what looks like a 16-bit branch or jump is
14069 actually an immediate argument to a compact branch, and let
14070 it through if so. */
14071 if (irel->r_offset >= 2
14072 && check_br16_dslot (abfd, ptr - 2)
14073 && !(irel->r_offset >= 4
14074 && (bzc = check_relocated_bzc (abfd,
14075 ptr - 4, irel->r_offset - 4,
14076 internal_relocs, irelend))))
14077 continue;
14078 if (irel->r_offset >= 4
14079 && !bzc
14080 && check_br32_dslot (abfd, ptr - 4))
14081 continue;
14083 reg = OP32_SREG (opcode);
14085 /* We only relax adjacent instructions or ones separated with
14086 a branch or jump that has a delay slot. The branch or jump
14087 must not fiddle with the register used to hold the address.
14088 Subtract 4 for the LUI itself. */
14089 offset = irel[1].r_offset - irel[0].r_offset;
14090 switch (offset - 4)
14092 case 0:
14093 break;
14094 case 2:
14095 if (check_br16 (abfd, ptr + 4, reg))
14096 break;
14097 continue;
14098 case 4:
14099 if (check_br32 (abfd, ptr + 4, reg))
14100 break;
14101 continue;
14102 default:
14103 continue;
14106 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14108 /* Give up unless the same register is used with both
14109 relocations. */
14110 if (OP32_SREG (nextopc) != reg)
14111 continue;
14113 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14114 and rounding up to take masking of the two LSBs into account. */
14115 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14117 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14118 if (IS_BITSIZE (symval, 16))
14120 /* Fix the relocation's type. */
14121 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14123 /* Instructions using R_MICROMIPS_LO16 have the base or
14124 source register in bits 20:16. This register becomes $0
14125 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14126 nextopc &= ~0x001f0000;
14127 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14128 contents + irel[1].r_offset);
14131 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14132 We add 4 to take LUI deletion into account while checking
14133 the PC-relative distance. */
14134 else if (symval % 4 == 0
14135 && IS_BITSIZE (pcrval + 4, 25)
14136 && MATCH (nextopc, addiu_insn)
14137 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14138 && OP16_VALID_REG (OP32_TREG (nextopc)))
14140 /* Fix the relocation's type. */
14141 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14143 /* Replace ADDIU with the ADDIUPC version. */
14144 nextopc = (addiupc_insn.match
14145 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14147 bfd_put_micromips_32 (abfd, nextopc,
14148 contents + irel[1].r_offset);
14151 /* Can't do anything, give up, sigh... */
14152 else
14153 continue;
14155 /* Fix the relocation's type. */
14156 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14158 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14159 delcnt = 4;
14160 deloff = 0;
14163 /* Compact branch relaxation -- due to the multitude of macros
14164 employed by the compiler/assembler, compact branches are not
14165 always generated. Obviously, this can/will be fixed elsewhere,
14166 but there is no drawback in double checking it here. */
14167 else if (r_type == R_MICROMIPS_PC16_S1
14168 && irel->r_offset + 5 < sec->size
14169 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14170 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14171 && ((!insn32
14172 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14173 nop_insn_16) ? 2 : 0))
14174 || (irel->r_offset + 7 < sec->size
14175 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14176 ptr + 4),
14177 nop_insn_32) ? 4 : 0))))
14179 unsigned long reg;
14181 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14183 /* Replace BEQZ/BNEZ with the compact version. */
14184 opcode = (bzc_insns_32[fndopc].match
14185 | BZC32_REG_FIELD (reg)
14186 | (opcode & 0xffff)); /* Addend value. */
14188 bfd_put_micromips_32 (abfd, opcode, ptr);
14190 /* Delete the delay slot NOP: two or four bytes from
14191 irel->offset + 4; delcnt has already been set above. */
14192 deloff = 4;
14195 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14196 to check the distance from the next instruction, so subtract 2. */
14197 else if (!insn32
14198 && r_type == R_MICROMIPS_PC16_S1
14199 && IS_BITSIZE (pcrval - 2, 11)
14200 && find_match (opcode, b_insns_32) >= 0)
14202 /* Fix the relocation's type. */
14203 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14205 /* Replace the 32-bit opcode with a 16-bit opcode. */
14206 bfd_put_16 (abfd,
14207 (b_insn_16.match
14208 | (opcode & 0x3ff)), /* Addend value. */
14209 ptr);
14211 /* Delete 2 bytes from irel->r_offset + 2. */
14212 delcnt = 2;
14213 deloff = 2;
14216 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14217 to check the distance from the next instruction, so subtract 2. */
14218 else if (!insn32
14219 && r_type == R_MICROMIPS_PC16_S1
14220 && IS_BITSIZE (pcrval - 2, 8)
14221 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14222 && OP16_VALID_REG (OP32_SREG (opcode)))
14223 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14224 && OP16_VALID_REG (OP32_TREG (opcode)))))
14226 unsigned long reg;
14228 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14230 /* Fix the relocation's type. */
14231 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14233 /* Replace the 32-bit opcode with a 16-bit opcode. */
14234 bfd_put_16 (abfd,
14235 (bz_insns_16[fndopc].match
14236 | BZ16_REG_FIELD (reg)
14237 | (opcode & 0x7f)), /* Addend value. */
14238 ptr);
14240 /* Delete 2 bytes from irel->r_offset + 2. */
14241 delcnt = 2;
14242 deloff = 2;
14245 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14246 else if (!insn32
14247 && r_type == R_MICROMIPS_26_S1
14248 && target_is_micromips_code_p
14249 && irel->r_offset + 7 < sec->size
14250 && MATCH (opcode, jal_insn_32_bd32))
14252 unsigned long n32opc;
14253 bool relaxed = false;
14255 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14257 if (MATCH (n32opc, nop_insn_32))
14259 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14260 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14262 relaxed = true;
14264 else if (find_match (n32opc, move_insns_32) >= 0)
14266 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14267 bfd_put_16 (abfd,
14268 (move_insn_16.match
14269 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14270 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14271 ptr + 4);
14273 relaxed = true;
14275 /* Other 32-bit instructions relaxable to 16-bit
14276 instructions will be handled here later. */
14278 if (relaxed)
14280 /* JAL with 32-bit delay slot that is changed to a JALS
14281 with 16-bit delay slot. */
14282 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14284 /* Delete 2 bytes from irel->r_offset + 6. */
14285 delcnt = 2;
14286 deloff = 6;
14290 if (delcnt != 0)
14292 /* Note that we've changed the relocs, section contents, etc. */
14293 elf_section_data (sec)->relocs = internal_relocs;
14294 elf_section_data (sec)->this_hdr.contents = contents;
14295 symtab_hdr->contents = (unsigned char *) isymbuf;
14297 /* Delete bytes depending on the delcnt and deloff. */
14298 if (!mips_elf_relax_delete_bytes (abfd, sec,
14299 irel->r_offset + deloff, delcnt))
14300 goto error_return;
14302 /* That will change things, so we should relax again.
14303 Note that this is not required, and it may be slow. */
14304 *again = true;
14308 if (isymbuf != NULL
14309 && symtab_hdr->contents != (unsigned char *) isymbuf)
14311 if (! link_info->keep_memory)
14312 free (isymbuf);
14313 else
14315 /* Cache the symbols for elf_link_input_bfd. */
14316 symtab_hdr->contents = (unsigned char *) isymbuf;
14320 if (contents != NULL
14321 && elf_section_data (sec)->this_hdr.contents != contents)
14323 if (! link_info->keep_memory)
14324 free (contents);
14325 else
14327 /* Cache the section contents for elf_link_input_bfd. */
14328 elf_section_data (sec)->this_hdr.contents = contents;
14332 if (elf_section_data (sec)->relocs != internal_relocs)
14333 free (internal_relocs);
14335 return true;
14337 error_return:
14338 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14339 free (isymbuf);
14340 if (elf_section_data (sec)->this_hdr.contents != contents)
14341 free (contents);
14342 if (elf_section_data (sec)->relocs != internal_relocs)
14343 free (internal_relocs);
14345 return false;
14348 /* Create a MIPS ELF linker hash table. */
14350 struct bfd_link_hash_table *
14351 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14353 struct mips_elf_link_hash_table *ret;
14354 size_t amt = sizeof (struct mips_elf_link_hash_table);
14356 ret = bfd_zmalloc (amt);
14357 if (ret == NULL)
14358 return NULL;
14360 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14361 mips_elf_link_hash_newfunc,
14362 sizeof (struct mips_elf_link_hash_entry),
14363 MIPS_ELF_DATA))
14365 free (ret);
14366 return NULL;
14368 ret->root.init_plt_refcount.plist = NULL;
14369 ret->root.init_plt_offset.plist = NULL;
14371 return &ret->root.root;
14374 /* Likewise, but indicate that the target is VxWorks. */
14376 struct bfd_link_hash_table *
14377 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14379 struct bfd_link_hash_table *ret;
14381 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14382 if (ret)
14384 struct mips_elf_link_hash_table *htab;
14386 htab = (struct mips_elf_link_hash_table *) ret;
14387 htab->use_plts_and_copy_relocs = true;
14389 return ret;
14392 /* A function that the linker calls if we are allowed to use PLTs
14393 and copy relocs. */
14395 void
14396 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14398 mips_elf_hash_table (info)->use_plts_and_copy_relocs = true;
14401 /* A function that the linker calls to select between all or only
14402 32-bit microMIPS instructions, and between making or ignoring
14403 branch relocation checks for invalid transitions between ISA modes.
