1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
65 struct bfd_link_info
*link_info
,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1
[] =
76 HOWTO (R_ARM_NONE
, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE
, /* pc_relative */
82 complain_overflow_dont
,/* complain_on_overflow */
83 bfd_elf_generic_reloc
, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE
, /* partial_inplace */
88 FALSE
), /* pcrel_offset */
90 HOWTO (R_ARM_PC24
, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE
, /* pc_relative */
96 complain_overflow_signed
,/* complain_on_overflow */
97 bfd_elf_generic_reloc
, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE
, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE
), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32
, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE
, /* pc_relative */
111 complain_overflow_bitfield
,/* complain_on_overflow */
112 bfd_elf_generic_reloc
, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE
, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE
), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE
, /* pc_relative */
126 complain_overflow_bitfield
,/* complain_on_overflow */
127 bfd_elf_generic_reloc
, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE
, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE
), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0
, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE
, /* pc_relative */
141 complain_overflow_dont
,/* complain_on_overflow */
142 bfd_elf_generic_reloc
, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE
, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE
), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16
, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE
, /* pc_relative */
156 complain_overflow_bitfield
,/* complain_on_overflow */
157 bfd_elf_generic_reloc
, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE
, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE
), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12
, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE
, /* pc_relative */
171 complain_overflow_bitfield
,/* complain_on_overflow */
172 bfd_elf_generic_reloc
, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE
, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE
), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5
, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
,/* complain_on_overflow */
186 bfd_elf_generic_reloc
, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE
, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE
), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8
, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE
, /* pc_relative */
200 complain_overflow_bitfield
,/* complain_on_overflow */
201 bfd_elf_generic_reloc
, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE
, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE
), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32
, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE
, /* pc_relative */
214 complain_overflow_dont
,/* complain_on_overflow */
215 bfd_elf_generic_reloc
, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE
, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE
), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL
, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE
, /* pc_relative */
228 complain_overflow_signed
,/* complain_on_overflow */
229 bfd_elf_generic_reloc
, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE
, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE
), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8
, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE
, /* pc_relative */
242 complain_overflow_signed
,/* complain_on_overflow */
243 bfd_elf_generic_reloc
, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE
, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE
), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ
, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE
, /* pc_relative */
256 complain_overflow_signed
,/* complain_on_overflow */
257 bfd_elf_generic_reloc
, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE
, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE
), /* pcrel_offset */
264 HOWTO (R_ARM_TLS_DESC
, /* type */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE
, /* pc_relative */
270 complain_overflow_bitfield
,/* complain_on_overflow */
271 bfd_elf_generic_reloc
, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE
, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE
), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8
, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_signed
,/* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE
, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE
, /* pc_relative */
299 complain_overflow_signed
,/* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE
, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE
), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22
, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE
, /* pc_relative */
314 complain_overflow_signed
,/* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE
, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE
), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
,/* complain_on_overflow */
331 bfd_elf_generic_reloc
, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
,/* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
,/* complain_on_overflow */
359 bfd_elf_generic_reloc
, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE
, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE
), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE
, /* pc_relative */
374 complain_overflow_bitfield
,/* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE
, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE
), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT
, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE
, /* pc_relative */
388 complain_overflow_bitfield
,/* complain_on_overflow */
389 bfd_elf_generic_reloc
, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE
, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE
), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT
, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_bitfield
,/* complain_on_overflow */
403 bfd_elf_generic_reloc
, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE
, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE
), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE
, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE
, /* pc_relative */
416 complain_overflow_bitfield
,/* complain_on_overflow */
417 bfd_elf_generic_reloc
, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE
, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE
), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32
, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE
, /* pc_relative */
430 complain_overflow_bitfield
,/* complain_on_overflow */
431 bfd_elf_generic_reloc
, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE
, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE
), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC
, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE
, /* pc_relative */
444 complain_overflow_bitfield
,/* complain_on_overflow */
445 bfd_elf_generic_reloc
, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE
, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE
), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32
, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE
, /* pc_relative */
458 complain_overflow_bitfield
,/* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE
, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE
), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32
, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE
, /* pc_relative */
472 complain_overflow_bitfield
,/* complain_on_overflow */
473 bfd_elf_generic_reloc
, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE
, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE
), /* pcrel_offset */
480 HOWTO (R_ARM_CALL
, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE
, /* pc_relative */
486 complain_overflow_signed
,/* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE
, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE
), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24
, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE
, /* pc_relative */
500 complain_overflow_signed
,/* complain_on_overflow */
501 bfd_elf_generic_reloc
, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE
, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE
), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24
, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE
, /* pc_relative */
514 complain_overflow_signed
,/* complain_on_overflow */
515 bfd_elf_generic_reloc
, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE
, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE
), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS
, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE
, /* pc_relative */
528 complain_overflow_dont
,/* complain_on_overflow */
529 bfd_elf_generic_reloc
, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE
, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE
), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE
, /* pc_relative */
542 complain_overflow_dont
,/* complain_on_overflow */
543 bfd_elf_generic_reloc
, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE
, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE
), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE
, /* pc_relative */
556 complain_overflow_dont
,/* complain_on_overflow */
557 bfd_elf_generic_reloc
, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE
, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE
), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE
, /* pc_relative */
570 complain_overflow_dont
,/* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE
, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE
), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE
, /* pc_relative */
584 complain_overflow_dont
,/* complain_on_overflow */
585 bfd_elf_generic_reloc
, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE
, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE
), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE
, /* pc_relative */
598 complain_overflow_dont
,/* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE
, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE
), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_dont
,/* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE
, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE
, /* pc_relative */
626 complain_overflow_dont
,/* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE
, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE
), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32
, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE
, /* pc_relative */
640 complain_overflow_dont
,/* complain_on_overflow */
641 bfd_elf_generic_reloc
, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE
, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE
), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE
, /* pc_relative */
654 complain_overflow_dont
,/* complain_on_overflow */
655 bfd_elf_generic_reloc
, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE
, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE
), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2
, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE
, /* pc_relative */
668 complain_overflow_signed
,/* complain_on_overflow */
669 bfd_elf_generic_reloc
, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE
, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE
), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
,/* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE
, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE
, /* pc_relative */
696 complain_overflow_dont
,/* complain_on_overflow */
697 bfd_elf_generic_reloc
, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE
, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE
), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS
, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE
, /* pc_relative */
710 complain_overflow_bitfield
,/* complain_on_overflow */
711 bfd_elf_generic_reloc
, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE
, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE
), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE
, /* pc_relative */
724 complain_overflow_dont
,/* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE
, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE
), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL
, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE
, /* pc_relative */
738 complain_overflow_bitfield
,/* complain_on_overflow */
739 bfd_elf_generic_reloc
, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE
, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE
), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE
, /* pc_relative */
752 complain_overflow_dont
,/* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE
, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE
), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE
, /* pc_relative */
766 complain_overflow_bitfield
,/* complain_on_overflow */
767 bfd_elf_generic_reloc
, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE
, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE
), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE
, /* pc_relative */
780 complain_overflow_dont
,/* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE
, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE
), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_bitfield
,/* complain_on_overflow */
795 bfd_elf_generic_reloc
, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE
, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE
), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19
, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE
, /* pc_relative */
808 complain_overflow_signed
,/* complain_on_overflow */
809 bfd_elf_generic_reloc
, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE
, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE
), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6
, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE
, /* pc_relative */
822 complain_overflow_unsigned
,/* complain_on_overflow */
823 bfd_elf_generic_reloc
, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE
, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE
), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE
, /* pc_relative */
839 complain_overflow_dont
,/* complain_on_overflow */
840 bfd_elf_generic_reloc
, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE
, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE
), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12
, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE
, /* pc_relative */
853 complain_overflow_dont
,/* complain_on_overflow */
854 bfd_elf_generic_reloc
, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE
, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE
), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI
, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE
, /* pc_relative */
867 complain_overflow_dont
,/* complain_on_overflow */
868 bfd_elf_generic_reloc
, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE
, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE
), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI
, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE
, /* pc_relative */
881 complain_overflow_dont
,/* complain_on_overflow */
882 bfd_elf_generic_reloc
, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE
, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE
), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE
, /* pc_relative */
897 complain_overflow_dont
,/* complain_on_overflow */
898 bfd_elf_generic_reloc
, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE
, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE
), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0
, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE
, /* pc_relative */
911 complain_overflow_dont
,/* complain_on_overflow */
912 bfd_elf_generic_reloc
, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE
, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE
), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE
, /* pc_relative */
925 complain_overflow_dont
,/* complain_on_overflow */
926 bfd_elf_generic_reloc
, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE
, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE
), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1
, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE
, /* pc_relative */
939 complain_overflow_dont
,/* complain_on_overflow */
940 bfd_elf_generic_reloc
, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE
, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE
), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE
, /* pc_relative */
953 complain_overflow_dont
,/* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE
, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE
), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1
, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE
, /* pc_relative */
967 complain_overflow_dont
,/* complain_on_overflow */
968 bfd_elf_generic_reloc
, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE
, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE
), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2
, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE
, /* pc_relative */
981 complain_overflow_dont
,/* complain_on_overflow */
982 bfd_elf_generic_reloc
, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE
, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE
), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE
, /* pc_relative */
995 complain_overflow_dont
,/* complain_on_overflow */
996 bfd_elf_generic_reloc
, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE
, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE
), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE
, /* pc_relative */
1009 complain_overflow_dont
,/* complain_on_overflow */
1010 bfd_elf_generic_reloc
, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE
, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE
), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE
, /* pc_relative */
1023 complain_overflow_dont
,/* complain_on_overflow */
1024 bfd_elf_generic_reloc
, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE
, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE
), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE
, /* pc_relative */
1037 complain_overflow_dont
,/* complain_on_overflow */
1038 bfd_elf_generic_reloc
, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE
, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE
), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE
, /* pc_relative */
1051 complain_overflow_dont
,/* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE
, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE
), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE
, /* pc_relative */
1065 complain_overflow_dont
,/* complain_on_overflow */
1066 bfd_elf_generic_reloc
, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE
, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE
), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE
, /* pc_relative */
1079 complain_overflow_dont
,/* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE
, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE
), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE
, /* pc_relative */
1093 complain_overflow_dont
,/* complain_on_overflow */
1094 bfd_elf_generic_reloc
, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE
, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE
), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE
, /* pc_relative */
1107 complain_overflow_dont
,/* complain_on_overflow */
1108 bfd_elf_generic_reloc
, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE
, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE
), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE
, /* pc_relative */
1121 complain_overflow_dont
,/* complain_on_overflow */
1122 bfd_elf_generic_reloc
, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE
, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE
), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE
, /* pc_relative */
1135 complain_overflow_dont
,/* complain_on_overflow */
1136 bfd_elf_generic_reloc
, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE
, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE
), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE
, /* pc_relative */
1149 complain_overflow_dont
,/* complain_on_overflow */
1150 bfd_elf_generic_reloc
, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE
, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE
), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE
, /* pc_relative */
1163 complain_overflow_dont
,/* complain_on_overflow */
1164 bfd_elf_generic_reloc
, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE
, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE
), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE
, /* pc_relative */
1177 complain_overflow_dont
,/* complain_on_overflow */
1178 bfd_elf_generic_reloc
, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE
, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE
), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE
, /* pc_relative */
1191 complain_overflow_dont
,/* complain_on_overflow */
1192 bfd_elf_generic_reloc
, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE
, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE
), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE
, /* pc_relative */
1205 complain_overflow_dont
,/* complain_on_overflow */
1206 bfd_elf_generic_reloc
, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE
, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE
), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE
, /* pc_relative */
1219 complain_overflow_dont
,/* complain_on_overflow */
1220 bfd_elf_generic_reloc
, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE
, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE
), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE
, /* pc_relative */
1233 complain_overflow_dont
,/* complain_on_overflow */
1234 bfd_elf_generic_reloc
, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE
, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE
), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE
, /* pc_relative */
1247 complain_overflow_dont
,/* complain_on_overflow */
1248 bfd_elf_generic_reloc
, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE
, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE
), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE
, /* pc_relative */
1261 complain_overflow_dont
,/* complain_on_overflow */
1262 bfd_elf_generic_reloc
, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE
, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE
), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE
, /* pc_relative */
1277 complain_overflow_dont
,/* complain_on_overflow */
1278 bfd_elf_generic_reloc
, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE
, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE
), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL
, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE
, /* pc_relative */
1291 complain_overflow_bitfield
,/* complain_on_overflow */
1292 bfd_elf_generic_reloc
, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE
, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE
), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
,/* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE
, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE
, /* pc_relative */
1319 complain_overflow_dont
,/* complain_on_overflow */
1320 bfd_elf_generic_reloc
, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE
, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE
), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE
, /* pc_relative */
1333 complain_overflow_bitfield
,/* complain_on_overflow */
1334 bfd_elf_generic_reloc
, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE
, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE
), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE
, /* pc_relative */
1347 complain_overflow_dont
,/* complain_on_overflow */
1348 bfd_elf_generic_reloc
, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE
, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE
), /* pcrel_offset */
1355 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_bitfield
,/* complain_on_overflow */
1362 NULL
, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_TLS_CALL
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE
, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 FALSE
, /* pc_relative */
1389 complain_overflow_bitfield
,/* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE
, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE
), /* pcrel_offset */
1397 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_dont
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_PLT32_ABS
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_dont
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE
, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 HOWTO (R_ARM_GOT_ABS
, /* type */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1429 FALSE
, /* pc_relative */
1431 complain_overflow_dont
,/* complain_on_overflow */
1432 bfd_elf_generic_reloc
, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE
, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE
), /* pcrel_offset */
1439 HOWTO (R_ARM_GOT_PREL
, /* type */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1443 TRUE
, /* pc_relative */
1445 complain_overflow_dont
, /* complain_on_overflow */
1446 bfd_elf_generic_reloc
, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE
, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE
), /* pcrel_offset */
1453 HOWTO (R_ARM_GOT_BREL12
, /* type */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1457 FALSE
, /* pc_relative */
1459 complain_overflow_bitfield
,/* complain_on_overflow */
1460 bfd_elf_generic_reloc
, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE
, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE
), /* pcrel_offset */
1467 HOWTO (R_ARM_GOTOFF12
, /* type */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1471 FALSE
, /* pc_relative */
1473 complain_overflow_bitfield
,/* complain_on_overflow */
1474 bfd_elf_generic_reloc
, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE
, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE
), /* pcrel_offset */
1481 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 FALSE
, /* pc_relative */
1490 complain_overflow_dont
, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE
, /* partial_inplace */
1496 FALSE
), /* pcrel_offset */
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 FALSE
, /* pc_relative */
1505 complain_overflow_dont
, /* complain_on_overflow */
1506 NULL
, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE
, /* partial_inplace */
1511 FALSE
), /* pcrel_offset */
1513 HOWTO (R_ARM_THM_JUMP11
, /* type */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 TRUE
, /* pc_relative */
1519 complain_overflow_signed
, /* complain_on_overflow */
1520 bfd_elf_generic_reloc
, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE
, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE
), /* pcrel_offset */
1527 HOWTO (R_ARM_THM_JUMP8
, /* type */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 TRUE
, /* pc_relative */
1533 complain_overflow_signed
, /* complain_on_overflow */
1534 bfd_elf_generic_reloc
, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE
, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE
), /* pcrel_offset */
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 NULL
, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDM32
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE
, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LDO32
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE
, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE32
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 NULL
, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE
, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1598 HOWTO (R_ARM_TLS_LE32
, /* type */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1602 FALSE
, /* pc_relative */
1604 complain_overflow_bitfield
,/* complain_on_overflow */
1605 bfd_elf_generic_reloc
, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE
, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE
), /* pcrel_offset */
1612 HOWTO (R_ARM_TLS_LDO12
, /* type */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE
, /* pc_relative */
1618 complain_overflow_bitfield
,/* complain_on_overflow */
1619 bfd_elf_generic_reloc
, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE
, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE
), /* pcrel_offset */
1626 HOWTO (R_ARM_TLS_LE12
, /* type */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE
, /* pc_relative */
1632 complain_overflow_bitfield
,/* complain_on_overflow */
1633 bfd_elf_generic_reloc
, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE
, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE
), /* pcrel_offset */
1640 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE
, /* pc_relative */
1646 complain_overflow_bitfield
,/* complain_on_overflow */
1647 bfd_elf_generic_reloc
, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE
, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE
), /* pcrel_offset */
1654 /* 112-127 private relocations. */
1672 /* R_ARM_ME_TOO, obsolete. */
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1679 FALSE
, /* pc_relative */
1681 complain_overflow_bitfield
,/* complain_on_overflow */
1682 bfd_elf_generic_reloc
, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE
, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE
), /* pcrel_offset */
1691 static reloc_howto_type elf32_arm_howto_table_2
[1] =
1693 HOWTO (R_ARM_IRELATIVE
, /* type */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1697 FALSE
, /* pc_relative */
1699 complain_overflow_bitfield
,/* complain_on_overflow */
1700 bfd_elf_generic_reloc
, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE
, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE
) /* pcrel_offset */
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1711 HOWTO (R_ARM_RREL32
, /* type */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1715 FALSE
, /* pc_relative */
1717 complain_overflow_dont
,/* complain_on_overflow */
1718 bfd_elf_generic_reloc
, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE
, /* partial_inplace */
1723 FALSE
), /* pcrel_offset */
1725 HOWTO (R_ARM_RABS32
, /* type */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1729 FALSE
, /* pc_relative */
1731 complain_overflow_dont
,/* complain_on_overflow */
1732 bfd_elf_generic_reloc
, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE
, /* partial_inplace */
1737 FALSE
), /* pcrel_offset */
1739 HOWTO (R_ARM_RPC24
, /* type */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1743 FALSE
, /* pc_relative */
1745 complain_overflow_dont
,/* complain_on_overflow */
1746 bfd_elf_generic_reloc
, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE
, /* partial_inplace */
1751 FALSE
), /* pcrel_offset */
1753 HOWTO (R_ARM_RBASE
, /* type */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1757 FALSE
, /* pc_relative */
1759 complain_overflow_dont
,/* complain_on_overflow */
1760 bfd_elf_generic_reloc
, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE
, /* partial_inplace */
1765 FALSE
) /* pcrel_offset */
1768 static reloc_howto_type
*
1769 elf32_arm_howto_from_type (unsigned int r_type
)
1771 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1772 return &elf32_arm_howto_table_1
[r_type
];
1774 if (r_type
== R_ARM_IRELATIVE
)
1775 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1777 if (r_type
>= R_ARM_RREL32
1778 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1779 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1785 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1786 Elf_Internal_Rela
* elf_reloc
)
1788 unsigned int r_type
;
1790 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1791 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1794 struct elf32_arm_reloc_map
1796 bfd_reloc_code_real_type bfd_reloc_val
;
1797 unsigned char elf_reloc_val
;
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1803 {BFD_RELOC_NONE
, R_ARM_NONE
},
1804 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1805 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1806 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1807 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1808 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1809 {BFD_RELOC_32
, R_ARM_ABS32
},
1810 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1811 {BFD_RELOC_8
, R_ARM_ABS8
},
1812 {BFD_RELOC_16
, R_ARM_ABS16
},
1813 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1814 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1821 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1822 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1823 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1824 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1825 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1826 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1827 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1828 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1829 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1830 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1831 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1832 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1833 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1834 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1835 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
1836 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
1837 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
1840 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
1841 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1842 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1843 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1846 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1847 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1848 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1849 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
1850 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1851 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1852 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1853 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1854 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1855 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1856 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1857 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1861 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1863 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1864 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1865 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1866 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1867 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1868 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1869 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1870 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1871 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1872 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1873 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1875 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1877 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1878 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1879 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1880 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1881 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1882 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1883 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1884 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1885 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1886 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1887 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1888 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1891 static reloc_howto_type
*
1892 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1893 bfd_reloc_code_real_type code
)
1897 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1898 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1904 static reloc_howto_type
*
1905 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1910 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1911 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1912 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1913 return &elf32_arm_howto_table_1
[i
];
1915 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1916 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1917 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1918 return &elf32_arm_howto_table_2
[i
];
1920 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
1921 if (elf32_arm_howto_table_3
[i
].name
!= NULL
1922 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
1923 return &elf32_arm_howto_table_3
[i
];
1928 /* Support for core dump NOTE sections. */
1931 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1936 switch (note
->descsz
)
1941 case 148: /* Linux/ARM 32-bit. */
1943 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1946 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1957 size
, note
->descpos
+ offset
);
1961 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1963 switch (note
->descsz
)
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd
)->core_program
1970 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1971 elf_tdata (abfd
)->core_command
1972 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1975 /* Note that for some reason, a spurious space is tacked
1976 onto the end of the args in some (at least one anyway)
1977 implementations, so strip it off if it exists. */
1979 char *command
= elf_tdata (abfd
)->core_command
;
1980 int n
= strlen (command
);
1982 if (0 < n
&& command
[n
- 1] == ' ')
1983 command
[n
- 1] = '\0';
1989 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME "elf32-littlearm"
1991 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME "elf32-bigarm"
1994 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1997 typedef unsigned long int insn32
;
1998 typedef unsigned short int insn16
;
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2002 #define INTERWORK_FLAG(abfd) \
2003 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005 || ((abfd)->flags & BFD_LINKER_CREATED))
2007 /* The linker script knows the section names for placement.
