* elf32-spu.c (build_stub): Fix malloc under-allocation.
[binutils.git] / gold / symtab.cc
blobf0ba1d560fb5563d5bfa4d80f358c90ab7307959
1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
45 namespace gold
48 // Class Symbol.
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
88 static std::string
89 demangle(const char* name)
91 if (!parameters->options().do_demangle())
92 return name;
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
105 std::string
106 Symbol::demangled_name() const
108 return demangle(this->name());
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
200 // Allocate a common symbol in the base.
202 void
203 Symbol::allocate_base_common(Output_data* od)
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
283 // Initialize the fields in Sized_symbol for an undefined symbol.
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
299 std::string
300 Symbol::versioned_name() const
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
311 // Return true if SHNDX represents a common symbol.
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
321 // Allocate a common symbol.
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
327 this->allocate_base_common(od);
328 this->value_ = value;
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
368 return false;
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters->options().in_dynamic_list(this->name()))
372 return true;
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT)
378 return true;
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters->options().dynamic_list_cpp_new()
383 || parameters->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name = cplus_demangle(this->name(),
389 DMGL_ANSI | DMGL_PARAMS);
390 if (demangled_name == NULL)
392 // Not a C++ symbol, so it can't satisfy these flags
394 else if (parameters->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name, "operator new")
396 || strprefix(demangled_name, "operator delete")))
398 free(demangled_name);
399 return true;
401 else if (parameters->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name, "typeinfo name for")
403 || strprefix(demangled_name, "typeinfo for")))
405 free(demangled_name);
406 return true;
408 else
409 free(demangled_name);
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters->options().export_dynamic() || parameters->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
419 return true;
421 return false;
424 // Return true if the final value of this symbol is known at link
425 // time.
427 bool
428 Symbol::final_value_is_known() const
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters->options().output_is_position_independent()
433 || parameters->options().relocatable())
434 return false;
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_ != FROM_OBJECT)
440 if (this->source_ != IS_UNDEFINED)
441 return true;
443 else
445 // If the symbol is from a dynamic object, then the final value
446 // is not known.
447 if (this->object()->is_dynamic())
448 return false;
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
453 return true;
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters->doing_static_link();
463 // Return the output section where this symbol is defined.
465 Output_section*
466 Symbol::output_section() const
468 switch (this->source_)
470 case FROM_OBJECT:
472 unsigned int shndx = this->u_.from_object.shndx;
473 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
475 gold_assert(!this->u_.from_object.object->is_dynamic());
476 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478 return relobj->output_section(shndx);
480 return NULL;
483 case IN_OUTPUT_DATA:
484 return this->u_.in_output_data.output_data->output_section();
486 case IN_OUTPUT_SEGMENT:
487 case IS_CONSTANT:
488 case IS_UNDEFINED:
489 return NULL;
491 default:
492 gold_unreachable();
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
498 // been finalized.
500 void
501 Symbol::set_output_section(Output_section* os)
503 switch (this->source_)
505 case FROM_OBJECT:
506 case IN_OUTPUT_DATA:
507 gold_assert(this->output_section() == os);
508 break;
509 case IS_CONSTANT:
510 this->source_ = IN_OUTPUT_DATA;
511 this->u_.in_output_data.output_data = os;
512 this->u_.in_output_data.offset_is_from_end = false;
513 break;
514 case IN_OUTPUT_SEGMENT:
515 case IS_UNDEFINED:
516 default:
517 gold_unreachable();
521 // Class Symbol_table.
523 Symbol_table::Symbol_table(unsigned int count,
524 const Version_script_info& version_script)
525 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script), gc_(NULL), icf_(NULL)
530 namepool_.reserve(count);
533 Symbol_table::~Symbol_table()
537 // The symbol table key equality function. This is called with
538 // Stringpool keys.
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542 const Symbol_table_key& k2) const
544 return k1.first == k2.first && k1.second == k2.second;
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
550 return (parameters->options().icf_enabled()
551 && this->icf_->is_section_folded(obj, shndx));
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
557 void
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
560 for (options::String_set::const_iterator p =
561 parameters->options().undefined_begin();
562 p != parameters->options().undefined_end();
563 ++p)
565 const char* name = p->c_str();
566 Symbol* sym = this->lookup(name);
567 gold_assert(sym != NULL);
568 if (sym->source() == Symbol::FROM_OBJECT
569 && !sym->object()->is_dynamic())
571 Relobj* obj = static_cast<Relobj*>(sym->object());
572 bool is_ordinary;
573 unsigned int shndx = sym->shndx(&is_ordinary);
574 if (is_ordinary)
576 gold_assert(this->gc_ != NULL);
577 this->gc_->worklist().push(Section_id(obj, shndx));
582 for (Script_options::referenced_const_iterator p =
583 layout->script_options()->referenced_begin();
584 p != layout->script_options()->referenced_end();
585 ++p)
587 Symbol* sym = this->lookup(p->c_str());
588 gold_assert(sym != NULL);
589 if (sym->source() == Symbol::FROM_OBJECT
590 && !sym->object()->is_dynamic())
592 Relobj* obj = static_cast<Relobj*>(sym->object());
593 bool is_ordinary;
594 unsigned int shndx = sym->shndx(&is_ordinary);
595 if (is_ordinary)
597 gold_assert(this->gc_ != NULL);
598 this->gc_->worklist().push(Section_id(obj, shndx));
604 void
605 Symbol_table::gc_mark_symbol(Symbol* sym)
607 // Add the object and section to the work list.
608 Relobj* obj = static_cast<Relobj*>(sym->object());
609 bool is_ordinary;
610 unsigned int shndx = sym->shndx(&is_ordinary);
611 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
613 gold_assert(this->gc_!= NULL);
614 this->gc_->worklist().push(Section_id(obj, shndx));
618 // When doing garbage collection, keep symbols that have been seen in
619 // dynamic objects.
620 inline void
621 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
623 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
624 && !sym->object()->is_dynamic())
625 this->gc_mark_symbol(sym);
628 // Make TO a symbol which forwards to FROM.
630 void
631 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
633 gold_assert(from != to);
634 gold_assert(!from->is_forwarder() && !to->is_forwarder());
635 this->forwarders_[from] = to;
636 from->set_forwarder();
639 // Resolve the forwards from FROM, returning the real symbol.
641 Symbol*
642 Symbol_table::resolve_forwards(const Symbol* from) const
644 gold_assert(from->is_forwarder());
645 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
646 this->forwarders_.find(from);
647 gold_assert(p != this->forwarders_.end());
648 return p->second;
651 // Look up a symbol by name.
653 Symbol*
654 Symbol_table::lookup(const char* name, const char* version) const
656 Stringpool::Key name_key;
657 name = this->namepool_.find(name, &name_key);
658 if (name == NULL)
659 return NULL;
661 Stringpool::Key version_key = 0;
662 if (version != NULL)
664 version = this->namepool_.find(version, &version_key);
665 if (version == NULL)
666 return NULL;
669 Symbol_table_key key(name_key, version_key);
670 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
671 if (p == this->table_.end())
672 return NULL;
673 return p->second;
676 // Resolve a Symbol with another Symbol. This is only used in the
677 // unusual case where there are references to both an unversioned
678 // symbol and a symbol with a version, and we then discover that that
679 // version is the default version. Because this is unusual, we do
680 // this the slow way, by converting back to an ELF symbol.
682 template<int size, bool big_endian>
683 void
684 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
686 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
687 elfcpp::Sym_write<size, big_endian> esym(buf);
688 // We don't bother to set the st_name or the st_shndx field.
689 esym.put_st_value(from->value());
690 esym.put_st_size(from->symsize());
691 esym.put_st_info(from->binding(), from->type());
692 esym.put_st_other(from->visibility(), from->nonvis());
693 bool is_ordinary;
694 unsigned int shndx = from->shndx(&is_ordinary);
695 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
696 from->version());
697 if (from->in_reg())
698 to->set_in_reg();
699 if (from->in_dyn())
700 to->set_in_dyn();
701 if (parameters->options().gc_sections())
702 this->gc_mark_dyn_syms(to);
705 // Record that a symbol is forced to be local by a version script or
706 // by visibility.
708 void
709 Symbol_table::force_local(Symbol* sym)
711 if (!sym->is_defined() && !sym->is_common())
712 return;
713 if (sym->is_forced_local())
715 // We already got this one.
716 return;
718 sym->set_is_forced_local();
719 this->forced_locals_.push_back(sym);
722 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
723 // is only called for undefined symbols, when at least one --wrap
724 // option was used.
726 const char*
727 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
729 // For some targets, we need to ignore a specific character when
730 // wrapping, and add it back later.
731 char prefix = '\0';
732 if (name[0] == parameters->target().wrap_char())
734 prefix = name[0];
735 ++name;
738 if (parameters->options().is_wrap(name))
740 // Turn NAME into __wrap_NAME.
741 std::string s;
742 if (prefix != '\0')
743 s += prefix;
744 s += "__wrap_";
745 s += name;
747 // This will give us both the old and new name in NAMEPOOL_, but
748 // that is OK. Only the versions we need will wind up in the
749 // real string table in the output file.
750 return this->namepool_.add(s.c_str(), true, name_key);
753 const char* const real_prefix = "__real_";
754 const size_t real_prefix_length = strlen(real_prefix);
755 if (strncmp(name, real_prefix, real_prefix_length) == 0
756 && parameters->options().is_wrap(name + real_prefix_length))
758 // Turn __real_NAME into NAME.
759 std::string s;
760 if (prefix != '\0')
761 s += prefix;
762 s += name + real_prefix_length;
763 return this->namepool_.add(s.c_str(), true, name_key);
766 return name;
769 // This is called when we see a symbol NAME/VERSION, and the symbol
770 // already exists in the symbol table, and VERSION is marked as being
771 // the default version. SYM is the NAME/VERSION symbol we just added.
772 // DEFAULT_IS_NEW is true if this is the first time we have seen the
773 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
775 template<int size, bool big_endian>
776 void
777 Symbol_table::define_default_version(Sized_symbol<size>* sym,
778 bool default_is_new,
779 Symbol_table_type::iterator pdef)
781 if (default_is_new)
783 // This is the first time we have seen NAME/NULL. Make
784 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
785 // version.
786 pdef->second = sym;
787 sym->set_is_default();
789 else if (pdef->second == sym)
791 // NAME/NULL already points to NAME/VERSION. Don't mark the
792 // symbol as the default if it is not already the default.
794 else
796 // This is the unfortunate case where we already have entries
797 // for both NAME/VERSION and NAME/NULL. We now see a symbol
798 // NAME/VERSION where VERSION is the default version. We have
799 // already resolved this new symbol with the existing
800 // NAME/VERSION symbol.
802 // It's possible that NAME/NULL and NAME/VERSION are both
803 // defined in regular objects. This can only happen if one
804 // object file defines foo and another defines foo@@ver. This
805 // is somewhat obscure, but we call it a multiple definition
806 // error.
808 // It's possible that NAME/NULL actually has a version, in which
809 // case it won't be the same as VERSION. This happens with
810 // ver_test_7.so in the testsuite for the symbol t2_2. We see
811 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
812 // then see an unadorned t2_2 in an object file and give it
813 // version VER1 from the version script. This looks like a
814 // default definition for VER1, so it looks like we should merge
815 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
816 // not obvious that this is an error, either. So we just punt.
818 // If one of the symbols has non-default visibility, and the
819 // other is defined in a shared object, then they are different
820 // symbols.