14404 Also record whether we have been configured for a GNU target. */
14406 void
14407 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32,
14408 bool ignore_branch_isa,
14409 bool gnu_target)
14411 mips_elf_hash_table (info)->insn32 = insn32;
14412 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14413 mips_elf_hash_table (info)->gnu_target = gnu_target;
14416 /* A function that the linker calls to enable use of compact branches in
14417 linker generated code for MIPSR6. */
14419 void
14420 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on)
14422 mips_elf_hash_table (info)->compact_branches = on;
14426 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14428 struct mips_mach_extension
14430 unsigned long extension, base;
14434 /* An array describing how BFD machines relate to one another. The entries
14435 are ordered topologically with MIPS I extensions listed last. */
14437 static const struct mips_mach_extension mips_mach_extensions[] =
14439 /* MIPS64r2 extensions. */
14440 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14441 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14442 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14443 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14444 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14445 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14446 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14448 /* MIPS64 extensions. */
14449 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14450 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14451 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14453 /* MIPS V extensions. */
14454 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14456 /* R10000 extensions. */
14457 { bfd_mach_mips12000, bfd_mach_mips10000 },
14458 { bfd_mach_mips14000, bfd_mach_mips10000 },
14459 { bfd_mach_mips16000, bfd_mach_mips10000 },
14461 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14462 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14463 better to allow vr5400 and vr5500 code to be merged anyway, since
14464 many libraries will just use the core ISA. Perhaps we could add
14465 some sort of ASE flag if this ever proves a problem. */
14466 { bfd_mach_mips5500, bfd_mach_mips5400 },
14467 { bfd_mach_mips5400, bfd_mach_mips5000 },
14469 /* MIPS IV extensions. */
14470 { bfd_mach_mips5, bfd_mach_mips8000 },
14471 { bfd_mach_mips10000, bfd_mach_mips8000 },
14472 { bfd_mach_mips5000, bfd_mach_mips8000 },
14473 { bfd_mach_mips7000, bfd_mach_mips8000 },
14474 { bfd_mach_mips9000, bfd_mach_mips8000 },
14476 /* VR4100 extensions. */
14477 { bfd_mach_mips4120, bfd_mach_mips4100 },
14478 { bfd_mach_mips4111, bfd_mach_mips4100 },
14480 /* MIPS III extensions. */
14481 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14482 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14483 { bfd_mach_mips8000, bfd_mach_mips4000 },
14484 { bfd_mach_mips4650, bfd_mach_mips4000 },
14485 { bfd_mach_mips4600, bfd_mach_mips4000 },
14486 { bfd_mach_mips4400, bfd_mach_mips4000 },
14487 { bfd_mach_mips4300, bfd_mach_mips4000 },
14488 { bfd_mach_mips4100, bfd_mach_mips4000 },
14489 { bfd_mach_mips5900, bfd_mach_mips4000 },
14491 /* MIPS32r3 extensions. */
14492 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14494 /* MIPS32r2 extensions. */
14495 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14497 /* MIPS32 extensions. */
14498 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14500 /* MIPS II extensions. */
14501 { bfd_mach_mips4000, bfd_mach_mips6000 },
14502 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14503 { bfd_mach_mips4010, bfd_mach_mips6000 },
14505 /* MIPS I extensions. */
14506 { bfd_mach_mips6000, bfd_mach_mips3000 },
14507 { bfd_mach_mips3900, bfd_mach_mips3000 }
14510 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14512 static bool
14513 mips_mach_extends_p (unsigned long base, unsigned long extension)
14515 size_t i;
14517 if (extension == base)
14518 return true;
14520 if (base == bfd_mach_mipsisa32
14521 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14522 return true;
14524 if (base == bfd_mach_mipsisa32r2
14525 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14526 return true;
14528 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14529 if (extension == mips_mach_extensions[i].extension)
14531 extension = mips_mach_extensions[i].base;
14532 if (extension == base)
14533 return true;
14536 return false;
14539 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14541 static unsigned long
14542 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14544 switch (isa_ext)
14546 case AFL_EXT_3900: return bfd_mach_mips3900;
14547 case AFL_EXT_4010: return bfd_mach_mips4010;
14548 case AFL_EXT_4100: return bfd_mach_mips4100;
14549 case AFL_EXT_4111: return bfd_mach_mips4111;
14550 case AFL_EXT_4120: return bfd_mach_mips4120;
14551 case AFL_EXT_4650: return bfd_mach_mips4650;
14552 case AFL_EXT_5400: return bfd_mach_mips5400;
14553 case AFL_EXT_5500: return bfd_mach_mips5500;
14554 case AFL_EXT_5900: return bfd_mach_mips5900;
14555 case AFL_EXT_10000: return bfd_mach_mips10000;
14556 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14557 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14558 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14559 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14560 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14561 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14562 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14563 default: return bfd_mach_mips3000;
14567 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14569 unsigned int
14570 bfd_mips_isa_ext (bfd *abfd)
14572 switch (bfd_get_mach (abfd))
14574 case bfd_mach_mips3900: return AFL_EXT_3900;
14575 case bfd_mach_mips4010: return AFL_EXT_4010;
14576 case bfd_mach_mips4100: return AFL_EXT_4100;
14577 case bfd_mach_mips4111: return AFL_EXT_4111;
14578 case bfd_mach_mips4120: return AFL_EXT_4120;
14579 case bfd_mach_mips4650: return AFL_EXT_4650;
14580 case bfd_mach_mips5400: return AFL_EXT_5400;
14581 case bfd_mach_mips5500: return AFL_EXT_5500;
14582 case bfd_mach_mips5900: return AFL_EXT_5900;
14583 case bfd_mach_mips10000: return AFL_EXT_10000;
14584 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14585 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14586 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14587 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14588 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14589 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14590 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14591 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14592 case bfd_mach_mips_interaptiv_mr2:
14593 return AFL_EXT_INTERAPTIV_MR2;
14594 default: return 0;
14598 /* Encode ISA level and revision as a single value. */
14599 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14601 /* Decode a single value into level and revision. */
14602 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14603 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14605 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14607 static void
14608 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14610 int new_isa = 0;
14611 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14613 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14614 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14615 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14616 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14617 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14618 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14619 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14620 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14621 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14622 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14623 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14624 default:
14625 _bfd_error_handler
14626 /* xgettext:c-format */
14627 (_("%pB: unknown architecture %s"),
14628 abfd, bfd_printable_name (abfd));
14631 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14633 abiflags->isa_level = ISA_LEVEL (new_isa);
14634 abiflags->isa_rev = ISA_REV (new_isa);
14637 /* Update the isa_ext if ABFD describes a further extension. */
14638 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14639 bfd_get_mach (abfd)))
14640 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14643 /* Return true if the given ELF header flags describe a 32-bit binary. */
14645 static bool
14646 mips_32bit_flags_p (flagword flags)
14648 return ((flags & EF_MIPS_32BITMODE) != 0
14649 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14650 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14651 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14652 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14653 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14654 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14655 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14658 /* Infer the content of the ABI flags based on the elf header. */
14660 static void
14661 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14663 obj_attribute *in_attr;
14665 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14666 update_mips_abiflags_isa (abfd, abiflags);
14668 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14669 abiflags->gpr_size = AFL_REG_32;
14670 else
14671 abiflags->gpr_size = AFL_REG_64;
14673 abiflags->cpr1_size = AFL_REG_NONE;
14675 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14676 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14678 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14679 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14680 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14681 && abiflags->gpr_size == AFL_REG_32))
14682 abiflags->cpr1_size = AFL_REG_32;
14683 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14684 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14685 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14686 abiflags->cpr1_size = AFL_REG_64;
14688 abiflags->cpr2_size = AFL_REG_NONE;
14690 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14691 abiflags->ases |= AFL_ASE_MDMX;
14692 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14693 abiflags->ases |= AFL_ASE_MIPS16;
14694 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14695 abiflags->ases |= AFL_ASE_MICROMIPS;
14697 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14698 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14699 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14700 && abiflags->isa_level >= 32
14701 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14702 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14705 /* We need to use a special link routine to handle the .reginfo and
14706 the .mdebug sections. We need to merge all instances of these
14707 sections together, not write them all out sequentially. */
14709 bool
14710 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14712 asection *o;
14713 struct bfd_link_order *p;
14714 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14715 asection *rtproc_sec, *abiflags_sec;
14716 Elf32_RegInfo reginfo;
14717 struct ecoff_debug_info debug;
14718 struct mips_htab_traverse_info hti;
14719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14720 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14721 HDRR *symhdr = &debug.symbolic_header;
14722 void *mdebug_handle = NULL;
14723 asection *s;
14724 EXTR esym;
14725 unsigned int i;
14726 bfd_size_type amt;
14727 struct mips_elf_link_hash_table *htab;
14729 static const char * const secname[] =
14731 ".text", ".init", ".fini", ".data",
14732 ".rodata", ".sdata", ".sbss", ".bss"
14734 static const int sc[] =
14736 scText, scInit, scFini, scData,
14737 scRData, scSData, scSBss, scBss
14740 htab = mips_elf_hash_table (info);
14741 BFD_ASSERT (htab != NULL);
14743 /* Sort the dynamic symbols so that those with GOT entries come after
14744 those without. */
14745 if (!mips_elf_sort_hash_table (abfd, info))
14746 return false;
14748 /* Create any scheduled LA25 stubs. */
14749 hti.info = info;
14750 hti.output_bfd = abfd;
14751 hti.error = false;
14752 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14753 if (hti.error)
14754 return false;
14756 /* Get a value for the GP register. */
14757 if (elf_gp (abfd) == 0)
14759 struct bfd_link_hash_entry *h;
14761 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
14762 if (h != NULL && h->type == bfd_link_hash_defined)
14763 elf_gp (abfd) = (h->u.def.value
14764 + h->u.def.section->output_section->vma
14765 + h->u.def.section->output_offset);
14766 else if (htab->root.target_os == is_vxworks
14767 && (h = bfd_link_hash_lookup (info->hash,
14768 "_GLOBAL_OFFSET_TABLE_",
14769 false, false, true))
14770 && h->type == bfd_link_hash_defined)
14771 elf_gp (abfd) = (h->u.def.section->output_section->vma
14772 + h->u.def.section->output_offset
14773 + h->u.def.value);
14774 else if (bfd_link_relocatable (info))
14776 bfd_vma lo = MINUS_ONE;
14778 /* Find the GP-relative section with the lowest offset. */
14779 for (o = abfd->sections; o != NULL; o = o->next)
14780 if (o->vma < lo
14781 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14782 lo = o->vma;
14784 /* And calculate GP relative to that. */
14785 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14787 else
14789 /* If the relocate_section function needs to do a reloc
14790 involving the GP value, it should make a reloc_dangerous
14791 callback to warn that GP is not defined. */
14795 /* Go through the sections and collect the .reginfo and .mdebug
14796 information. */
14797 abiflags_sec = NULL;
14798 reginfo_sec = NULL;
14799 mdebug_sec = NULL;
14800 gptab_data_sec = NULL;
14801 gptab_bss_sec = NULL;
14802 for (o = abfd->sections; o != NULL; o = o->next)
14804 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14806 /* We have found the .MIPS.abiflags section in the output file.