2008 The entry_names are used to do simple name mangling on the stubs.
2009 Given a function name, and its type, the stub can be found. The
2010 name can be changed. The only requirement is the %s be present. */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2023 #define STUB_ENTRY_NAME "__%s_veneer"
2025 /* The name of the dynamic interpreter. This is put in the .interp
2027 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2029 static const unsigned long tls_trampoline
[] =
2031 0xe08e0000, /* add r0, lr, r0 */
2032 0xe5901004, /* ldr r1, [r0,#4] */
2033 0xe12fff11, /* bx r1 */
2036 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2038 0xe52d2004, /* push {r2} */
2039 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2040 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2041 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2042 0xe081100f, /* 2: add r1, pc */
2043 0xe12fff12, /* bx r2 */
2044 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 + dl_tlsdesc_lazy_resolver(GOT) */
2046 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2049 #ifdef FOUR_WORD_PLT
2051 /* The first entry in a procedure linkage table looks like
2052 this. It is set up so that any shared library function that is
2053 called before the relocation has been set up calls the dynamic
2055 static const bfd_vma elf32_arm_plt0_entry
[] =
2057 0xe52de004, /* str lr, [sp, #-4]! */
2058 0xe59fe010, /* ldr lr, [pc, #16] */
2059 0xe08fe00e, /* add lr, pc, lr */
2060 0xe5bef008, /* ldr pc, [lr, #8]! */
2063 /* Subsequent entries in a procedure linkage table look like
2065 static const bfd_vma elf32_arm_plt_entry
[] =
2067 0xe28fc600, /* add ip, pc, #NN */
2068 0xe28cca00, /* add ip, ip, #NN */
2069 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2070 0x00000000, /* unused */
2075 /* The first entry in a procedure linkage table looks like
2076 this. It is set up so that any shared library function that is
2077 called before the relocation has been set up calls the dynamic
2079 static const bfd_vma elf32_arm_plt0_entry
[] =
2081 0xe52de004, /* str lr, [sp, #-4]! */
2082 0xe59fe004, /* ldr lr, [pc, #4] */
2083 0xe08fe00e, /* add lr, pc, lr */
2084 0xe5bef008, /* ldr pc, [lr, #8]! */
2085 0x00000000, /* &GOT[0] - . */
2088 /* Subsequent entries in a procedure linkage table look like
2090 static const bfd_vma elf32_arm_plt_entry
[] =
2092 0xe28fc600, /* add ip, pc, #0xNN00000 */
2093 0xe28cca00, /* add ip, ip, #0xNN000 */
2094 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2099 /* The format of the first entry in the procedure linkage table
2100 for a VxWorks executable. */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2103 0xe52dc008, /* str ip,[sp,#-8]! */
2104 0xe59fc000, /* ldr ip,[pc] */
2105 0xe59cf008, /* ldr pc,[ip,#8] */
2106 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2109 /* The format of subsequent entries in a VxWorks executable. */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2112 0xe59fc000, /* ldr ip,[pc] */
2113 0xe59cf000, /* ldr pc,[ip] */
2114 0x00000000, /* .long @got */
2115 0xe59fc000, /* ldr ip,[pc] */
2116 0xea000000, /* b _PLT */
2117 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2120 /* The format of entries in a VxWorks shared library. */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2123 0xe59fc000, /* ldr ip,[pc] */
2124 0xe79cf009, /* ldr pc,[ip,r9] */
2125 0x00000000, /* .long @got */
2126 0xe59fc000, /* ldr ip,[pc] */
2127 0xe599f008, /* ldr pc,[r9,#8] */
2128 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2131 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2139 /* The entries in a PLT when using a DLL-based target with multiple
2141 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2143 0xe51ff004, /* ldr pc, [pc, #-4] */
2144 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2147 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2162 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2164 is inserted in arm_build_one_stub(). */
2165 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2175 enum stub_insn_type type
;
2176 unsigned int r_type
;
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181 to reach the stub if necessary. */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2184 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2185 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2192 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2193 ARM_INSN(0xe12fff1c), /* bx ip */
2194 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2200 THUMB16_INSN(0xb401), /* push {r0} */
2201 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2202 THUMB16_INSN(0x4684), /* mov ip, r0 */
2203 THUMB16_INSN(0xbc01), /* pop {r0} */
2204 THUMB16_INSN(0x4760), /* bx ip */
2205 THUMB16_INSN(0xbf00), /* nop */
2206 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2213 THUMB16_INSN(0x4778), /* bx pc */
2214 THUMB16_INSN(0x46c0), /* nop */
2215 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2216 ARM_INSN(0xe12fff1c), /* bx ip */
2217 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2224 THUMB16_INSN(0x4778), /* bx pc */
2225 THUMB16_INSN(0x46c0), /* nop */
2226 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2227 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231 one, when the destination is close enough. */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2234 THUMB16_INSN(0x4778), /* bx pc */
2235 THUMB16_INSN(0x46c0), /* nop */
2236 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2239 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2240 blx to reach the stub if necessary. */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2244 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2245 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2248 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2249 blx to reach the stub if necessary. We can not add into pc;
2250 it is not guaranteed to mode switch (different in ARMv6 and
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2254 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2255 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2256 ARM_INSN(0xe12fff1c), /* bx ip */
2257 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2260 /* V4T ARM -> ARM long branch stub, PIC. */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2263 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2264 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2265 ARM_INSN(0xe12fff1c), /* bx ip */
2266 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2269 /* V4T Thumb -> ARM long branch stub, PIC. */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2272 THUMB16_INSN(0x4778), /* bx pc */
2273 THUMB16_INSN(0x46c0), /* nop */
2274 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2275 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2276 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2283 THUMB16_INSN(0xb401), /* push {r0} */
2284 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2285 THUMB16_INSN(0x46fc), /* mov ip, pc */
2286 THUMB16_INSN(0x4484), /* add ip, r0 */
2287 THUMB16_INSN(0xbc01), /* pop {r0} */
2288 THUMB16_INSN(0x4760), /* bx ip */
2289 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2296 THUMB16_INSN(0x4778), /* bx pc */
2297 THUMB16_INSN(0x46c0), /* nop */
2298 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2299 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2300 ARM_INSN(0xe12fff1c), /* bx ip */
2301 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2304 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2305 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2308 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2309 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2310 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2313 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2314 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2317 THUMB16_INSN(0x4778), /* bx pc */
2318 THUMB16_INSN(0x46c0), /* nop */
2319 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2320 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2321 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2324 /* Cortex-A8 erratum-workaround stubs. */
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327 can't use a conditional branch to reach this stub). */
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2331 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2332 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2333 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2336 /* Stub used for b.w and bl.w instructions. */
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2340 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2345 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2348 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2349 instruction (which switches to ARM mode) to point to this stub. Jump to the
2350 real destination using an ARM-mode branch. */
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2354 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2357 /* Section name for stubs is the associated section name plus this
2359 #define STUB_SUFFIX ".stub"
2361 /* One entry per long/short branch stub defined above. */
2363 DEF_STUB(long_branch_any_any) \
2364 DEF_STUB(long_branch_v4t_arm_thumb) \
2365 DEF_STUB(long_branch_thumb_only) \
2366 DEF_STUB(long_branch_v4t_thumb_thumb) \
2367 DEF_STUB(long_branch_v4t_thumb_arm) \
2368 DEF_STUB(short_branch_v4t_thumb_arm) \
2369 DEF_STUB(long_branch_any_arm_pic) \
2370 DEF_STUB(long_branch_any_thumb_pic) \
2371 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374 DEF_STUB(long_branch_thumb_only_pic) \
2375 DEF_STUB(long_branch_any_tls_pic) \
2376 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377 DEF_STUB(a8_veneer_b_cond) \
2378 DEF_STUB(a8_veneer_b) \
2379 DEF_STUB(a8_veneer_bl) \
2380 DEF_STUB(a8_veneer_blx)
2382 #define DEF_STUB(x) arm_stub_##x,
2383 enum elf32_arm_stub_type
{
2386 /* Note the first a8_veneer type */
2387 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2393 const insn_sequence
* template_sequence
;
2397 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398 static const stub_def stub_definitions
[] = {
2403 struct elf32_arm_stub_hash_entry
2405 /* Base hash table entry structure. */
2406 struct bfd_hash_entry root
;
2408 /* The stub section. */
2411 /* Offset within stub_sec of the beginning of this stub. */
2412 bfd_vma stub_offset
;
2414 /* Given the symbol's value and its section we can determine its final
2415 value when building the stubs (so the stub knows where to jump). */
2416 bfd_vma target_value
;
2417 asection
*target_section
;
2419 /* Offset to apply to relocation referencing target_value. */
2420 bfd_vma target_addend
;
2422 /* The instruction which caused this stub to be generated (only valid for
2423 Cortex-A8 erratum workaround stubs at present). */
2424 unsigned long orig_insn
;
2426 /* The stub type. */
2427 enum elf32_arm_stub_type stub_type
;
2428 /* Its encoding size in bytes. */
2431 const insn_sequence
*stub_template
;
2432 /* The size of the template (number of entries). */
2433 int stub_template_size
;
2435 /* The symbol table entry, if any, that this was derived from. */
2436 struct elf32_arm_link_hash_entry
*h
;
2438 /* Type of branch. */
2439 enum arm_st_branch_type branch_type
;
2441 /* Where this stub is being called from, or, in the case of combined
2442 stub sections, the first input section in the group. */
2445 /* The name for the local symbol at the start of this stub. The
2446 stub name in the hash table has to be unique; this does not, so
2447 it can be friendlier. */
2451 /* Used to build a map of a section. This is required for mixed-endian
2454 typedef struct elf32_elf_section_map
2459 elf32_arm_section_map
;
2461 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2465 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2466 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2467 VFP11_ERRATUM_ARM_VENEER
,
2468 VFP11_ERRATUM_THUMB_VENEER
2470 elf32_vfp11_erratum_type
;
2472 typedef struct elf32_vfp11_erratum_list
2474 struct elf32_vfp11_erratum_list
*next
;
2480 struct elf32_vfp11_erratum_list
*veneer
;
2481 unsigned int vfp_insn
;
2485 struct elf32_vfp11_erratum_list
*branch
;
2489 elf32_vfp11_erratum_type type
;
2491 elf32_vfp11_erratum_list
;
2496 INSERT_EXIDX_CANTUNWIND_AT_END
2498 arm_unwind_edit_type
;
2500 /* A (sorted) list of edits to apply to an unwind table. */
2501 typedef struct arm_unwind_table_edit
2503 arm_unwind_edit_type type
;
2504 /* Note: we sometimes want to insert an unwind entry corresponding to a
2505 section different from the one we're currently writing out, so record the
2506 (text) section this edit relates to here. */
2507 asection
*linked_section
;
2509 struct arm_unwind_table_edit
*next
;
2511 arm_unwind_table_edit
;
2513 typedef struct _arm_elf_section_data
2515 /* Information about mapping symbols. */
2516 struct bfd_elf_section_data elf
;
2517 unsigned int mapcount
;
2518 unsigned int mapsize
;
2519 elf32_arm_section_map
*map
;
2520 /* Information about CPU errata. */
2521 unsigned int erratumcount
;
2522 elf32_vfp11_erratum_list
*erratumlist
;
2523 /* Information about unwind tables. */
2526 /* Unwind info attached to a text section. */
2529 asection
*arm_exidx_sec
;
2532 /* Unwind info attached to an .ARM.exidx section. */
2535 arm_unwind_table_edit
*unwind_edit_list
;
2536 arm_unwind_table_edit
*unwind_edit_tail
;
2540 _arm_elf_section_data
;
2542 #define elf32_arm_section_data(sec) \
2543 ((_arm_elf_section_data *) elf_section_data (sec))
2545 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547 so may be created multiple times: we use an array of these entries whilst
2548 relaxing which we can refresh easily, then create stubs for each potentially
2549 erratum-triggering instruction once we've settled on a solution. */
2551 struct a8_erratum_fix
{
2556 unsigned long orig_insn
;
2558 enum elf32_arm_stub_type stub_type
;
2559 enum arm_st_branch_type branch_type
;
2562 /* A table of relocs applied to branches which might trigger Cortex-A8
2565 struct a8_erratum_reloc
{
2567 bfd_vma destination
;
2568 struct elf32_arm_link_hash_entry
*hash
;
2569 const char *sym_name
;
2570 unsigned int r_type
;
2571 enum arm_st_branch_type branch_type
;
2572 bfd_boolean non_a8_stub
;
2575 /* The size of the thread control block. */
2578 /* ARM-specific information about a PLT entry, over and above the usual
2580 struct arm_plt_info
{
2581 /* We reference count Thumb references to a PLT entry separately,
2582 so that we can emit the Thumb trampoline only if needed. */
2583 bfd_signed_vma thumb_refcount
;
2585 /* Some references from Thumb code may be eliminated by BL->BLX
2586 conversion, so record them separately. */
2587 bfd_signed_vma maybe_thumb_refcount
;
2589 /* How many of the recorded PLT accesses were from non-call relocations.
2590 This information is useful when deciding whether anything takes the
2591 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2592 non-call references to the function should resolve directly to the
2593 real runtime target. */
2594 unsigned int noncall_refcount
;
2596 /* Since PLT entries have variable size if the Thumb prologue is
2597 used, we need to record the index into .got.plt instead of
2598 recomputing it from the PLT offset. */
2599 bfd_signed_vma got_offset
;
2602 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2603 struct arm_local_iplt_info
{
2604 /* The information that is usually found in the generic ELF part of
2605 the hash table entry. */
2606 union gotplt_union root
;
2608 /* The information that is usually found in the ARM-specific part of
2609 the hash table entry. */
2610 struct arm_plt_info arm
;
2612 /* A list of all potential dynamic relocations against this symbol. */
2613 struct elf_dyn_relocs
*dyn_relocs
;
2616 struct elf_arm_obj_tdata
2618 struct elf_obj_tdata root
;
2620 /* tls_type for each local got entry. */
2621 char *local_got_tls_type
;
2623 /* GOTPLT entries for TLS descriptors. */
2624 bfd_vma
*local_tlsdesc_gotent
;
2626 /* Information for local symbols that need entries in .iplt. */
2627 struct arm_local_iplt_info
**local_iplt
;
2629 /* Zero to warn when linking objects with incompatible enum sizes. */
2630 int no_enum_size_warning
;
2632 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2633 int no_wchar_size_warning
;
2636 #define elf_arm_tdata(bfd) \
2637 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2639 #define elf32_arm_local_got_tls_type(bfd) \
2640 (elf_arm_tdata (bfd)->local_got_tls_type)
2642 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2643 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2645 #define elf32_arm_local_iplt(bfd) \
2646 (elf_arm_tdata (bfd)->local_iplt)
2648 #define is_arm_elf(bfd) \
2649 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650 && elf_tdata (bfd) != NULL \
2651 && elf_object_id (bfd) == ARM_ELF_DATA)
2654 elf32_arm_mkobject (bfd
*abfd
)
2656 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2660 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2662 /* Arm ELF linker hash entry. */
2663 struct elf32_arm_link_hash_entry
2665 struct elf_link_hash_entry root
;
2667 /* Track dynamic relocs copied for this symbol. */
2668 struct elf_dyn_relocs
*dyn_relocs
;
2670 /* ARM-specific PLT information. */
2671 struct arm_plt_info plt
;
2673 #define GOT_UNKNOWN 0
2674 #define GOT_NORMAL 1
2675 #define GOT_TLS_GD 2
2676 #define GOT_TLS_IE 4
2677 #define GOT_TLS_GDESC 8
2678 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679 unsigned int tls_type
: 8;
2681 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2682 unsigned int is_iplt
: 1;
2684 unsigned int unused
: 23;
2686 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687 starting at the end of the jump table. */
2688 bfd_vma tlsdesc_got
;
2690 /* The symbol marking the real symbol location for exported thumb
2691 symbols with Arm stubs. */
2692 struct elf_link_hash_entry
*export_glue
;
2694 /* A pointer to the most recently used stub hash entry against this
2696 struct elf32_arm_stub_hash_entry
*stub_cache
;
2699 /* Traverse an arm ELF linker hash table. */
2700 #define elf32_arm_link_hash_traverse(table, func, info) \
2701 (elf_link_hash_traverse \
2703 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2706 /* Get the ARM elf linker hash table from a link_info structure. */
2707 #define elf32_arm_hash_table(info) \
2708 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2711 #define arm_stub_hash_lookup(table, string, create, copy) \
2712 ((struct elf32_arm_stub_hash_entry *) \
2713 bfd_hash_lookup ((table), (string), (create), (copy)))
2715 /* Array to keep track of which stub sections have been created, and
2716 information on stub grouping. */
2719 /* This is the section to which stubs in the group will be
2722 /* The stub section. */
2726 #define elf32_arm_compute_jump_table_size(htab) \
2727 ((htab)->next_tls_desc_index * 4)
2729 /* ARM ELF linker hash table. */
2730 struct elf32_arm_link_hash_table
2732 /* The main hash table. */
2733 struct elf_link_hash_table root
;
2735 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2736 bfd_size_type thumb_glue_size
;
2738 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2739 bfd_size_type arm_glue_size
;
2741 /* The size in bytes of section containing the ARMv4 BX veneers. */
2742 bfd_size_type bx_glue_size
;
2744 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2745 veneer has been populated. */
2746 bfd_vma bx_glue_offset
[15];
2748 /* The size in bytes of the section containing glue for VFP11 erratum
2750 bfd_size_type vfp11_erratum_glue_size
;
2752 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2753 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754 elf32_arm_write_section(). */
2755 struct a8_erratum_fix
*a8_erratum_fixes
;
2756 unsigned int num_a8_erratum_fixes
;
2758 /* An arbitrary input BFD chosen to hold the glue sections. */
2759 bfd
* bfd_of_glue_owner
;
2761 /* Nonzero to output a BE8 image. */
2764 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2768 /* The relocation to use for R_ARM_TARGET2 relocations. */
2771 /* 0 = Ignore R_ARM_V4BX.
2772 1 = Convert BX to MOV PC.
2773 2 = Generate v4 interworing stubs. */
2776 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2779 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2782 /* What sort of code sequences we should look for which may trigger the
2783 VFP11 denorm erratum. */
2784 bfd_arm_vfp11_fix vfp11_fix
;
2786 /* Global counter for the number of fixes we have emitted. */
2787 int num_vfp11_fixes
;
2789 /* Nonzero to force PIC branch veneers. */
2792 /* The number of bytes in the initial entry in the PLT. */
2793 bfd_size_type plt_header_size
;
2795 /* The number of bytes in the subsequent PLT etries. */
2796 bfd_size_type plt_entry_size
;
2798 /* True if the target system is VxWorks. */
2801 /* True if the target system is Symbian OS. */
2804 /* True if the target uses REL relocations. */
2807 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2808 bfd_vma next_tls_desc_index
;
2810 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2811 bfd_vma num_tls_desc
;
2813 /* Short-cuts to get to dynamic linker sections. */
2817 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2820 /* The offset into splt of the PLT entry for the TLS descriptor
2821 resolver. Special values are 0, if not necessary (or not found
2822 to be necessary yet), and -1 if needed but not determined
2824 bfd_vma dt_tlsdesc_plt
;
2826 /* The offset into sgot of the GOT entry used by the PLT entry
2828 bfd_vma dt_tlsdesc_got
;
2830 /* Offset in .plt section of tls_arm_trampoline. */
2831 bfd_vma tls_trampoline
;
2833 /* Data for R_ARM_TLS_LDM32 relocations. */
2836 bfd_signed_vma refcount
;
2840 /* Small local sym cache. */
2841 struct sym_cache sym_cache
;
2843 /* For convenience in allocate_dynrelocs. */
2846 /* The amount of space used by the reserved portion of the sgotplt
2847 section, plus whatever space is used by the jump slots. */
2848 bfd_vma sgotplt_jump_table_size
;
2850 /* The stub hash table. */
2851 struct bfd_hash_table stub_hash_table
;
2853 /* Linker stub bfd. */
2856 /* Linker call-backs. */
2857 asection
* (*add_stub_section
) (const char *, asection
*);
2858 void (*layout_sections_again
) (void);
2860 /* Array to keep track of which stub sections have been created, and
2861 information on stub grouping. */
2862 struct map_stub
*stub_group
;
2864 /* Number of elements in stub_group. */
2867 /* Assorted information used by elf32_arm_size_stubs. */
2868 unsigned int bfd_count
;
2870 asection
**input_list
;
2873 /* Create an entry in an ARM ELF linker hash table. */
2875 static struct bfd_hash_entry
*
2876 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2877 struct bfd_hash_table
* table
,
2878 const char * string
)
2880 struct elf32_arm_link_hash_entry
* ret
=
2881 (struct elf32_arm_link_hash_entry
*) entry
;
2883 /* Allocate the structure if it has not already been allocated by a
2886 ret
= (struct elf32_arm_link_hash_entry
*)
2887 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2889 return (struct bfd_hash_entry
*) ret
;
2891 /* Call the allocation method of the superclass. */
2892 ret
= ((struct elf32_arm_link_hash_entry
*)
2893 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2897 ret
->dyn_relocs
= NULL
;
2898 ret
->tls_type
= GOT_UNKNOWN
;
2899 ret
->tlsdesc_got
= (bfd_vma
) -1;
2900 ret
->plt
.thumb_refcount
= 0;
2901 ret
->plt
.maybe_thumb_refcount
= 0;
2902 ret
->plt
.noncall_refcount
= 0;
2903 ret
->plt
.got_offset
= -1;
2904 ret
->is_iplt
= FALSE
;
2905 ret
->export_glue
= NULL
;
2907 ret
->stub_cache
= NULL
;
2910 return (struct bfd_hash_entry
*) ret
;
2913 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2917 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
2919 if (elf_local_got_refcounts (abfd
) == NULL
)
2921 bfd_size_type num_syms
;
2925 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
2926 size
= num_syms
* (sizeof (bfd_signed_vma
)
2927 + sizeof (struct arm_local_iplt_info
*)
2930 data
= bfd_zalloc (abfd
, size
);
2934 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) data
;
2935 data
+= num_syms
* sizeof (bfd_signed_vma
);
2937 elf32_arm_local_iplt (abfd
) = (struct arm_local_iplt_info
**) data
;
2938 data
+= num_syms
* sizeof (struct arm_local_iplt_info
*);
2940 elf32_arm_local_tlsdesc_gotent (abfd
) = (bfd_vma
*) data
;
2941 data
+= num_syms
* sizeof (bfd_vma
);
2943 elf32_arm_local_got_tls_type (abfd
) = data
;
2948 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2949 to input bfd ABFD. Create the information if it doesn't already exist.
2950 Return null if an allocation fails. */
2952 static struct arm_local_iplt_info
*
2953 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
2955 struct arm_local_iplt_info
**ptr
;
2957 if (!elf32_arm_allocate_local_sym_info (abfd
))
2960 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
2961 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
2963 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
2967 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2968 in ABFD's symbol table. If the symbol is global, H points to its
2969 hash table entry, otherwise H is null.