822 // Otherwise, we just resolve the symbols as though they were
823 // the same.
825 if (pdef->second->version() != NULL)
826 gold_assert(pdef->second->version() != sym->version());
827 else if (sym->visibility() != elfcpp::STV_DEFAULT
828 && pdef->second->is_from_dynobj())
830 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
831 && sym->is_from_dynobj())
833 else
835 const Sized_symbol<size>* symdef;
836 symdef = this->get_sized_symbol<size>(pdef->second);
837 Symbol_table::resolve<size, big_endian>(sym, symdef);
838 this->make_forwarder(pdef->second, sym);
839 pdef->second = sym;
840 sym->set_is_default();
845 // Add one symbol from OBJECT to the symbol table. NAME is symbol
846 // name and VERSION is the version; both are canonicalized. DEF is
847 // whether this is the default version. ST_SHNDX is the symbol's
848 // section index; IS_ORDINARY is whether this is a normal section
849 // rather than a special code.
851 // If IS_DEFAULT_VERSION is true, then this is the definition of a
852 // default version of a symbol. That means that any lookup of
853 // NAME/NULL and any lookup of NAME/VERSION should always return the
854 // same symbol. This is obvious for references, but in particular we
855 // want to do this for definitions: overriding NAME/NULL should also
856 // override NAME/VERSION. If we don't do that, it would be very hard
857 // to override functions in a shared library which uses versioning.
859 // We implement this by simply making both entries in the hash table
860 // point to the same Symbol structure. That is easy enough if this is
861 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
862 // that we have seen both already, in which case they will both have
863 // independent entries in the symbol table. We can't simply change
864 // the symbol table entry, because we have pointers to the entries
865 // attached to the object files. So we mark the entry attached to the
866 // object file as a forwarder, and record it in the forwarders_ map.
867 // Note that entries in the hash table will never be marked as
868 // forwarders.
870 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
871 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
872 // for a special section code. ST_SHNDX may be modified if the symbol
873 // is defined in a section being discarded.
875 template<int size, bool big_endian>
876 Sized_symbol<size>*
877 Symbol_table::add_from_object(Object* object,
878 const char* name,
879 Stringpool::Key name_key,
880 const char* version,
881 Stringpool::Key version_key,
882 bool is_default_version,
883 const elfcpp::Sym<size, big_endian>& sym,
884 unsigned int st_shndx,
885 bool is_ordinary,
886 unsigned int orig_st_shndx)
888 // Print a message if this symbol is being traced.
889 if (parameters->options().is_trace_symbol(name))
891 if (orig_st_shndx == elfcpp::SHN_UNDEF)
892 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
893 else
894 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
897 // For an undefined symbol, we may need to adjust the name using
898 // --wrap.
899 if (orig_st_shndx == elfcpp::SHN_UNDEF
900 && parameters->options().any_wrap())
902 const char* wrap_name = this->wrap_symbol(name, &name_key);
903 if (wrap_name != name)
905 // If we see a reference to malloc with version GLIBC_2.0,
906 // and we turn it into a reference to __wrap_malloc, then we
907 // discard the version number. Otherwise the user would be
908 // required to specify the correct version for
909 // __wrap_malloc.
910 version = NULL;
911 version_key = 0;
912 name = wrap_name;
916 Symbol* const snull = NULL;
917 std::pair<typename Symbol_table_type::iterator, bool> ins =
918 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
919 snull));
921 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
922 std::make_pair(this->table_.end(), false);
923 if (is_default_version)
925 const Stringpool::Key vnull_key = 0;
926 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
927 vnull_key),
928 snull));
931 // ins.first: an iterator, which is a pointer to a pair.
932 // ins.first->first: the key (a pair of name and version).
933 // ins.first->second: the value (Symbol*).
934 // ins.second: true if new entry was inserted, false if not.
936 Sized_symbol<size>* ret;
937 bool was_undefined;
938 bool was_common;
939 if (!ins.second)
941 // We already have an entry for NAME/VERSION.
942 ret = this->get_sized_symbol<size>(ins.first->second);
943 gold_assert(ret != NULL);
945 was_undefined = ret->is_undefined();
946 was_common = ret->is_common();
948 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
949 version);
950 if (parameters->options().gc_sections())
951 this->gc_mark_dyn_syms(ret);
953 if (is_default_version)
954 this->define_default_version<size, big_endian>(ret, insdefault.second,
955 insdefault.first);
957 else
959 // This is the first time we have seen NAME/VERSION.
960 gold_assert(ins.first->second == NULL);
962 if (is_default_version && !insdefault.second)
964 // We already have an entry for NAME/NULL. If we override
965 // it, then change it to NAME/VERSION.
966 ret = this->get_sized_symbol<size>(insdefault.first->second);
968 was_undefined = ret->is_undefined();
969 was_common = ret->is_common();
971 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
972 version);
973 if (parameters->options().gc_sections())
974 this->gc_mark_dyn_syms(ret);
975 ins.first->second = ret;
977 else
979 was_undefined = false;
980 was_common = false;
982 Sized_target<size, big_endian>* target =
983 parameters->sized_target<size, big_endian>();
984 if (!target->has_make_symbol())
985 ret = new Sized_symbol<size>();
986 else
988 ret = target->make_symbol();
989 if (ret == NULL)
991 // This means that we don't want a symbol table
992 // entry after all.
993 if (!is_default_version)
994 this->table_.erase(ins.first);
995 else
997 this->table_.erase(insdefault.first);
998 // Inserting INSDEFAULT invalidated INS.
999 this->table_.erase(std::make_pair(name_key,
1000 version_key));
1002 return NULL;
1006 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1008 ins.first->second = ret;
1009 if (is_default_version)
1011 // This is the first time we have seen NAME/NULL. Point
1012 // it at the new entry for NAME/VERSION.
1013 gold_assert(insdefault.second);
1014 insdefault.first->second = ret;
1018 if (is_default_version)
1019 ret->set_is_default();
1022 // Record every time we see a new undefined symbol, to speed up
1023 // archive groups.
1024 if (!was_undefined && ret->is_undefined())
1026 ++this->saw_undefined_;
1027 if (parameters->options().has_plugins())
1028 parameters->options().plugins()->new_undefined_symbol(ret);
1031 // Keep track of common symbols, to speed up common symbol
1032 // allocation.
1033 if (!was_common && ret->is_common())
1035 if (ret->type() == elfcpp::STT_TLS)
1036 this->tls_commons_.push_back(ret);
1037 else if (!is_ordinary
1038 && st_shndx == parameters->target().small_common_shndx())
1039 this->small_commons_.push_back(ret);
1040 else if (!is_ordinary
1041 && st_shndx == parameters->target().large_common_shndx())
1042 this->large_commons_.push_back(ret);
1043 else
1044 this->commons_.push_back(ret);
1047 // If we're not doing a relocatable link, then any symbol with
1048 // hidden or internal visibility is local.
1049 if ((ret->visibility() == elfcpp::STV_HIDDEN
1050 || ret->visibility() == elfcpp::STV_INTERNAL)
1051 && (ret->binding() == elfcpp::STB_GLOBAL
1052 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1053 || ret->binding() == elfcpp::STB_WEAK)
1054 && !parameters->options().relocatable())
1055 this->force_local(ret);
1057 return ret;
1060 // Add all the symbols in a relocatable object to the hash table.
1062 template<int size, bool big_endian>
1063 void
1064 Symbol_table::add_from_relobj(
1065 Sized_relobj_file<size, big_endian>* relobj,
1066 const unsigned char* syms,
1067 size_t count,
1068 size_t symndx_offset,
1069 const char* sym_names,
1070 size_t sym_name_size,
1071 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1072 size_t* defined)
1074 *defined = 0;
1076 gold_assert(size == parameters->target().get_size());
1078 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1080 const bool just_symbols = relobj->just_symbols();
1082 const unsigned char* p = syms;
1083 for (size_t i = 0; i < count; ++i, p += sym_size)
1085 (*sympointers)[i] = NULL;
1087 elfcpp::Sym<size, big_endian> sym(p);
1089 unsigned int st_name = sym.get_st_name();
1090 if (st_name >= sym_name_size)
1092 relobj->error(_("bad global symbol name offset %u at %zu"),
1093 st_name, i);
1094 continue;
1097 const char* name = sym_names + st_name;
1099 bool is_ordinary;
1100 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1101 sym.get_st_shndx(),
1102 &is_ordinary);
1103 unsigned int orig_st_shndx = st_shndx;
1104 if (!is_ordinary)
1105 orig_st_shndx = elfcpp::SHN_UNDEF;
1107 if (st_shndx != elfcpp::SHN_UNDEF)
1108 ++*defined;
1110 // A symbol defined in a section which we are not including must
1111 // be treated as an undefined symbol.
1112 bool is_defined_in_discarded_section = false;
1113 if (st_shndx != elfcpp::SHN_UNDEF
1114 && is_ordinary
1115 && !relobj->is_section_included(st_shndx)
1116 && !this->is_section_folded(relobj, st_shndx))
1118 st_shndx = elfcpp::SHN_UNDEF;
1119 is_defined_in_discarded_section = true;
1122 // In an object file, an '@' in the name separates the symbol
1123 // name from the version name. If there are two '@' characters,
1124 // this is the default version.
1125 const char* ver = strchr(name, '@');
1126 Stringpool::Key ver_key = 0;
1127 int namelen = 0;
1128 // IS_DEFAULT_VERSION: is the version default?
1129 // IS_FORCED_LOCAL: is the symbol forced local?
1130 bool is_default_version = false;
1131 bool is_forced_local = false;
1133 // FIXME: For incremental links, we don't store version information,
1134 // so we need to ignore version symbols for now.
1135 if (parameters->incremental_update() && ver != NULL)
1137 namelen = ver - name;
1138 ver = NULL;
1141 if (ver != NULL)
1143 // The symbol name is of the form foo@VERSION or foo@@VERSION
1144 namelen = ver - name;
1145 ++ver;
1146 if (*ver == '@')
1148 is_default_version = true;
1149 ++ver;
1151 ver = this->namepool_.add(ver, true, &ver_key);
1153 // We don't want to assign a version to an undefined symbol,
1154 // even if it is listed in the version script. FIXME: What
1155 // about a common symbol?
1156 else
1158 namelen = strlen(name);
1159 if (!this->version_script_.empty()
1160 && st_shndx != elfcpp::SHN_UNDEF)
1162 // The symbol name did not have a version, but the
1163 // version script may assign a version anyway.
1164 std::string version;
1165 bool is_global;
1166 if (this->version_script_.get_symbol_version(name, &version,
1167 &is_global))
1169 if (!is_global)
1170 is_forced_local = true;
1171 else if (!version.empty())
1173 ver = this->namepool_.add_with_length(version.c_str(),
1174 version.length(),
1175 true,
1176 &ver_key);
1177 is_default_version = true;
1183 elfcpp::Sym<size, big_endian>* psym = &sym;
1184 unsigned char symbuf[sym_size];
1185 elfcpp::Sym<size, big_endian> sym2(symbuf);
1186 if (just_symbols)
1188 memcpy(symbuf, p, sym_size);
1189 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1190 if (orig_st_shndx != elfcpp::SHN_UNDEF
1191 && is_ordinary
1192 && relobj->e_type() == elfcpp::ET_REL)
1194 // Symbol values in relocatable object files are section
1195 // relative. This is normally what we want, but since here
1196 // we are converting the symbol to absolute we need to add
1197 // the section address. The section address in an object
1198 // file is normally zero, but people can use a linker
1199 // script to change it.