14807 Look through all the link_orders comprising it and remove them.
14808 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14809 for (p = o->map_head.link_order; p != NULL; p = p->next)
14811 asection *input_section;
14813 if (p->type != bfd_indirect_link_order)
14815 if (p->type == bfd_data_link_order)
14816 continue;
14817 abort ();
14820 input_section = p->u.indirect.section;
14822 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14823 elf_link_input_bfd ignores this section. */
14824 input_section->flags &= ~SEC_HAS_CONTENTS;
14827 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14828 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14830 /* Skip this section later on (I don't think this currently
14831 matters, but someday it might). */
14832 o->map_head.link_order = NULL;
14834 abiflags_sec = o;
14837 if (strcmp (o->name, ".reginfo") == 0)
14839 memset (&reginfo, 0, sizeof reginfo);
14841 /* We have found the .reginfo section in the output file.
14842 Look through all the link_orders comprising it and merge
14843 the information together. */
14844 for (p = o->map_head.link_order; p != NULL; p = p->next)
14846 asection *input_section;
14847 bfd *input_bfd;
14848 Elf32_External_RegInfo ext;
14849 Elf32_RegInfo sub;
14850 bfd_size_type sz;
14852 if (p->type != bfd_indirect_link_order)
14854 if (p->type == bfd_data_link_order)
14855 continue;
14856 abort ();
14859 input_section = p->u.indirect.section;
14860 input_bfd = input_section->owner;
14862 sz = (input_section->size < sizeof (ext)
14863 ? input_section->size : sizeof (ext));
14864 memset (&ext, 0, sizeof (ext));
14865 if (! bfd_get_section_contents (input_bfd, input_section,
14866 &ext, 0, sz))
14867 return false;
14869 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14871 reginfo.ri_gprmask |= sub.ri_gprmask;
14872 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14873 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14874 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14875 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14877 /* ri_gp_value is set by the function
14878 `_bfd_mips_elf_section_processing' when the section is
14879 finally written out. */
14881 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14882 elf_link_input_bfd ignores this section. */
14883 input_section->flags &= ~SEC_HAS_CONTENTS;
14886 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14887 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14889 /* Skip this section later on (I don't think this currently
14890 matters, but someday it might). */
14891 o->map_head.link_order = NULL;
14893 reginfo_sec = o;
14896 if (strcmp (o->name, ".mdebug") == 0)
14898 struct extsym_info einfo;
14899 bfd_vma last;
14901 /* We have found the .mdebug section in the output file.
14902 Look through all the link_orders comprising it and merge
14903 the information together. */
14904 symhdr->magic = swap->sym_magic;
14905 /* FIXME: What should the version stamp be? */
14906 symhdr->vstamp = 0;
14907 symhdr->ilineMax = 0;
14908 symhdr->cbLine = 0;
14909 symhdr->idnMax = 0;
14910 symhdr->ipdMax = 0;
14911 symhdr->isymMax = 0;
14912 symhdr->ioptMax = 0;
14913 symhdr->iauxMax = 0;
14914 symhdr->issMax = 0;
14915 symhdr->issExtMax = 0;
14916 symhdr->ifdMax = 0;
14917 symhdr->crfd = 0;
14918 symhdr->iextMax = 0;
14920 /* We accumulate the debugging information itself in the
14921 debug_info structure. */
14922 debug.line = NULL;
14923 debug.external_dnr = NULL;
14924 debug.external_pdr = NULL;
14925 debug.external_sym = NULL;
14926 debug.external_opt = NULL;
14927 debug.external_aux = NULL;
14928 debug.ss = NULL;
14929 debug.ssext = debug.ssext_end = NULL;
14930 debug.external_fdr = NULL;
14931 debug.external_rfd = NULL;
14932 debug.external_ext = debug.external_ext_end = NULL;
14934 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14935 if (mdebug_handle == NULL)
14936 return false;
14938 esym.jmptbl = 0;
14939 esym.cobol_main = 0;
14940 esym.weakext = 0;
14941 esym.reserved = 0;
14942 esym.ifd = ifdNil;
14943 esym.asym.iss = issNil;
14944 esym.asym.st = stLocal;
14945 esym.asym.reserved = 0;
14946 esym.asym.index = indexNil;
14947 last = 0;
14948 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14950 esym.asym.sc = sc[i];
14951 s = bfd_get_section_by_name (abfd, secname[i]);
14952 if (s != NULL)
14954 esym.asym.value = s->vma;
14955 last = s->vma + s->size;
14957 else
14958 esym.asym.value = last;
14959 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14960 secname[i], &esym))
14961 return false;
14964 for (p = o->map_head.link_order; p != NULL; p = p->next)
14966 asection *input_section;
14967 bfd *input_bfd;
14968 const struct ecoff_debug_swap *input_swap;
14969 struct ecoff_debug_info input_debug;
14970 char *eraw_src;
14971 char *eraw_end;
14973 if (p->type != bfd_indirect_link_order)
14975 if (p->type == bfd_data_link_order)
14976 continue;
14977 abort ();
14980 input_section = p->u.indirect.section;
14981 input_bfd = input_section->owner;
14983 if (!is_mips_elf (input_bfd))
14985 /* I don't know what a non MIPS ELF bfd would be
14986 doing with a .mdebug section, but I don't really
14987 want to deal with it. */
14988 continue;
14991 input_swap = (get_elf_backend_data (input_bfd)
14992 ->elf_backend_ecoff_debug_swap);
14994 BFD_ASSERT (p->size == input_section->size);
14996 /* The ECOFF linking code expects that we have already
14997 read in the debugging information and set up an
14998 ecoff_debug_info structure, so we do that now. */
14999 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
15000 &input_debug))
15001 return false;
15003 if (! (bfd_ecoff_debug_accumulate
15004 (mdebug_handle, abfd, &debug, swap, input_bfd,
15005 &input_debug, input_swap, info)))
15006 return false;
15008 /* Loop through the external symbols. For each one with
15009 interesting information, try to find the symbol in
15010 the linker global hash table and save the information
15011 for the output external symbols. */
15012 eraw_src = input_debug.external_ext;
15013 eraw_end = (eraw_src
15014 + (input_debug.symbolic_header.iextMax
15015 * input_swap->external_ext_size));
15016 for (;
15017 eraw_src < eraw_end;
15018 eraw_src += input_swap->external_ext_size)
15020 EXTR ext;
15021 const char *name;
15022 struct mips_elf_link_hash_entry *h;
15024 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
15025 if (ext.asym.sc == scNil
15026 || ext.asym.sc == scUndefined
15027 || ext.asym.sc == scSUndefined)
15028 continue;
15030 name = input_debug.ssext + ext.asym.iss;
15031 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
15032 name, false, false, true);
15033 if (h == NULL || h->esym.ifd != -2)
15034 continue;
15036 if (ext.ifd != -1)
15038 BFD_ASSERT (ext.ifd
15039 < input_debug.symbolic_header.ifdMax);
15040 ext.ifd = input_debug.ifdmap[ext.ifd];
15043 h->esym = ext;
15046 /* Free up the information we just read. */
15047 free (input_debug.line);
15048 free (input_debug.external_dnr);
15049 free (input_debug.external_pdr);
15050 free (input_debug.external_sym);
15051 free (input_debug.external_opt);
15052 free (input_debug.external_aux);
15053 free (input_debug.ss);
15054 free (input_debug.ssext);
15055 free (input_debug.external_fdr);
15056 free (input_debug.external_rfd);
15057 free (input_debug.external_ext);
15059 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15060 elf_link_input_bfd ignores this section. */
15061 input_section->flags &= ~SEC_HAS_CONTENTS;
15064 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15066 /* Create .rtproc section. */
15067 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15068 if (rtproc_sec == NULL)
15070 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15071 | SEC_LINKER_CREATED | SEC_READONLY);
15073 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15074 ".rtproc",
15075 flags);
15076 if (rtproc_sec == NULL
15077 || !bfd_set_section_alignment (rtproc_sec, 4))
15078 return false;
15081 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15082 info, rtproc_sec,
15083 &debug))
15084 return false;
15087 /* Build the external symbol information. */
15088 einfo.abfd = abfd;
15089 einfo.info = info;
15090 einfo.debug = &debug;
15091 einfo.swap = swap;
15092 einfo.failed = false;
15093 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15094 mips_elf_output_extsym, &einfo);
15095 if (einfo.failed)
15096 return false;
15098 /* Set the size of the .mdebug section. */
15099 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15101 /* Skip this section later on (I don't think this currently
15102 matters, but someday it might). */
15103 o->map_head.link_order = NULL;
15105 mdebug_sec = o;
15108 if (startswith (o->name, ".gptab."))