2971 Return true if the symbol does have PLT information. When returning
2972 true, point *ROOT_PLT at the target-independent reference count/offset
2973 union and *ARM_PLT at the ARM-specific information. */
2976 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_entry
*h
,
2977 unsigned long r_symndx
, union gotplt_union
**root_plt
,
2978 struct arm_plt_info
**arm_plt
)
2980 struct arm_local_iplt_info
*local_iplt
;
2984 *root_plt
= &h
->root
.plt
;
2989 if (elf32_arm_local_iplt (abfd
) == NULL
)
2992 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
2993 if (local_iplt
== NULL
)
2996 *root_plt
= &local_iplt
->root
;
2997 *arm_plt
= &local_iplt
->arm
;
3001 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3005 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3006 struct arm_plt_info
*arm_plt
)
3008 struct elf32_arm_link_hash_table
*htab
;
3010 htab
= elf32_arm_hash_table (info
);
3011 return (arm_plt
->thumb_refcount
!= 0
3012 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0));
3015 /* Return a pointer to the head of the dynamic reloc list that should
3016 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3017 ABFD's symbol table. Return null if an error occurs. */
3019 static struct elf_dyn_relocs
**
3020 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3021 Elf_Internal_Sym
*isym
)
3023 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3025 struct arm_local_iplt_info
*local_iplt
;
3027 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3028 if (local_iplt
== NULL
)
3030 return &local_iplt
->dyn_relocs
;
3034 /* Track dynamic relocs needed for local syms too.
3035 We really need local syms available to do this
3040 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3044 vpp
= &elf_section_data (s
)->local_dynrel
;
3045 return (struct elf_dyn_relocs
**) vpp
;
3049 /* Initialize an entry in the stub hash table. */
3051 static struct bfd_hash_entry
*
3052 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3053 struct bfd_hash_table
*table
,
3056 /* Allocate the structure if it has not already been allocated by a
3060 entry
= (struct bfd_hash_entry
*)
3061 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3066 /* Call the allocation method of the superclass. */
3067 entry
= bfd_hash_newfunc (entry
, table
, string
);
3070 struct elf32_arm_stub_hash_entry
*eh
;
3072 /* Initialize the local fields. */
3073 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3074 eh
->stub_sec
= NULL
;
3075 eh
->stub_offset
= 0;
3076 eh
->target_value
= 0;
3077 eh
->target_section
= NULL
;
3078 eh
->target_addend
= 0;
3080 eh
->stub_type
= arm_stub_none
;
3082 eh
->stub_template
= NULL
;
3083 eh
->stub_template_size
= 0;
3086 eh
->output_name
= NULL
;
3092 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3093 shortcuts to them in our hash table. */
3096 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3098 struct elf32_arm_link_hash_table
*htab
;
3100 htab
= elf32_arm_hash_table (info
);
3104 /* BPABI objects never have a GOT, or associated sections. */
3105 if (htab
->symbian_p
)
3108 if (! _bfd_elf_create_got_section (dynobj
, info
))
3114 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3117 create_ifunc_sections (struct bfd_link_info
*info
)
3119 struct elf32_arm_link_hash_table
*htab
;
3120 const struct elf_backend_data
*bed
;
3125 htab
= elf32_arm_hash_table (info
);
3126 dynobj
= htab
->root
.dynobj
;
3127 bed
= get_elf_backend_data (dynobj
);
3128 flags
= bed
->dynamic_sec_flags
;
3130 if (htab
->root
.iplt
== NULL
)
3132 s
= bfd_make_section_with_flags (dynobj
, ".iplt",
3133 flags
| SEC_READONLY
| SEC_CODE
);
3135 || !bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
3137 htab
->root
.iplt
= s
;
3140 if (htab
->root
.irelplt
== NULL
)
3142 s
= bfd_make_section_with_flags (dynobj
, RELOC_SECTION (htab
, ".iplt"),
3143 flags
| SEC_READONLY
);
3145 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
3147 htab
->root
.irelplt
= s
;
3150 if (htab
->root
.igotplt
== NULL
)
3152 s
= bfd_make_section_with_flags (dynobj
, ".igot.plt", flags
);
3154 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3156 htab
->root
.igotplt
= s
;
3161 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3162 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3166 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3168 struct elf32_arm_link_hash_table
*htab
;
3170 htab
= elf32_arm_hash_table (info
);
3174 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3177 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3180 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
3182 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
3183 RELOC_SECTION (htab
, ".bss"));
3185 if (htab
->vxworks_p
)
3187 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3192 htab
->plt_header_size
= 0;
3193 htab
->plt_entry_size
3194 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3198 htab
->plt_header_size
3199 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3200 htab
->plt_entry_size
3201 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
3205 if (!htab
->root
.splt
3206 || !htab
->root
.srelplt
3208 || (!info
->shared
&& !htab
->srelbss
))
3214 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3217 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
3218 struct elf_link_hash_entry
*dir
,
3219 struct elf_link_hash_entry
*ind
)
3221 struct elf32_arm_link_hash_entry
*edir
, *eind
;
3223 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
3224 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
3226 if (eind
->dyn_relocs
!= NULL
)
3228 if (edir
->dyn_relocs
!= NULL
)
3230 struct elf_dyn_relocs
**pp
;
3231 struct elf_dyn_relocs
*p
;
3233 /* Add reloc counts against the indirect sym to the direct sym
3234 list. Merge any entries against the same section. */
3235 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
3237 struct elf_dyn_relocs
*q
;
3239 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
3240 if (q
->sec
== p
->sec
)
3242 q
->pc_count
+= p
->pc_count
;
3243 q
->count
+= p
->count
;
3250 *pp
= edir
->dyn_relocs
;
3253 edir
->dyn_relocs
= eind
->dyn_relocs
;
3254 eind
->dyn_relocs
= NULL
;
3257 if (ind
->root
.type
== bfd_link_hash_indirect
)
3259 /* Copy over PLT info. */
3260 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
3261 eind
->plt
.thumb_refcount
= 0;
3262 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
3263 eind
->plt
.maybe_thumb_refcount
= 0;
3264 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
3265 eind
->plt
.noncall_refcount
= 0;
3267 /* We should only allocate a function to .iplt once the final
3268 symbol information is known. */
3269 BFD_ASSERT (!eind
->is_iplt
);
3271 if (dir
->got
.refcount
<= 0)
3273 edir
->tls_type
= eind
->tls_type
;
3274 eind
->tls_type
= GOT_UNKNOWN
;
3278 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
3281 /* Create an ARM elf linker hash table. */
3283 static struct bfd_link_hash_table
*
3284 elf32_arm_link_hash_table_create (bfd
*abfd
)
3286 struct elf32_arm_link_hash_table
*ret
;
3287 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
3289 ret
= (struct elf32_arm_link_hash_table
*) bfd_malloc (amt
);
3293 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
3294 elf32_arm_link_hash_newfunc
,
3295 sizeof (struct elf32_arm_link_hash_entry
),
3302 ret
->sdynbss
= NULL
;
3303 ret
->srelbss
= NULL
;
3304 ret
->srelplt2
= NULL
;
3305 ret
->dt_tlsdesc_plt
= 0;
3306 ret
->dt_tlsdesc_got
= 0;
3307 ret
->tls_trampoline
= 0;
3308 ret
->next_tls_desc_index
= 0;
3309 ret
->num_tls_desc
= 0;
3310 ret
->thumb_glue_size
= 0;
3311 ret
->arm_glue_size
= 0;
3312 ret
->bx_glue_size
= 0;
3313 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
3314 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
3315 ret
->vfp11_erratum_glue_size
= 0;
3316 ret
->num_vfp11_fixes
= 0;
3317 ret
->fix_cortex_a8
= 0;
3318 ret
->bfd_of_glue_owner
= NULL
;
3319 ret
->byteswap_code
= 0;
3320 ret
->target1_is_rel
= 0;
3321 ret
->target2_reloc
= R_ARM_NONE
;
3322 #ifdef FOUR_WORD_PLT
3323 ret
->plt_header_size
= 16;
3324 ret
->plt_entry_size
= 16;
3326 ret
->plt_header_size
= 20;
3327 ret
->plt_entry_size
= 12;
3334 ret
->sym_cache
.abfd
= NULL
;
3336 ret
->tls_ldm_got
.refcount
= 0;
3337 ret
->stub_bfd
= NULL
;
3338 ret
->add_stub_section
= NULL
;
3339 ret
->layout_sections_again
= NULL
;
3340 ret
->stub_group
= NULL
;
3344 ret
->input_list
= NULL
;
3346 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
3347 sizeof (struct elf32_arm_stub_hash_entry
)))
3353 return &ret
->root
.root
;
3356 /* Free the derived linker hash table. */
3359 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
3361 struct elf32_arm_link_hash_table
*ret
3362 = (struct elf32_arm_link_hash_table
*) hash
;
3364 bfd_hash_table_free (&ret
->stub_hash_table
);
3365 _bfd_generic_link_hash_table_free (hash
);
3368 /* Determine if we're dealing with a Thumb only architecture. */
3371 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3373 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3377 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
3380 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
3383 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3384 Tag_CPU_arch_profile
);
3386 return profile
== 'M';
3389 /* Determine if we're dealing with a Thumb-2 object. */
3392 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3394 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3396 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3399 /* Determine what kind of NOPs are available. */
3402 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3404 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3406 return arch
== TAG_CPU_ARCH_V6T2
3407 || arch
== TAG_CPU_ARCH_V6K
3408 || arch
== TAG_CPU_ARCH_V7
3409 || arch
== TAG_CPU_ARCH_V7E_M
;
3413 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3415 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3417 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3418 || arch
== TAG_CPU_ARCH_V7E_M
);
3422 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3426 case arm_stub_long_branch_thumb_only
:
3427 case arm_stub_long_branch_v4t_thumb_arm
:
3428 case arm_stub_short_branch_v4t_thumb_arm
:
3429 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3430 case arm_stub_long_branch_thumb_only_pic
:
3441 /* Determine the type of stub needed, if any, for a call. */
3443 static enum elf32_arm_stub_type
3444 arm_type_of_stub (struct bfd_link_info
*info
,
3445 asection
*input_sec
,
3446 const Elf_Internal_Rela
*rel
,
3447 unsigned char st_type
,
3448 enum arm_st_branch_type
*actual_branch_type
,
3449 struct elf32_arm_link_hash_entry
*hash
,
3450 bfd_vma destination
,
3456 bfd_signed_vma branch_offset
;
3457 unsigned int r_type
;
3458 struct elf32_arm_link_hash_table
* globals
;
3461 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3463 enum arm_st_branch_type branch_type
= *actual_branch_type
;
3464 union gotplt_union
*root_plt
;
3465 struct arm_plt_info
*arm_plt
;
3467 if (branch_type
== ST_BRANCH_LONG
)
3470 globals
= elf32_arm_hash_table (info
);
3471 if (globals
== NULL
)
3474 thumb_only
= using_thumb_only (globals
);
3476 thumb2
= using_thumb2 (globals
);
3478 /* Determine where the call point is. */
3479 location
= (input_sec
->output_offset
3480 + input_sec
->output_section
->vma
3483 r_type
= ELF32_R_TYPE (rel
->r_info
);
3485 /* For TLS call relocs, it is the caller's responsibility to provide
3486 the address of the appropriate trampoline. */
3487 if (r_type
!= R_ARM_TLS_CALL
3488 && r_type
!= R_ARM_THM_TLS_CALL
3489 && elf32_arm_get_plt_info (input_bfd
, hash
, ELF32_R_SYM (rel
->r_info
),
3490 &root_plt
, &arm_plt
)
3491 && root_plt
->offset
!= (bfd_vma
) -1)
3495 if (hash
== NULL
|| hash
->is_iplt
)
3496 splt
= globals
->root
.iplt
;
3498 splt
= globals
->root
.splt
;
3503 /* Note when dealing with PLT entries: the main PLT stub is in
3504 ARM mode, so if the branch is in Thumb mode, another
3505 Thumb->ARM stub will be inserted later just before the ARM
3506 PLT stub. We don't take this extra distance into account
3507 here, because if a long branch stub is needed, we'll add a
3508 Thumb->Arm one and branch directly to the ARM PLT entry
3509 because it avoids spreading offset corrections in several
3512 destination
= (splt
->output_section
->vma
3513 + splt
->output_offset
3514 + root_plt
->offset
);
3516 branch_type
= ST_BRANCH_TO_ARM
;
3519 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3520 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
3522 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3524 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3525 || r_type
== R_ARM_THM_TLS_CALL
)
3527 /* Handle cases where:
3528 - this call goes too far (different Thumb/Thumb2 max
3530 - it's a Thumb->Arm call and blx is not available, or it's a
3531 Thumb->Arm branch (not bl). A stub is needed in this case,
3532 but only if this call is not through a PLT entry. Indeed,
3533 PLT stubs handle mode switching already.
3536 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3537 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3539 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3540 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3541 || (branch_type
== ST_BRANCH_TO_ARM
3542 && (((r_type
== R_ARM_THM_CALL
3543 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
3544 || (r_type
== R_ARM_THM_JUMP24
))
3547 if (branch_type
== ST_BRANCH_TO_THUMB
)
3549 /* Thumb to thumb. */
3552 stub_type
= (info
->shared
| globals
->pic_veneer
)
3554 ? ((globals
->use_blx
3555 && (r_type
==R_ARM_THM_CALL
))
3556 /* V5T and above. Stub starts with ARM code, so
3557 we must be able to switch mode before
3558 reaching it, which is only possible for 'bl'
3559 (ie R_ARM_THM_CALL relocation). */
3560 ? arm_stub_long_branch_any_thumb_pic
3561 /* On V4T, use Thumb code only. */
3562 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3564 /* non-PIC stubs. */
3565 : ((globals
->use_blx
3566 && (r_type
==R_ARM_THM_CALL
))
3567 /* V5T and above. */
3568 ? arm_stub_long_branch_any_any
3570 : arm_stub_long_branch_v4t_thumb_thumb
);
3574 stub_type
= (info
->shared
| globals
->pic_veneer
)
3576 ? arm_stub_long_branch_thumb_only_pic
3578 : arm_stub_long_branch_thumb_only
;
3585 && sym_sec
->owner
!= NULL
3586 && !INTERWORK_FLAG (sym_sec
->owner
))
3588 (*_bfd_error_handler
)
3589 (_("%B(%s): warning: interworking not enabled.\n"
3590 " first occurrence: %B: Thumb call to ARM"),
3591 sym_sec
->owner
, input_bfd
, name
);
3595 (info
->shared
| globals
->pic_veneer
)
3597 ? (r_type
== R_ARM_THM_TLS_CALL
3599 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
3600 : arm_stub_long_branch_v4t_thumb_tls_pic
)
3601 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3602 /* V5T PIC and above. */
3603 ? arm_stub_long_branch_any_arm_pic
3605 : arm_stub_long_branch_v4t_thumb_arm_pic
))
3607 /* non-PIC stubs. */
3608 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3609 /* V5T and above. */
3610 ? arm_stub_long_branch_any_any
3612 : arm_stub_long_branch_v4t_thumb_arm
);
3614 /* Handle v4t short branches. */
3615 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3616 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3617 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3618 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3622 else if (r_type
== R_ARM_CALL
3623 || r_type
== R_ARM_JUMP24
3624 || r_type
== R_ARM_PLT32
3625 || r_type
== R_ARM_TLS_CALL
)
3627 if (branch_type
== ST_BRANCH_TO_THUMB
)
3632 && sym_sec
->owner
!= NULL
3633 && !INTERWORK_FLAG (sym_sec
->owner
))
3635 (*_bfd_error_handler
)
3636 (_("%B(%s): warning: interworking not enabled.\n"
3637 " first occurrence: %B: ARM call to Thumb"),
3638 sym_sec
->owner
, input_bfd
, name
);
3641 /* We have an extra 2-bytes reach because of
3642 the mode change (bit 24 (H) of BLX encoding). */
3643 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3644 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3645 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
3646 || (r_type
== R_ARM_JUMP24
)
3647 || (r_type
== R_ARM_PLT32
))
3649 stub_type
= (info
->shared
| globals
->pic_veneer
)
3651 ? ((globals
->use_blx
)
3652 /* V5T and above. */
3653 ? arm_stub_long_branch_any_thumb_pic
3655 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3657 /* non-PIC stubs. */
3658 : ((globals
->use_blx
)
3659 /* V5T and above. */
3660 ? arm_stub_long_branch_any_any
3662 : arm_stub_long_branch_v4t_arm_thumb
);
3668 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3669 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3672 (info
->shared
| globals
->pic_veneer
)
3674 ? (r_type
== R_ARM_TLS_CALL
3676 ? arm_stub_long_branch_any_tls_pic
3677 : arm_stub_long_branch_any_arm_pic
)
3678 /* non-PIC stubs. */
3679 : arm_stub_long_branch_any_any
;
3684 /* If a stub is needed, record the actual destination type. */
3685 if (stub_type
!= arm_stub_none
)
3686 *actual_branch_type
= branch_type
;
3691 /* Build a name for an entry in the stub hash table. */
3694 elf32_arm_stub_name (const asection
*input_section
,
3695 const asection
*sym_sec
,
3696 const struct elf32_arm_link_hash_entry
*hash
,
3697 const Elf_Internal_Rela
*rel
,
3698 enum elf32_arm_stub_type stub_type
)
3705 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3706 stub_name
= (char *) bfd_malloc (len
);
3707 if (stub_name
!= NULL
)
3708 sprintf (stub_name
, "%08x_%s+%x_%d",
3709 input_section
->id
& 0xffffffff,
3710 hash
->root
.root
.root
.string
,
3711 (int) rel
->r_addend
& 0xffffffff,
3716 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3717 stub_name
= (char *) bfd_malloc (len
);
3718 if (stub_name
!= NULL
)
3719 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3720 input_section
->id
& 0xffffffff,
3721 sym_sec
->id
& 0xffffffff,
3722 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
3723 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
3724 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3725 (int) rel
->r_addend
& 0xffffffff,
3732 /* Look up an entry in the stub hash. Stub entries are cached because
3733 creating the stub name takes a bit of time. */
3735 static struct elf32_arm_stub_hash_entry
*
3736 elf32_arm_get_stub_entry (const asection
*input_section
,
3737 const asection
*sym_sec
,
3738 struct elf_link_hash_entry
*hash
,
3739 const Elf_Internal_Rela
*rel
,
3740 struct elf32_arm_link_hash_table
*htab
,
3741 enum elf32_arm_stub_type stub_type
)
3743 struct elf32_arm_stub_hash_entry
*stub_entry
;
3744 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3745 const asection
*id_sec
;
3747 if ((input_section
->flags
& SEC_CODE
) == 0)
3750 /* If this input section is part of a group of sections sharing one
3751 stub section, then use the id of the first section in the group.
3752 Stub names need to include a section id, as there may well be
3753 more than one stub used to reach say, printf, and we need to
3754 distinguish between them. */
3755 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3757 if (h
!= NULL
&& h
->stub_cache
!= NULL
3758 && h
->stub_cache
->h
== h
3759 && h
->stub_cache
->id_sec
== id_sec
3760 && h
->stub_cache
->stub_type
== stub_type
)
3762 stub_entry
= h
->stub_cache
;
3768 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3769 if (stub_name
== NULL
)
3772 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3773 stub_name
, FALSE
, FALSE
);
3775 h
->stub_cache
= stub_entry
;
3783 /* Find or create a stub section. Returns a pointer to the stub section, and
3784 the section to which the stub section will be attached (in *LINK_SEC_P).