1200 sw.put_st_value(sym.get_st_value()
1201 + relobj->section_address(orig_st_shndx));
1203 st_shndx = elfcpp::SHN_ABS;
1204 is_ordinary = false;
1205 psym = &sym2;
1208 // Fix up visibility if object has no-export set.
1209 if (relobj->no_export()
1210 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1212 // We may have copied symbol already above.
1213 if (psym != &sym2)
1215 memcpy(symbuf, p, sym_size);
1216 psym = &sym2;
1219 elfcpp::STV visibility = sym2.get_st_visibility();
1220 if (visibility == elfcpp::STV_DEFAULT
1221 || visibility == elfcpp::STV_PROTECTED)
1223 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1224 unsigned char nonvis = sym2.get_st_nonvis();
1225 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1229 Stringpool::Key name_key;
1230 name = this->namepool_.add_with_length(name, namelen, true,
1231 &name_key);
1233 Sized_symbol<size>* res;
1234 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1235 is_default_version, *psym, st_shndx,
1236 is_ordinary, orig_st_shndx);
1238 if (is_forced_local)
1239 this->force_local(res);
1241 // Do not treat this symbol as garbage if this symbol will be
1242 // exported to the dynamic symbol table. This is true when
1243 // building a shared library or using --export-dynamic and
1244 // the symbol is externally visible.
1245 if (parameters->options().gc_sections()
1246 && res->is_externally_visible()
1247 && !res->is_from_dynobj()
1248 && (parameters->options().shared()
1249 || parameters->options().export_dynamic()))
1250 this->gc_mark_symbol(res);
1252 if (is_defined_in_discarded_section)
1253 res->set_is_defined_in_discarded_section();
1255 (*sympointers)[i] = res;
1259 // Add a symbol from a plugin-claimed file.
1261 template<int size, bool big_endian>
1262 Symbol*
1263 Symbol_table::add_from_pluginobj(
1264 Sized_pluginobj<size, big_endian>* obj,
1265 const char* name,
1266 const char* ver,
1267 elfcpp::Sym<size, big_endian>* sym)
1269 unsigned int st_shndx = sym->get_st_shndx();
1270 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1272 Stringpool::Key ver_key = 0;
1273 bool is_default_version = false;
1274 bool is_forced_local = false;
1276 if (ver != NULL)
1278 ver = this->namepool_.add(ver, true, &ver_key);
1280 // We don't want to assign a version to an undefined symbol,
1281 // even if it is listed in the version script. FIXME: What
1282 // about a common symbol?
1283 else
1285 if (!this->version_script_.empty()
1286 && st_shndx != elfcpp::SHN_UNDEF)
1288 // The symbol name did not have a version, but the
1289 // version script may assign a version anyway.
1290 std::string version;
1291 bool is_global;
1292 if (this->version_script_.get_symbol_version(name, &version,
1293 &is_global))
1295 if (!is_global)
1296 is_forced_local = true;
1297 else if (!version.empty())
1299 ver = this->namepool_.add_with_length(version.c_str(),
1300 version.length(),
1301 true,
1302 &ver_key);
1303 is_default_version = true;
1309 Stringpool::Key name_key;
1310 name = this->namepool_.add(name, true, &name_key);
1312 Sized_symbol<size>* res;
1313 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1314 is_default_version, *sym, st_shndx,
1315 is_ordinary, st_shndx);
1317 if (is_forced_local)
1318 this->force_local(res);
1320 return res;
1323 // Add all the symbols in a dynamic object to the hash table.
1325 template<int size, bool big_endian>
1326 void
1327 Symbol_table::add_from_dynobj(
1328 Sized_dynobj<size, big_endian>* dynobj,
1329 const unsigned char* syms,
1330 size_t count,
1331 const char* sym_names,
1332 size_t sym_name_size,
1333 const unsigned char* versym,
1334 size_t versym_size,
1335 const std::vector<const char*>* version_map,
1336 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1337 size_t* defined)
1339 *defined = 0;
1341 gold_assert(size == parameters->target().get_size());
1343 if (dynobj->just_symbols())
1345 gold_error(_("--just-symbols does not make sense with a shared object"));
1346 return;
1349 // FIXME: For incremental links, we don't store version information,
1350 // so we need to ignore version symbols for now.
1351 if (parameters->incremental_update())
1352 versym = NULL;
1354 if (versym != NULL && versym_size / 2 < count)
1356 dynobj->error(_("too few symbol versions"));
1357 return;
1360 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1362 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1363 // weak aliases. This is necessary because if the dynamic object
1364 // provides the same variable under two names, one of which is a
1365 // weak definition, and the regular object refers to the weak
1366 // definition, we have to put both the weak definition and the
1367 // strong definition into the dynamic symbol table. Given a weak
1368 // definition, the only way that we can find the corresponding
1369 // strong definition, if any, is to search the symbol table.
1370 std::vector<Sized_symbol<size>*> object_symbols;
1372 const unsigned char* p = syms;
1373 const unsigned char* vs = versym;
1374 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1376 elfcpp::Sym<size, big_endian> sym(p);
1378 if (sympointers != NULL)
1379 (*sympointers)[i] = NULL;
1381 // Ignore symbols with local binding or that have
1382 // internal or hidden visibility.
1383 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1384 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1385 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1386 continue;
1388 // A protected symbol in a shared library must be treated as a
1389 // normal symbol when viewed from outside the shared library.
1390 // Implement this by overriding the visibility here.
1391 elfcpp::Sym<size, big_endian>* psym = &sym;
1392 unsigned char symbuf[sym_size];
1393 elfcpp::Sym<size, big_endian> sym2(symbuf);
1394 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1396 memcpy(symbuf, p, sym_size);
1397 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1398 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1399 psym = &sym2;
1402 unsigned int st_name = psym->get_st_name();
1403 if (st_name >= sym_name_size)
1405 dynobj->error(_("bad symbol name offset %u at %zu"),
1406 st_name, i);
1407 continue;
1410 const char* name = sym_names + st_name;
1412 bool is_ordinary;
1413 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1414 &is_ordinary);
1416 if (st_shndx != elfcpp::SHN_UNDEF)
1417 ++*defined;
1419 Sized_symbol<size>* res;
1421 if (versym == NULL)
1423 Stringpool::Key name_key;
1424 name = this->namepool_.add(name, true, &name_key);
1425 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1426 false, *psym, st_shndx, is_ordinary,
1427 st_shndx);
1429 else
1431 // Read the version information.
1433 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1435 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1436 v &= elfcpp::VERSYM_VERSION;
1438 // The Sun documentation says that V can be VER_NDX_LOCAL,
1439 // or VER_NDX_GLOBAL, or a version index. The meaning of
1440 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1441 // The old GNU linker will happily generate VER_NDX_LOCAL
1442 // for an undefined symbol. I don't know what the Sun
1443 // linker will generate.
1445 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1446 && st_shndx != elfcpp::SHN_UNDEF)
1448 // This symbol should not be visible outside the object.
1449 continue;
1452 // At this point we are definitely going to add this symbol.
1453 Stringpool::Key name_key;
1454 name = this->namepool_.add(name, true, &name_key);
1456 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1457 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1459 // This symbol does not have a version.
1460 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1461 false, *psym, st_shndx, is_ordinary,
1462 st_shndx);
1464 else
1466 if (v >= version_map->size())
1468 dynobj->error(_("versym for symbol %zu out of range: %u"),
1469 i, v);
1470 continue;
1473 const char* version = (*version_map)[v];
1474 if (version == NULL)
1476 dynobj->error(_("versym for symbol %zu has no name: %u"),
1477 i, v);
1478 continue;
1481 Stringpool::Key version_key;
1482 version = this->namepool_.add(version, true, &version_key);
1484 // If this is an absolute symbol, and the version name
1485 // and symbol name are the same, then this is the
1486 // version definition symbol. These symbols exist to
1487 // support using -u to pull in particular versions. We
1488 // do not want to record a version for them.
1489 if (st_shndx == elfcpp::SHN_ABS
1490 && !is_ordinary
1491 && name_key == version_key)
1492 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1493 false, *psym, st_shndx, is_ordinary,
1494 st_shndx);
1495 else
1497 const bool is_default_version =
1498 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1499 res = this->add_from_object(dynobj, name, name_key, version,
1500 version_key, is_default_version,
1501 *psym, st_shndx,
1502 is_ordinary, st_shndx);
1507 // Note that it is possible that RES was overridden by an
1508 // earlier object, in which case it can't be aliased here.
1509 if (st_shndx != elfcpp::SHN_UNDEF
1510 && is_ordinary
1511 && psym->get_st_type() == elfcpp::STT_OBJECT
1512 && res->source() == Symbol::FROM_OBJECT
1513 && res->object() == dynobj)
1514 object_symbols.push_back(res);
1516 if (sympointers != NULL)
1517 (*sympointers)[i] = res;
1520 this->record_weak_aliases(&object_symbols);
1523 // Add a symbol from a incremental object file.
1525 template<int size, bool big_endian>
1526 Sized_symbol<size>*
1527 Symbol_table::add_from_incrobj(
1528 Object* obj,
1529 const char* name,
1530 const char* ver,
1531 elfcpp::Sym<size, big_endian>* sym)
1533 unsigned int st_shndx = sym->get_st_shndx();
1534 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1536 Stringpool::Key ver_key = 0;
1537 bool is_default_version = false;
1538 bool is_forced_local = false;
1540 Stringpool::Key name_key;
1541 name = this->namepool_.add(name, true, &name_key);
1543 Sized_symbol<size>* res;
1544 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1545 is_default_version, *sym, st_shndx,
1546 is_ordinary, st_shndx);
1548 if (is_forced_local)
1549 this->force_local(res);
1551 return res;
1554 // This is used to sort weak aliases. We sort them first by section
1555 // index, then by offset, then by weak ahead of strong.
1557 template<int size>
1558 class Weak_alias_sorter
1560 public:
1561 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1564 template<int size>
1565 bool
1566 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1567 const Sized_symbol<size>* s2) const
1569 bool is_ordinary;
1570 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1571 gold_assert(is_ordinary);
1572 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1573 gold_assert(is_ordinary);
1574 if (s1_shndx != s2_shndx)
1575 return s1_shndx < s2_shndx;
1577 if (s1->value() != s2->value())
1578 return s1->value() < s2->value();
1579 if (s1->binding() != s2->binding())
1581 if (s1->binding() == elfcpp::STB_WEAK)
1582 return true;
1583 if (s2->binding() == elfcpp::STB_WEAK)
1584 return false;
1586 return std::string(s1->name()) < std::string(s2->name());
1589 // SYMBOLS is a list of object symbols from a dynamic object. Look
1590 // for any weak aliases, and record them so that if we add the weak
1591 // alias to the dynamic symbol table, we also add the corresponding
1592 // strong symbol.
1594 template<int size>
1595 void
1596 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1598 // Sort the vector by section index, then by offset, then by weak
1599 // ahead of strong.
1600 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1602 // Walk through the vector. For each weak definition, record
1603 // aliases.
1604 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1605 symbols->begin();
1606 p != symbols->end();
1607 ++p)
1609 if ((*p)->binding() != elfcpp::STB_WEAK)
1610 continue;
1612 // Build a circular list of weak aliases. Each symbol points to
1613 // the next one in the circular list.