15110 const char *subname;
15111 unsigned int c;
15112 Elf32_gptab *tab;
15113 Elf32_External_gptab *ext_tab;
15114 unsigned int j;
15116 /* The .gptab.sdata and .gptab.sbss sections hold
15117 information describing how the small data area would
15118 change depending upon the -G switch. These sections
15119 not used in executables files. */
15120 if (! bfd_link_relocatable (info))
15122 for (p = o->map_head.link_order; p != NULL; p = p->next)
15124 asection *input_section;
15126 if (p->type != bfd_indirect_link_order)
15128 if (p->type == bfd_data_link_order)
15129 continue;
15130 abort ();
15133 input_section = p->u.indirect.section;
15135 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15136 elf_link_input_bfd ignores this section. */
15137 input_section->flags &= ~SEC_HAS_CONTENTS;
15140 /* Skip this section later on (I don't think this
15141 currently matters, but someday it might). */
15142 o->map_head.link_order = NULL;
15144 /* Really remove the section. */
15145 bfd_section_list_remove (abfd, o);
15146 --abfd->section_count;
15148 continue;
15151 /* There is one gptab for initialized data, and one for
15152 uninitialized data. */
15153 if (strcmp (o->name, ".gptab.sdata") == 0)
15154 gptab_data_sec = o;
15155 else if (strcmp (o->name, ".gptab.sbss") == 0)
15156 gptab_bss_sec = o;
15157 else
15159 _bfd_error_handler
15160 /* xgettext:c-format */
15161 (_("%pB: illegal section name `%pA'"), abfd, o);
15162 bfd_set_error (bfd_error_nonrepresentable_section);
15163 return false;
15166 /* The linker script always combines .gptab.data and
15167 .gptab.sdata into .gptab.sdata, and likewise for
15168 .gptab.bss and .gptab.sbss. It is possible that there is
15169 no .sdata or .sbss section in the output file, in which
15170 case we must change the name of the output section. */
15171 subname = o->name + sizeof ".gptab" - 1;
15172 if (bfd_get_section_by_name (abfd, subname) == NULL)
15174 if (o == gptab_data_sec)
15175 o->name = ".gptab.data";
15176 else
15177 o->name = ".gptab.bss";
15178 subname = o->name + sizeof ".gptab" - 1;
15179 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15182 /* Set up the first entry. */
15183 c = 1;
15184 amt = c * sizeof (Elf32_gptab);
15185 tab = bfd_malloc (amt);
15186 if (tab == NULL)
15187 return false;
15188 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15189 tab[0].gt_header.gt_unused = 0;
15191 /* Combine the input sections. */
15192 for (p = o->map_head.link_order; p != NULL; p = p->next)
15194 asection *input_section;
15195 bfd *input_bfd;
15196 bfd_size_type size;
15197 unsigned long last;
15198 bfd_size_type gpentry;
15200 if (p->type != bfd_indirect_link_order)
15202 if (p->type == bfd_data_link_order)
15203 continue;
15204 abort ();
15207 input_section = p->u.indirect.section;
15208 input_bfd = input_section->owner;
15210 /* Combine the gptab entries for this input section one
15211 by one. We know that the input gptab entries are
15212 sorted by ascending -G value. */
15213 size = input_section->size;
15214 last = 0;
15215 for (gpentry = sizeof (Elf32_External_gptab);
15216 gpentry < size;
15217 gpentry += sizeof (Elf32_External_gptab))
15219 Elf32_External_gptab ext_gptab;
15220 Elf32_gptab int_gptab;
15221 unsigned long val;
15222 unsigned long add;
15223 bool exact;
15224 unsigned int look;
15226 if (! (bfd_get_section_contents
15227 (input_bfd, input_section, &ext_gptab, gpentry,
15228 sizeof (Elf32_External_gptab))))
15230 free (tab);
15231 return false;
15234 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15235 &int_gptab);
15236 val = int_gptab.gt_entry.gt_g_value;
15237 add = int_gptab.gt_entry.gt_bytes - last;
15239 exact = false;
15240 for (look = 1; look < c; look++)
15242 if (tab[look].gt_entry.gt_g_value >= val)
15243 tab[look].gt_entry.gt_bytes += add;
15245 if (tab[look].gt_entry.gt_g_value == val)
15246 exact = true;
15249 if (! exact)
15251 Elf32_gptab *new_tab;
15252 unsigned int max;
15254 /* We need a new table entry. */
15255 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15256 new_tab = bfd_realloc (tab, amt);
15257 if (new_tab == NULL)
15259 free (tab);
15260 return false;
15262 tab = new_tab;
15263 tab[c].gt_entry.gt_g_value = val;
15264 tab[c].gt_entry.gt_bytes = add;
15266 /* Merge in the size for the next smallest -G
15267 value, since that will be implied by this new
15268 value. */
15269 max = 0;
15270 for (look = 1; look < c; look++)
15272 if (tab[look].gt_entry.gt_g_value < val
15273 && (max == 0
15274 || (tab[look].gt_entry.gt_g_value
15275 > tab[max].gt_entry.gt_g_value)))
15276 max = look;
15278 if (max != 0)
15279 tab[c].gt_entry.gt_bytes +=
15280 tab[max].gt_entry.gt_bytes;
15282 ++c;
15285 last = int_gptab.gt_entry.gt_bytes;
15288 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15289 elf_link_input_bfd ignores this section. */
15290 input_section->flags &= ~SEC_HAS_CONTENTS;
15293 /* The table must be sorted by -G value. */
15294 if (c > 2)
15295 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15297 /* Swap out the table. */
15298 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15299 ext_tab = bfd_alloc (abfd, amt);
15300 if (ext_tab == NULL)
15302 free (tab);
15303 return false;
15306 for (j = 0; j < c; j++)
15307 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15308 free (tab);
15310 o->size = c * sizeof (Elf32_External_gptab);
15311 o->contents = (bfd_byte *) ext_tab;
15313 /* Skip this section later on (I don't think this currently
15314 matters, but someday it might). */
15315 o->map_head.link_order = NULL;
15319 /* Invoke the regular ELF backend linker to do all the work. */
15320 if (!bfd_elf_final_link (abfd, info))
15321 return false;
15323 /* Now write out the computed sections. */
15325 if (abiflags_sec != NULL)
15327 Elf_External_ABIFlags_v0 ext;
15328 Elf_Internal_ABIFlags_v0 *abiflags;
15330 abiflags = &mips_elf_tdata (abfd)->abiflags;
15332 /* Set up the abiflags if no valid input sections were found. */
15333 if (!mips_elf_tdata (abfd)->abiflags_valid)
15335 infer_mips_abiflags (abfd, abiflags);
15336 mips_elf_tdata (abfd)->abiflags_valid = true;
15338 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15339 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15340 return false;
15343 if (reginfo_sec != NULL)
15345 Elf32_External_RegInfo ext;
15347 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15348 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15349 return false;
15352 if (mdebug_sec != NULL)
15354 BFD_ASSERT (abfd->output_has_begun);
15355 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15356 swap, info,
15357 mdebug_sec->filepos))
15358 return false;
15360 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15363 if (gptab_data_sec != NULL)
15365 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15366 gptab_data_sec->contents,
15367 0, gptab_data_sec->size))
15368 return false;
15371 if (gptab_bss_sec != NULL)
15373 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15374 gptab_bss_sec->contents,
15375 0, gptab_bss_sec->size))
15376 return false;
15379 if (SGI_COMPAT (abfd))
15381 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15382 if (rtproc_sec != NULL)
15384 if (! bfd_set_section_contents (abfd, rtproc_sec,
15385 rtproc_sec->contents,
15386 0, rtproc_sec->size))
15387 return false;
15391 return true;
15394 /* Merge object file header flags from IBFD into OBFD. Raise an error
15395 if there are conflicting settings. */
15397 static bool
15398 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15400 bfd *obfd = info->output_bfd;
15401 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15402 flagword old_flags;
15403 flagword new_flags;
15404 bool ok;
15406 new_flags = elf_elfheader (ibfd)->e_flags;
15407 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15408 old_flags = elf_elfheader (obfd)->e_flags;
15410 /* Check flag compatibility. */
15412 new_flags &= ~EF_MIPS_NOREORDER;
15413 old_flags &= ~EF_MIPS_NOREORDER;
15415 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15416 doesn't seem to matter. */
15417 new_flags &= ~EF_MIPS_XGOT;
15418 old_flags &= ~EF_MIPS_XGOT;
15420 /* MIPSpro generates ucode info in n64 objects. Again, we should
15421 just be able to ignore this. */
15422 new_flags &= ~EF_MIPS_UCODE;
15423 old_flags &= ~EF_MIPS_UCODE;
15425 /* DSOs should only be linked with CPIC code. */
15426 if ((ibfd->flags & DYNAMIC) != 0)
15427 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15429 if (new_flags == old_flags)
15430 return true;
15432 ok = true;
15434 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15435 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15437 _bfd_error_handler
15438 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15439 ibfd);
15440 ok = true;
15443 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15444 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15445 if (! (new_flags & EF_MIPS_PIC))
15446 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15448 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15449 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15451 /* Compare the ISAs. */
15452 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15454 _bfd_error_handler
15455 (_("%pB: linking 32-bit code with 64-bit code"),
15456 ibfd);
15457 ok = false;
15459 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15461 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15462 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15464 /* Copy the architecture info from IBFD to OBFD. Also copy
15465 the 32-bit flag (if set) so that we continue to recognise
15466 OBFD as a 32-bit binary. */
15467 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15468 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15469 elf_elfheader (obfd)->e_flags
15470 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15472 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15473 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15475 /* Copy across the ABI flags if OBFD doesn't use them