3785 LINK_SEC_P may be NULL. */
3788 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3789 struct elf32_arm_link_hash_table
*htab
)
3794 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3795 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3796 if (stub_sec
== NULL
)
3798 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3799 if (stub_sec
== NULL
)
3805 namelen
= strlen (link_sec
->name
);
3806 len
= namelen
+ sizeof (STUB_SUFFIX
);
3807 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3811 memcpy (s_name
, link_sec
->name
, namelen
);
3812 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3813 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3814 if (stub_sec
== NULL
)
3816 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3818 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3822 *link_sec_p
= link_sec
;
3827 /* Add a new stub entry to the stub hash. Not all fields of the new
3828 stub entry are initialised. */
3830 static struct elf32_arm_stub_hash_entry
*
3831 elf32_arm_add_stub (const char *stub_name
,
3833 struct elf32_arm_link_hash_table
*htab
)
3837 struct elf32_arm_stub_hash_entry
*stub_entry
;
3839 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3840 if (stub_sec
== NULL
)
3843 /* Enter this entry into the linker stub hash table. */
3844 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3846 if (stub_entry
== NULL
)
3848 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3854 stub_entry
->stub_sec
= stub_sec
;
3855 stub_entry
->stub_offset
= 0;
3856 stub_entry
->id_sec
= link_sec
;
3861 /* Store an Arm insn into an output section not processed by
3862 elf32_arm_write_section. */
3865 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3866 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3868 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3869 bfd_putl32 (val
, ptr
);
3871 bfd_putb32 (val
, ptr
);
3874 /* Store a 16-bit Thumb insn into an output section not processed by
3875 elf32_arm_write_section. */
3878 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3879 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3881 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3882 bfd_putl16 (val
, ptr
);
3884 bfd_putb16 (val
, ptr
);
3887 /* If it's possible to change R_TYPE to a more efficient access
3888 model, return the new reloc type. */
3891 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
3892 struct elf_link_hash_entry
*h
)
3894 int is_local
= (h
== NULL
);
3896 if (info
->shared
|| (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
3899 /* We do not support relaxations for Old TLS models. */
3902 case R_ARM_TLS_GOTDESC
:
3903 case R_ARM_TLS_CALL
:
3904 case R_ARM_THM_TLS_CALL
:
3905 case R_ARM_TLS_DESCSEQ
:
3906 case R_ARM_THM_TLS_DESCSEQ
:
3907 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
3913 static bfd_reloc_status_type elf32_arm_final_link_relocate
3914 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3915 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3916 const char *, unsigned char, enum arm_st_branch_type
,
3917 struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3920 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
3924 case arm_stub_a8_veneer_b_cond
:
3925 case arm_stub_a8_veneer_b
:
3926 case arm_stub_a8_veneer_bl
:
3929 case arm_stub_long_branch_any_any
:
3930 case arm_stub_long_branch_v4t_arm_thumb
:
3931 case arm_stub_long_branch_thumb_only
:
3932 case arm_stub_long_branch_v4t_thumb_thumb
:
3933 case arm_stub_long_branch_v4t_thumb_arm
:
3934 case arm_stub_short_branch_v4t_thumb_arm
:
3935 case arm_stub_long_branch_any_arm_pic
:
3936 case arm_stub_long_branch_any_thumb_pic
:
3937 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
3938 case arm_stub_long_branch_v4t_arm_thumb_pic
:
3939 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3940 case arm_stub_long_branch_thumb_only_pic
:
3941 case arm_stub_long_branch_any_tls_pic
:
3942 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3943 case arm_stub_a8_veneer_blx
:
3947 abort (); /* Should be unreachable. */
3952 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3956 struct elf32_arm_stub_hash_entry
*stub_entry
;
3957 struct elf32_arm_link_hash_table
*globals
;
3958 struct bfd_link_info
*info
;
3965 const insn_sequence
*template_sequence
;
3967 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3968 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3971 /* Massage our args to the form they really have. */
3972 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3973 info
= (struct bfd_link_info
*) in_arg
;
3975 globals
= elf32_arm_hash_table (info
);
3976 if (globals
== NULL
)
3979 stub_sec
= stub_entry
->stub_sec
;
3981 if ((globals
->fix_cortex_a8
< 0)
3982 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
3983 /* We have to do less-strictly-aligned fixes last. */
3986 /* Make a note of the offset within the stubs for this entry. */
3987 stub_entry
->stub_offset
= stub_sec
->size
;
3988 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3990 stub_bfd
= stub_sec
->owner
;
3992 /* This is the address of the stub destination. */
3993 sym_value
= (stub_entry
->target_value
3994 + stub_entry
->target_section
->output_offset
3995 + stub_entry
->target_section
->output_section
->vma
);
3997 template_sequence
= stub_entry
->stub_template
;
3998 template_size
= stub_entry
->stub_template_size
;
4001 for (i
= 0; i
< template_size
; i
++)
4003 switch (template_sequence
[i
].type
)
4007 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
4008 if (template_sequence
[i
].reloc_addend
!= 0)
4010 /* We've borrowed the reloc_addend field to mean we should
4011 insert a condition code into this (Thumb-1 branch)
4012 instruction. See THUMB16_BCOND_INSN. */
4013 BFD_ASSERT ((data
& 0xff00) == 0xd000);
4014 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
4016 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
4022 bfd_put_16 (stub_bfd
,
4023 (template_sequence
[i
].data
>> 16) & 0xffff,
4025 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
4027 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
4029 stub_reloc_idx
[nrelocs
] = i
;
4030 stub_reloc_offset
[nrelocs
++] = size
;
4036 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
4038 /* Handle cases where the target is encoded within the
4040 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
4042 stub_reloc_idx
[nrelocs
] = i
;
4043 stub_reloc_offset
[nrelocs
++] = size
;
4049 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
4050 stub_reloc_idx
[nrelocs
] = i
;
4051 stub_reloc_offset
[nrelocs
++] = size
;
4061 stub_sec
->size
+= size
;
4063 /* Stub size has already been computed in arm_size_one_stub. Check
4065 BFD_ASSERT (size
== stub_entry
->stub_size
);
4067 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4068 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
4071 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4073 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
4075 for (i
= 0; i
< nrelocs
; i
++)
4076 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
4077 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
4078 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
4079 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
4081 Elf_Internal_Rela rel
;
4082 bfd_boolean unresolved_reloc
;
4083 char *error_message
;
4084 enum arm_st_branch_type branch_type
4085 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
4086 ? ST_BRANCH_TO_THUMB
: ST_BRANCH_TO_ARM
);
4087 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
4089 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4090 rel
.r_info
= ELF32_R_INFO (0,
4091 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4092 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4094 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
4095 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4096 template should refer back to the instruction after the original
4098 points_to
= sym_value
;
4100 /* There may be unintended consequences if this is not true. */
4101 BFD_ASSERT (stub_entry
->h
== NULL
);
4103 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4104 properly. We should probably use this function unconditionally,
4105 rather than only for certain relocations listed in the enclosing
4106 conditional, for the sake of consistency. */
4107 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4108 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4109 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4110 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4111 branch_type
, (struct elf_link_hash_entry
*) stub_entry
->h
,
4112 &unresolved_reloc
, &error_message
);
4116 Elf_Internal_Rela rel
;
4117 bfd_boolean unresolved_reloc
;
4118 char *error_message
;
4119 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
4120 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4122 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4123 rel
.r_info
= ELF32_R_INFO (0,
4124 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4127 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4128 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4129 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4130 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4131 stub_entry
->branch_type
,
4132 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
4140 /* Calculate the template, template size and instruction size for a stub.
4141 Return value is the instruction size. */
4144 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
4145 const insn_sequence
**stub_template
,
4146 int *stub_template_size
)
4148 const insn_sequence
*template_sequence
= NULL
;
4149 int template_size
= 0, i
;
4152 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
4154 *stub_template
= template_sequence
;
4156 template_size
= stub_definitions
[stub_type
].template_size
;
4157 if (stub_template_size
)
4158 *stub_template_size
= template_size
;
4161 for (i
= 0; i
< template_size
; i
++)
4163 switch (template_sequence
[i
].type
)
4184 /* As above, but don't actually build the stub. Just bump offset so
4185 we know stub section sizes. */
4188 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
4189 void *in_arg ATTRIBUTE_UNUSED
)
4191 struct elf32_arm_stub_hash_entry
*stub_entry
;
4192 const insn_sequence
*template_sequence
;
4193 int template_size
, size
;
4195 /* Massage our args to the form they really have. */
4196 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4198 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
4199 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
4201 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
4204 stub_entry
->stub_size
= size
;
4205 stub_entry
->stub_template
= template_sequence
;
4206 stub_entry
->stub_template_size
= template_size
;
4208 size
= (size
+ 7) & ~7;
4209 stub_entry
->stub_sec
->size
+= size
;
4214 /* External entry points for sizing and building linker stubs. */
4216 /* Set up various things so that we can make a list of input sections
4217 for each output section included in the link. Returns -1 on error,
4218 0 when no stubs will be needed, and 1 on success. */
4221 elf32_arm_setup_section_lists (bfd
*output_bfd
,
4222 struct bfd_link_info
*info
)
4225 unsigned int bfd_count
;
4226 int top_id
, top_index
;
4228 asection
**input_list
, **list
;
4230 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4234 if (! is_elf_hash_table (htab
))
4237 /* Count the number of input BFDs and find the top input section id. */
4238 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
4240 input_bfd
= input_bfd
->link_next
)
4243 for (section
= input_bfd
->sections
;
4245 section
= section
->next
)
4247 if (top_id
< section
->id
)
4248 top_id
= section
->id
;
4251 htab
->bfd_count
= bfd_count
;
4253 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
4254 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
4255 if (htab
->stub_group
== NULL
)
4257 htab
->top_id
= top_id
;
4259 /* We can't use output_bfd->section_count here to find the top output
4260 section index as some sections may have been removed, and
4261 _bfd_strip_section_from_output doesn't renumber the indices. */
4262 for (section
= output_bfd
->sections
, top_index
= 0;
4264 section
= section
->next
)
4266 if (top_index
< section
->index
)
4267 top_index
= section
->index
;
4270 htab
->top_index
= top_index
;
4271 amt
= sizeof (asection
*) * (top_index
+ 1);
4272 input_list
= (asection
**) bfd_malloc (amt
);
4273 htab
->input_list
= input_list
;
4274 if (input_list
== NULL
)
4277 /* For sections we aren't interested in, mark their entries with a
4278 value we can check later. */
4279 list
= input_list
+ top_index
;
4281 *list
= bfd_abs_section_ptr
;
4282 while (list
-- != input_list
);
4284 for (section
= output_bfd
->sections
;
4286 section
= section
->next
)
4288 if ((section
->flags
& SEC_CODE
) != 0)
4289 input_list
[section
->index
] = NULL
;
4295 /* The linker repeatedly calls this function for each input section,
4296 in the order that input sections are linked into output sections.
4297 Build lists of input sections to determine groupings between which
4298 we may insert linker stubs. */
4301 elf32_arm_next_input_section (struct bfd_link_info
*info
,
4304 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4309 if (isec
->output_section
->index
<= htab
->top_index
)
4311 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
4313 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
4315 /* Steal the link_sec pointer for our list. */
4316 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4317 /* This happens to make the list in reverse order,
4318 which we reverse later. */
4319 PREV_SEC (isec
) = *list
;
4325 /* See whether we can group stub sections together. Grouping stub
4326 sections may result in fewer stubs. More importantly, we need to
4327 put all .init* and .fini* stubs at the end of the .init or
4328 .fini output sections respectively, because glibc splits the
4329 _init and _fini functions into multiple parts. Putting a stub in
4330 the middle of a function is not a good idea. */
4333 group_sections (struct elf32_arm_link_hash_table
*htab
,
4334 bfd_size_type stub_group_size
,
4335 bfd_boolean stubs_always_after_branch
)
4337 asection
**list
= htab
->input_list
;
4341 asection
*tail
= *list
;
4344 if (tail
== bfd_abs_section_ptr
)
4347 /* Reverse the list: we must avoid placing stubs at the
4348 beginning of the section because the beginning of the text
4349 section may be required for an interrupt vector in bare metal
4351 #define NEXT_SEC PREV_SEC
4353 while (tail
!= NULL
)
4355 /* Pop from tail. */
4356 asection
*item
= tail
;
4357 tail
= PREV_SEC (item
);
4360 NEXT_SEC (item
) = head
;
4364 while (head
!= NULL
)
4368 bfd_vma stub_group_start
= head
->output_offset
;
4369 bfd_vma end_of_next
;
4372 while (NEXT_SEC (curr
) != NULL
)
4374 next
= NEXT_SEC (curr
);
4375 end_of_next
= next
->output_offset
+ next
->size
;
4376 if (end_of_next
- stub_group_start
>= stub_group_size
)
4377 /* End of NEXT is too far from start, so stop. */
4379 /* Add NEXT to the group. */
4383 /* OK, the size from the start to the start of CURR is less
4384 than stub_group_size and thus can be handled by one stub
4385 section. (Or the head section is itself larger than
4386 stub_group_size, in which case we may be toast.)
4387 We should really be keeping track of the total size of
4388 stubs added here, as stubs contribute to the final output
4392 next
= NEXT_SEC (head
);
4393 /* Set up this stub group. */
4394 htab
->stub_group
[head
->id
].link_sec
= curr
;
4396 while (head
!= curr
&& (head
= next
) != NULL
);
4398 /* But wait, there's more! Input sections up to stub_group_size
4399 bytes after the stub section can be handled by it too. */
4400 if (!stubs_always_after_branch
)
4402 stub_group_start
= curr
->output_offset
+ curr
->size
;
4404 while (next
!= NULL
)
4406 end_of_next
= next
->output_offset
+ next
->size
;
4407 if (end_of_next
- stub_group_start
>= stub_group_size
)
4408 /* End of NEXT is too far from stubs, so stop. */
4410 /* Add NEXT to the stub group. */
4412 next
= NEXT_SEC (head
);
4413 htab
->stub_group
[head
->id
].link_sec
= curr
;
4419 while (list
++ != htab
->input_list
+ htab
->top_index
);
4421 free (htab
->input_list
);
4426 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4430 a8_reloc_compare (const void *a
, const void *b
)
4432 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
4433 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
4435 if (ra
->from
< rb
->from
)
4437 else if (ra
->from
> rb
->from
)
4443 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
4444 const char *, char **);
4446 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4447 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4448 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4452 cortex_a8_erratum_scan (bfd
*input_bfd
,
4453 struct bfd_link_info
*info
,
4454 struct a8_erratum_fix
**a8_fixes_p
,
4455 unsigned int *num_a8_fixes_p
,
4456 unsigned int *a8_fix_table_size_p
,
4457 struct a8_erratum_reloc
*a8_relocs
,
4458 unsigned int num_a8_relocs
,
4459 unsigned prev_num_a8_fixes
,
4460 bfd_boolean
*stub_changed_p
)
4463 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4464 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
4465 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
4466 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
4471 for (section
= input_bfd
->sections
;
4473 section
= section
->next
)
4475 bfd_byte
*contents
= NULL
;
4476 struct _arm_elf_section_data
*sec_data
;
4480 if (elf_section_type (section
) != SHT_PROGBITS
4481 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4482 || (section
->flags
& SEC_EXCLUDE
) != 0
4483 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
4484 || (section
->output_section
== bfd_abs_section_ptr
))
4487 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4489 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4490 contents
= elf_section_data (section
)->this_hdr
.contents
;
4491 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4494 sec_data
= elf32_arm_section_data (section
);
4496 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4498 unsigned int span_start
= sec_data
->map
[span
].vma
;
4499 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4500 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4502 char span_type
= sec_data
->map
[span
].type
;
4503 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4505 if (span_type
!= 't')
4508 /* Span is entirely within a single 4KB region: skip scanning. */
4509 if (((base_vma
+ span_start
) & ~0xfff)
4510 == ((base_vma
+ span_end
) & ~0xfff))
4513 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4515 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4516 * The branch target is in the same 4KB region as the
4517 first half of the branch.
4518 * The instruction before the branch is a 32-bit
4519 length non-branch instruction. */
4520 for (i
= span_start
; i
< span_end
;)
4522 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4523 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4524 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4526 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4531 /* Load the rest of the insn (in manual-friendly order). */
4532 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4534 /* Encoding T4: B<c>.W. */
4535 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4536 /* Encoding T1: BL<c>.W. */
4537 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4538 /* Encoding T2: BLX<c>.W. */
4539 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4540 /* Encoding T3: B<c>.W (not permitted in IT block). */
4541 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4542 && (insn
& 0x07f00000) != 0x03800000;
4545 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4547 if (((base_vma
+ i
) & 0xfff) == 0xffe
4551 && ! last_was_branch
)
4553 bfd_signed_vma offset
= 0;
4554 bfd_boolean force_target_arm
= FALSE
;
4555 bfd_boolean force_target_thumb
= FALSE
;
4557 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4558 struct a8_erratum_reloc key
, *found
;
4560 key
.from
= base_vma
+ i
;
4561 found
= (struct a8_erratum_reloc
*)
4562 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4563 sizeof (struct a8_erratum_reloc
),
4568 char *error_message
= NULL
;
4569 struct elf_link_hash_entry
*entry
;
4570 bfd_boolean use_plt
= FALSE
;
4572 /* We don't care about the error returned from this
4573 function, only if there is glue or not. */
4574 entry
= find_thumb_glue (info
, found
->sym_name
,
4578 found
->non_a8_stub
= TRUE
;
4580 /* Keep a simpler condition, for the sake of clarity. */
4581 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
4582 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4585 if (found
->r_type
== R_ARM_THM_CALL
)
4587 if (found
->branch_type
== ST_BRANCH_TO_ARM
4589 force_target_arm
= TRUE
;
4591 force_target_thumb
= TRUE
;
4595 /* Check if we have an offending branch instruction. */
4597 if (found
&& found
->non_a8_stub
)
4598 /* We've already made a stub for this instruction, e.g.
4599 it's a long branch or a Thumb->ARM stub. Assume that
4600 stub will suffice to work around the A8 erratum (see
4601 setting of always_after_branch above). */
4605 offset
= (insn
& 0x7ff) << 1;
4606 offset
|= (insn
& 0x3f0000) >> 4;
4607 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4608 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4609 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4610 if (offset
& 0x100000)
4611 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4612 stub_type
= arm_stub_a8_veneer_b_cond
;
4614 else if (is_b
|| is_bl
|| is_blx
)
4616 int s
= (insn
& 0x4000000) != 0;
4617 int j1
= (insn
& 0x2000) != 0;
4618 int j2
= (insn
& 0x800) != 0;
4622 offset
= (insn
& 0x7ff) << 1;
4623 offset
|= (insn
& 0x3ff0000) >> 4;
4627 if (offset
& 0x1000000)
4628 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4631 offset
&= ~ ((bfd_signed_vma
) 3);
4633 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4634 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4637 if (stub_type
!= arm_stub_none
)
4639 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4641 /* The original instruction is a BL, but the target is
4642 an ARM instruction. If we were not making a stub,
4643 the BL would have been converted to a BLX. Use the
4644 BLX stub instead in that case. */
4645 if (htab
->use_blx
&& force_target_arm
4646 && stub_type
== arm_stub_a8_veneer_bl
)
4648 stub_type
= arm_stub_a8_veneer_blx
;
4652 /* Conversely, if the original instruction was
4653 BLX but the target is Thumb mode, use the BL
4655 else if (force_target_thumb
4656 && stub_type
== arm_stub_a8_veneer_blx
)
4658 stub_type
= arm_stub_a8_veneer_bl
;
4664 pc_for_insn
&= ~ ((bfd_vma
) 3);
4666 /* If we found a relocation, use the proper destination,
4667 not the offset in the (unrelocated) instruction.
4668 Note this is always done if we switched the stub type
4672 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4674 target
= pc_for_insn
+ offset
;
4676 /* The BLX stub is ARM-mode code. Adjust the offset to
4677 take the different PC value (+8 instead of +4) into
4679 if (stub_type
== arm_stub_a8_veneer_blx
)
4682 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4684 char *stub_name
= NULL
;
4686 if (num_a8_fixes
== a8_fix_table_size
)
4688 a8_fix_table_size
*= 2;
4689 a8_fixes
= (struct a8_erratum_fix
*)
4690 bfd_realloc (a8_fixes
,
4691 sizeof (struct a8_erratum_fix
)
4692 * a8_fix_table_size
);
4695 if (num_a8_fixes
< prev_num_a8_fixes
)
4697 /* If we're doing a subsequent scan,
4698 check if we've found the same fix as
4699 before, and try and reuse the stub
4701 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4702 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4703 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4707 *stub_changed_p
= TRUE
;
4713 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4714 if (stub_name
!= NULL
)
4715 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4718 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4719 a8_fixes
[num_a8_fixes
].section
= section
;
4720 a8_fixes
[num_a8_fixes
].offset
= i
;
4721 a8_fixes
[num_a8_fixes
].addend
= offset
;
4722 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4723 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4724 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4725 a8_fixes
[num_a8_fixes
].branch_type
=
4726 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
4733 i
+= insn_32bit
? 4 : 2;
4734 last_was_32bit
= insn_32bit
;
4735 last_was_branch
= is_32bit_branch
;
4739 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4743 *a8_fixes_p
= a8_fixes
;
4744 *num_a8_fixes_p
= num_a8_fixes
;
4745 *a8_fix_table_size_p
= a8_fix_table_size
;
4750 /* Determine and set the size of the stub section for a final link.
4752 The basic idea here is to examine all the relocations looking for
4753 PC-relative calls to a target that is unreachable with a "bl"
4757 elf32_arm_size_stubs (bfd
*output_bfd
,
4759 struct bfd_link_info
*info
,
4760 bfd_signed_vma group_size
,
4761 asection
* (*add_stub_section
) (const char *, asection
*),
4762 void (*layout_sections_again
) (void))
4764 bfd_size_type stub_group_size
;
4765 bfd_boolean stubs_always_after_branch
;
4766 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4767 struct a8_erratum_fix
*a8_fixes
= NULL
;
4768 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4769 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4770 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4775 if (htab
->fix_cortex_a8
)
4777 a8_fixes
= (struct a8_erratum_fix
*)
4778 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4779 a8_relocs
= (struct a8_erratum_reloc
*)
4780 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4783 /* Propagate mach to stub bfd, because it may not have been
4784 finalized when we created stub_bfd. */
4785 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4786 bfd_get_mach (output_bfd
));
4788 /* Stash our params away. */
4789 htab
->stub_bfd
= stub_bfd
;
4790 htab
->add_stub_section
= add_stub_section
;
4791 htab
->layout_sections_again
= layout_sections_again
;
4792 stubs_always_after_branch
= group_size
< 0;
4794 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4795 as the first half of a 32-bit branch straddling two 4K pages. This is a
4796 crude way of enforcing that. */
4797 if (htab
->fix_cortex_a8
)
4798 stubs_always_after_branch
= 1;
4801 stub_group_size
= -group_size
;
4803 stub_group_size
= group_size
;
4805 if (stub_group_size
== 1)
4807 /* Default values. */
4808 /* Thumb branch range is +-4MB has to be used as the default
4809 maximum size (a given section can contain both ARM and Thumb
4810 code, so the worst case has to be taken into account).
4812 This value is 24K less than that, which allows for 2025
4813 12-byte stubs. If we exceed that, then we will fail to link.