1615 Sized_symbol<size>* from_sym = *p;
1616 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1617 for (q = p + 1; q != symbols->end(); ++q)
1619 bool dummy;
1620 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1621 || (*q)->value() != from_sym->value())
1622 break;
1624 this->weak_aliases_[from_sym] = *q;
1625 from_sym->set_has_alias();
1626 from_sym = *q;
1629 if (from_sym != *p)
1631 this->weak_aliases_[from_sym] = *p;
1632 from_sym->set_has_alias();
1635 p = q - 1;
1639 // Create and return a specially defined symbol. If ONLY_IF_REF is
1640 // true, then only create the symbol if there is a reference to it.
1641 // If this does not return NULL, it sets *POLDSYM to the existing
1642 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1643 // resolve the newly created symbol to the old one. This
1644 // canonicalizes *PNAME and *PVERSION.
1646 template<int size, bool big_endian>
1647 Sized_symbol<size>*
1648 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1649 bool only_if_ref,
1650 Sized_symbol<size>** poldsym,
1651 bool* resolve_oldsym)
1653 *resolve_oldsym = false;
1655 // If the caller didn't give us a version, see if we get one from
1656 // the version script.
1657 std::string v;
1658 bool is_default_version = false;
1659 if (*pversion == NULL)
1661 bool is_global;
1662 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1664 if (is_global && !v.empty())
1666 *pversion = v.c_str();
1667 // If we get the version from a version script, then we
1668 // are also the default version.
1669 is_default_version = true;
1674 Symbol* oldsym;
1675 Sized_symbol<size>* sym;
1677 bool add_to_table = false;
1678 typename Symbol_table_type::iterator add_loc = this->table_.end();
1679 bool add_def_to_table = false;
1680 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1682 if (only_if_ref)
1684 oldsym = this->lookup(*pname, *pversion);
1685 if (oldsym == NULL && is_default_version)
1686 oldsym = this->lookup(*pname, NULL);
1687 if (oldsym == NULL || !oldsym->is_undefined())
1688 return NULL;
1690 *pname = oldsym->name();
1691 if (is_default_version)
1692 *pversion = this->namepool_.add(*pversion, true, NULL);
1693 else
1694 *pversion = oldsym->version();
1696 else
1698 // Canonicalize NAME and VERSION.
1699 Stringpool::Key name_key;
1700 *pname = this->namepool_.add(*pname, true, &name_key);
1702 Stringpool::Key version_key = 0;
1703 if (*pversion != NULL)
1704 *pversion = this->namepool_.add(*pversion, true, &version_key);
1706 Symbol* const snull = NULL;
1707 std::pair<typename Symbol_table_type::iterator, bool> ins =
1708 this->table_.insert(std::make_pair(std::make_pair(name_key,
1709 version_key),
1710 snull));
1712 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1713 std::make_pair(this->table_.end(), false);
1714 if (is_default_version)
1716 const Stringpool::Key vnull = 0;
1717 insdefault =
1718 this->table_.insert(std::make_pair(std::make_pair(name_key,
1719 vnull),
1720 snull));
1723 if (!ins.second)
1725 // We already have a symbol table entry for NAME/VERSION.
1726 oldsym = ins.first->second;
1727 gold_assert(oldsym != NULL);
1729 if (is_default_version)
1731 Sized_symbol<size>* soldsym =
1732 this->get_sized_symbol<size>(oldsym);
1733 this->define_default_version<size, big_endian>(soldsym,
1734 insdefault.second,
1735 insdefault.first);
1738 else
1740 // We haven't seen this symbol before.
1741 gold_assert(ins.first->second == NULL);
1743 add_to_table = true;
1744 add_loc = ins.first;
1746 if (is_default_version && !insdefault.second)
1748 // We are adding NAME/VERSION, and it is the default
1749 // version. We already have an entry for NAME/NULL.
1750 oldsym = insdefault.first->second;
1751 *resolve_oldsym = true;
1753 else
1755 oldsym = NULL;
1757 if (is_default_version)
1759 add_def_to_table = true;
1760 add_def_loc = insdefault.first;
1766 const Target& target = parameters->target();
1767 if (!target.has_make_symbol())
1768 sym = new Sized_symbol<size>();
1769 else
1771 Sized_target<size, big_endian>* sized_target =
1772 parameters->sized_target<size, big_endian>();
1773 sym = sized_target->make_symbol();
1774 if (sym == NULL)
1775 return NULL;
1778 if (add_to_table)
1779 add_loc->second = sym;
1780 else
1781 gold_assert(oldsym != NULL);
1783 if (add_def_to_table)
1784 add_def_loc->second = sym;
1786 *poldsym = this->get_sized_symbol<size>(oldsym);
1788 return sym;
1791 // Define a symbol based on an Output_data.
1793 Symbol*
1794 Symbol_table::define_in_output_data(const char* name,
1795 const char* version,
1796 Defined defined,
1797 Output_data* od,
1798 uint64_t value,
1799 uint64_t symsize,
1800 elfcpp::STT type,
1801 elfcpp::STB binding,
1802 elfcpp::STV visibility,
1803 unsigned char nonvis,
1804 bool offset_is_from_end,
1805 bool only_if_ref)
1807 if (parameters->target().get_size() == 32)
1809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1810 return this->do_define_in_output_data<32>(name, version, defined, od,
1811 value, symsize, type, binding,
1812 visibility, nonvis,
1813 offset_is_from_end,
1814 only_if_ref);
1815 #else
1816 gold_unreachable();
1817 #endif
1819 else if (parameters->target().get_size() == 64)
1821 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1822 return this->do_define_in_output_data<64>(name, version, defined, od,
1823 value, symsize, type, binding,
1824 visibility, nonvis,
1825 offset_is_from_end,
1826 only_if_ref);
1827 #else
1828 gold_unreachable();
1829 #endif
1831 else
1832 gold_unreachable();
1835 // Define a symbol in an Output_data, sized version.
1837 template<int size>
1838 Sized_symbol<size>*
1839 Symbol_table::do_define_in_output_data(
1840 const char* name,
1841 const char* version,
1842 Defined defined,
1843 Output_data* od,
1844 typename elfcpp::Elf_types<size>::Elf_Addr value,
1845 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1846 elfcpp::STT type,
1847 elfcpp::STB binding,
1848 elfcpp::STV visibility,
1849 unsigned char nonvis,
1850 bool offset_is_from_end,
1851 bool only_if_ref)
1853 Sized_symbol<size>* sym;
1854 Sized_symbol<size>* oldsym;
1855 bool resolve_oldsym;
1857 if (parameters->target().is_big_endian())
1859 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1860 sym = this->define_special_symbol<size, true>(&name, &version,
1861 only_if_ref, &oldsym,
1862 &resolve_oldsym);
1863 #else
1864 gold_unreachable();
1865 #endif
1867 else
1869 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1870 sym = this->define_special_symbol<size, false>(&name, &version,
1871 only_if_ref, &oldsym,
1872 &resolve_oldsym);
1873 #else
1874 gold_unreachable();
1875 #endif
1878 if (sym == NULL)
1879 return NULL;
1881 sym->init_output_data(name, version, od, value, symsize, type, binding,
1882 visibility, nonvis, offset_is_from_end,
1883 defined == PREDEFINED);
1885 if (oldsym == NULL)
1887 if (binding == elfcpp::STB_LOCAL
1888 || this->version_script_.symbol_is_local(name))
1889 this->force_local(sym);
1890 else if (version != NULL)
1891 sym->set_is_default();
1892 return sym;
1895 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1896 this->override_with_special(oldsym, sym);
1898 if (resolve_oldsym)
1899 return sym;
1900 else
1902 delete sym;
1903 return oldsym;
1907 // Define a symbol based on an Output_segment.
1909 Symbol*
1910 Symbol_table::define_in_output_segment(const char* name,
1911 const char* version,
1912 Defined defined,
1913 Output_segment* os,
1914 uint64_t value,
1915 uint64_t symsize,
1916 elfcpp::STT type,
1917 elfcpp::STB binding,
1918 elfcpp::STV visibility,
1919 unsigned char nonvis,
1920 Symbol::Segment_offset_base offset_base,
1921 bool only_if_ref)
1923 if (parameters->target().get_size() == 32)
1925 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1926 return this->do_define_in_output_segment<32>(name, version, defined, os,
1927 value, symsize, type,
1928 binding, visibility, nonvis,
1929 offset_base, only_if_ref);
1930 #else
1931 gold_unreachable();
1932 #endif
1934 else if (parameters->target().get_size() == 64)
1936 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1937 return this->do_define_in_output_segment<64>(name, version, defined, os,
1938 value, symsize, type,
1939 binding, visibility, nonvis,
1940 offset_base, only_if_ref);
1941 #else
1942 gold_unreachable();
1943 #endif
1945 else
1946 gold_unreachable();
1949 // Define a symbol in an Output_segment, sized version.
1951 template<int size>
1952 Sized_symbol<size>*
1953 Symbol_table::do_define_in_output_segment(
1954 const char* name,
1955 const char* version,
1956 Defined defined,
1957 Output_segment* os,
1958 typename elfcpp::Elf_types<size>::Elf_Addr value,
1959 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1960 elfcpp::STT type,
1961 elfcpp::STB binding,
1962 elfcpp::STV visibility,
1963 unsigned char nonvis,
1964 Symbol::Segment_offset_base offset_base,
1965 bool only_if_ref)
1967 Sized_symbol<size>* sym;
1968 Sized_symbol<size>* oldsym;
1969 bool resolve_oldsym;
1971 if (parameters->target().is_big_endian())
1973 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1974 sym = this->define_special_symbol<size, true>(&name, &version,
1975 only_if_ref, &oldsym,
1976 &resolve_oldsym);
1977 #else
1978 gold_unreachable();
1979 #endif
1981 else
1983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1984 sym = this->define_special_symbol<size, false>(&name, &version,
1985 only_if_ref, &oldsym,
1986 &resolve_oldsym);
1987 #else
1988 gold_unreachable();
1989 #endif
1992 if (sym == NULL)
1993 return NULL;
1995 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1996 visibility, nonvis, offset_base,
1997 defined == PREDEFINED);
1999 if (oldsym == NULL)
2001 if (binding == elfcpp::STB_LOCAL
2002 || this->version_script_.symbol_is_local(name))
2003 this->force_local(sym);
2004 else if (version != NULL)
2005 sym->set_is_default();
2006 return sym;
2009 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2010 this->override_with_special(oldsym, sym);
2012 if (resolve_oldsym)
2013 return sym;
2014 else
2016 delete sym;
2017 return oldsym;
2021 // Define a special symbol with a constant value. It is a multiple
2022 // definition error if this symbol is already defined.
2024 Symbol*
2025 Symbol_table::define_as_constant(const char* name,
2026 const char* version,
2027 Defined defined,
2028 uint64_t value,
2029 uint64_t symsize,
2030 elfcpp::STT type,
2031 elfcpp::STB binding,
2032 elfcpp::STV visibility,
2033 unsigned char nonvis,
2034 bool only_if_ref,
2035 bool force_override)
2037 if (parameters->target().get_size() == 32)
2039 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2040 return this->do_define_as_constant<32>(name, version, defined, value,
2041 symsize, type, binding,
2042 visibility, nonvis, only_if_ref,
2043 force_override);
2044 #else
2045 gold_unreachable();
2046 #endif
2048 else if (parameters->target().get_size() == 64)
2050 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2051 return this->do_define_as_constant<64>(name, version, defined, value,
2052 symsize, type, binding,
2053 visibility, nonvis, only_if_ref,
2054 force_override);
2055 #else
2056 gold_unreachable();
2057 #endif
2059 else
2060 gold_unreachable();
2063 // Define a symbol as a constant, sized version.