15476 and if that was what caused us to treat IBFD as 32-bit. */
15477 if ((old_flags & EF_MIPS_ABI) == 0
15478 && mips_32bit_flags_p (new_flags)
15479 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15480 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15482 else
15484 /* The ISAs aren't compatible. */
15485 _bfd_error_handler
15486 /* xgettext:c-format */
15487 (_("%pB: linking %s module with previous %s modules"),
15488 ibfd,
15489 bfd_printable_name (ibfd),
15490 bfd_printable_name (obfd));
15491 ok = false;
15495 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15496 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15498 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15499 does set EI_CLASS differently from any 32-bit ABI. */
15500 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15501 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15502 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15504 /* Only error if both are set (to different values). */
15505 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15506 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15507 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15509 _bfd_error_handler
15510 /* xgettext:c-format */
15511 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15512 ibfd,
15513 elf_mips_abi_name (ibfd),
15514 elf_mips_abi_name (obfd));
15515 ok = false;
15517 new_flags &= ~EF_MIPS_ABI;
15518 old_flags &= ~EF_MIPS_ABI;
15521 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15522 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15523 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15525 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15526 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15527 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15528 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15529 int micro_mis = old_m16 && new_micro;
15530 int m16_mis = old_micro && new_m16;
15532 if (m16_mis || micro_mis)
15534 _bfd_error_handler
15535 /* xgettext:c-format */
15536 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15537 ibfd,
15538 m16_mis ? "MIPS16" : "microMIPS",
15539 m16_mis ? "microMIPS" : "MIPS16");
15540 ok = false;
15543 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15545 new_flags &= ~ EF_MIPS_ARCH_ASE;
15546 old_flags &= ~ EF_MIPS_ARCH_ASE;
15549 /* Compare NaN encodings. */
15550 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15552 /* xgettext:c-format */
15553 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15554 ibfd,
15555 (new_flags & EF_MIPS_NAN2008
15556 ? "-mnan=2008" : "-mnan=legacy"),
15557 (old_flags & EF_MIPS_NAN2008
15558 ? "-mnan=2008" : "-mnan=legacy"));
15559 ok = false;
15560 new_flags &= ~EF_MIPS_NAN2008;
15561 old_flags &= ~EF_MIPS_NAN2008;
15564 /* Compare FP64 state. */
15565 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15567 /* xgettext:c-format */
15568 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15569 ibfd,
15570 (new_flags & EF_MIPS_FP64
15571 ? "-mfp64" : "-mfp32"),
15572 (old_flags & EF_MIPS_FP64
15573 ? "-mfp64" : "-mfp32"));
15574 ok = false;
15575 new_flags &= ~EF_MIPS_FP64;
15576 old_flags &= ~EF_MIPS_FP64;
15579 /* Warn about any other mismatches */
15580 if (new_flags != old_flags)
15582 /* xgettext:c-format */
15583 _bfd_error_handler
15584 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15585 "(%#x)"),
15586 ibfd, new_flags, old_flags);
15587 ok = false;
15590 return ok;
15593 /* Merge object attributes from IBFD into OBFD. Raise an error if
15594 there are conflicting attributes. */
15595 static bool
15596 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15598 bfd *obfd = info->output_bfd;
15599 obj_attribute *in_attr;
15600 obj_attribute *out_attr;
15601 bfd *abi_fp_bfd;
15602 bfd *abi_msa_bfd;
15604 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15605 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15606 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15607 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15609 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15610 if (!abi_msa_bfd
15611 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15612 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15614 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15616 /* This is the first object. Copy the attributes. */
15617 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15619 /* Use the Tag_null value to indicate the attributes have been
15620 initialized. */
15621 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15623 return true;
15626 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15627 non-conflicting ones. */
15628 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15629 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15631 int out_fp, in_fp;
15633 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15634 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15635 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15636 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15637 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15638 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15639 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15640 || in_fp == Val_GNU_MIPS_ABI_FP_64
15641 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15643 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15644 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15646 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15647 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15648 || out_fp == Val_GNU_MIPS_ABI_FP_64
15649 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15650 /* Keep the current setting. */;
15651 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15652 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15654 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15655 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15657 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15658 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15659 /* Keep the current setting. */;
15660 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15662 const char *out_string, *in_string;
15664 out_string = _bfd_mips_fp_abi_string (out_fp);
15665 in_string = _bfd_mips_fp_abi_string (in_fp);
15666 /* First warn about cases involving unrecognised ABIs. */
15667 if (!out_string && !in_string)
15668 /* xgettext:c-format */
15669 _bfd_error_handler
15670 (_("warning: %pB uses unknown floating point ABI %d "
15671 "(set by %pB), %pB uses unknown floating point ABI %d"),
15672 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15673 else if (!out_string)
15674 _bfd_error_handler
15675 /* xgettext:c-format */
15676 (_("warning: %pB uses unknown floating point ABI %d "
15677 "(set by %pB), %pB uses %s"),
15678 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15679 else if (!in_string)
15680 _bfd_error_handler
15681 /* xgettext:c-format */
15682 (_("warning: %pB uses %s (set by %pB), "
15683 "%pB uses unknown floating point ABI %d"),
15684 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15685 else
15687 /* If one of the bfds is soft-float, the other must be
15688 hard-float. The exact choice of hard-float ABI isn't
15689 really relevant to the error message. */
15690 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15691 out_string = "-mhard-float";
15692 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15693 in_string = "-mhard-float";
15694 _bfd_error_handler
15695 /* xgettext:c-format */
15696 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15697 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15702 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15703 non-conflicting ones. */
15704 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15706 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15707 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15708 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15709 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15710 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15712 case Val_GNU_MIPS_ABI_MSA_128:
15713 _bfd_error_handler
15714 /* xgettext:c-format */
15715 (_("warning: %pB uses %s (set by %pB), "
15716 "%pB uses unknown MSA ABI %d"),
15717 obfd, "-mmsa", abi_msa_bfd,
15718 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15719 break;
15721 default:
15722 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15724 case Val_GNU_MIPS_ABI_MSA_128:
15725 _bfd_error_handler
15726 /* xgettext:c-format */
15727 (_("warning: %pB uses unknown MSA ABI %d "
15728 "(set by %pB), %pB uses %s"),
15729 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15730 abi_msa_bfd, ibfd, "-mmsa");
15731 break;
15733 default:
15734 _bfd_error_handler
15735 /* xgettext:c-format */
15736 (_("warning: %pB uses unknown MSA ABI %d "
15737 "(set by %pB), %pB uses unknown MSA ABI %d"),
15738 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15739 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15740 break;
15745 /* Merge Tag_compatibility attributes and any common GNU ones. */
15746 return _bfd_elf_merge_object_attributes (ibfd, info);
15749 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15750 there are conflicting settings. */
15752 static bool
15753 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15755 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15756 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15757 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15759 /* Update the output abiflags fp_abi using the computed fp_abi. */
15760 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15762 #define max(a, b) ((a) > (b) ? (a) : (b))
15763 /* Merge abiflags. */
15764 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15765 in_tdata->abiflags.isa_level);
15766 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15767 in_tdata->abiflags.isa_rev);
15768 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15769 in_tdata->abiflags.gpr_size);