4814 The user will have to relink with an explicit group size
4816 stub_group_size
= 4170000;
4819 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4821 /* If we're applying the cortex A8 fix, we need to determine the
4822 program header size now, because we cannot change it later --
4823 that could alter section placements. Notice the A8 erratum fix
4824 ends up requiring the section addresses to remain unchanged
4825 modulo the page size. That's something we cannot represent
4826 inside BFD, and we don't want to force the section alignment to
4827 be the page size. */
4828 if (htab
->fix_cortex_a8
)
4829 (*htab
->layout_sections_again
) ();
4834 unsigned int bfd_indx
;
4836 bfd_boolean stub_changed
= FALSE
;
4837 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4840 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4842 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4844 Elf_Internal_Shdr
*symtab_hdr
;
4846 Elf_Internal_Sym
*local_syms
= NULL
;
4850 /* We'll need the symbol table in a second. */
4851 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4852 if (symtab_hdr
->sh_info
== 0)
4855 /* Walk over each section attached to the input bfd. */
4856 for (section
= input_bfd
->sections
;
4858 section
= section
->next
)
4860 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4862 /* If there aren't any relocs, then there's nothing more
4864 if ((section
->flags
& SEC_RELOC
) == 0
4865 || section
->reloc_count
== 0
4866 || (section
->flags
& SEC_CODE
) == 0)
4869 /* If this section is a link-once section that will be
4870 discarded, then don't create any stubs. */
4871 if (section
->output_section
== NULL
4872 || section
->output_section
->owner
!= output_bfd
)
4875 /* Get the relocs. */
4877 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4878 NULL
, info
->keep_memory
);
4879 if (internal_relocs
== NULL
)
4880 goto error_ret_free_local
;
4882 /* Now examine each relocation. */
4883 irela
= internal_relocs
;
4884 irelaend
= irela
+ section
->reloc_count
;
4885 for (; irela
< irelaend
; irela
++)
4887 unsigned int r_type
, r_indx
;
4888 enum elf32_arm_stub_type stub_type
;
4889 struct elf32_arm_stub_hash_entry
*stub_entry
;
4892 bfd_vma destination
;
4893 struct elf32_arm_link_hash_entry
*hash
;
4894 const char *sym_name
;
4896 const asection
*id_sec
;
4897 unsigned char st_type
;
4898 enum arm_st_branch_type branch_type
;
4899 bfd_boolean created_stub
= FALSE
;
4901 r_type
= ELF32_R_TYPE (irela
->r_info
);
4902 r_indx
= ELF32_R_SYM (irela
->r_info
);
4904 if (r_type
>= (unsigned int) R_ARM_max
)
4906 bfd_set_error (bfd_error_bad_value
);
4907 error_ret_free_internal
:
4908 if (elf_section_data (section
)->relocs
== NULL
)
4909 free (internal_relocs
);
4910 goto error_ret_free_local
;
4914 if (r_indx
>= symtab_hdr
->sh_info
)
4915 hash
= elf32_arm_hash_entry
4916 (elf_sym_hashes (input_bfd
)
4917 [r_indx
- symtab_hdr
->sh_info
]);
4919 /* Only look for stubs on branch instructions, or
4920 non-relaxed TLSCALL */
4921 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4922 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4923 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4924 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4925 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4926 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4927 && (r_type
!= (unsigned int) R_ARM_PLT32
)
4928 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
4929 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
4930 && r_type
== elf32_arm_tls_transition
4931 (info
, r_type
, &hash
->root
)
4932 && ((hash
? hash
->tls_type
4933 : (elf32_arm_local_got_tls_type
4934 (input_bfd
)[r_indx
]))
4935 & GOT_TLS_GDESC
) != 0))
4938 /* Now determine the call target, its name, value,
4945 if (r_type
== (unsigned int) R_ARM_TLS_CALL
4946 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
4948 /* A non-relaxed TLS call. The target is the
4949 plt-resident trampoline and nothing to do
4951 BFD_ASSERT (htab
->tls_trampoline
> 0);
4952 sym_sec
= htab
->root
.splt
;
4953 sym_value
= htab
->tls_trampoline
;
4956 branch_type
= ST_BRANCH_TO_ARM
;
4960 /* It's a local symbol. */
4961 Elf_Internal_Sym
*sym
;
4963 if (local_syms
== NULL
)
4966 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4967 if (local_syms
== NULL
)
4969 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4970 symtab_hdr
->sh_info
, 0,
4972 if (local_syms
== NULL
)
4973 goto error_ret_free_internal
;
4976 sym
= local_syms
+ r_indx
;
4977 if (sym
->st_shndx
== SHN_UNDEF
)
4978 sym_sec
= bfd_und_section_ptr
;
4979 else if (sym
->st_shndx
== SHN_ABS
)
4980 sym_sec
= bfd_abs_section_ptr
;
4981 else if (sym
->st_shndx
== SHN_COMMON
)
4982 sym_sec
= bfd_com_section_ptr
;
4985 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
4988 /* This is an undefined symbol. It can never
4992 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4993 sym_value
= sym
->st_value
;
4994 destination
= (sym_value
+ irela
->r_addend
4995 + sym_sec
->output_offset
4996 + sym_sec
->output_section
->vma
);
4997 st_type
= ELF_ST_TYPE (sym
->st_info
);
4998 branch_type
= ARM_SYM_BRANCH_TYPE (sym
);
5000 = bfd_elf_string_from_elf_section (input_bfd
,
5001 symtab_hdr
->sh_link
,
5006 /* It's an external symbol. */
5007 while (hash
->root
.root
.type
== bfd_link_hash_indirect
5008 || hash
->root
.root
.type
== bfd_link_hash_warning
)
5009 hash
= ((struct elf32_arm_link_hash_entry
*)
5010 hash
->root
.root
.u
.i
.link
);
5012 if (hash
->root
.root
.type
== bfd_link_hash_defined
5013 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
5015 sym_sec
= hash
->root
.root
.u
.def
.section
;
5016 sym_value
= hash
->root
.root
.u
.def
.value
;
5018 struct elf32_arm_link_hash_table
*globals
=
5019 elf32_arm_hash_table (info
);
5021 /* For a destination in a shared library,
5022 use the PLT stub as target address to
5023 decide whether a branch stub is
5026 && globals
->root
.splt
!= NULL
5028 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5030 sym_sec
= globals
->root
.splt
;
5031 sym_value
= hash
->root
.plt
.offset
;
5032 if (sym_sec
->output_section
!= NULL
)
5033 destination
= (sym_value
5034 + sym_sec
->output_offset
5035 + sym_sec
->output_section
->vma
);
5037 else if (sym_sec
->output_section
!= NULL
)
5038 destination
= (sym_value
+ irela
->r_addend
5039 + sym_sec
->output_offset
5040 + sym_sec
->output_section
->vma
);
5042 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
5043 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
5045 /* For a shared library, use the PLT stub as
5046 target address to decide whether a long
5047 branch stub is needed.
5048 For absolute code, they cannot be handled. */
5049 struct elf32_arm_link_hash_table
*globals
=
5050 elf32_arm_hash_table (info
);
5053 && globals
->root
.splt
!= NULL
5055 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5057 sym_sec
= globals
->root
.splt
;
5058 sym_value
= hash
->root
.plt
.offset
;
5059 if (sym_sec
->output_section
!= NULL
)
5060 destination
= (sym_value
5061 + sym_sec
->output_offset
5062 + sym_sec
->output_section
->vma
);
5069 bfd_set_error (bfd_error_bad_value
);
5070 goto error_ret_free_internal
;
5072 st_type
= hash
->root
.type
;
5073 branch_type
= hash
->root
.target_internal
;
5074 sym_name
= hash
->root
.root
.root
.string
;
5079 /* Determine what (if any) linker stub is needed. */
5080 stub_type
= arm_type_of_stub (info
, section
, irela
,
5081 st_type
, &branch_type
,
5082 hash
, destination
, sym_sec
,
5083 input_bfd
, sym_name
);
5084 if (stub_type
== arm_stub_none
)
5087 /* Support for grouping stub sections. */
5088 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5090 /* Get the name of this stub. */
5091 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
5094 goto error_ret_free_internal
;
5096 /* We've either created a stub for this reloc already,
5097 or we are about to. */
5098 created_stub
= TRUE
;
5100 stub_entry
= arm_stub_hash_lookup
5101 (&htab
->stub_hash_table
, stub_name
,
5103 if (stub_entry
!= NULL
)
5105 /* The proper stub has already been created. */
5107 stub_entry
->target_value
= sym_value
;
5111 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
5113 if (stub_entry
== NULL
)
5116 goto error_ret_free_internal
;
5119 stub_entry
->target_value
= sym_value
;
5120 stub_entry
->target_section
= sym_sec
;
5121 stub_entry
->stub_type
= stub_type
;
5122 stub_entry
->h
= hash
;
5123 stub_entry
->branch_type
= branch_type
;
5125 if (sym_name
== NULL
)
5126 sym_name
= "unnamed";
5127 stub_entry
->output_name
= (char *)
5128 bfd_alloc (htab
->stub_bfd
,
5129 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5130 + strlen (sym_name
));
5131 if (stub_entry
->output_name
== NULL
)
5134 goto error_ret_free_internal
;
5137 /* For historical reasons, use the existing names for
5138 ARM-to-Thumb and Thumb-to-ARM stubs. */
5139 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5140 || r_type
== (unsigned int) R_ARM_THM_JUMP24
)
5141 && branch_type
== ST_BRANCH_TO_ARM
)
5142 sprintf (stub_entry
->output_name
,
5143 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5144 else if ((r_type
== (unsigned int) R_ARM_CALL
5145 || r_type
== (unsigned int) R_ARM_JUMP24
)
5146 && branch_type
== ST_BRANCH_TO_THUMB
)
5147 sprintf (stub_entry
->output_name
,
5148 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5150 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
5153 stub_changed
= TRUE
;
5157 /* Look for relocations which might trigger Cortex-A8
5159 if (htab
->fix_cortex_a8
5160 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
5161 || r_type
== (unsigned int) R_ARM_THM_JUMP19
5162 || r_type
== (unsigned int) R_ARM_THM_CALL
5163 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
5165 bfd_vma from
= section
->output_section
->vma
5166 + section
->output_offset
5169 if ((from
& 0xfff) == 0xffe)
5171 /* Found a candidate. Note we haven't checked the
5172 destination is within 4K here: if we do so (and
5173 don't create an entry in a8_relocs) we can't tell
5174 that a branch should have been relocated when
5176 if (num_a8_relocs
== a8_reloc_table_size
)
5178 a8_reloc_table_size
*= 2;
5179 a8_relocs
= (struct a8_erratum_reloc
*)
5180 bfd_realloc (a8_relocs
,
5181 sizeof (struct a8_erratum_reloc
)
5182 * a8_reloc_table_size
);
5185 a8_relocs
[num_a8_relocs
].from
= from
;
5186 a8_relocs
[num_a8_relocs
].destination
= destination
;
5187 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
5188 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
5189 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
5190 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
5191 a8_relocs
[num_a8_relocs
].hash
= hash
;
5198 /* We're done with the internal relocs, free them. */
5199 if (elf_section_data (section
)->relocs
== NULL
)
5200 free (internal_relocs
);
5203 if (htab
->fix_cortex_a8
)
5205 /* Sort relocs which might apply to Cortex-A8 erratum. */
5206 qsort (a8_relocs
, num_a8_relocs
,
5207 sizeof (struct a8_erratum_reloc
),
5210 /* Scan for branches which might trigger Cortex-A8 erratum. */
5211 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
5212 &num_a8_fixes
, &a8_fix_table_size
,
5213 a8_relocs
, num_a8_relocs
,
5214 prev_num_a8_fixes
, &stub_changed
)
5216 goto error_ret_free_local
;
5220 if (prev_num_a8_fixes
!= num_a8_fixes
)
5221 stub_changed
= TRUE
;
5226 /* OK, we've added some stubs. Find out the new size of the
5228 for (stub_sec
= htab
->stub_bfd
->sections
;
5230 stub_sec
= stub_sec
->next
)
5232 /* Ignore non-stub sections. */
5233 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5239 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
5241 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5242 if (htab
->fix_cortex_a8
)
5243 for (i
= 0; i
< num_a8_fixes
; i
++)
5245 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
5246 a8_fixes
[i
].section
, htab
);
5248 if (stub_sec
== NULL
)
5249 goto error_ret_free_local
;
5252 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
5257 /* Ask the linker to do its stuff. */
5258 (*htab
->layout_sections_again
) ();
5261 /* Add stubs for Cortex-A8 erratum fixes now. */
5262 if (htab
->fix_cortex_a8
)
5264 for (i
= 0; i
< num_a8_fixes
; i
++)
5266 struct elf32_arm_stub_hash_entry
*stub_entry
;
5267 char *stub_name
= a8_fixes
[i
].stub_name
;
5268 asection
*section
= a8_fixes
[i
].section
;
5269 unsigned int section_id
= a8_fixes
[i
].section
->id
;
5270 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
5271 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
5272 const insn_sequence
*template_sequence
;
5273 int template_size
, size
= 0;
5275 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
5277 if (stub_entry
== NULL
)
5279 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
5285 stub_entry
->stub_sec
= stub_sec
;
5286 stub_entry
->stub_offset
= 0;
5287 stub_entry
->id_sec
= link_sec
;
5288 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
5289 stub_entry
->target_section
= a8_fixes
[i
].section
;
5290 stub_entry
->target_value
= a8_fixes
[i
].offset
;
5291 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
5292 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
5293 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
5295 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
5299 stub_entry
->stub_size
= size
;
5300 stub_entry
->stub_template
= template_sequence
;
5301 stub_entry
->stub_template_size
= template_size
;
5304 /* Stash the Cortex-A8 erratum fix array for use later in
5305 elf32_arm_write_section(). */
5306 htab
->a8_erratum_fixes
= a8_fixes
;
5307 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
5311 htab
->a8_erratum_fixes
= NULL
;
5312 htab
->num_a8_erratum_fixes
= 0;
5316 error_ret_free_local
:
5320 /* Build all the stubs associated with the current output file. The
5321 stubs are kept in a hash table attached to the main linker hash
5322 table. We also set up the .plt entries for statically linked PIC
5323 functions here. This function is called via arm_elf_finish in the
5327 elf32_arm_build_stubs (struct bfd_link_info
*info
)
5330 struct bfd_hash_table
*table
;
5331 struct elf32_arm_link_hash_table
*htab
;
5333 htab
= elf32_arm_hash_table (info
);
5337 for (stub_sec
= htab
->stub_bfd
->sections
;
5339 stub_sec
= stub_sec
->next
)
5343 /* Ignore non-stub sections. */
5344 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5347 /* Allocate memory to hold the linker stubs. */
5348 size
= stub_sec
->size
;
5349 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
5350 if (stub_sec
->contents
== NULL
&& size
!= 0)
5355 /* Build the stubs as directed by the stub hash table. */
5356 table
= &htab
->stub_hash_table
;
5357 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5358 if (htab
->fix_cortex_a8
)
5360 /* Place the cortex a8 stubs last. */
5361 htab
->fix_cortex_a8
= -1;
5362 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5368 /* Locate the Thumb encoded calling stub for NAME. */
5370 static struct elf_link_hash_entry
*
5371 find_thumb_glue (struct bfd_link_info
*link_info
,
5373 char **error_message
)
5376 struct elf_link_hash_entry
*hash
;
5377 struct elf32_arm_link_hash_table
*hash_table
;
5379 /* We need a pointer to the armelf specific hash table. */
5380 hash_table
= elf32_arm_hash_table (link_info
);
5381 if (hash_table
== NULL
)
5384 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5385 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
5387 BFD_ASSERT (tmp_name
);
5389 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
5391 hash
= elf_link_hash_lookup
5392 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5395 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
5396 tmp_name
, name
) == -1)
5397 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5404 /* Locate the ARM encoded calling stub for NAME. */
5406 static struct elf_link_hash_entry
*
5407 find_arm_glue (struct bfd_link_info
*link_info
,
5409 char **error_message
)
5412 struct elf_link_hash_entry
*myh
;
5413 struct elf32_arm_link_hash_table
*hash_table
;
5415 /* We need a pointer to the elfarm specific hash table. */
5416 hash_table
= elf32_arm_hash_table (link_info
);
5417 if (hash_table
== NULL
)
5420 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5421 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5423 BFD_ASSERT (tmp_name
);
5425 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5427 myh
= elf_link_hash_lookup
5428 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5431 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
5432 tmp_name
, name
) == -1)
5433 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5440 /* ARM->Thumb glue (static images):
5444 ldr r12, __func_addr
5447 .word func @ behave as if you saw a ARM_32 reloc.
5454 .word func @ behave as if you saw a ARM_32 reloc.
5456 (relocatable images)
5459 ldr r12, __func_offset
5465 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5466 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
5467 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
5468 static const insn32 a2t3_func_addr_insn
= 0x00000001;
5470 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5471 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
5472 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
5474 #define ARM2THUMB_PIC_GLUE_SIZE 16
5475 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
5476 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
5477 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
5479 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5483 __func_from_thumb: __func_from_thumb:
5485 nop ldr r6, __func_addr
5495 #define THUMB2ARM_GLUE_SIZE 8
5496 static const insn16 t2a1_bx_pc_insn
= 0x4778;
5497 static const insn16 t2a2_noop_insn
= 0x46c0;
5498 static const insn32 t2a3_b_insn
= 0xea000000;
5500 #define VFP11_ERRATUM_VENEER_SIZE 8
5502 #define ARM_BX_VENEER_SIZE 12
5503 static const insn32 armbx1_tst_insn
= 0xe3100001;
5504 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5505 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5507 #ifndef ELFARM_NABI_C_INCLUDED
5509 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5512 bfd_byte
* contents
;
5516 /* Do not include empty glue sections in the output. */
5519 s
= bfd_get_section_by_name (abfd
, name
);
5521 s
->flags
|= SEC_EXCLUDE
;
5526 BFD_ASSERT (abfd
!= NULL
);
5528 s
= bfd_get_section_by_name (abfd
, name
);
5529 BFD_ASSERT (s
!= NULL
);
5531 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5533 BFD_ASSERT (s
->size
== size
);
5534 s
->contents
= contents
;
5538 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5540 struct elf32_arm_link_hash_table
* globals
;
5542 globals
= elf32_arm_hash_table (info
);
5543 BFD_ASSERT (globals
!= NULL
);
5545 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5546 globals
->arm_glue_size
,
5547 ARM2THUMB_GLUE_SECTION_NAME
);
5549 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5550 globals
->thumb_glue_size
,
5551 THUMB2ARM_GLUE_SECTION_NAME
);
5553 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5554 globals
->vfp11_erratum_glue_size
,
5555 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5557 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5558 globals
->bx_glue_size
,
5559 ARM_BX_GLUE_SECTION_NAME
);
5564 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5565 returns the symbol identifying the stub. */
5567 static struct elf_link_hash_entry
*
5568 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5569 struct elf_link_hash_entry
* h
)
5571 const char * name
= h
->root
.root
.string
;
5574 struct elf_link_hash_entry
* myh
;
5575 struct bfd_link_hash_entry
* bh
;
5576 struct elf32_arm_link_hash_table
* globals
;
5580 globals
= elf32_arm_hash_table (link_info
);
5581 BFD_ASSERT (globals
!= NULL
);
5582 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5584 s
= bfd_get_section_by_name
5585 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5587 BFD_ASSERT (s
!= NULL
);
5589 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5590 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5592 BFD_ASSERT (tmp_name
);
5594 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5596 myh
= elf_link_hash_lookup
5597 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5601 /* We've already seen this guy. */
5606 /* The only trick here is using hash_table->arm_glue_size as the value.
5607 Even though the section isn't allocated yet, this is where we will be
5608 putting it. The +1 on the value marks that the stub has not been
5609 output yet - not that it is a Thumb function. */
5611 val
= globals
->arm_glue_size
+ 1;
5612 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5613 tmp_name
, BSF_GLOBAL
, s
, val
,
5614 NULL
, TRUE
, FALSE
, &bh
);
5616 myh
= (struct elf_link_hash_entry
*) bh
;
5617 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5618 myh
->forced_local
= 1;
5622 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5623 || globals
->pic_veneer
)
5624 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5625 else if (globals
->use_blx
)
5626 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5628 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5631 globals
->arm_glue_size
+= size
;
5636 /* Allocate space for ARMv4 BX veneers. */
5639 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5642 struct elf32_arm_link_hash_table
*globals
;
5644 struct elf_link_hash_entry
*myh
;
5645 struct bfd_link_hash_entry
*bh
;
5648 /* BX PC does not need a veneer. */
5652 globals
= elf32_arm_hash_table (link_info
);
5653 BFD_ASSERT (globals
!= NULL
);
5654 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5656 /* Check if this veneer has already been allocated. */
5657 if (globals
->bx_glue_offset
[reg
])
5660 s
= bfd_get_section_by_name
5661 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5663 BFD_ASSERT (s
!= NULL
);
5665 /* Add symbol for veneer. */
5667 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5669 BFD_ASSERT (tmp_name
);
5671 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5673 myh
= elf_link_hash_lookup
5674 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5676 BFD_ASSERT (myh
== NULL
);
5679 val
= globals
->bx_glue_size
;
5680 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5681 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5682 NULL
, TRUE
, FALSE
, &bh
);
5684 myh
= (struct elf_link_hash_entry
*) bh
;
5685 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5686 myh
->forced_local
= 1;
5688 s
->size
+= ARM_BX_VENEER_SIZE
;
5689 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5690 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5694 /* Add an entry to the code/data map for section SEC. */
5697 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5699 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5700 unsigned int newidx
;
5702 if (sec_data
->map
== NULL
)
5704 sec_data
->map
= (elf32_arm_section_map
*)
5705 bfd_malloc (sizeof (elf32_arm_section_map
));
5706 sec_data
->mapcount
= 0;
5707 sec_data
->mapsize
= 1;
5710 newidx
= sec_data
->mapcount
++;
5712 if (sec_data
->mapcount
> sec_data
->mapsize
)
5714 sec_data
->mapsize
*= 2;
5715 sec_data
->map
= (elf32_arm_section_map
*)
5716 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5717 * sizeof (elf32_arm_section_map
));
5722 sec_data
->map
[newidx
].vma
= vma
;
5723 sec_data
->map
[newidx
].type
= type
;
5728 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5729 veneers are handled for now. */
5732 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5733 elf32_vfp11_erratum_list
*branch
,
5735 asection
*branch_sec
,
5736 unsigned int offset
)
5739 struct elf32_arm_link_hash_table
*hash_table
;
5741 struct elf_link_hash_entry
*myh
;
5742 struct bfd_link_hash_entry
*bh
;
5744 struct _arm_elf_section_data
*sec_data
;
5745 elf32_vfp11_erratum_list
*newerr
;
5747 hash_table
= elf32_arm_hash_table (link_info
);
5748 BFD_ASSERT (hash_table
!= NULL
);
5749 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5751 s
= bfd_get_section_by_name
5752 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5754 sec_data
= elf32_arm_section_data (s
);
5756 BFD_ASSERT (s
!= NULL
);
5758 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5759 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5761 BFD_ASSERT (tmp_name
);
5763 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5764 hash_table
->num_vfp11_fixes
);
5766 myh
= elf_link_hash_lookup
5767 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5769 BFD_ASSERT (myh
== NULL
);
5772 val
= hash_table
->vfp11_erratum_glue_size
;
5773 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5774 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5775 NULL
, TRUE
, FALSE
, &bh
);
5777 myh
= (struct elf_link_hash_entry
*) bh
;
5778 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5779 myh
->forced_local
= 1;
5781 /* Link veneer back to calling location. */
5782 sec_data
->erratumcount
+= 1;
5783 newerr
= (elf32_vfp11_erratum_list
*)
5784 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5786 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5788 newerr
->u
.v
.branch
= branch
;
5789 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5790 branch
->u
.b
.veneer
= newerr
;
5792 newerr
->next
= sec_data
->erratumlist
;
5793 sec_data
->erratumlist
= newerr
;
5795 /* A symbol for the return from the veneer. */
5796 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5797 hash_table
->num_vfp11_fixes
);
5799 myh
= elf_link_hash_lookup
5800 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5807 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5808 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5810 myh
= (struct elf_link_hash_entry
*) bh
;
5811 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5812 myh
->forced_local
= 1;
5816 /* Generate a mapping symbol for the veneer section, and explicitly add an
5817 entry for that symbol to the code/data map for the section. */
5818 if (hash_table
->vfp11_erratum_glue_size
== 0)
5821 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5822 ever requires this erratum fix. */
5823 _bfd_generic_link_add_one_symbol (link_info
,
5824 hash_table
->bfd_of_glue_owner
, "$a",
5825 BSF_LOCAL
, s
, 0, NULL
,
5828 myh
= (struct elf_link_hash_entry
*) bh
;
5829 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5830 myh
->forced_local
= 1;
5832 /* The elf32_arm_init_maps function only cares about symbols from input
5833 BFDs. We must make a note of this generated mapping symbol
5834 ourselves so that code byteswapping works properly in
5835 elf32_arm_write_section. */
5836 elf32_arm_section_map_add (s
, 'a', 0);
5839 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5840 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5841 hash_table
->num_vfp11_fixes
++;
5843 /* The offset of the veneer. */
5847 #define ARM_GLUE_SECTION_FLAGS \
5848 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5849 | SEC_READONLY | SEC_LINKER_CREATED)
5851 /* Create a fake section for use by the ARM backend of the linker. */
5854 arm_make_glue_section (bfd
* abfd
, const char * name
)
5858 sec
= bfd_get_section_by_name (abfd
, name
);
5863 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5866 || !bfd_set_section_alignment (abfd
, sec
, 2))
5869 /* Set the gc mark to prevent the section from being removed by garbage
5870 collection, despite the fact that no relocs refer to this section. */
5876 /* Add the glue sections to ABFD. This function is called from the
5877 linker scripts in ld/emultempl/{armelf}.em. */
5880 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5881 struct bfd_link_info
*info
)
5883 /* If we are only performing a partial
5884 link do not bother adding the glue. */
5885 if (info
->relocatable
)
5888 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5889 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5890 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5891 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5894 /* Select a BFD to be used to hold the sections used by the glue code.