2065 template<int size>
2066 Sized_symbol<size>*
2067 Symbol_table::do_define_as_constant(
2068 const char* name,
2069 const char* version,
2070 Defined defined,
2071 typename elfcpp::Elf_types<size>::Elf_Addr value,
2072 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2073 elfcpp::STT type,
2074 elfcpp::STB binding,
2075 elfcpp::STV visibility,
2076 unsigned char nonvis,
2077 bool only_if_ref,
2078 bool force_override)
2080 Sized_symbol<size>* sym;
2081 Sized_symbol<size>* oldsym;
2082 bool resolve_oldsym;
2084 if (parameters->target().is_big_endian())
2086 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2087 sym = this->define_special_symbol<size, true>(&name, &version,
2088 only_if_ref, &oldsym,
2089 &resolve_oldsym);
2090 #else
2091 gold_unreachable();
2092 #endif
2094 else
2096 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2097 sym = this->define_special_symbol<size, false>(&name, &version,
2098 only_if_ref, &oldsym,
2099 &resolve_oldsym);
2100 #else
2101 gold_unreachable();
2102 #endif
2105 if (sym == NULL)
2106 return NULL;
2108 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2109 nonvis, defined == PREDEFINED);
2111 if (oldsym == NULL)
2113 // Version symbols are absolute symbols with name == version.
2114 // We don't want to force them to be local.
2115 if ((version == NULL
2116 || name != version
2117 || value != 0)
2118 && (binding == elfcpp::STB_LOCAL
2119 || this->version_script_.symbol_is_local(name)))
2120 this->force_local(sym);
2121 else if (version != NULL
2122 && (name != version || value != 0))
2123 sym->set_is_default();
2124 return sym;
2127 if (force_override
2128 || Symbol_table::should_override_with_special(oldsym, type, defined))
2129 this->override_with_special(oldsym, sym);
2131 if (resolve_oldsym)
2132 return sym;
2133 else
2135 delete sym;
2136 return oldsym;
2140 // Define a set of symbols in output sections.
2142 void
2143 Symbol_table::define_symbols(const Layout* layout, int count,
2144 const Define_symbol_in_section* p,
2145 bool only_if_ref)
2147 for (int i = 0; i < count; ++i, ++p)
2149 Output_section* os = layout->find_output_section(p->output_section);
2150 if (os != NULL)
2151 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2152 p->size, p->type, p->binding,
2153 p->visibility, p->nonvis,
2154 p->offset_is_from_end,
2155 only_if_ref || p->only_if_ref);
2156 else
2157 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2158 p->type, p->binding, p->visibility, p->nonvis,
2159 only_if_ref || p->only_if_ref,
2160 false);
2164 // Define a set of symbols in output segments.
2166 void
2167 Symbol_table::define_symbols(const Layout* layout, int count,
2168 const Define_symbol_in_segment* p,
2169 bool only_if_ref)
2171 for (int i = 0; i < count; ++i, ++p)
2173 Output_segment* os = layout->find_output_segment(p->segment_type,
2174 p->segment_flags_set,
2175 p->segment_flags_clear);
2176 if (os != NULL)
2177 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2178 p->size, p->type, p->binding,
2179 p->visibility, p->nonvis,
2180 p->offset_base,
2181 only_if_ref || p->only_if_ref);
2182 else
2183 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2184 p->type, p->binding, p->visibility, p->nonvis,
2185 only_if_ref || p->only_if_ref,
2186 false);
2190 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2191 // symbol should be defined--typically a .dyn.bss section. VALUE is
2192 // the offset within POSD.
2194 template<int size>
2195 void
2196 Symbol_table::define_with_copy_reloc(
2197 Sized_symbol<size>* csym,
2198 Output_data* posd,
2199 typename elfcpp::Elf_types<size>::Elf_Addr value)
2201 gold_assert(csym->is_from_dynobj());
2202 gold_assert(!csym->is_copied_from_dynobj());
2203 Object* object = csym->object();
2204 gold_assert(object->is_dynamic());
2205 Dynobj* dynobj = static_cast<Dynobj*>(object);
2207 // Our copied variable has to override any variable in a shared
2208 // library.
2209 elfcpp::STB binding = csym->binding();
2210 if (binding == elfcpp::STB_WEAK)
2211 binding = elfcpp::STB_GLOBAL;
2213 this->define_in_output_data(csym->name(), csym->version(), COPY,
2214 posd, value, csym->symsize(),
2215 csym->type(), binding,
2216 csym->visibility(), csym->nonvis(),
2217 false, false);
2219 csym->set_is_copied_from_dynobj();
2220 csym->set_needs_dynsym_entry();
2222 this->copied_symbol_dynobjs_[csym] = dynobj;
2224 // We have now defined all aliases, but we have not entered them all
2225 // in the copied_symbol_dynobjs_ map.
2226 if (csym->has_alias())
2228 Symbol* sym = csym;
2229 while (true)
2231 sym = this->weak_aliases_[sym];
2232 if (sym == csym)
2233 break;
2234 gold_assert(sym->output_data() == posd);
2236 sym->set_is_copied_from_dynobj();
2237 this->copied_symbol_dynobjs_[sym] = dynobj;
2242 // SYM is defined using a COPY reloc. Return the dynamic object where
2243 // the original definition was found.
2245 Dynobj*
2246 Symbol_table::get_copy_source(const Symbol* sym) const
2248 gold_assert(sym->is_copied_from_dynobj());
2249 Copied_symbol_dynobjs::const_iterator p =
2250 this->copied_symbol_dynobjs_.find(sym);
2251 gold_assert(p != this->copied_symbol_dynobjs_.end());
2252 return p->second;
2255 // Add any undefined symbols named on the command line.
2257 void
2258 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2260 if (parameters->options().any_undefined()
2261 || layout->script_options()->any_unreferenced())
2263 if (parameters->target().get_size() == 32)
2265 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2266 this->do_add_undefined_symbols_from_command_line<32>(layout);
2267 #else
2268 gold_unreachable();
2269 #endif
2271 else if (parameters->target().get_size() == 64)
2273 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2274 this->do_add_undefined_symbols_from_command_line<64>(layout);
2275 #else
2276 gold_unreachable();
2277 #endif
2279 else
2280 gold_unreachable();
2284 template<int size>
2285 void
2286 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2288 for (options::String_set::const_iterator p =
2289 parameters->options().undefined_begin();
2290 p != parameters->options().undefined_end();
2291 ++p)
2292 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2294 for (Script_options::referenced_const_iterator p =
2295 layout->script_options()->referenced_begin();
2296 p != layout->script_options()->referenced_end();
2297 ++p)
2298 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2301 template<int size>
2302 void
2303 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2305 if (this->lookup(name) != NULL)
2306 return;
2308 const char* version = NULL;
2310 Sized_symbol<size>* sym;
2311 Sized_symbol<size>* oldsym;
2312 bool resolve_oldsym;
2313 if (parameters->target().is_big_endian())
2315 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2316 sym = this->define_special_symbol<size, true>(&name, &version,
2317 false, &oldsym,
2318 &resolve_oldsym);
2319 #else
2320 gold_unreachable();
2321 #endif
2323 else
2325 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2326 sym = this->define_special_symbol<size, false>(&name, &version,
2327 false, &oldsym,
2328 &resolve_oldsym);
2329 #else
2330 gold_unreachable();
2331 #endif
2334 gold_assert(oldsym == NULL);
2336 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2337 elfcpp::STV_DEFAULT, 0);
2338 ++this->saw_undefined_;
2341 // Set the dynamic symbol indexes. INDEX is the index of the first
2342 // global dynamic symbol. Pointers to the symbols are stored into the
2343 // vector SYMS. The names are added to DYNPOOL. This returns an
2344 // updated dynamic symbol index.
2346 unsigned int
2347 Symbol_table::set_dynsym_indexes(unsigned int index,
2348 std::vector<Symbol*>* syms,
2349 Stringpool* dynpool,
2350 Versions* versions)
2352 for (Symbol_table_type::iterator p = this->table_.begin();
2353 p != this->table_.end();
2354 ++p)
2356 Symbol* sym = p->second;
2358 // Note that SYM may already have a dynamic symbol index, since
2359 // some symbols appear more than once in the symbol table, with
2360 // and without a version.
2362 if (!sym->should_add_dynsym_entry(this))
2363 sym->set_dynsym_index(-1U);
2364 else if (!sym->has_dynsym_index())
2366 sym->set_dynsym_index(index);
2367 ++index;
2368 syms->push_back(sym);
2369 dynpool->add(sym->name(), false, NULL);
2371 // Record any version information.
2372 if (sym->version() != NULL)
2373 versions->record_version(this, dynpool, sym);
2375 // If the symbol is defined in a dynamic object and is
2376 // referenced in a regular object, then mark the dynamic
2377 // object as needed. This is used to implement --as-needed.
2378 if (sym->is_from_dynobj() && sym->in_reg())
2379 sym->object()->set_is_needed();
2383 // Finish up the versions. In some cases this may add new dynamic
2384 // symbols.
2385 index = versions->finalize(this, index, syms);
2387 return index;
2390 // Set the final values for all the symbols. The index of the first
2391 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2392 // file offset OFF. Add their names to POOL. Return the new file
2393 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2395 off_t
2396 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2397 size_t dyncount, Stringpool* pool,
2398 unsigned int* plocal_symcount)
2400 off_t ret;
2402 gold_assert(*plocal_symcount != 0);
2403 this->first_global_index_ = *plocal_symcount;
2405 this->dynamic_offset_ = dynoff;
2406 this->first_dynamic_global_index_ = dyn_global_index;
2407 this->dynamic_count_ = dyncount;
2409 if (parameters->target().get_size() == 32)
2411 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2412 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2413 #else
2414 gold_unreachable();
2415 #endif
2417 else if (parameters->target().get_size() == 64)
2419 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2420 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2421 #else
2422 gold_unreachable();
2423 #endif
2425 else
2426 gold_unreachable();
2428 // Now that we have the final symbol table, we can reliably note
2429 // which symbols should get warnings.
2430 this->warnings_.note_warnings(this);
2432 return ret;
2435 // SYM is going into the symbol table at *PINDEX. Add the name to
2436 // POOL, update *PINDEX and *POFF.
2438 template<int size>
2439 void
2440 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2441 unsigned int* pindex, off_t* poff)
2443 sym->set_symtab_index(*pindex);
2444 if (sym->version() == NULL || !parameters->options().relocatable())
2445 pool->add(sym->name(), false, NULL);
2446 else
2447 pool->add(sym->versioned_name(), true, NULL);
2448 ++*pindex;
2449 *poff += elfcpp::Elf_sizes<size>::sym_size;
2452 // Set the final value for all the symbols. This is called after
2453 // Layout::finalize, so all the output sections have their final
2454 // address.
2456 template<int size>
2457 off_t
2458 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2459 unsigned int* plocal_symcount)
2461 off = align_address(off, size >> 3);
2462 this->offset_ = off;
2464 unsigned int index = *plocal_symcount;
2465 const unsigned int orig_index = index;
2467 // First do all the symbols which have been forced to be local, as
2468 // they must appear before all global symbols.