15770 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15771 in_tdata->abiflags.cpr1_size);
15772 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15773 in_tdata->abiflags.cpr2_size);
15774 #undef max
15775 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15776 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15778 return true;
15781 /* Merge backend specific data from an object file to the output
15782 object file when linking. */
15784 bool
15785 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15787 bfd *obfd = info->output_bfd;
15788 struct mips_elf_obj_tdata *out_tdata;
15789 struct mips_elf_obj_tdata *in_tdata;
15790 bool null_input_bfd = true;
15791 asection *sec;
15792 bool ok;
15794 /* Check if we have the same endianness. */
15795 if (! _bfd_generic_verify_endian_match (ibfd, info))
15797 _bfd_error_handler
15798 (_("%pB: endianness incompatible with that of the selected emulation"),
15799 ibfd);
15800 return false;
15803 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15804 return true;
15806 in_tdata = mips_elf_tdata (ibfd);
15807 out_tdata = mips_elf_tdata (obfd);
15809 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15811 _bfd_error_handler
15812 (_("%pB: ABI is incompatible with that of the selected emulation"),
15813 ibfd);
15814 return false;
15817 /* Check to see if the input BFD actually contains any sections. If not,
15818 then it has no attributes, and its flags may not have been initialized
15819 either, but it cannot actually cause any incompatibility. */
15820 /* FIXME: This excludes any input shared library from consideration. */
15821 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15823 /* Ignore synthetic sections and empty .text, .data and .bss sections
15824 which are automatically generated by gas. Also ignore fake
15825 (s)common sections, since merely defining a common symbol does
15826 not affect compatibility. */
15827 if ((sec->flags & SEC_IS_COMMON) == 0
15828 && strcmp (sec->name, ".reginfo")
15829 && strcmp (sec->name, ".mdebug")
15830 && (sec->size != 0
15831 || (strcmp (sec->name, ".text")
15832 && strcmp (sec->name, ".data")
15833 && strcmp (sec->name, ".bss"))))
15835 null_input_bfd = false;
15836 break;
15839 if (null_input_bfd)
15840 return true;
15842 /* Populate abiflags using existing information. */
15843 if (in_tdata->abiflags_valid)
15845 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15846 Elf_Internal_ABIFlags_v0 in_abiflags;
15847 Elf_Internal_ABIFlags_v0 abiflags;
15849 /* Set up the FP ABI attribute from the abiflags if it is not already
15850 set. */
15851 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15852 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15854 infer_mips_abiflags (ibfd, &abiflags);
15855 in_abiflags = in_tdata->abiflags;
15857 /* It is not possible to infer the correct ISA revision
15858 for R3 or R5 so drop down to R2 for the checks. */
15859 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15860 in_abiflags.isa_rev = 2;
15862 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15863 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15864 _bfd_error_handler
15865 (_("%pB: warning: inconsistent ISA between e_flags and "
15866 ".MIPS.abiflags"), ibfd);
15867 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15868 && in_abiflags.fp_abi != abiflags.fp_abi)
15869 _bfd_error_handler
15870 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15871 ".MIPS.abiflags"), ibfd);
15872 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15873 _bfd_error_handler
15874 (_("%pB: warning: inconsistent ASEs between e_flags and "
15875 ".MIPS.abiflags"), ibfd);
15876 /* The isa_ext is allowed to be an extension of what can be inferred
15877 from e_flags. */
15878 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15879 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15880 _bfd_error_handler
15881 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15882 ".MIPS.abiflags"), ibfd);
15883 if (in_abiflags.flags2 != 0)
15884 _bfd_error_handler
15885 (_("%pB: warning: unexpected flag in the flags2 field of "
15886 ".MIPS.abiflags (0x%lx)"), ibfd,
15887 in_abiflags.flags2);
15889 else
15891 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15892 in_tdata->abiflags_valid = true;
15895 if (!out_tdata->abiflags_valid)
15897 /* Copy input abiflags if output abiflags are not already valid. */
15898 out_tdata->abiflags = in_tdata->abiflags;
15899 out_tdata->abiflags_valid = true;
15902 if (! elf_flags_init (obfd))
15904 elf_flags_init (obfd) = true;
15905 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15906 elf_elfheader (obfd)->e_ident[EI_CLASS]
15907 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15909 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15910 && (bfd_get_arch_info (obfd)->the_default
15911 || mips_mach_extends_p (bfd_get_mach (obfd),
15912 bfd_get_mach (ibfd))))
15914 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15915 bfd_get_mach (ibfd)))
15916 return false;
15918 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15919 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15922 ok = true;
15924 else
15925 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15927 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15929 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15931 if (!ok)
15933 bfd_set_error (bfd_error_bad_value);
15934 return false;
15937 return true;
15940 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15942 bool
15943 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15945 BFD_ASSERT (!elf_flags_init (abfd)
15946 || elf_elfheader (abfd)->e_flags == flags);
15948 elf_elfheader (abfd)->e_flags = flags;
15949 elf_flags_init (abfd) = true;
15950 return true;
15953 char *
15954 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15956 switch (dtag)
15958 default: return "";
15959 case DT_MIPS_RLD_VERSION:
15960 return "MIPS_RLD_VERSION";
15961 case DT_MIPS_TIME_STAMP:
15962 return "MIPS_TIME_STAMP";
15963 case DT_MIPS_ICHECKSUM:
15964 return "MIPS_ICHECKSUM";
15965 case DT_MIPS_IVERSION:
15966 return "MIPS_IVERSION";
15967 case DT_MIPS_FLAGS:
15968 return "MIPS_FLAGS";
15969 case DT_MIPS_BASE_ADDRESS:
15970 return "MIPS_BASE_ADDRESS";
15971 case DT_MIPS_MSYM:
15972 return "MIPS_MSYM";
15973 case DT_MIPS_CONFLICT:
15974 return "MIPS_CONFLICT";
15975 case DT_MIPS_LIBLIST:
15976 return "MIPS_LIBLIST";
15977 case DT_MIPS_LOCAL_GOTNO:
15978 return "MIPS_LOCAL_GOTNO";
15979 case DT_MIPS_CONFLICTNO:
15980 return "MIPS_CONFLICTNO";
15981 case DT_MIPS_LIBLISTNO:
15982 return "MIPS_LIBLISTNO";
15983 case DT_MIPS_SYMTABNO:
15984 return "MIPS_SYMTABNO";
15985 case DT_MIPS_UNREFEXTNO:
15986 return "MIPS_UNREFEXTNO";
15987 case DT_MIPS_GOTSYM:
15988 return "MIPS_GOTSYM";
15989 case DT_MIPS_HIPAGENO:
15990 return "MIPS_HIPAGENO";
15991 case DT_MIPS_RLD_MAP:
15992 return "MIPS_RLD_MAP";
15993 case DT_MIPS_RLD_MAP_REL:
15994 return "MIPS_RLD_MAP_REL";
15995 case DT_MIPS_DELTA_CLASS:
15996 return "MIPS_DELTA_CLASS";
15997 case DT_MIPS_DELTA_CLASS_NO:
15998 return "MIPS_DELTA_CLASS_NO";
15999 case DT_MIPS_DELTA_INSTANCE:
16000 return "MIPS_DELTA_INSTANCE";
16001 case DT_MIPS_DELTA_INSTANCE_NO:
16002 return "MIPS_DELTA_INSTANCE_NO";
16003 case DT_MIPS_DELTA_RELOC:
16004 return "MIPS_DELTA_RELOC";
16005 case DT_MIPS_DELTA_RELOC_NO:
16006 return "MIPS_DELTA_RELOC_NO";
16007 case DT_MIPS_DELTA_SYM:
16008 return "MIPS_DELTA_SYM";
16009 case DT_MIPS_DELTA_SYM_NO:
16010 return "MIPS_DELTA_SYM_NO";
16011 case DT_MIPS_DELTA_CLASSSYM:
16012 return "MIPS_DELTA_CLASSSYM";
16013 case DT_MIPS_DELTA_CLASSSYM_NO:
16014 return "MIPS_DELTA_CLASSSYM_NO";
16015 case DT_MIPS_CXX_FLAGS:
16016 return "MIPS_CXX_FLAGS";
16017 case DT_MIPS_PIXIE_INIT:
16018 return "MIPS_PIXIE_INIT";
16019 case DT_MIPS_SYMBOL_LIB:
16020 return "MIPS_SYMBOL_LIB";
16021 case DT_MIPS_LOCALPAGE_GOTIDX:
16022 return "MIPS_LOCALPAGE_GOTIDX";
16023 case DT_MIPS_LOCAL_GOTIDX:
16024 return "MIPS_LOCAL_GOTIDX";
16025 case DT_MIPS_HIDDEN_GOTIDX:
16026 return "MIPS_HIDDEN_GOTIDX";
16027 case DT_MIPS_PROTECTED_GOTIDX:
16028 return "MIPS_PROTECTED_GOT_IDX";
16029 case DT_MIPS_OPTIONS:
16030 return "MIPS_OPTIONS";
16031 case DT_MIPS_INTERFACE:
16032 return "MIPS_INTERFACE";
16033 case DT_MIPS_DYNSTR_ALIGN:
16034 return "DT_MIPS_DYNSTR_ALIGN";
16035 case DT_MIPS_INTERFACE_SIZE:
16036 return "DT_MIPS_INTERFACE_SIZE";
16037 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
16038 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
16039 case DT_MIPS_PERF_SUFFIX:
16040 return "DT_MIPS_PERF_SUFFIX";
16041 case DT_MIPS_COMPACT_SIZE:
16042 return "DT_MIPS_COMPACT_SIZE";
16043 case DT_MIPS_GP_VALUE:
16044 return "DT_MIPS_GP_VALUE";
16045 case DT_MIPS_AUX_DYNAMIC:
16046 return "DT_MIPS_AUX_DYNAMIC";
16047 case DT_MIPS_PLTGOT:
16048 return "DT_MIPS_PLTGOT";
16049 case DT_MIPS_RWPLT:
16050 return "DT_MIPS_RWPLT";
16051 case DT_MIPS_XHASH:
16052 return "DT_MIPS_XHASH";
16056 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16057 not known. */
16059 const char *
16060 _bfd_mips_fp_abi_string (int fp)
16062 switch (fp)
16064 /* These strings aren't translated because they're simply
16065 option lists. */
16066 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16067 return "-mdouble-float";
16069 case Val_GNU_MIPS_ABI_FP_SINGLE:
16070 return "-msingle-float";
16072 case Val_GNU_MIPS_ABI_FP_SOFT:
16073 return "-msoft-float";
16075 case Val_GNU_MIPS_ABI_FP_OLD_64:
16076 return _("-mips32r2 -mfp64 (12 callee-saved)");
16078 case Val_GNU_MIPS_ABI_FP_XX:
16079 return "-mfpxx";
16081 case Val_GNU_MIPS_ABI_FP_64:
16082 return "-mgp32 -mfp64";
16084 case Val_GNU_MIPS_ABI_FP_64A:
16085 return "-mgp32 -mfp64 -mno-odd-spreg";
16087 default:
16088 return 0;
16092 static void
16093 print_mips_ases (FILE *file, unsigned int mask)
16095 if (mask & AFL_ASE_DSP)
16096 fputs ("\n\tDSP ASE", file);
16097 if (mask & AFL_ASE_DSPR2)
16098 fputs ("\n\tDSP R2 ASE", file);
16099 if (mask & AFL_ASE_DSPR3)