5895 This function is called from the linker scripts in ld/emultempl/
5899 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5901 struct elf32_arm_link_hash_table
*globals
;
5903 /* If we are only performing a partial link
5904 do not bother getting a bfd to hold the glue. */
5905 if (info
->relocatable
)
5908 /* Make sure we don't attach the glue sections to a dynamic object. */
5909 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5911 globals
= elf32_arm_hash_table (info
);
5912 BFD_ASSERT (globals
!= NULL
);
5914 if (globals
->bfd_of_glue_owner
!= NULL
)
5917 /* Save the bfd for later use. */
5918 globals
->bfd_of_glue_owner
= abfd
;
5924 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5926 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5928 globals
->use_blx
= 1;
5932 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5933 struct bfd_link_info
*link_info
)
5935 Elf_Internal_Shdr
*symtab_hdr
;
5936 Elf_Internal_Rela
*internal_relocs
= NULL
;
5937 Elf_Internal_Rela
*irel
, *irelend
;
5938 bfd_byte
*contents
= NULL
;
5941 struct elf32_arm_link_hash_table
*globals
;
5943 /* If we are only performing a partial link do not bother
5944 to construct any glue. */
5945 if (link_info
->relocatable
)
5948 /* Here we have a bfd that is to be included on the link. We have a
5949 hook to do reloc rummaging, before section sizes are nailed down. */
5950 globals
= elf32_arm_hash_table (link_info
);
5951 BFD_ASSERT (globals
!= NULL
);
5953 check_use_blx (globals
);
5955 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5957 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5962 /* PR 5398: If we have not decided to include any loadable sections in
5963 the output then we will not have a glue owner bfd. This is OK, it
5964 just means that there is nothing else for us to do here. */
5965 if (globals
->bfd_of_glue_owner
== NULL
)
5968 /* Rummage around all the relocs and map the glue vectors. */
5969 sec
= abfd
->sections
;
5974 for (; sec
!= NULL
; sec
= sec
->next
)
5976 if (sec
->reloc_count
== 0)
5979 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5982 symtab_hdr
= & elf_symtab_hdr (abfd
);
5984 /* Load the relocs. */
5986 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5988 if (internal_relocs
== NULL
)
5991 irelend
= internal_relocs
+ sec
->reloc_count
;
5992 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5995 unsigned long r_index
;
5997 struct elf_link_hash_entry
*h
;
5999 r_type
= ELF32_R_TYPE (irel
->r_info
);
6000 r_index
= ELF32_R_SYM (irel
->r_info
);
6002 /* These are the only relocation types we care about. */
6003 if ( r_type
!= R_ARM_PC24
6004 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
6007 /* Get the section contents if we haven't done so already. */
6008 if (contents
== NULL
)
6010 /* Get cached copy if it exists. */
6011 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6012 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6015 /* Go get them off disk. */
6016 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6021 if (r_type
== R_ARM_V4BX
)
6025 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
6026 record_arm_bx_glue (link_info
, reg
);
6030 /* If the relocation is not against a symbol it cannot concern us. */
6033 /* We don't care about local symbols. */
6034 if (r_index
< symtab_hdr
->sh_info
)
6037 /* This is an external symbol. */
6038 r_index
-= symtab_hdr
->sh_info
;
6039 h
= (struct elf_link_hash_entry
*)
6040 elf_sym_hashes (abfd
)[r_index
];
6042 /* If the relocation is against a static symbol it must be within
6043 the current section and so cannot be a cross ARM/Thumb relocation. */
6047 /* If the call will go through a PLT entry then we do not need
6049 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6055 /* This one is a call from arm code. We need to look up
6056 the target of the call. If it is a thumb target, we
6058 if (h
->target_internal
== ST_BRANCH_TO_THUMB
)
6059 record_arm_to_thumb_glue (link_info
, h
);
6067 if (contents
!= NULL
6068 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6072 if (internal_relocs
!= NULL
6073 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6074 free (internal_relocs
);
6075 internal_relocs
= NULL
;
6081 if (contents
!= NULL
6082 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6084 if (internal_relocs
!= NULL
6085 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6086 free (internal_relocs
);
6093 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6096 bfd_elf32_arm_init_maps (bfd
*abfd
)
6098 Elf_Internal_Sym
*isymbuf
;
6099 Elf_Internal_Shdr
*hdr
;
6100 unsigned int i
, localsyms
;
6102 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6103 if (! is_arm_elf (abfd
))
6106 if ((abfd
->flags
& DYNAMIC
) != 0)
6109 hdr
= & elf_symtab_hdr (abfd
);
6110 localsyms
= hdr
->sh_info
;
6112 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6113 should contain the number of local symbols, which should come before any
6114 global symbols. Mapping symbols are always local. */
6115 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
6118 /* No internal symbols read? Skip this BFD. */
6119 if (isymbuf
== NULL
)
6122 for (i
= 0; i
< localsyms
; i
++)
6124 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
6125 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6129 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
6131 name
= bfd_elf_string_from_elf_section (abfd
,
6132 hdr
->sh_link
, isym
->st_name
);
6134 if (bfd_is_arm_special_symbol_name (name
,
6135 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
6136 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
6142 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6143 say what they wanted. */
6146 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6148 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6149 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6151 if (globals
== NULL
)
6154 if (globals
->fix_cortex_a8
== -1)
6156 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6157 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
6158 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
6159 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
6160 globals
->fix_cortex_a8
= 1;
6162 globals
->fix_cortex_a8
= 0;
6168 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6170 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6171 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6173 if (globals
== NULL
)
6175 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6176 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
6178 switch (globals
->vfp11_fix
)
6180 case BFD_ARM_VFP11_FIX_DEFAULT
:
6181 case BFD_ARM_VFP11_FIX_NONE
:
6182 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6186 /* Give a warning, but do as the user requests anyway. */
6187 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
6188 "workaround is not necessary for target architecture"), obfd
);
6191 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
6192 /* For earlier architectures, we might need the workaround, but do not
6193 enable it by default. If users is running with broken hardware, they
6194 must enable the erratum fix explicitly. */
6195 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6199 enum bfd_arm_vfp11_pipe
6207 /* Return a VFP register number. This is encoded as RX:X for single-precision
6208 registers, or X:RX for double-precision registers, where RX is the group of
6209 four bits in the instruction encoding and X is the single extension bit.
6210 RX and X fields are specified using their lowest (starting) bit. The return
6213 0...31: single-precision registers s0...s31
6214 32...63: double-precision registers d0...d31.
6216 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6217 encounter VFP3 instructions, so we allow the full range for DP registers. */
6220 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
6224 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
6226 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
6229 /* Set bits in *WMASK according to a register number REG as encoded by
6230 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6233 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
6238 *wmask
|= 3 << ((reg
- 32) * 2);
6241 /* Return TRUE if WMASK overwrites anything in REGS. */
6244 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
6248 for (i
= 0; i
< numregs
; i
++)
6250 unsigned int reg
= regs
[i
];
6252 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
6260 if ((wmask
& (3 << (reg
* 2))) != 0)
6267 /* In this function, we're interested in two things: finding input registers
6268 for VFP data-processing instructions, and finding the set of registers which
6269 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6270 hold the written set, so FLDM etc. are easy to deal with (we're only
6271 interested in 32 SP registers or 16 dp registers, due to the VFP version
6272 implemented by the chip in question). DP registers are marked by setting
6273 both SP registers in the write mask). */
6275 static enum bfd_arm_vfp11_pipe
6276 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
6279 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
6280 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
6282 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6285 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6286 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6288 pqrs
= ((insn
& 0x00800000) >> 20)
6289 | ((insn
& 0x00300000) >> 19)
6290 | ((insn
& 0x00000040) >> 6);
6294 case 0: /* fmac[sd]. */
6295 case 1: /* fnmac[sd]. */
6296 case 2: /* fmsc[sd]. */
6297 case 3: /* fnmsc[sd]. */
6299 bfd_arm_vfp11_write_mask (destmask
, fd
);
6301 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6306 case 4: /* fmul[sd]. */
6307 case 5: /* fnmul[sd]. */
6308 case 6: /* fadd[sd]. */
6309 case 7: /* fsub[sd]. */
6313 case 8: /* fdiv[sd]. */
6316 bfd_arm_vfp11_write_mask (destmask
, fd
);
6317 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6322 case 15: /* extended opcode. */
6324 unsigned int extn
= ((insn
>> 15) & 0x1e)
6325 | ((insn
>> 7) & 1);
6329 case 0: /* fcpy[sd]. */
6330 case 1: /* fabs[sd]. */
6331 case 2: /* fneg[sd]. */
6332 case 8: /* fcmp[sd]. */
6333 case 9: /* fcmpe[sd]. */
6334 case 10: /* fcmpz[sd]. */
6335 case 11: /* fcmpez[sd]. */
6336 case 16: /* fuito[sd]. */
6337 case 17: /* fsito[sd]. */
6338 case 24: /* ftoui[sd]. */
6339 case 25: /* ftouiz[sd]. */
6340 case 26: /* ftosi[sd]. */
6341 case 27: /* ftosiz[sd]. */
6342 /* These instructions will not bounce due to underflow. */
6347 case 3: /* fsqrt[sd]. */
6348 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6349 registers to cause the erratum in previous instructions. */
6350 bfd_arm_vfp11_write_mask (destmask
, fd
);
6354 case 15: /* fcvt{ds,sd}. */
6358 bfd_arm_vfp11_write_mask (destmask
, fd
);
6360 /* Only FCVTSD can underflow. */
6361 if ((insn
& 0x100) != 0)
6380 /* Two-register transfer. */
6381 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
6383 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6385 if ((insn
& 0x100000) == 0)
6388 bfd_arm_vfp11_write_mask (destmask
, fm
);
6391 bfd_arm_vfp11_write_mask (destmask
, fm
);
6392 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
6398 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
6400 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6401 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
6405 case 0: /* Two-reg transfer. We should catch these above. */
6408 case 2: /* fldm[sdx]. */
6412 unsigned int i
, offset
= insn
& 0xff;
6417 for (i
= fd
; i
< fd
+ offset
; i
++)
6418 bfd_arm_vfp11_write_mask (destmask
, i
);
6422 case 4: /* fld[sd]. */
6424 bfd_arm_vfp11_write_mask (destmask
, fd
);
6433 /* Single-register transfer. Note L==0. */
6434 else if ((insn
& 0x0f100e10) == 0x0e000a10)
6436 unsigned int opcode
= (insn
>> 21) & 7;
6437 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
6441 case 0: /* fmsr/fmdlr. */
6442 case 1: /* fmdhr. */
6443 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6444 destination register. I don't know if this is exactly right,
6445 but it is the conservative choice. */
6446 bfd_arm_vfp11_write_mask (destmask
, fn
);
6460 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
6463 /* Look for potentially-troublesome code sequences which might trigger the
6464 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6465 (available from ARM) for details of the erratum. A short version is
6466 described in ld.texinfo. */
6469 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
6472 bfd_byte
*contents
= NULL
;
6474 int regs
[3], numregs
= 0;
6475 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6476 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
6478 if (globals
== NULL
)
6481 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6482 The states transition as follows:
6484 0 -> 1 (vector) or 0 -> 2 (scalar)
6485 A VFP FMAC-pipeline instruction has been seen. Fill
6486 regs[0]..regs[numregs-1] with its input operands. Remember this
6487 instruction in 'first_fmac'.
6490 Any instruction, except for a VFP instruction which overwrites
6495 A VFP instruction has been seen which overwrites any of regs[*].
6496 We must make a veneer! Reset state to 0 before examining next
6500 If we fail to match anything in state 2, reset to state 0 and reset
6501 the instruction pointer to the instruction after 'first_fmac'.
6503 If the VFP11 vector mode is in use, there must be at least two unrelated
6504 instructions between anti-dependent VFP11 instructions to properly avoid
6505 triggering the erratum, hence the use of the extra state 1. */
6507 /* If we are only performing a partial link do not bother
6508 to construct any glue. */
6509 if (link_info
->relocatable
)
6512 /* Skip if this bfd does not correspond to an ELF image. */
6513 if (! is_arm_elf (abfd
))
6516 /* We should have chosen a fix type by the time we get here. */
6517 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6519 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6522 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6523 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6526 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6528 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6529 struct _arm_elf_section_data
*sec_data
;
6531 /* If we don't have executable progbits, we're not interested in this
6532 section. Also skip if section is to be excluded. */
6533 if (elf_section_type (sec
) != SHT_PROGBITS
6534 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6535 || (sec
->flags
& SEC_EXCLUDE
) != 0
6536 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
6537 || sec
->output_section
== bfd_abs_section_ptr
6538 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6541 sec_data
= elf32_arm_section_data (sec
);
6543 if (sec_data
->mapcount
== 0)
6546 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6547 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6548 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6551 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6552 elf32_arm_compare_mapping
);
6554 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6556 unsigned int span_start
= sec_data
->map
[span
].vma
;
6557 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6558 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6559 char span_type
= sec_data
->map
[span
].type
;
6561 /* FIXME: Only ARM mode is supported at present. We may need to
6562 support Thumb-2 mode also at some point. */
6563 if (span_type
!= 'a')
6566 for (i
= span_start
; i
< span_end
;)
6568 unsigned int next_i
= i
+ 4;
6569 unsigned int insn
= bfd_big_endian (abfd
)
6570 ? (contents
[i
] << 24)
6571 | (contents
[i
+ 1] << 16)
6572 | (contents
[i
+ 2] << 8)
6574 : (contents
[i
+ 3] << 24)
6575 | (contents
[i
+ 2] << 16)
6576 | (contents
[i
+ 1] << 8)
6578 unsigned int writemask
= 0;
6579 enum bfd_arm_vfp11_pipe vpipe
;
6584 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6586 /* I'm assuming the VFP11 erratum can trigger with denorm
6587 operands on either the FMAC or the DS pipeline. This might
6588 lead to slightly overenthusiastic veneer insertion. */
6589 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6591 state
= use_vector
? 1 : 2;
6593 veneer_of_insn
= insn
;
6599 int other_regs
[3], other_numregs
;
6600 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6603 if (vpipe
!= VFP11_BAD
6604 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6614 int other_regs
[3], other_numregs
;
6615 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6618 if (vpipe
!= VFP11_BAD
6619 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6625 next_i
= first_fmac
+ 4;
6631 abort (); /* Should be unreachable. */
6636 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6637 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6639 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6641 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6646 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6653 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6658 newerr
->next
= sec_data
->erratumlist
;
6659 sec_data
->erratumlist
= newerr
;
6668 if (contents
!= NULL
6669 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6677 if (contents
!= NULL
6678 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6684 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6685 after sections have been laid out, using specially-named symbols. */
6688 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6689 struct bfd_link_info
*link_info
)
6692 struct elf32_arm_link_hash_table
*globals
;
6695 if (link_info
->relocatable
)
6698 /* Skip if this bfd does not correspond to an ELF image. */
6699 if (! is_arm_elf (abfd
))
6702 globals
= elf32_arm_hash_table (link_info
);
6703 if (globals
== NULL
)
6706 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6707 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6709 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6711 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6712 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6714 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6716 struct elf_link_hash_entry
*myh
;
6719 switch (errnode
->type
)
6721 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6722 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6723 /* Find veneer symbol. */
6724 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6725 errnode
->u
.b
.veneer
->u
.v
.id
);
6727 myh
= elf_link_hash_lookup
6728 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6731 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6732 "`%s'"), abfd
, tmp_name
);
6734 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6735 + myh
->root
.u
.def
.section
->output_offset
6736 + myh
->root
.u
.def
.value
;
6738 errnode
->u
.b
.veneer
->vma
= vma
;
6741 case VFP11_ERRATUM_ARM_VENEER
:
6742 case VFP11_ERRATUM_THUMB_VENEER
:
6743 /* Find return location. */
6744 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6747 myh
= elf_link_hash_lookup
6748 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6751 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6752 "`%s'"), abfd
, tmp_name
);
6754 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6755 + myh
->root
.u
.def
.section
->output_offset
6756 + myh
->root
.u
.def
.value
;
6758 errnode
->u
.v
.branch
->vma
= vma
;
6771 /* Set target relocation values needed during linking. */
6774 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6775 struct bfd_link_info
*link_info
,
6777 char * target2_type
,
6780 bfd_arm_vfp11_fix vfp11_fix
,
6781 int no_enum_warn
, int no_wchar_warn
,
6782 int pic_veneer
, int fix_cortex_a8
)
6784 struct elf32_arm_link_hash_table
*globals
;
6786 globals
= elf32_arm_hash_table (link_info
);
6787 if (globals
== NULL
)
6790 globals
->target1_is_rel
= target1_is_rel
;
6791 if (strcmp (target2_type
, "rel") == 0)
6792 globals
->target2_reloc
= R_ARM_REL32
;
6793 else if (strcmp (target2_type
, "abs") == 0)
6794 globals
->target2_reloc
= R_ARM_ABS32
;
6795 else if (strcmp (target2_type
, "got-rel") == 0)
6796 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6799 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6802 globals
->fix_v4bx
= fix_v4bx
;
6803 globals
->use_blx
|= use_blx
;
6804 globals
->vfp11_fix
= vfp11_fix
;
6805 globals
->pic_veneer
= pic_veneer
;
6806 globals
->fix_cortex_a8
= fix_cortex_a8
;
6808 BFD_ASSERT (is_arm_elf (output_bfd
));
6809 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6810 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6813 /* Replace the target offset of a Thumb bl or b.w instruction. */
6816 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6822 BFD_ASSERT ((offset
& 1) == 0);
6824 upper
= bfd_get_16 (abfd
, insn
);
6825 lower
= bfd_get_16 (abfd
, insn
+ 2);
6826 reloc_sign
= (offset
< 0) ? 1 : 0;
6827 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6828 | ((offset
>> 12) & 0x3ff)
6829 | (reloc_sign
<< 10);
6830 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6831 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6832 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6833 | ((offset
>> 1) & 0x7ff);
6834 bfd_put_16 (abfd
, upper
, insn
);
6835 bfd_put_16 (abfd
, lower
, insn
+ 2);
6838 /* Thumb code calling an ARM function. */
6841 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6845 asection
* input_section
,
6846 bfd_byte
* hit_data
,
6849 bfd_signed_vma addend
,
6851 char **error_message
)
6855 long int ret_offset
;
6856 struct elf_link_hash_entry
* myh
;
6857 struct elf32_arm_link_hash_table
* globals
;
6859 myh
= find_thumb_glue (info
, name
, error_message
);
6863 globals
= elf32_arm_hash_table (info
);
6864 BFD_ASSERT (globals
!= NULL
);
6865 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6867 my_offset
= myh
->root
.u
.def
.value
;
6869 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6870 THUMB2ARM_GLUE_SECTION_NAME
);
6872 BFD_ASSERT (s
!= NULL
);
6873 BFD_ASSERT (s
->contents
!= NULL
);
6874 BFD_ASSERT (s
->output_section
!= NULL
);
6876 if ((my_offset
& 0x01) == 0x01)
6879 && sym_sec
->owner
!= NULL
6880 && !INTERWORK_FLAG (sym_sec
->owner
))
6882 (*_bfd_error_handler
)
6883 (_("%B(%s): warning: interworking not enabled.\n"
6884 " first occurrence: %B: thumb call to arm"),
6885 sym_sec
->owner
, input_bfd
, name
);
6891 myh
->root
.u
.def
.value
= my_offset
;
6893 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6894 s
->contents
+ my_offset
);
6896 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6897 s
->contents
+ my_offset
+ 2);
6900 /* Address of destination of the stub. */
6901 ((bfd_signed_vma
) val
)
6903 /* Offset from the start of the current section
6904 to the start of the stubs. */
6906 /* Offset of the start of this stub from the start of the stubs. */
6908 /* Address of the start of the current section. */
6909 + s
->output_section
->vma
)
6910 /* The branch instruction is 4 bytes into the stub. */
6912 /* ARM branches work from the pc of the instruction + 8. */
6915 put_arm_insn (globals
, output_bfd
,
6916 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6917 s
->contents
+ my_offset
+ 4);
6920 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6922 /* Now go back and fix up the original BL insn to point to here. */
6924 /* Address of where the stub is located. */
6925 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6926 /* Address of where the BL is located. */
6927 - (input_section
->output_section
->vma
+ input_section
->output_offset
6929 /* Addend in the relocation. */
6931 /* Biassing for PC-relative addressing. */
6934 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6939 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6941 static struct elf_link_hash_entry