2469 for (Forced_locals::iterator p = this->forced_locals_.begin();
2470 p != this->forced_locals_.end();
2471 ++p)
2473 Symbol* sym = *p;
2474 gold_assert(sym->is_forced_local());
2475 if (this->sized_finalize_symbol<size>(sym))
2477 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2478 ++*plocal_symcount;
2482 // Now do all the remaining symbols.
2483 for (Symbol_table_type::iterator p = this->table_.begin();
2484 p != this->table_.end();
2485 ++p)
2487 Symbol* sym = p->second;
2488 if (this->sized_finalize_symbol<size>(sym))
2489 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2492 this->output_count_ = index - orig_index;
2494 return off;
2497 // Compute the final value of SYM and store status in location PSTATUS.
2498 // During relaxation, this may be called multiple times for a symbol to
2499 // compute its would-be final value in each relaxation pass.
2501 template<int size>
2502 typename Sized_symbol<size>::Value_type
2503 Symbol_table::compute_final_value(
2504 const Sized_symbol<size>* sym,
2505 Compute_final_value_status* pstatus) const
2507 typedef typename Sized_symbol<size>::Value_type Value_type;
2508 Value_type value;
2510 switch (sym->source())
2512 case Symbol::FROM_OBJECT:
2514 bool is_ordinary;
2515 unsigned int shndx = sym->shndx(&is_ordinary);
2517 if (!is_ordinary
2518 && shndx != elfcpp::SHN_ABS
2519 && !Symbol::is_common_shndx(shndx))
2521 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2522 return 0;
2525 Object* symobj = sym->object();
2526 if (symobj->is_dynamic())
2528 value = 0;
2529 shndx = elfcpp::SHN_UNDEF;
2531 else if (symobj->pluginobj() != NULL)
2533 value = 0;
2534 shndx = elfcpp::SHN_UNDEF;
2536 else if (shndx == elfcpp::SHN_UNDEF)
2537 value = 0;
2538 else if (!is_ordinary
2539 && (shndx == elfcpp::SHN_ABS
2540 || Symbol::is_common_shndx(shndx)))
2541 value = sym->value();
2542 else
2544 Relobj* relobj = static_cast<Relobj*>(symobj);
2545 Output_section* os = relobj->output_section(shndx);
2547 if (this->is_section_folded(relobj, shndx))
2549 gold_assert(os == NULL);
2550 // Get the os of the section it is folded onto.
2551 Section_id folded = this->icf_->get_folded_section(relobj,
2552 shndx);
2553 gold_assert(folded.first != NULL);
2554 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2555 unsigned folded_shndx = folded.second;
2557 os = folded_obj->output_section(folded_shndx);
2558 gold_assert(os != NULL);
2560 // Replace (relobj, shndx) with canonical ICF input section.
2561 shndx = folded_shndx;
2562 relobj = folded_obj;
2565 uint64_t secoff64 = relobj->output_section_offset(shndx);
2566 if (os == NULL)
2568 bool static_or_reloc = (parameters->doing_static_link() ||
2569 parameters->options().relocatable());
2570 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2572 *pstatus = CFVS_NO_OUTPUT_SECTION;
2573 return 0;
2576 if (secoff64 == -1ULL)
2578 // The section needs special handling (e.g., a merge section).
2580 value = os->output_address(relobj, shndx, sym->value());
2582 else
2584 Value_type secoff =
2585 convert_types<Value_type, uint64_t>(secoff64);
2586 if (sym->type() == elfcpp::STT_TLS)
2587 value = sym->value() + os->tls_offset() + secoff;
2588 else
2589 value = sym->value() + os->address() + secoff;
2593 break;
2595 case Symbol::IN_OUTPUT_DATA:
2597 Output_data* od = sym->output_data();
2598 value = sym->value();
2599 if (sym->type() != elfcpp::STT_TLS)
2600 value += od->address();
2601 else
2603 Output_section* os = od->output_section();
2604 gold_assert(os != NULL);
2605 value += os->tls_offset() + (od->address() - os->address());
2607 if (sym->offset_is_from_end())
2608 value += od->data_size();
2610 break;
2612 case Symbol::IN_OUTPUT_SEGMENT:
2614 Output_segment* os = sym->output_segment();
2615 value = sym->value();
2616 if (sym->type() != elfcpp::STT_TLS)
2617 value += os->vaddr();
2618 switch (sym->offset_base())
2620 case Symbol::SEGMENT_START:
2621 break;
2622 case Symbol::SEGMENT_END:
2623 value += os->memsz();
2624 break;
2625 case Symbol::SEGMENT_BSS:
2626 value += os->filesz();
2627 break;
2628 default:
2629 gold_unreachable();
2632 break;
2634 case Symbol::IS_CONSTANT:
2635 value = sym->value();
2636 break;
2638 case Symbol::IS_UNDEFINED:
2639 value = 0;
2640 break;
2642 default:
2643 gold_unreachable();
2646 *pstatus = CFVS_OK;
2647 return value;
2650 // Finalize the symbol SYM. This returns true if the symbol should be
2651 // added to the symbol table, false otherwise.
2653 template<int size>
2654 bool
2655 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2657 typedef typename Sized_symbol<size>::Value_type Value_type;
2659 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2661 // The default version of a symbol may appear twice in the symbol
2662 // table. We only need to finalize it once.
2663 if (sym->has_symtab_index())
2664 return false;
2666 if (!sym->in_reg())
2668 gold_assert(!sym->has_symtab_index());
2669 sym->set_symtab_index(-1U);
2670 gold_assert(sym->dynsym_index() == -1U);
2671 return false;
2674 // If the symbol is only present on plugin files, the plugin decided we
2675 // don't need it.
2676 if (!sym->in_real_elf())
2678 gold_assert(!sym->has_symtab_index());
2679 sym->set_symtab_index(-1U);
2680 return false;
2683 // Compute final symbol value.
2684 Compute_final_value_status status;
2685 Value_type value = this->compute_final_value(sym, &status);
2687 switch (status)
2689 case CFVS_OK:
2690 break;
2691 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2693 bool is_ordinary;
2694 unsigned int shndx = sym->shndx(&is_ordinary);
2695 gold_error(_("%s: unsupported symbol section 0x%x"),
2696 sym->demangled_name().c_str(), shndx);
2698 break;
2699 case CFVS_NO_OUTPUT_SECTION:
2700 sym->set_symtab_index(-1U);
2701 return false;
2702 default:
2703 gold_unreachable();
2706 sym->set_value(value);
2708 if (parameters->options().strip_all()
2709 || !parameters->options().should_retain_symbol(sym->name()))
2711 sym->set_symtab_index(-1U);
2712 return false;
2715 return true;
2718 // Write out the global symbols.
2720 void
2721 Symbol_table::write_globals(const Stringpool* sympool,
2722 const Stringpool* dynpool,
2723 Output_symtab_xindex* symtab_xindex,
2724 Output_symtab_xindex* dynsym_xindex,
2725 Output_file* of) const
2727 switch (parameters->size_and_endianness())
2729 #ifdef HAVE_TARGET_32_LITTLE
2730 case Parameters::TARGET_32_LITTLE:
2731 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2732 dynsym_xindex, of);
2733 break;
2734 #endif
2735 #ifdef HAVE_TARGET_32_BIG
2736 case Parameters::TARGET_32_BIG:
2737 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2738 dynsym_xindex, of);
2739 break;
2740 #endif
2741 #ifdef HAVE_TARGET_64_LITTLE
2742 case Parameters::TARGET_64_LITTLE:
2743 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2744 dynsym_xindex, of);
2745 break;
2746 #endif
2747 #ifdef HAVE_TARGET_64_BIG
2748 case Parameters::TARGET_64_BIG:
2749 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2750 dynsym_xindex, of);
2751 break;
2752 #endif
2753 default:
2754 gold_unreachable();
2758 // Write out the global symbols.
2760 template<int size, bool big_endian>
2761 void
2762 Symbol_table::sized_write_globals(const Stringpool* sympool,
2763 const Stringpool* dynpool,
2764 Output_symtab_xindex* symtab_xindex,
2765 Output_symtab_xindex* dynsym_xindex,
2766 Output_file* of) const
2768 const Target& target = parameters->target();
2770 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2772 const unsigned int output_count = this->output_count_;
2773 const section_size_type oview_size = output_count * sym_size;
2774 const unsigned int first_global_index = this->first_global_index_;
2775 unsigned char* psyms;
2776 if (this->offset_ == 0 || output_count == 0)
2777 psyms = NULL;
2778 else
2779 psyms = of->get_output_view(this->offset_, oview_size);
2781 const unsigned int dynamic_count = this->dynamic_count_;
2782 const section_size_type dynamic_size = dynamic_count * sym_size;
2783 const unsigned int first_dynamic_global_index =
2784 this->first_dynamic_global_index_;
2785 unsigned char* dynamic_view;
2786 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2787 dynamic_view = NULL;
2788 else
2789 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2791 for (Symbol_table_type::const_iterator p = this->table_.begin();
2792 p != this->table_.end();
2793 ++p)
2795 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2797 // Possibly warn about unresolved symbols in shared libraries.
2798 this->warn_about_undefined_dynobj_symbol(sym);
2800 unsigned int sym_index = sym->symtab_index();
2801 unsigned int dynsym_index;
2802 if (dynamic_view == NULL)
2803 dynsym_index = -1U;
2804 else
2805 dynsym_index = sym->dynsym_index();
2807 if (sym_index == -1U && dynsym_index == -1U)
2809 // This symbol is not included in the output file.
2810 continue;
2813 unsigned int shndx;
2814 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2815 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2816 elfcpp::STB binding = sym->binding();
2818 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2819 if (binding == elfcpp::STB_GNU_UNIQUE
2820 && !parameters->options().gnu_unique())
2821 binding = elfcpp::STB_GLOBAL;
2823 switch (sym->source())
2825 case Symbol::FROM_OBJECT:
2827 bool is_ordinary;
2828 unsigned int in_shndx = sym->shndx(&is_ordinary);
2830 if (!is_ordinary
2831 && in_shndx != elfcpp::SHN_ABS
2832 && !Symbol::is_common_shndx(in_shndx))
2834 gold_error(_("%s: unsupported symbol section 0x%x"),
2835 sym->demangled_name().c_str(), in_shndx);
2836 shndx = in_shndx;
2838 else
2840 Object* symobj = sym->object();
2841 if (symobj->is_dynamic())
2843 if (sym->needs_dynsym_value())
2844 dynsym_value = target.dynsym_value(sym);
2845 shndx = elfcpp::SHN_UNDEF;
2846 if (sym->is_undef_binding_weak())
2847 binding = elfcpp::STB_WEAK;
2848 else
2849 binding = elfcpp::STB_GLOBAL;
2851 else if (symobj->pluginobj() != NULL)
2852 shndx = elfcpp::SHN_UNDEF;
2853 else if (in_shndx == elfcpp::SHN_UNDEF
2854 || (!is_ordinary
2855 && (in_shndx == elfcpp::SHN_ABS
2856 || Symbol::is_common_shndx(in_shndx))))
2857 shndx = in_shndx;
2858 else
2860 Relobj* relobj = static_cast<Relobj*>(symobj);
2861 Output_section* os = relobj->output_section(in_shndx);
2862 if (this->is_section_folded(relobj, in_shndx))
2864 // This global symbol must be written out even though
2865 // it is folded.
2866 // Get the os of the section it is folded onto.