16100 fputs ("\n\tDSP R3 ASE", file);
16101 if (mask & AFL_ASE_EVA)
16102 fputs ("\n\tEnhanced VA Scheme", file);
16103 if (mask & AFL_ASE_MCU)
16104 fputs ("\n\tMCU (MicroController) ASE", file);
16105 if (mask & AFL_ASE_MDMX)
16106 fputs ("\n\tMDMX ASE", file);
16107 if (mask & AFL_ASE_MIPS3D)
16108 fputs ("\n\tMIPS-3D ASE", file);
16109 if (mask & AFL_ASE_MT)
16110 fputs ("\n\tMT ASE", file);
16111 if (mask & AFL_ASE_SMARTMIPS)
16112 fputs ("\n\tSmartMIPS ASE", file);
16113 if (mask & AFL_ASE_VIRT)
16114 fputs ("\n\tVZ ASE", file);
16115 if (mask & AFL_ASE_MSA)
16116 fputs ("\n\tMSA ASE", file);
16117 if (mask & AFL_ASE_MIPS16)
16118 fputs ("\n\tMIPS16 ASE", file);
16119 if (mask & AFL_ASE_MICROMIPS)
16120 fputs ("\n\tMICROMIPS ASE", file);
16121 if (mask & AFL_ASE_XPA)
16122 fputs ("\n\tXPA ASE", file);
16123 if (mask & AFL_ASE_MIPS16E2)
16124 fputs ("\n\tMIPS16e2 ASE", file);
16125 if (mask & AFL_ASE_CRC)
16126 fputs ("\n\tCRC ASE", file);
16127 if (mask & AFL_ASE_GINV)
16128 fputs ("\n\tGINV ASE", file);
16129 if (mask & AFL_ASE_LOONGSON_MMI)
16130 fputs ("\n\tLoongson MMI ASE", file);
16131 if (mask & AFL_ASE_LOONGSON_CAM)
16132 fputs ("\n\tLoongson CAM ASE", file);
16133 if (mask & AFL_ASE_LOONGSON_EXT)
16134 fputs ("\n\tLoongson EXT ASE", file);
16135 if (mask & AFL_ASE_LOONGSON_EXT2)
16136 fputs ("\n\tLoongson EXT2 ASE", file);
16137 if (mask == 0)
16138 fprintf (file, "\n\t%s", _("None"));
16139 else if ((mask & ~AFL_ASE_MASK) != 0)
16140 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16143 static void
16144 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16146 switch (isa_ext)
16148 case 0:
16149 fputs (_("None"), file);
16150 break;
16151 case AFL_EXT_XLR:
16152 fputs ("RMI XLR", file);
16153 break;
16154 case AFL_EXT_OCTEON3:
16155 fputs ("Cavium Networks Octeon3", file);
16156 break;
16157 case AFL_EXT_OCTEON2:
16158 fputs ("Cavium Networks Octeon2", file);
16159 break;
16160 case AFL_EXT_OCTEONP:
16161 fputs ("Cavium Networks OcteonP", file);
16162 break;
16163 case AFL_EXT_OCTEON:
16164 fputs ("Cavium Networks Octeon", file);
16165 break;
16166 case AFL_EXT_5900:
16167 fputs ("Toshiba R5900", file);
16168 break;
16169 case AFL_EXT_4650:
16170 fputs ("MIPS R4650", file);
16171 break;
16172 case AFL_EXT_4010:
16173 fputs ("LSI R4010", file);
16174 break;
16175 case AFL_EXT_4100:
16176 fputs ("NEC VR4100", file);
16177 break;
16178 case AFL_EXT_3900:
16179 fputs ("Toshiba R3900", file);
16180 break;
16181 case AFL_EXT_10000:
16182 fputs ("MIPS R10000", file);
16183 break;
16184 case AFL_EXT_SB1:
16185 fputs ("Broadcom SB-1", file);
16186 break;
16187 case AFL_EXT_4111:
16188 fputs ("NEC VR4111/VR4181", file);
16189 break;
16190 case AFL_EXT_4120:
16191 fputs ("NEC VR4120", file);
16192 break;
16193 case AFL_EXT_5400:
16194 fputs ("NEC VR5400", file);
16195 break;
16196 case AFL_EXT_5500:
16197 fputs ("NEC VR5500", file);
16198 break;
16199 case AFL_EXT_LOONGSON_2E:
16200 fputs ("ST Microelectronics Loongson 2E", file);
16201 break;
16202 case AFL_EXT_LOONGSON_2F:
16203 fputs ("ST Microelectronics Loongson 2F", file);
16204 break;
16205 case AFL_EXT_INTERAPTIV_MR2:
16206 fputs ("Imagination interAptiv MR2", file);
16207 break;
16208 default:
16209 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16210 break;
16214 static void
16215 print_mips_fp_abi_value (FILE *file, int val)
16217 switch (val)
16219 case Val_GNU_MIPS_ABI_FP_ANY:
16220 fprintf (file, _("Hard or soft float\n"));
16221 break;
16222 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16223 fprintf (file, _("Hard float (double precision)\n"));
16224 break;
16225 case Val_GNU_MIPS_ABI_FP_SINGLE:
16226 fprintf (file, _("Hard float (single precision)\n"));
16227 break;
16228 case Val_GNU_MIPS_ABI_FP_SOFT:
16229 fprintf (file, _("Soft float\n"));
16230 break;
16231 case Val_GNU_MIPS_ABI_FP_OLD_64:
16232 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16233 break;
16234 case Val_GNU_MIPS_ABI_FP_XX:
16235 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16236 break;
16237 case Val_GNU_MIPS_ABI_FP_64:
16238 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16239 break;
16240 case Val_GNU_MIPS_ABI_FP_64A:
16241 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16242 break;
16243 default:
16244 fprintf (file, "??? (%d)\n", val);
16245 break;
16249 static int
16250 get_mips_reg_size (int reg_size)
16252 return (reg_size == AFL_REG_NONE) ? 0
16253 : (reg_size == AFL_REG_32) ? 32
16254 : (reg_size == AFL_REG_64) ? 64
16255 : (reg_size == AFL_REG_128) ? 128
16256 : -1;
16259 bool
16260 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16262 FILE *file = ptr;
16264 BFD_ASSERT (abfd != NULL && ptr != NULL);
16266 /* Print normal ELF private data. */
16267 _bfd_elf_print_private_bfd_data (abfd, ptr);
16269 /* xgettext:c-format */
16270 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16272 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16273 fprintf (file, _(" [abi=O32]"));
16274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16275 fprintf (file, _(" [abi=O64]"));
16276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16277 fprintf (file, _(" [abi=EABI32]"));
16278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16279 fprintf (file, _(" [abi=EABI64]"));
16280 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16281 fprintf (file, _(" [abi unknown]"));
16282 else if (ABI_N32_P (abfd))
16283 fprintf (file, _(" [abi=N32]"));
16284 else if (ABI_64_P (abfd))
16285 fprintf (file, _(" [abi=64]"));
16286 else
16287 fprintf (file, _(" [no abi set]"));
16289 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16290 fprintf (file, " [mips1]");
16291 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16292 fprintf (file, " [mips2]");
16293 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16294 fprintf (file, " [mips3]");
16295 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16296 fprintf (file, " [mips4]");
16297 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16298 fprintf (file, " [mips5]");
16299 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16300 fprintf (file, " [mips32]");
16301 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16302 fprintf (file, " [mips64]");
16303 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16304 fprintf (file, " [mips32r2]");
16305 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16306 fprintf (file, " [mips64r2]");
16307 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16308 fprintf (file, " [mips32r6]");
16309 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16310 fprintf (file, " [mips64r6]");
16311 else
16312 fprintf (file, _(" [unknown ISA]"));
16314 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16315 fprintf (file, " [mdmx]");
16317 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16318 fprintf (file, " [mips16]");
16320 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16321 fprintf (file, " [micromips]");
16323 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16324 fprintf (file, " [nan2008]");
16326 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16327 fprintf (file, " [old fp64]");
16329 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16330 fprintf (file, " [32bitmode]");
16331 else
16332 fprintf (file, _(" [not 32bitmode]"));
16334 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16335 fprintf (file, " [noreorder]");
16337 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16338 fprintf (file, " [PIC]");
16340 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16341 fprintf (file, " [CPIC]");
16343 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16344 fprintf (file, " [XGOT]");
16346 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16347 fprintf (file, " [UCODE]");
16349 fputc ('\n', file);
16351 if (mips_elf_tdata (abfd)->abiflags_valid)
16353 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16354 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16355 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16356 if (abiflags->isa_rev > 1)
16357 fprintf (file, "r%d", abiflags->isa_rev);
16358 fprintf (file, "\nGPR size: %d",
16359 get_mips_reg_size (abiflags->gpr_size));
16360 fprintf (file, "\nCPR1 size: %d",
16361 get_mips_reg_size (abiflags->cpr1_size));
16362 fprintf (file, "\nCPR2 size: %d",
16363 get_mips_reg_size (abiflags->cpr2_size));
16364 fputs ("\nFP ABI: ", file);
16365 print_mips_fp_abi_value (file, abiflags->fp_abi);
16366 fputs ("ISA Extension: ", file);
16367 print_mips_isa_ext (file, abiflags->isa_ext);
16368 fputs ("\nASEs:", file);
16369 print_mips_ases (file, abiflags->ases);
16370 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16371 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16372 fputc ('\n', file);
16375 return true;
16378 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16380 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16381 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16382 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16383 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16384 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16385 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16386 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16387 { NULL, 0, 0, 0, 0 }
16390 /* Merge non visibility st_other attributes. Ensure that the
16391 STO_OPTIONAL flag is copied into h->other, even if this is not a
16392 definiton of the symbol. */
16393 void
16394 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16395 unsigned int st_other,
16396 bool definition,
16397 bool dynamic ATTRIBUTE_UNUSED)
16399 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16401 unsigned char other;
16403 other = (definition ? st_other : h->other);
16404 other &= ~ELF_ST_VISIBILITY (-1);
16405 h->other = other | ELF_ST_VISIBILITY (h->other);
16408 if (!definition
16409 && ELF_MIPS_IS_OPTIONAL (st_other))
16410 h->other |= STO_OPTIONAL;
16413 /* Decide whether an undefined symbol is special and can be ignored.