*
6942 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6949 char ** error_message
)
6952 long int ret_offset
;
6953 struct elf_link_hash_entry
* myh
;
6954 struct elf32_arm_link_hash_table
* globals
;
6956 myh
= find_arm_glue (info
, name
, error_message
);
6960 globals
= elf32_arm_hash_table (info
);
6961 BFD_ASSERT (globals
!= NULL
);
6962 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6964 my_offset
= myh
->root
.u
.def
.value
;
6966 if ((my_offset
& 0x01) == 0x01)
6969 && sym_sec
->owner
!= NULL
6970 && !INTERWORK_FLAG (sym_sec
->owner
))
6972 (*_bfd_error_handler
)
6973 (_("%B(%s): warning: interworking not enabled.\n"
6974 " first occurrence: %B: arm call to thumb"),
6975 sym_sec
->owner
, input_bfd
, name
);
6979 myh
->root
.u
.def
.value
= my_offset
;
6981 if (info
->shared
|| globals
->root
.is_relocatable_executable
6982 || globals
->pic_veneer
)
6984 /* For relocatable objects we can't use absolute addresses,
6985 so construct the address from a relative offset. */
6986 /* TODO: If the offset is small it's probably worth
6987 constructing the address with adds. */
6988 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6989 s
->contents
+ my_offset
);
6990 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6991 s
->contents
+ my_offset
+ 4);
6992 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6993 s
->contents
+ my_offset
+ 8);
6994 /* Adjust the offset by 4 for the position of the add,
6995 and 8 for the pipeline offset. */
6996 ret_offset
= (val
- (s
->output_offset
6997 + s
->output_section
->vma
7000 bfd_put_32 (output_bfd
, ret_offset
,
7001 s
->contents
+ my_offset
+ 12);
7003 else if (globals
->use_blx
)
7005 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
7006 s
->contents
+ my_offset
);
7008 /* It's a thumb address. Add the low order bit. */
7009 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
7010 s
->contents
+ my_offset
+ 4);
7014 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
7015 s
->contents
+ my_offset
);
7017 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
7018 s
->contents
+ my_offset
+ 4);
7020 /* It's a thumb address. Add the low order bit. */
7021 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
7022 s
->contents
+ my_offset
+ 8);
7028 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
7033 /* Arm code calling a Thumb function. */
7036 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
7040 asection
* input_section
,
7041 bfd_byte
* hit_data
,
7044 bfd_signed_vma addend
,
7046 char **error_message
)
7048 unsigned long int tmp
;
7051 long int ret_offset
;
7052 struct elf_link_hash_entry
* myh
;
7053 struct elf32_arm_link_hash_table
* globals
;
7055 globals
= elf32_arm_hash_table (info
);
7056 BFD_ASSERT (globals
!= NULL
);
7057 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7059 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7060 ARM2THUMB_GLUE_SECTION_NAME
);
7061 BFD_ASSERT (s
!= NULL
);
7062 BFD_ASSERT (s
->contents
!= NULL
);
7063 BFD_ASSERT (s
->output_section
!= NULL
);
7065 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
7066 sym_sec
, val
, s
, error_message
);
7070 my_offset
= myh
->root
.u
.def
.value
;
7071 tmp
= bfd_get_32 (input_bfd
, hit_data
);
7072 tmp
= tmp
& 0xFF000000;
7074 /* Somehow these are both 4 too far, so subtract 8. */
7075 ret_offset
= (s
->output_offset
7077 + s
->output_section
->vma
7078 - (input_section
->output_offset
7079 + input_section
->output_section
->vma
7083 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
7085 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
7090 /* Populate Arm stub for an exported Thumb function. */
7093 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
7095 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
7097 struct elf_link_hash_entry
* myh
;
7098 struct elf32_arm_link_hash_entry
*eh
;
7099 struct elf32_arm_link_hash_table
* globals
;
7102 char *error_message
;
7104 eh
= elf32_arm_hash_entry (h
);
7105 /* Allocate stubs for exported Thumb functions on v4t. */
7106 if (eh
->export_glue
== NULL
)
7109 globals
= elf32_arm_hash_table (info
);
7110 BFD_ASSERT (globals
!= NULL
);
7111 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7113 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7114 ARM2THUMB_GLUE_SECTION_NAME
);
7115 BFD_ASSERT (s
!= NULL
);
7116 BFD_ASSERT (s
->contents
!= NULL
);
7117 BFD_ASSERT (s
->output_section
!= NULL
);
7119 sec
= eh
->export_glue
->root
.u
.def
.section
;
7121 BFD_ASSERT (sec
->output_section
!= NULL
);
7123 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
7124 + sec
->output_section
->vma
;
7126 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
7127 h
->root
.u
.def
.section
->owner
,
7128 globals
->obfd
, sec
, val
, s
,
7134 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7137 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
7142 struct elf32_arm_link_hash_table
*globals
;
7144 globals
= elf32_arm_hash_table (info
);
7145 BFD_ASSERT (globals
!= NULL
);
7146 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7148 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7149 ARM_BX_GLUE_SECTION_NAME
);
7150 BFD_ASSERT (s
!= NULL
);
7151 BFD_ASSERT (s
->contents
!= NULL
);
7152 BFD_ASSERT (s
->output_section
!= NULL
);
7154 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
7156 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
7158 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
7160 p
= s
->contents
+ glue_addr
;
7161 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
7162 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
7163 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
7164 globals
->bx_glue_offset
[reg
] |= 1;
7167 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
7170 /* Generate Arm stubs for exported Thumb symbols. */
7172 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
7173 struct bfd_link_info
*link_info
)
7175 struct elf32_arm_link_hash_table
* globals
;
7177 if (link_info
== NULL
)
7178 /* Ignore this if we are not called by the ELF backend linker. */
7181 globals
= elf32_arm_hash_table (link_info
);
7182 if (globals
== NULL
)
7185 /* If blx is available then exported Thumb symbols are OK and there is
7187 if (globals
->use_blx
)
7190 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
7194 /* Reserve space for COUNT dynamic relocations in relocation selection
7198 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7199 bfd_size_type count
)
7201 struct elf32_arm_link_hash_table
*htab
;
7203 htab
= elf32_arm_hash_table (info
);
7204 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
7207 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7210 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7211 dynamic, the relocations should go in SRELOC, otherwise they should
7212 go in the special .rel.iplt section. */
7215 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7216 bfd_size_type count
)
7218 struct elf32_arm_link_hash_table
*htab
;
7220 htab
= elf32_arm_hash_table (info
);
7221 if (!htab
->root
.dynamic_sections_created
)
7222 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
7225 BFD_ASSERT (sreloc
!= NULL
);
7226 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7230 /* Add relocation REL to the end of relocation section SRELOC. */
7233 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
7234 asection
*sreloc
, Elf_Internal_Rela
*rel
)
7237 struct elf32_arm_link_hash_table
*htab
;
7239 htab
= elf32_arm_hash_table (info
);
7240 if (!htab
->root
.dynamic_sections_created
7241 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
7242 sreloc
= htab
->root
.irelplt
;
7245 loc
= sreloc
->contents
;
7246 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
7247 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
7249 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
7252 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7253 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7257 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
7258 bfd_boolean is_iplt_entry
,
7259 union gotplt_union
*root_plt
,
7260 struct arm_plt_info
*arm_plt
)
7262 struct elf32_arm_link_hash_table
*htab
;
7266 htab
= elf32_arm_hash_table (info
);
7270 splt
= htab
->root
.iplt
;
7271 sgotplt
= htab
->root
.igotplt
;
7273 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7274 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
7278 splt
= htab
->root
.splt
;
7279 sgotplt
= htab
->root
.sgotplt
;
7281 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7282 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
7284 /* If this is the first .plt entry, make room for the special
7286 if (splt
->size
== 0)
7287 splt
->size
+= htab
->plt_header_size
;
7290 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7291 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7292 splt
->size
+= PLT_THUMB_STUB_SIZE
;
7293 root_plt
->offset
= splt
->size
;
7294 splt
->size
+= htab
->plt_entry_size
;
7296 if (!htab
->symbian_p
)
7298 /* We also need to make an entry in the .got.plt section, which
7299 will be placed in the .got section by the linker script. */
7300 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
7305 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7306 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7307 Otherwise, DYNINDX is the index of the symbol in the dynamic
7308 symbol table and SYM_VALUE is undefined.
7310 ROOT_PLT points to the offset of the PLT entry from the start of its
7311 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7312 bookkeeping information. */
7315 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
7316 union gotplt_union
*root_plt
,
7317 struct arm_plt_info
*arm_plt
,
7318 int dynindx
, bfd_vma sym_value
)
7320 struct elf32_arm_link_hash_table
*htab
;
7326 Elf_Internal_Rela rel
;
7327 bfd_vma plt_header_size
;
7328 bfd_vma got_header_size
;
7330 htab
= elf32_arm_hash_table (info
);
7332 /* Pick the appropriate sections and sizes. */
7335 splt
= htab
->root
.iplt
;
7336 sgot
= htab
->root
.igotplt
;
7337 srel
= htab
->root
.irelplt
;
7339 /* There are no reserved entries in .igot.plt, and no special
7340 first entry in .iplt. */
7341 got_header_size
= 0;
7342 plt_header_size
= 0;
7346 splt
= htab
->root
.splt
;
7347 sgot
= htab
->root
.sgotplt
;
7348 srel
= htab
->root
.srelplt
;
7350 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
7351 plt_header_size
= htab
->plt_header_size
;
7353 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
7355 /* Fill in the entry in the procedure linkage table. */
7356 if (htab
->symbian_p
)
7358 BFD_ASSERT (dynindx
>= 0);
7359 put_arm_insn (htab
, output_bfd
,
7360 elf32_arm_symbian_plt_entry
[0],
7361 splt
->contents
+ root_plt
->offset
);
7362 bfd_put_32 (output_bfd
,
7363 elf32_arm_symbian_plt_entry
[1],
7364 splt
->contents
+ root_plt
->offset
+ 4);
7366 /* Fill in the entry in the .rel.plt section. */
7367 rel
.r_offset
= (splt
->output_section
->vma
7368 + splt
->output_offset
7369 + root_plt
->offset
+ 4);
7370 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_GLOB_DAT
);
7372 /* Get the index in the procedure linkage table which
7373 corresponds to this symbol. This is the index of this symbol
7374 in all the symbols for which we are making plt entries. The
7375 first entry in the procedure linkage table is reserved. */
7376 plt_index
= ((root_plt
->offset
- plt_header_size
)
7377 / htab
->plt_entry_size
);
7381 bfd_vma got_offset
, got_address
, plt_address
;
7382 bfd_vma got_displacement
, initial_got_entry
;
7385 BFD_ASSERT (sgot
!= NULL
);
7387 /* Get the offset into the .(i)got.plt table of the entry that
7388 corresponds to this function. */
7389 got_offset
= (arm_plt
->got_offset
& -2);
7391 /* Get the index in the procedure linkage table which
7392 corresponds to this symbol. This is the index of this symbol
7393 in all the symbols for which we are making plt entries.
7394 After the reserved .got.plt entries, all symbols appear in
7395 the same order as in .plt. */
7396 plt_index
= (got_offset
- got_header_size
) / 4;
7398 /* Calculate the address of the GOT entry. */
7399 got_address
= (sgot
->output_section
->vma
7400 + sgot
->output_offset
7403 /* ...and the address of the PLT entry. */
7404 plt_address
= (splt
->output_section
->vma
7405 + splt
->output_offset
7406 + root_plt
->offset
);
7408 ptr
= splt
->contents
+ root_plt
->offset
;
7409 if (htab
->vxworks_p
&& info
->shared
)
7414 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7416 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
7418 val
|= got_address
- sgot
->output_section
->vma
;
7420 val
|= plt_index
* RELOC_SIZE (htab
);
7421 if (i
== 2 || i
== 5)
7422 bfd_put_32 (output_bfd
, val
, ptr
);
7424 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7427 else if (htab
->vxworks_p
)
7432 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7434 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
7438 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
7440 val
|= plt_index
* RELOC_SIZE (htab
);
7441 if (i
== 2 || i
== 5)
7442 bfd_put_32 (output_bfd
, val
, ptr
);
7444 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7447 loc
= (htab
->srelplt2
->contents
7448 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
7450 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7451 referencing the GOT for this PLT entry. */
7452 rel
.r_offset
= plt_address
+ 8;
7453 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
7454 rel
.r_addend
= got_offset
;
7455 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7456 loc
+= RELOC_SIZE (htab
);
7458 /* Create the R_ARM_ABS32 relocation referencing the
7459 beginning of the PLT for this GOT entry. */
7460 rel
.r_offset
= got_address
;
7461 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
7463 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7467 /* Calculate the displacement between the PLT slot and the
7468 entry in the GOT. The eight-byte offset accounts for the
7469 value produced by adding to pc in the first instruction
7471 got_displacement
= got_address
- (plt_address
+ 8);
7473 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
7475 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7477 put_thumb_insn (htab
, output_bfd
,
7478 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
7479 put_thumb_insn (htab
, output_bfd
,
7480 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
7483 put_arm_insn (htab
, output_bfd
,
7484 elf32_arm_plt_entry
[0]
7485 | ((got_displacement
& 0x0ff00000) >> 20),
7487 put_arm_insn (htab
, output_bfd
,
7488 elf32_arm_plt_entry
[1]
7489 | ((got_displacement
& 0x000ff000) >> 12),
7491 put_arm_insn (htab
, output_bfd
,
7492 elf32_arm_plt_entry
[2]
7493 | (got_displacement
& 0x00000fff),
7495 #ifdef FOUR_WORD_PLT
7496 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
7500 /* Fill in the entry in the .rel(a).(i)plt section. */
7501 rel
.r_offset
= got_address
;
7505 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7506 The dynamic linker or static executable then calls SYM_VALUE
7507 to determine the correct run-time value of the .igot.plt entry. */
7508 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
7509 initial_got_entry
= sym_value
;
7513 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
7514 initial_got_entry
= (splt
->output_section
->vma
7515 + splt
->output_offset
);
7518 /* Fill in the entry in the global offset table. */
7519 bfd_put_32 (output_bfd
, initial_got_entry
,
7520 sgot
->contents
+ got_offset
);
7523 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
7524 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7527 /* Some relocations map to different relocations depending on the
7528 target. Return the real relocation. */
7531 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
7537 if (globals
->target1_is_rel
)
7543 return globals
->target2_reloc
;
7550 /* Return the base VMA address which should be subtracted from real addresses
7551 when resolving @dtpoff relocation.
7552 This is PT_TLS segment p_vaddr. */
7555 dtpoff_base (struct bfd_link_info
*info
)
7557 /* If tls_sec is NULL, we should have signalled an error already. */
7558 if (elf_hash_table (info
)->tls_sec
== NULL
)
7560 return elf_hash_table (info
)->tls_sec
->vma
;
7563 /* Return the relocation value for @tpoff relocation
7564 if STT_TLS virtual address is ADDRESS. */
7567 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
7569 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7572 /* If tls_sec is NULL, we should have signalled an error already. */
7573 if (htab
->tls_sec
== NULL
)
7575 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
7576 return address
- htab
->tls_sec
->vma
+ base
;
7579 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7580 VALUE is the relocation value. */
7582 static bfd_reloc_status_type
7583 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
7586 return bfd_reloc_overflow
;
7588 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
7589 bfd_put_32 (abfd
, value
, data
);
7590 return bfd_reloc_ok
;
7593 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7594 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7595 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7597 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7598 is to then call final_link_relocate. Return other values in the
7601 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7602 the pre-relaxed code. It would be nice if the relocs were updated
7603 to match the optimization. */
7605 static bfd_reloc_status_type
7606 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
7607 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
7608 Elf_Internal_Rela
*rel
, unsigned long is_local
)
7612 switch (ELF32_R_TYPE (rel
->r_info
))
7615 return bfd_reloc_notsupported
;
7617 case R_ARM_TLS_GOTDESC
:
7622 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7624 insn
-= 5; /* THUMB */
7626 insn
-= 8; /* ARM */
7628 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7629 return bfd_reloc_continue
;
7631 case R_ARM_THM_TLS_DESCSEQ
:
7633 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
7634 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
7638 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7640 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7644 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7647 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
7649 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
7653 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7656 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
7657 contents
+ rel
->r_offset
);
7661 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
7662 /* It's a 32 bit instruction, fetch the rest of it for
7663 error generation. */
7665 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
7666 (*_bfd_error_handler
)
7667 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7668 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7669 return bfd_reloc_notsupported
;
7673 case R_ARM_TLS_DESCSEQ
:
7675 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7676 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7680 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
7681 contents
+ rel
->r_offset
);
7683 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7687 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7690 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
7691 contents
+ rel
->r_offset
);
7693 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
7697 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7700 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
7701 contents
+ rel
->r_offset
);
7705 (*_bfd_error_handler
)
7706 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7707 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7708 return bfd_reloc_notsupported
;
7712 case R_ARM_TLS_CALL
:
7713 /* GD->IE relaxation, turn the instruction into 'nop' or
7714 'ldr r0, [pc,r0]' */
7715 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
7716 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7719 case R_ARM_THM_TLS_CALL
:
7720 /* GD->IE relaxation */
7722 /* add r0,pc; ldr r0, [r0] */
7724 else if (arch_has_thumb2_nop (globals
))
7731 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
7732 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
7735 return bfd_reloc_ok
;
7738 /* For a given value of n, calculate the value of G_n as required to
7739 deal with group relocations. We return it in the form of an
7740 encoded constant-and-rotation, together with the final residual. If n is
7741 specified as less than zero, then final_residual is filled with the
7742 input value and no further action is performed. */
7745 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
7749 bfd_vma encoded_g_n
= 0;
7750 bfd_vma residual
= value
; /* Also known as Y_n. */
7752 for (current_n
= 0; current_n
<= n
; current_n
++)
7756 /* Calculate which part of the value to mask. */
7763 /* Determine the most significant bit in the residual and
7764 align the resulting value to a 2-bit boundary. */
7765 for (msb
= 30; msb
>= 0; msb
-= 2)
7766 if (residual
& (3 << msb
))
7769 /* The desired shift is now (msb - 6), or zero, whichever
7776 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7777 g_n
= residual
& (0xff << shift
);
7778 encoded_g_n
= (g_n
>> shift
)
7779 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
7781 /* Calculate the residual for the next time around. */
7785 *final_residual
= residual
;
7790 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7791 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7794 identify_add_or_sub (bfd_vma insn
)
7796 int opcode
= insn
& 0x1e00000;
7798 if (opcode
== 1 << 23) /* ADD */
7801 if (opcode
== 1 << 22) /* SUB */
7807 /* Perform a relocation as part of a final link. */
7809 static bfd_reloc_status_type
7810 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
7813 asection
* input_section
,
7814 bfd_byte
* contents
,
7815 Elf_Internal_Rela
* rel
,
7817 struct bfd_link_info
* info
,
7819 const char * sym_name
,
7820 unsigned char st_type
,
7821 enum arm_st_branch_type branch_type
,
7822 struct elf_link_hash_entry
* h
,
7823 bfd_boolean
* unresolved_reloc_p
,
7824 char ** error_message
)
7826 unsigned long r_type
= howto
->type
;
7827 unsigned long r_symndx
;
7828 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
7829 bfd_vma
* local_got_offsets
;
7830 bfd_vma
* local_tlsdesc_gotents
;
7833 asection
* sreloc
= NULL
;
7836 bfd_signed_vma signed_addend
;
7837 unsigned char dynreloc_st_type
;
7838 bfd_vma dynreloc_value
;
7839 struct elf32_arm_link_hash_table
* globals
;
7840 struct elf32_arm_link_hash_entry
*eh
;
7841 union gotplt_union
*root_plt
;
7842 struct arm_plt_info
*arm_plt
;
7844 bfd_vma gotplt_offset
;
7845 bfd_boolean has_iplt_entry
;
7847 globals
= elf32_arm_hash_table (info
);
7848 if (globals
== NULL
)
7849 return bfd_reloc_notsupported
;
7851 BFD_ASSERT (is_arm_elf (input_bfd
));
7853 /* Some relocation types map to different relocations depending on the
7854 target. We pick the right one here. */
7855 r_type
= arm_real_reloc_type (globals
, r_type
);
7857 /* It is possible to have linker relaxations on some TLS access
7858 models. Update our information here. */
7859 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
7861 if (r_type
!= howto
->type
)
7862 howto
= elf32_arm_howto_from_type (r_type
);
7864 /* If the start address has been set, then set the EF_ARM_HASENTRY
7865 flag. Setting this more than once is redundant, but the cost is
7866 not too high, and it keeps the code simple.
7868 The test is done here, rather than somewhere else, because the
7869 start address is only set just before the final link commences.