2867 Section_id folded =
2868 this->icf_->get_folded_section(relobj, in_shndx);
2869 gold_assert(folded.first !=NULL);
2870 Relobj* folded_obj =
2871 reinterpret_cast<Relobj*>(folded.first);
2872 os = folded_obj->output_section(folded.second);
2873 gold_assert(os != NULL);
2875 gold_assert(os != NULL);
2876 shndx = os->out_shndx();
2878 if (shndx >= elfcpp::SHN_LORESERVE)
2880 if (sym_index != -1U)
2881 symtab_xindex->add(sym_index, shndx);
2882 if (dynsym_index != -1U)
2883 dynsym_xindex->add(dynsym_index, shndx);
2884 shndx = elfcpp::SHN_XINDEX;
2887 // In object files symbol values are section
2888 // relative.
2889 if (parameters->options().relocatable())
2890 sym_value -= os->address();
2894 break;
2896 case Symbol::IN_OUTPUT_DATA:
2897 shndx = sym->output_data()->out_shndx();
2898 if (shndx >= elfcpp::SHN_LORESERVE)
2900 if (sym_index != -1U)
2901 symtab_xindex->add(sym_index, shndx);
2902 if (dynsym_index != -1U)
2903 dynsym_xindex->add(dynsym_index, shndx);
2904 shndx = elfcpp::SHN_XINDEX;
2906 break;
2908 case Symbol::IN_OUTPUT_SEGMENT:
2909 shndx = elfcpp::SHN_ABS;
2910 break;
2912 case Symbol::IS_CONSTANT:
2913 shndx = elfcpp::SHN_ABS;
2914 break;
2916 case Symbol::IS_UNDEFINED:
2917 shndx = elfcpp::SHN_UNDEF;
2918 break;
2920 default:
2921 gold_unreachable();
2924 if (sym_index != -1U)
2926 sym_index -= first_global_index;
2927 gold_assert(sym_index < output_count);
2928 unsigned char* ps = psyms + (sym_index * sym_size);
2929 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2930 binding, sympool, ps);
2933 if (dynsym_index != -1U)
2935 dynsym_index -= first_dynamic_global_index;
2936 gold_assert(dynsym_index < dynamic_count);
2937 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2938 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2939 binding, dynpool, pd);
2943 of->write_output_view(this->offset_, oview_size, psyms);
2944 if (dynamic_view != NULL)
2945 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2948 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2949 // strtab holding the name.
2951 template<int size, bool big_endian>
2952 void
2953 Symbol_table::sized_write_symbol(
2954 Sized_symbol<size>* sym,
2955 typename elfcpp::Elf_types<size>::Elf_Addr value,
2956 unsigned int shndx,
2957 elfcpp::STB binding,
2958 const Stringpool* pool,
2959 unsigned char* p) const
2961 elfcpp::Sym_write<size, big_endian> osym(p);
2962 if (sym->version() == NULL || !parameters->options().relocatable())
2963 osym.put_st_name(pool->get_offset(sym->name()));
2964 else
2965 osym.put_st_name(pool->get_offset(sym->versioned_name()));
2966 osym.put_st_value(value);
2967 // Use a symbol size of zero for undefined symbols from shared libraries.
2968 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2969 osym.put_st_size(0);
2970 else
2971 osym.put_st_size(sym->symsize());
2972 elfcpp::STT type = sym->type();
2973 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2974 if (type == elfcpp::STT_GNU_IFUNC
2975 && sym->is_from_dynobj())
2976 type = elfcpp::STT_FUNC;
2977 // A version script may have overridden the default binding.
2978 if (sym->is_forced_local())
2979 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2980 else
2981 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2982 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2983 osym.put_st_shndx(shndx);
2986 // Check for unresolved symbols in shared libraries. This is
2987 // controlled by the --allow-shlib-undefined option.
2989 // We only warn about libraries for which we have seen all the
2990 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2991 // which were not seen in this link. If we didn't see a DT_NEEDED
2992 // entry, we aren't going to be able to reliably report whether the
2993 // symbol is undefined.
2995 // We also don't warn about libraries found in a system library
2996 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2997 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2998 // can have undefined references satisfied by ld-linux.so.
3000 inline void
3001 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3003 bool dummy;
3004 if (sym->source() == Symbol::FROM_OBJECT
3005 && sym->object()->is_dynamic()
3006 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3007 && sym->binding() != elfcpp::STB_WEAK
3008 && !parameters->options().allow_shlib_undefined()
3009 && !parameters->target().is_defined_by_abi(sym)
3010 && !sym->object()->is_in_system_directory())
3012 // A very ugly cast.
3013 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3014 if (!dynobj->has_unknown_needed_entries())
3015 gold_undefined_symbol(sym);
3019 // Write out a section symbol. Return the update offset.
3021 void
3022 Symbol_table::write_section_symbol(const Output_section* os,
3023 Output_symtab_xindex* symtab_xindex,
3024 Output_file* of,
3025 off_t offset) const
3027 switch (parameters->size_and_endianness())
3029 #ifdef HAVE_TARGET_32_LITTLE
3030 case Parameters::TARGET_32_LITTLE:
3031 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3032 offset);
3033 break;
3034 #endif
3035 #ifdef HAVE_TARGET_32_BIG
3036 case Parameters::TARGET_32_BIG:
3037 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3038 offset);
3039 break;
3040 #endif
3041 #ifdef HAVE_TARGET_64_LITTLE
3042 case Parameters::TARGET_64_LITTLE:
3043 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3044 offset);
3045 break;
3046 #endif
3047 #ifdef HAVE_TARGET_64_BIG
3048 case Parameters::TARGET_64_BIG:
3049 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3050 offset);
3051 break;
3052 #endif
3053 default:
3054 gold_unreachable();
3058 // Write out a section symbol, specialized for size and endianness.
3060 template<int size, bool big_endian>
3061 void
3062 Symbol_table::sized_write_section_symbol(const Output_section* os,
3063 Output_symtab_xindex* symtab_xindex,
3064 Output_file* of,
3065 off_t offset) const
3067 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3069 unsigned char* pov = of->get_output_view(offset, sym_size);
3071 elfcpp::Sym_write<size, big_endian> osym(pov);
3072 osym.put_st_name(0);
3073 if (parameters->options().relocatable())
3074 osym.put_st_value(0);
3075 else
3076 osym.put_st_value(os->address());
3077 osym.put_st_size(0);
3078 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3079 elfcpp::STT_SECTION));
3080 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3082 unsigned int shndx = os->out_shndx();
3083 if (shndx >= elfcpp::SHN_LORESERVE)
3085 symtab_xindex->add(os->symtab_index(), shndx);
3086 shndx = elfcpp::SHN_XINDEX;
3088 osym.put_st_shndx(shndx);
3090 of->write_output_view(offset, sym_size, pov);
3093 // Print statistical information to stderr. This is used for --stats.
3095 void
3096 Symbol_table::print_stats() const
3098 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3099 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3100 program_name, this->table_.size(), this->table_.bucket_count());
3101 #else
3102 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3103 program_name, this->table_.size());
3104 #endif
3105 this->namepool_.print_stats("symbol table stringpool");
3108 // We check for ODR violations by looking for symbols with the same
3109 // name for which the debugging information reports that they were
3110 // defined in disjoint source locations. When comparing the source
3111 // location, we consider instances with the same base filename to be
3112 // the same. This is because different object files/shared libraries
3113 // can include the same header file using different paths, and
3114 // different optimization settings can make the line number appear to
3115 // be a couple lines off, and we don't want to report an ODR violation
3116 // in those cases.
3118 // This struct is used to compare line information, as returned by
3119 // Dwarf_line_info::one_addr2line. It implements a < comparison
3120 // operator used with std::sort.
3122 struct Odr_violation_compare
3124 bool
3125 operator()(const std::string& s1, const std::string& s2) const
3127 // Inputs should be of the form "dirname/filename:linenum" where
3128 // "dirname/" is optional. We want to compare just the filename:linenum.
3130 // Find the last '/' in each string.
3131 std::string::size_type s1begin = s1.rfind('/');
3132 std::string::size_type s2begin = s2.rfind('/');
3133 // If there was no '/' in a string, start at the beginning.
3134 if (s1begin == std::string::npos)
3135 s1begin = 0;
3136 if (s2begin == std::string::npos)
3137 s2begin = 0;
3138 return s1.compare(s1begin, std::string::npos,
3139 s2, s2begin, std::string::npos) < 0;
3143 // Returns all of the lines attached to LOC, not just the one the
3144 // instruction actually came from.
3145 std::vector<std::string>
3146 Symbol_table::linenos_from_loc(const Task* task,
3147 const Symbol_location& loc)
3149 // We need to lock the object in order to read it. This
3150 // means that we have to run in a singleton Task. If we
3151 // want to run this in a general Task for better
3152 // performance, we will need one Task for object, plus
3153 // appropriate locking to ensure that we don't conflict with
3154 // other uses of the object. Also note, one_addr2line is not
3155 // currently thread-safe.
3156 Task_lock_obj<Object> tl(task, loc.object);
3158 std::vector<std::string> result;
3159 // 16 is the size of the object-cache that one_addr2line should use.
3160 std::string canonical_result = Dwarf_line_info::one_addr2line(
3161 loc.object, loc.shndx, loc.offset, 16, &result);
3162 if (!canonical_result.empty())
3163 result.push_back(canonical_result);
3164 return result;
3167 // OutputIterator that records if it was ever assigned to. This
3168 // allows it to be used with std::set_intersection() to check for
3169 // intersection rather than computing the intersection.
3170 struct Check_intersection
3172 Check_intersection()
3173 : value_(false)
3176 bool had_intersection() const
3177 { return this->value_; }
3179 Check_intersection& operator++()
3180 { return *this; }
3182 Check_intersection& operator*()
3183 { return *this; }
3185 template<typename T>
3186 Check_intersection& operator=(const T&)
3188 this->value_ = true;
3189 return *this;
3192 private:
3193 bool value_;
3196 // Check candidate_odr_violations_ to find symbols with the same name
3197 // but apparently different definitions (different source-file/line-no
3198 // for each line assigned to the first instruction).
3200 void
3201 Symbol_table::detect_odr_violations(const Task* task,
3202 const char* output_file_name) const
3204 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3205 it != candidate_odr_violations_.end();
3206 ++it)
3208 const char* const symbol_name = it->first;
3210 std::string first_object_name;
3211 std::vector<std::string> first_object_linenos;
3213 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3214 locs = it->second.begin();
3215 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3216 locs_end = it->second.end();
3217 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3219 // Save the line numbers from the first definition to
3220 // compare to the other definitions. Ideally, we'd compare
3221 // every definition to every other, but we don't want to
3222 // take O(N^2) time to do this. This shortcut may cause
3223 // false negatives that appear or disappear depending on the
3224 // link order, but it won't cause false positives.
3225 first_object_name = locs->object->name();
3226 first_object_linenos = this->linenos_from_loc(task, *locs);
3229 // Sort by Odr_violation_compare to make std::set_intersection work.
3230 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3231 Odr_violation_compare());
3233 for (; locs != locs_end; ++locs)
3235 std::vector<std::string> linenos =
3236 this->linenos_from_loc(task, *locs);
3237 // linenos will be empty if we couldn't parse the debug info.
3238 if (linenos.empty())
3239 continue;
3240 // Sort by Odr_violation_compare to make std::set_intersection work.