16414 This is the case for OPTIONAL symbols on IRIX. */
16415 bool
16416 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16418 return ELF_MIPS_IS_OPTIONAL (h->other) != 0;
16421 bool
16422 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16424 return (sym->st_shndx == SHN_COMMON
16425 || sym->st_shndx == SHN_MIPS_ACOMMON
16426 || sym->st_shndx == SHN_MIPS_SCOMMON);
16429 /* Return address for Ith PLT stub in section PLT, for relocation REL
16430 or (bfd_vma) -1 if it should not be included. */
16432 bfd_vma
16433 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16434 const arelent *rel ATTRIBUTE_UNUSED)
16436 return (plt->vma
16437 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16438 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16441 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16442 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16443 and .got.plt and also the slots may be of a different size each we walk
16444 the PLT manually fetching instructions and matching them against known
16445 patterns. To make things easier standard MIPS slots, if any, always come
16446 first. As we don't create proper ELF symbols we use the UDATA.I member
16447 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16448 with the ST_OTHER member of the ELF symbol. */
16450 long
16451 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16452 long symcount ATTRIBUTE_UNUSED,
16453 asymbol **syms ATTRIBUTE_UNUSED,
16454 long dynsymcount, asymbol **dynsyms,
16455 asymbol **ret)
16457 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16458 static const char microsuffix[] = "@micromipsplt";
16459 static const char m16suffix[] = "@mips16plt";
16460 static const char mipssuffix[] = "@plt";
16462 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
16463 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16464 bool micromips_p = MICROMIPS_P (abfd);
16465 Elf_Internal_Shdr *hdr;
16466 bfd_byte *plt_data;
16467 bfd_vma plt_offset;
16468 unsigned int other;
16469 bfd_vma entry_size;
16470 bfd_vma plt0_size;
16471 asection *relplt;
16472 bfd_vma opcode;
16473 asection *plt;
16474 asymbol *send;
16475 size_t size;
16476 char *names;
16477 long counti;
16478 arelent *p;
16479 asymbol *s;
16480 char *nend;
16481 long count;
16482 long pi;
16483 long i;
16484 long n;
16486 *ret = NULL;
16488 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16489 return 0;
16491 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16492 if (relplt == NULL)
16493 return 0;
16495 hdr = &elf_section_data (relplt)->this_hdr;
16496 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16497 return 0;
16499 plt = bfd_get_section_by_name (abfd, ".plt");
16500 if (plt == NULL)
16501 return 0;
16503 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16504 if (!(*slurp_relocs) (abfd, relplt, dynsyms, true))
16505 return -1;
16506 p = relplt->relocation;
16508 /* Calculating the exact amount of space required for symbols would
16509 require two passes over the PLT, so just pessimise assuming two
16510 PLT slots per relocation. */
16511 count = relplt->size / hdr->sh_entsize;
16512 counti = count * bed->s->int_rels_per_ext_rel;
16513 size = 2 * count * sizeof (asymbol);
16514 size += count * (sizeof (mipssuffix) +
16515 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16516 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16517 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16519 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16520 size += sizeof (asymbol) + sizeof (pltname);
16522 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16523 return -1;
16525 if (plt->size < 16)
16526 return -1;
16528 s = *ret = bfd_malloc (size);
16529 if (s == NULL)
16530 return -1;
16531 send = s + 2 * count + 1;
16533 names = (char *) send;
16534 nend = (char *) s + size;
16535 n = 0;
16537 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16538 if (opcode == 0x3302fffe)
16540 if (!micromips_p)
16541 return -1;
16542 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16543 other = STO_MICROMIPS;
16545 else if (opcode == 0x0398c1d0)
16547 if (!micromips_p)
16548 return -1;
16549 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16550 other = STO_MICROMIPS;
16552 else
16554 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16555 other = 0;
16558 s->the_bfd = abfd;
16559 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16560 s->section = plt;
16561 s->value = 0;
16562 s->name = names;
16563 s->udata.i = other;
16564 memcpy (names, pltname, sizeof (pltname));
16565 names += sizeof (pltname);
16566 ++s, ++n;
16568 pi = 0;
16569 for (plt_offset = plt0_size;
16570 plt_offset + 8 <= plt->size && s < send;
16571 plt_offset += entry_size)
16573 bfd_vma gotplt_addr;
16574 const char *suffix;
16575 bfd_vma gotplt_hi;
16576 bfd_vma gotplt_lo;
16577 size_t suffixlen;
16579 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16581 /* Check if the second word matches the expected MIPS16 instruction. */
16582 if (opcode == 0x651aeb00)
16584 if (micromips_p)
16585 return -1;
16586 /* Truncated table??? */
16587 if (plt_offset + 16 > plt->size)
16588 break;
16589 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16590 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16591 suffixlen = sizeof (m16suffix);
16592 suffix = m16suffix;
16593 other = STO_MIPS16;
16595 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16596 else if (opcode == 0xff220000)
16598 if (!micromips_p)
16599 return -1;
16600 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16601 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16602 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16603 gotplt_lo <<= 2;
16604 gotplt_addr = gotplt_hi + gotplt_lo;
16605 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16606 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16607 suffixlen = sizeof (microsuffix);
16608 suffix = microsuffix;
16609 other = STO_MICROMIPS;
16611 /* Likewise the expected microMIPS instruction (insn32 mode). */
16612 else if ((opcode & 0xffff0000) == 0xff2f0000)
16614 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16615 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16616 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16617 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16618 gotplt_addr = gotplt_hi + gotplt_lo;
16619 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16620 suffixlen = sizeof (microsuffix);
16621 suffix = microsuffix;
16622 other = STO_MICROMIPS;
16624 /* Otherwise assume standard MIPS code. */
16625 else
16627 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16628 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16629 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16630 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16631 gotplt_addr = gotplt_hi + gotplt_lo;
16632 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16633 suffixlen = sizeof (mipssuffix);
16634 suffix = mipssuffix;
16635 other = 0;
16637 /* Truncated table??? */
16638 if (plt_offset + entry_size > plt->size)
16639 break;
16641 for (i = 0;
16642 i < count && p[pi].address != gotplt_addr;
16643 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16645 if (i < count)
16647 size_t namelen;
16648 size_t len;
16650 *s = **p[pi].sym_ptr_ptr;
16651 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16652 we are defining a symbol, ensure one of them is set. */
16653 if ((s->flags & BSF_LOCAL) == 0)
16654 s->flags |= BSF_GLOBAL;
16655 s->flags |= BSF_SYNTHETIC;
16656 s->section = plt;
16657 s->value = plt_offset;
16658 s->name = names;
16659 s->udata.i = other;
16661 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16662 namelen = len + suffixlen;
16663 if (names + namelen > nend)
16664 break;
16666 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16667 names += len;
16668 memcpy (names, suffix, suffixlen);
16669 names += suffixlen;
16671 ++s, ++n;
16672 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16676 free (plt_data);
16678 return n;
16681 /* Return the ABI flags associated with ABFD if available. */
16683 Elf_Internal_ABIFlags_v0 *
16684 bfd_mips_elf_get_abiflags (bfd *abfd)
16686 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16688 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16691 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16692 field. Taken from `libc-abis.h' generated at GNU libc build time.
16693 Using a MIPS_ prefix as other libc targets use different values. */
16694 enum
16696 MIPS_LIBC_ABI_DEFAULT = 0,
16697 MIPS_LIBC_ABI_MIPS_PLT,
16698 MIPS_LIBC_ABI_UNIQUE,
16699 MIPS_LIBC_ABI_MIPS_O32_FP64,
16700 MIPS_LIBC_ABI_ABSOLUTE,
16701 MIPS_LIBC_ABI_XHASH,
16702 MIPS_LIBC_ABI_MAX
16705 bool
16706 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16708 struct mips_elf_link_hash_table *htab = NULL;
16709 Elf_Internal_Ehdr *i_ehdrp;
16711 if (!_bfd_elf_init_file_header (abfd, link_info))
16712 return false;
16714 i_ehdrp = elf_elfheader (abfd);
16715 if (link_info)
16717 htab = mips_elf_hash_table (link_info);
16718 BFD_ASSERT (htab != NULL);
16721 if (htab != NULL
16722 && htab->use_plts_and_copy_relocs
16723 && htab->root.target_os != is_vxworks)
16724 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16726 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16727 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16728 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16730 /* Mark that we need support for absolute symbols in the dynamic loader. */
16731 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16732 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16734 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16735 if it is the only hash section that will be created. */
16736 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16737 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16738 return true;
16742 _bfd_mips_elf_compact_eh_encoding
16743 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16745 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16748 /* Return the opcode for can't unwind. */
16751 _bfd_mips_elf_cant_unwind_opcode
16752 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16754 return COMPACT_EH_CANT_UNWIND_OPCODE;
16757 /* Record a position XLAT_LOC in the xlat translation table, associated with
16758 the hash entry H. The entry in the translation table will later be
16759 populated with the real symbol dynindx. */
16761 void
16762 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16763 bfd_vma xlat_loc)
16765 struct mips_elf_link_hash_entry *hmips;
16767 hmips = (struct mips_elf_link_hash_entry *) h;
16768 hmips->mipsxhash_loc = xlat_loc;