3241 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3243 Check_intersection intersection_result =
3244 std::set_intersection(first_object_linenos.begin(),
3245 first_object_linenos.end(),
3246 linenos.begin(),
3247 linenos.end(),
3248 Check_intersection(),
3249 Odr_violation_compare());
3250 if (!intersection_result.had_intersection())
3252 gold_warning(_("while linking %s: symbol '%s' defined in "
3253 "multiple places (possible ODR violation):"),
3254 output_file_name, demangle(symbol_name).c_str());
3255 // This only prints one location from each definition,
3256 // which may not be the location we expect to intersect
3257 // with another definition. We could print the whole
3258 // set of locations, but that seems too verbose.
3259 gold_assert(!first_object_linenos.empty());
3260 gold_assert(!linenos.empty());
3261 fprintf(stderr, _(" %s from %s\n"),
3262 first_object_linenos[0].c_str(),
3263 first_object_name.c_str());
3264 fprintf(stderr, _(" %s from %s\n"),
3265 linenos[0].c_str(),
3266 locs->object->name().c_str());
3267 // Only print one broken pair, to avoid needing to
3268 // compare against a list of the disjoint definition
3269 // locations we've found so far. (If we kept comparing
3270 // against just the first one, we'd get a lot of
3271 // redundant complaints about the second definition
3272 // location.)
3273 break;
3277 // We only call one_addr2line() in this function, so we can clear its cache.
3278 Dwarf_line_info::clear_addr2line_cache();
3281 // Warnings functions.
3283 // Add a new warning.
3285 void
3286 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3287 const std::string& warning)
3289 name = symtab->canonicalize_name(name);
3290 this->warnings_[name].set(obj, warning);
3293 // Look through the warnings and mark the symbols for which we should
3294 // warn. This is called during Layout::finalize when we know the
3295 // sources for all the symbols.
3297 void
3298 Warnings::note_warnings(Symbol_table* symtab)
3300 for (Warning_table::iterator p = this->warnings_.begin();
3301 p != this->warnings_.end();
3302 ++p)
3304 Symbol* sym = symtab->lookup(p->first, NULL);
3305 if (sym != NULL
3306 && sym->source() == Symbol::FROM_OBJECT
3307 && sym->object() == p->second.object)
3308 sym->set_has_warning();
3312 // Issue a warning. This is called when we see a relocation against a
3313 // symbol for which has a warning.
3315 template<int size, bool big_endian>
3316 void
3317 Warnings::issue_warning(const Symbol* sym,
3318 const Relocate_info<size, big_endian>* relinfo,
3319 size_t relnum, off_t reloffset) const
3321 gold_assert(sym->has_warning());
3323 // We don't want to issue a warning for a relocation against the
3324 // symbol in the same object file in which the symbol is defined.
3325 if (sym->object() == relinfo->object)
3326 return;
3328 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3329 gold_assert(p != this->warnings_.end());
3330 gold_warning_at_location(relinfo, relnum, reloffset,
3331 "%s", p->second.text.c_str());
3334 // Instantiate the templates we need. We could use the configure
3335 // script to restrict this to only the ones needed for implemented
3336 // targets.
3338 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3339 template
3340 void
3341 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3342 #endif
3344 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3345 template
3346 void
3347 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3348 #endif
3350 #ifdef HAVE_TARGET_32_LITTLE
3351 template
3352 void
3353 Symbol_table::add_from_relobj<32, false>(
3354 Sized_relobj_file<32, false>* relobj,
3355 const unsigned char* syms,
3356 size_t count,
3357 size_t symndx_offset,
3358 const char* sym_names,
3359 size_t sym_name_size,
3360 Sized_relobj_file<32, false>::Symbols* sympointers,
3361 size_t* defined);
3362 #endif
3364 #ifdef HAVE_TARGET_32_BIG
3365 template
3366 void
3367 Symbol_table::add_from_relobj<32, true>(
3368 Sized_relobj_file<32, true>* relobj,
3369 const unsigned char* syms,
3370 size_t count,
3371 size_t symndx_offset,
3372 const char* sym_names,
3373 size_t sym_name_size,
3374 Sized_relobj_file<32, true>::Symbols* sympointers,
3375 size_t* defined);
3376 #endif
3378 #ifdef HAVE_TARGET_64_LITTLE
3379 template
3380 void
3381 Symbol_table::add_from_relobj<64, false>(
3382 Sized_relobj_file<64, false>* relobj,
3383 const unsigned char* syms,
3384 size_t count,
3385 size_t symndx_offset,
3386 const char* sym_names,
3387 size_t sym_name_size,
3388 Sized_relobj_file<64, false>::Symbols* sympointers,
3389 size_t* defined);
3390 #endif
3392 #ifdef HAVE_TARGET_64_BIG
3393 template
3394 void
3395 Symbol_table::add_from_relobj<64, true>(
3396 Sized_relobj_file<64, true>* relobj,
3397 const unsigned char* syms,
3398 size_t count,
3399 size_t symndx_offset,
3400 const char* sym_names,
3401 size_t sym_name_size,
3402 Sized_relobj_file<64, true>::Symbols* sympointers,
3403 size_t* defined);
3404 #endif
3406 #ifdef HAVE_TARGET_32_LITTLE
3407 template
3408 Symbol*
3409 Symbol_table::add_from_pluginobj<32, false>(
3410 Sized_pluginobj<32, false>* obj,
3411 const char* name,
3412 const char* ver,
3413 elfcpp::Sym<32, false>* sym);
3414 #endif
3416 #ifdef HAVE_TARGET_32_BIG
3417 template
3418 Symbol*
3419 Symbol_table::add_from_pluginobj<32, true>(
3420 Sized_pluginobj<32, true>* obj,
3421 const char* name,
3422 const char* ver,
3423 elfcpp::Sym<32, true>* sym);
3424 #endif
3426 #ifdef HAVE_TARGET_64_LITTLE
3427 template
3428 Symbol*
3429 Symbol_table::add_from_pluginobj<64, false>(
3430 Sized_pluginobj<64, false>* obj,
3431 const char* name,
3432 const char* ver,
3433 elfcpp::Sym<64, false>* sym);
3434 #endif
3436 #ifdef HAVE_TARGET_64_BIG
3437 template
3438 Symbol*
3439 Symbol_table::add_from_pluginobj<64, true>(
3440 Sized_pluginobj<64, true>* obj,
3441 const char* name,
3442 const char* ver,
3443 elfcpp::Sym<64, true>* sym);
3444 #endif
3446 #ifdef HAVE_TARGET_32_LITTLE
3447 template
3448 void
3449 Symbol_table::add_from_dynobj<32, false>(
3450 Sized_dynobj<32, false>* dynobj,
3451 const unsigned char* syms,
3452 size_t count,
3453 const char* sym_names,
3454 size_t sym_name_size,
3455 const unsigned char* versym,
3456 size_t versym_size,
3457 const std::vector<const char*>* version_map,
3458 Sized_relobj_file<32, false>::Symbols* sympointers,
3459 size_t* defined);
3460 #endif
3462 #ifdef HAVE_TARGET_32_BIG
3463 template
3464 void
3465 Symbol_table::add_from_dynobj<32, true>(
3466 Sized_dynobj<32, true>* dynobj,
3467 const unsigned char* syms,
3468 size_t count,
3469 const char* sym_names,
3470 size_t sym_name_size,
3471 const unsigned char* versym,
3472 size_t versym_size,
3473 const std::vector<const char*>* version_map,
3474 Sized_relobj_file<32, true>::Symbols* sympointers,
3475 size_t* defined);
3476 #endif
3478 #ifdef HAVE_TARGET_64_LITTLE
3479 template
3480 void
3481 Symbol_table::add_from_dynobj<64, false>(
3482 Sized_dynobj<64, false>* dynobj,
3483 const unsigned char* syms,
3484 size_t count,
3485 const char* sym_names,
3486 size_t sym_name_size,
3487 const unsigned char* versym,
3488 size_t versym_size,
3489 const std::vector<const char*>* version_map,
3490 Sized_relobj_file<64, false>::Symbols* sympointers,
3491 size_t* defined);
3492 #endif
3494 #ifdef HAVE_TARGET_64_BIG
3495 template
3496 void
3497 Symbol_table::add_from_dynobj<64, true>(
3498 Sized_dynobj<64, true>* dynobj,
3499 const unsigned char* syms,
3500 size_t count,
3501 const char* sym_names,
3502 size_t sym_name_size,
3503 const unsigned char* versym,
3504 size_t versym_size,
3505 const std::vector<const char*>* version_map,
3506 Sized_relobj_file<64, true>::Symbols* sympointers,
3507 size_t* defined);
3508 #endif
3510 #ifdef HAVE_TARGET_32_LITTLE
3511 template
3512 Sized_symbol<32>*
3513 Symbol_table::add_from_incrobj(
3514 Object* obj,
3515 const char* name,
3516 const char* ver,
3517 elfcpp::Sym<32, false>* sym);
3518 #endif
3520 #ifdef HAVE_TARGET_32_BIG
3521 template
3522 Sized_symbol<32>*
3523 Symbol_table::add_from_incrobj(
3524 Object* obj,
3525 const char* name,
3526 const char* ver,
3527 elfcpp::Sym<32, true>* sym);
3528 #endif
3530 #ifdef HAVE_TARGET_64_LITTLE
3531 template
3532 Sized_symbol<64>*
3533 Symbol_table::add_from_incrobj(
3534 Object* obj,
3535 const char* name,
3536 const char* ver,
3537 elfcpp::Sym<64, false>* sym);
3538 #endif
3540 #ifdef HAVE_TARGET_64_BIG
3541 template
3542 Sized_symbol<64>*
3543 Symbol_table::add_from_incrobj(
3544 Object* obj,
3545 const char* name,
3546 const char* ver,
3547 elfcpp::Sym<64, true>* sym);
3548 #endif
3550 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3551 template
3552 void
3553 Symbol_table::define_with_copy_reloc<32>(
3554 Sized_symbol<32>* sym,
3555 Output_data* posd,
3556 elfcpp::Elf_types<32>::Elf_Addr value);
3557 #endif
3559 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3560 template
3561 void
3562 Symbol_table::define_with_copy_reloc<64>(
3563 Sized_symbol<64>* sym,
3564 Output_data* posd,
3565 elfcpp::Elf_types<64>::Elf_Addr value);
3566 #endif
3568 #ifdef HAVE_TARGET_32_LITTLE
3569 template
3570 void
3571 Warnings::issue_warning<32, false>(const Symbol* sym,
3572 const Relocate_info<32, false>* relinfo,
3573 size_t relnum, off_t reloffset) const;
3574 #endif
3576 #ifdef HAVE_TARGET_32_BIG
3577 template
3578 void
3579 Warnings::issue_warning<32, true>(const Symbol* sym,
3580 const Relocate_info<32, true>* relinfo,
3581 size_t relnum, off_t reloffset) const;
3582 #endif
3584 #ifdef HAVE_TARGET_64_LITTLE
3585 template
3586 void
3587 Warnings::issue_warning<64, false>(const Symbol* sym,
3588 const Relocate_info<64, false>* relinfo,
3589 size_t relnum, off_t reloffset) const;
3590 #endif
3592 #ifdef HAVE_TARGET_64_BIG
3593 template
3594 void
3595 Warnings::issue_warning<64, true>(const Symbol* sym,
3596 const Relocate_info<64, true>* relinfo,
3597 size_t relnum, off_t reloffset) const;
3598 #endif
3600 } // End namespace gold.