7871 Note - if the user deliberately sets a start address of 0, the
7872 flag will not be set. */
7873 if (bfd_get_start_address (output_bfd
) != 0)
7874 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
7876 eh
= (struct elf32_arm_link_hash_entry
*) h
;
7877 sgot
= globals
->root
.sgot
;
7878 local_got_offsets
= elf_local_got_offsets (input_bfd
);
7879 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
7881 if (globals
->root
.dynamic_sections_created
)
7882 srelgot
= globals
->root
.srelgot
;
7886 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7888 if (globals
->use_rel
)
7890 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
7892 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7895 signed_addend
&= ~ howto
->src_mask
;
7896 signed_addend
|= addend
;
7899 signed_addend
= addend
;
7902 addend
= signed_addend
= rel
->r_addend
;
7904 /* Record the symbol information that should be used in dynamic
7906 dynreloc_st_type
= st_type
;
7907 dynreloc_value
= value
;
7908 if (branch_type
== ST_BRANCH_TO_THUMB
)
7909 dynreloc_value
|= 1;
7911 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
7912 VALUE appropriately for relocations that we resolve at link time. */
7913 has_iplt_entry
= FALSE
;
7914 if (elf32_arm_get_plt_info (input_bfd
, eh
, r_symndx
, &root_plt
, &arm_plt
)
7915 && root_plt
->offset
!= (bfd_vma
) -1)
7917 plt_offset
= root_plt
->offset
;
7918 gotplt_offset
= arm_plt
->got_offset
;
7920 if (h
== NULL
|| eh
->is_iplt
)
7922 has_iplt_entry
= TRUE
;
7923 splt
= globals
->root
.iplt
;
7925 /* Populate .iplt entries here, because not all of them will
7926 be seen by finish_dynamic_symbol. The lower bit is set if
7927 we have already populated the entry. */
7932 elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
7933 -1, dynreloc_value
);
7934 root_plt
->offset
|= 1;
7937 /* Static relocations always resolve to the .iplt entry. */
7939 value
= (splt
->output_section
->vma
7940 + splt
->output_offset
7942 branch_type
= ST_BRANCH_TO_ARM
;
7944 /* If there are non-call relocations that resolve to the .iplt
7945 entry, then all dynamic ones must too. */
7946 if (arm_plt
->noncall_refcount
!= 0)
7948 dynreloc_st_type
= st_type
;
7949 dynreloc_value
= value
;
7953 /* We populate the .plt entry in finish_dynamic_symbol. */
7954 splt
= globals
->root
.splt
;
7959 plt_offset
= (bfd_vma
) -1;
7960 gotplt_offset
= (bfd_vma
) -1;
7966 /* We don't need to find a value for this symbol. It's just a
7968 *unresolved_reloc_p
= FALSE
;
7969 return bfd_reloc_ok
;
7972 if (!globals
->vxworks_p
)
7973 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
7977 case R_ARM_ABS32_NOI
:
7979 case R_ARM_REL32_NOI
:
7985 /* Handle relocations which should use the PLT entry. ABS32/REL32
7986 will use the symbol's value, which may point to a PLT entry, but we
7987 don't need to handle that here. If we created a PLT entry, all
7988 branches in this object should go to it, except if the PLT is too
7989 far away, in which case a long branch stub should be inserted. */
7990 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
7991 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
7992 && r_type
!= R_ARM_CALL
7993 && r_type
!= R_ARM_JUMP24
7994 && r_type
!= R_ARM_PLT32
)
7995 && plt_offset
!= (bfd_vma
) -1)
7997 /* If we've created a .plt section, and assigned a PLT entry
7998 to this function, it must either be a STT_GNU_IFUNC reference
7999 or not be known to bind locally. In other cases, we should
8000 have cleared the PLT entry by now. */
8001 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
8003 value
= (splt
->output_section
->vma
8004 + splt
->output_offset
8006 *unresolved_reloc_p
= FALSE
;
8007 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8008 contents
, rel
->r_offset
, value
,
8012 /* When generating a shared object or relocatable executable, these
8013 relocations are copied into the output file to be resolved at
8015 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
8016 && (input_section
->flags
& SEC_ALLOC
)
8017 && !(globals
->vxworks_p
8018 && strcmp (input_section
->output_section
->name
,
8020 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
8021 || !SYMBOL_CALLS_LOCAL (info
, h
))
8022 && (!strstr (input_section
->name
, STUB_SUFFIX
))
8024 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8025 || h
->root
.type
!= bfd_link_hash_undefweak
)
8026 && r_type
!= R_ARM_PC24
8027 && r_type
!= R_ARM_CALL
8028 && r_type
!= R_ARM_JUMP24
8029 && r_type
!= R_ARM_PREL31
8030 && r_type
!= R_ARM_PLT32
)
8032 Elf_Internal_Rela outrel
;
8033 bfd_boolean skip
, relocate
;
8035 *unresolved_reloc_p
= FALSE
;
8037 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
8039 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
8040 ! globals
->use_rel
);
8043 return bfd_reloc_notsupported
;
8049 outrel
.r_addend
= addend
;
8051 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
8053 if (outrel
.r_offset
== (bfd_vma
) -1)
8055 else if (outrel
.r_offset
== (bfd_vma
) -2)
8056 skip
= TRUE
, relocate
= TRUE
;
8057 outrel
.r_offset
+= (input_section
->output_section
->vma
8058 + input_section
->output_offset
);
8061 memset (&outrel
, 0, sizeof outrel
);
8066 || !h
->def_regular
))
8067 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
8072 /* This symbol is local, or marked to become local. */
8073 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
);
8074 if (globals
->symbian_p
)
8078 /* On Symbian OS, the data segment and text segement
8079 can be relocated independently. Therefore, we
8080 must indicate the segment to which this
8081 relocation is relative. The BPABI allows us to
8082 use any symbol in the right segment; we just use
8083 the section symbol as it is convenient. (We
8084 cannot use the symbol given by "h" directly as it
8085 will not appear in the dynamic symbol table.)
8087 Note that the dynamic linker ignores the section
8088 symbol value, so we don't subtract osec->vma
8089 from the emitted reloc addend. */
8091 osec
= sym_sec
->output_section
;
8093 osec
= input_section
->output_section
;
8094 symbol
= elf_section_data (osec
)->dynindx
;
8097 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
8099 if ((osec
->flags
& SEC_READONLY
) == 0
8100 && htab
->data_index_section
!= NULL
)
8101 osec
= htab
->data_index_section
;
8103 osec
= htab
->text_index_section
;
8104 symbol
= elf_section_data (osec
)->dynindx
;
8106 BFD_ASSERT (symbol
!= 0);
8109 /* On SVR4-ish systems, the dynamic loader cannot
8110 relocate the text and data segments independently,
8111 so the symbol does not matter. */
8113 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8114 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8115 to the .iplt entry. Instead, every non-call reference
8116 must use an R_ARM_IRELATIVE relocation to obtain the
8117 correct run-time address. */
8118 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
8120 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
8121 if (globals
->use_rel
)
8124 outrel
.r_addend
+= dynreloc_value
;
8127 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
8129 /* If this reloc is against an external symbol, we do not want to
8130 fiddle with the addend. Otherwise, we need to include the symbol
8131 value so that it becomes an addend for the dynamic reloc. */
8133 return bfd_reloc_ok
;
8135 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8136 contents
, rel
->r_offset
,
8137 dynreloc_value
, (bfd_vma
) 0);
8139 else switch (r_type
)
8142 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8144 case R_ARM_XPC25
: /* Arm BLX instruction. */
8147 case R_ARM_PC24
: /* Arm B/BL instruction. */
8150 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
8152 if (r_type
== R_ARM_XPC25
)
8154 /* Check for Arm calling Arm function. */
8155 /* FIXME: Should we translate the instruction into a BL
8156 instruction instead ? */
8157 if (branch_type
!= ST_BRANCH_TO_THUMB
)
8158 (*_bfd_error_handler
)
8159 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8161 h
? h
->root
.root
.string
: "(local)");
8163 else if (r_type
== R_ARM_PC24
)
8165 /* Check for Arm calling Thumb function. */
8166 if (branch_type
== ST_BRANCH_TO_THUMB
)
8168 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
8169 output_bfd
, input_section
,
8170 hit_data
, sym_sec
, rel
->r_offset
,
8171 signed_addend
, value
,
8173 return bfd_reloc_ok
;
8175 return bfd_reloc_dangerous
;
8179 /* Check if a stub has to be inserted because the
8180 destination is too far or we are changing mode. */
8181 if ( r_type
== R_ARM_CALL
8182 || r_type
== R_ARM_JUMP24
8183 || r_type
== R_ARM_PLT32
)
8185 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8186 struct elf32_arm_link_hash_entry
*hash
;
8188 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8189 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8190 st_type
, &branch_type
,
8191 hash
, value
, sym_sec
,
8192 input_bfd
, sym_name
);
8194 if (stub_type
!= arm_stub_none
)
8196 /* The target is out of reach, so redirect the
8197 branch to the local stub for this function. */
8199 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8203 if (stub_entry
!= NULL
)
8204 value
= (stub_entry
->stub_offset
8205 + stub_entry
->stub_sec
->output_offset
8206 + stub_entry
->stub_sec
->output_section
->vma
);
8210 /* If the call goes through a PLT entry, make sure to
8211 check distance to the right destination address. */
8212 if (plt_offset
!= (bfd_vma
) -1)
8214 value
= (splt
->output_section
->vma
8215 + splt
->output_offset
8217 *unresolved_reloc_p
= FALSE
;
8218 /* The PLT entry is in ARM mode, regardless of the
8220 branch_type
= ST_BRANCH_TO_ARM
;
8225 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8227 S is the address of the symbol in the relocation.
8228 P is address of the instruction being relocated.
8229 A is the addend (extracted from the instruction) in bytes.
8231 S is held in 'value'.
8232 P is the base address of the section containing the
8233 instruction plus the offset of the reloc into that
8235 (input_section->output_section->vma +
8236 input_section->output_offset +
8238 A is the addend, converted into bytes, ie:
8241 Note: None of these operations have knowledge of the pipeline
8242 size of the processor, thus it is up to the assembler to
8243 encode this information into the addend. */
8244 value
-= (input_section
->output_section
->vma
8245 + input_section
->output_offset
);
8246 value
-= rel
->r_offset
;
8247 if (globals
->use_rel
)
8248 value
+= (signed_addend
<< howto
->size
);
8250 /* RELA addends do not have to be adjusted by howto->size. */
8251 value
+= signed_addend
;
8253 signed_addend
= value
;
8254 signed_addend
>>= howto
->rightshift
;
8256 /* A branch to an undefined weak symbol is turned into a jump to
8257 the next instruction unless a PLT entry will be created.
8258 Do the same for local undefined symbols (but not for STN_UNDEF).
8259 The jump to the next instruction is optimized as a NOP depending
8260 on the architecture. */
8261 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
8262 && plt_offset
== (bfd_vma
) -1)
8263 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
8265 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
8267 if (arch_has_arm_nop (globals
))
8268 value
|= 0x0320f000;
8270 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8274 /* Perform a signed range check. */
8275 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
8276 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
8277 return bfd_reloc_overflow
;
8279 addend
= (value
& 2);
8281 value
= (signed_addend
& howto
->dst_mask
)
8282 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8284 if (r_type
== R_ARM_CALL
)
8286 /* Set the H bit in the BLX instruction. */
8287 if (branch_type
== ST_BRANCH_TO_THUMB
)
8292 value
&= ~(bfd_vma
)(1 << 24);
8295 /* Select the correct instruction (BL or BLX). */
8296 /* Only if we are not handling a BL to a stub. In this
8297 case, mode switching is performed by the stub. */
8298 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
8302 value
&= ~(bfd_vma
)(1 << 28);
8312 if (branch_type
== ST_BRANCH_TO_THUMB
)
8316 case R_ARM_ABS32_NOI
:
8322 if (branch_type
== ST_BRANCH_TO_THUMB
)
8324 value
-= (input_section
->output_section
->vma
8325 + input_section
->output_offset
+ rel
->r_offset
);
8328 case R_ARM_REL32_NOI
:
8330 value
-= (input_section
->output_section
->vma
8331 + input_section
->output_offset
+ rel
->r_offset
);
8335 value
-= (input_section
->output_section
->vma
8336 + input_section
->output_offset
+ rel
->r_offset
);
8337 value
+= signed_addend
;
8338 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
8340 /* Check for overflow. */
8341 if ((value
^ (value
>> 1)) & (1 << 30))
8342 return bfd_reloc_overflow
;
8344 value
&= 0x7fffffff;
8345 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
8346 if (branch_type
== ST_BRANCH_TO_THUMB
)
8351 bfd_put_32 (input_bfd
, value
, hit_data
);
8352 return bfd_reloc_ok
;
8357 /* There is no way to tell whether the user intended to use a signed or
8358 unsigned addend. When checking for overflow we accept either,
8359 as specified by the AAELF. */
8360 if ((long) value
> 0xff || (long) value
< -0x80)
8361 return bfd_reloc_overflow
;
8363 bfd_put_8 (input_bfd
, value
, hit_data
);
8364 return bfd_reloc_ok
;
8369 /* See comment for R_ARM_ABS8. */
8370 if ((long) value
> 0xffff || (long) value
< -0x8000)
8371 return bfd_reloc_overflow
;
8373 bfd_put_16 (input_bfd
, value
, hit_data
);
8374 return bfd_reloc_ok
;
8376 case R_ARM_THM_ABS5
:
8377 /* Support ldr and str instructions for the thumb. */
8378 if (globals
->use_rel
)
8380 /* Need to refetch addend. */
8381 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8382 /* ??? Need to determine shift amount from operand size. */
8383 addend
>>= howto
->rightshift
;
8387 /* ??? Isn't value unsigned? */
8388 if ((long) value
> 0x1f || (long) value
< -0x10)
8389 return bfd_reloc_overflow
;
8391 /* ??? Value needs to be properly shifted into place first. */
8392 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
8393 bfd_put_16 (input_bfd
, value
, hit_data
);
8394 return bfd_reloc_ok
;
8396 case R_ARM_THM_ALU_PREL_11_0
:
8397 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8400 bfd_signed_vma relocation
;
8402 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8403 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8405 if (globals
->use_rel
)
8407 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
8408 | ((insn
& (1 << 26)) >> 15);
8409 if (insn
& 0xf00000)
8410 signed_addend
= -signed_addend
;
8413 relocation
= value
+ signed_addend
;
8414 relocation
-= (input_section
->output_section
->vma
8415 + input_section
->output_offset
8418 value
= abs (relocation
);
8420 if (value
>= 0x1000)
8421 return bfd_reloc_overflow
;
8423 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
8424 | ((value
& 0x700) << 4)
8425 | ((value
& 0x800) << 15);
8429 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8430 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8432 return bfd_reloc_ok
;
8436 /* PR 10073: This reloc is not generated by the GNU toolchain,
8437 but it is supported for compatibility with third party libraries
8438 generated by other compilers, specifically the ARM/IAR. */
8441 bfd_signed_vma relocation
;
8443 insn
= bfd_get_16 (input_bfd
, hit_data
);
8445 if (globals
->use_rel
)
8446 addend
= (insn
& 0x00ff) << 2;
8448 relocation
= value
+ addend
;
8449 relocation
-= (input_section
->output_section
->vma
8450 + input_section
->output_offset
8453 value
= abs (relocation
);
8455 /* We do not check for overflow of this reloc. Although strictly
8456 speaking this is incorrect, it appears to be necessary in order
8457 to work with IAR generated relocs. Since GCC and GAS do not
8458 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8459 a problem for them. */
8462 insn
= (insn
& 0xff00) | (value
>> 2);
8464 bfd_put_16 (input_bfd
, insn
, hit_data
);
8466 return bfd_reloc_ok
;
8469 case R_ARM_THM_PC12
:
8470 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8473 bfd_signed_vma relocation
;
8475 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8476 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8478 if (globals
->use_rel
)
8480 signed_addend
= insn
& 0xfff;
8481 if (!(insn
& (1 << 23)))
8482 signed_addend
= -signed_addend
;
8485 relocation
= value
+ signed_addend
;
8486 relocation
-= (input_section
->output_section
->vma
8487 + input_section
->output_offset
8490 value
= abs (relocation
);
8492 if (value
>= 0x1000)
8493 return bfd_reloc_overflow
;
8495 insn
= (insn
& 0xff7ff000) | value
;
8496 if (relocation
>= 0)
8499 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8500 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8502 return bfd_reloc_ok
;
8505 case R_ARM_THM_XPC22
:
8506 case R_ARM_THM_CALL
:
8507 case R_ARM_THM_JUMP24
:
8508 /* Thumb BL (branch long instruction). */
8512 bfd_boolean overflow
= FALSE
;
8513 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8514 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8515 bfd_signed_vma reloc_signed_max
;
8516 bfd_signed_vma reloc_signed_min
;
8518 bfd_signed_vma signed_check
;
8520 const int thumb2
= using_thumb2 (globals
);
8522 /* A branch to an undefined weak symbol is turned into a jump to
8523 the next instruction unless a PLT entry will be created.
8524 The jump to the next instruction is optimized as a NOP.W for
8525 Thumb-2 enabled architectures. */
8526 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
8527 && plt_offset
== (bfd_vma
) -1)
8529 if (arch_has_thumb2_nop (globals
))
8531 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
8532 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
8536 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
8537 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
8539 return bfd_reloc_ok
;
8542 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8543 with Thumb-1) involving the J1 and J2 bits. */
8544 if (globals
->use_rel
)
8546 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
8547 bfd_vma upper
= upper_insn
& 0x3ff;
8548 bfd_vma lower
= lower_insn
& 0x7ff;
8549 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
8550 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
8551 bfd_vma i1
= j1
^ s
? 0 : 1;
8552 bfd_vma i2
= j2
^ s
? 0 : 1;
8554 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
8556 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
8558 signed_addend
= addend
;
8561 if (r_type
== R_ARM_THM_XPC22
)
8563 /* Check for Thumb to Thumb call. */
8564 /* FIXME: Should we translate the instruction into a BL
8565 instruction instead ? */
8566 if (branch_type
== ST_BRANCH_TO_THUMB
)
8567 (*_bfd_error_handler
)
8568 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8570 h
? h
->root
.root
.string
: "(local)");
8574 /* If it is not a call to Thumb, assume call to Arm.
8575 If it is a call relative to a section name, then it is not a
8576 function call at all, but rather a long jump. Calls through
8577 the PLT do not require stubs. */
8578 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
8580 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8582 /* Convert BL to BLX. */
8583 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8585 else if (( r_type
!= R_ARM_THM_CALL
)
8586 && (r_type
!= R_ARM_THM_JUMP24
))
8588 if (elf32_thumb_to_arm_stub
8589 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
8590 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
8592 return bfd_reloc_ok
;
8594 return bfd_reloc_dangerous
;
8597 else if (branch_type
== ST_BRANCH_TO_THUMB
8599 && r_type
== R_ARM_THM_CALL
)
8601 /* Make sure this is a BL. */
8602 lower_insn
|= 0x1800;
8606 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8607 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
8609 /* Check if a stub has to be inserted because the destination
8611 struct elf32_arm_stub_hash_entry
*stub_entry
;
8612 struct elf32_arm_link_hash_entry
*hash
;
8614 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8616 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8617 st_type
, &branch_type
,
8618 hash
, value
, sym_sec
,
8619 input_bfd
, sym_name
);
8621 if (stub_type
!= arm_stub_none
)
8623 /* The target is out of reach or we are changing modes, so
8624 redirect the branch to the local stub for this
8626 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8630 if (stub_entry
!= NULL
)
8631 value
= (stub_entry
->stub_offset
8632 + stub_entry
->stub_sec
->output_offset
8633 + stub_entry
->stub_sec
->output_section
->vma
);
8635 /* If this call becomes a call to Arm, force BLX. */
8636 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
8639 && !arm_stub_is_thumb (stub_entry
->stub_type
))
8640 || branch_type
!= ST_BRANCH_TO_THUMB
)
8641 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8646 /* Handle calls via the PLT. */
8647 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
8649 value
= (splt
->output_section
->vma
8650 + splt
->output_offset
8653 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8655 /* If the Thumb BLX instruction is available, convert
8656 the BL to a BLX instruction to call the ARM-mode
8658 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8659 branch_type
= ST_BRANCH_TO_ARM
;
8663 /* Target the Thumb stub before the ARM PLT entry. */
8664 value
-= PLT_THUMB_STUB_SIZE
;
8665 branch_type
= ST_BRANCH_TO_THUMB
;
8667 *unresolved_reloc_p
= FALSE
;
8670 relocation
= value
+ signed_addend
;
8672 relocation
-= (input_section
->output_section
->vma
8673 + input_section
->output_offset
8676 check
= relocation
>> howto
->rightshift
;
8678 /* If this is a signed value, the rightshift just dropped
8679 leading 1 bits (assuming twos complement). */
8680 if ((bfd_signed_vma
) relocation
>= 0)
8681 signed_check
= check
;
8683 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
8685 /* Calculate the permissable maximum and minimum values for
8686 this relocation according to whether we're relocating for
8688 bitsize
= howto
->bitsize
;
8691 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
8692 reloc_signed_min
= ~reloc_signed_max
;
8694 /* Assumes two's complement. */
8695 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8698 if ((lower_insn
& 0x5000) == 0x4000)
8699 /* For a BLX instruction, make sure that the relocation is rounded up
8700 to a word boundary. This follows the semantics of the instruction
8701 which specifies that bit 1 of the target address will come from bit
8702 1 of the base address. */
8703 relocation
= (relocation
+ 2) & ~ 3;
8705 /* Put RELOCATION back into the insn. Assumes two's complement.
8706 We use the Thumb-2 encoding, which is safe even if dealing with
8707 a Thumb-1 instruction by virtue of our overflow check above. */
8708 reloc_sign
= (signed_check
< 0) ? 1 : 0;
8709 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
8710 | ((relocation
>> 12) & 0x3ff)
8711 | (reloc_sign
<< 10);
8712 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
8713 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
8714 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
8715 | ((relocation
>> 1) & 0x7ff);
8717 /* Put the relocated value back in the object file: */
8718 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8719 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8721 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8725 case R_ARM_THM_JUMP19
:
8726 /* Thumb32 conditional branch instruction. */
8729 bfd_boolean overflow
= FALSE
;
8730 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8731 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8732 bfd_signed_vma reloc_signed_max
= 0xffffe;
8733 bfd_signed_vma reloc_signed_min
= -0x100000;
8734 bfd_signed_vma signed_check
;
8736 /* Need to refetch the addend, reconstruct the top three bits,
8737 and squish the two 11 bit pieces together. */
8738 if (globals
->use_rel
)
8740 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
8741 bfd_vma upper
= (upper_insn
& 0x003f);
8742 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
8743 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
8744 bfd_vma lower
= (lower_insn
& 0x07ff);
8749 upper
-= 0x0100; /* Sign extend. */
8751 addend
= (upper
<< 12) | (lower
<< 1);
8752 signed_addend
= addend
;
8755 /* Handle calls via the PLT. */
8756 if (plt_offset
!= (bfd_vma
) -1)
8758 value
= (splt
->output_section
->vma
8759 + splt
->output_offset
8761 /* Target the Thumb stub before the ARM PLT entry. */
8762 value
-= PLT_THUMB_STUB_SIZE
;
8763 *unresolved_reloc_p
= FALSE
;
8766 /* ??? Should handle interworking? GCC might someday try to
8767 use this for tail calls. */
8769 relocation
= value
+ signed_addend
;
8770 relocation
-= (input_section
->output_section
->vma
8771 + input_section
->output_offset
8773 signed_check
= (bfd_signed_vma
) relocation
;
8775 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8778 /* Put RELOCATION back into the insn. */
8780 bfd_vma S
= (relocation
& 0x00100000) >> 20;
8781 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
8782 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
8783 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
8784 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
8786 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
8787 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
8790 /* Put the relocated value back in the object file: */
8791 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8792 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8794 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8797 case R_ARM_THM_JUMP11
:
8798 case R_ARM_THM_JUMP8
:
8799 case R_ARM_THM_JUMP6
:
8800 /* Thumb B (branch) instruction). */
8802 bfd_signed_vma relocation
;
8803 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
8804 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
8805 bfd_signed_vma signed_check
;
8807 /* CZB cannot jump backward. */
8808 if (r_type
== R_ARM_THM_JUMP6
)
8809 reloc_signed_min
= 0;
8811 if (globals
->use_rel
)
8813 /* Need to refetch addend. */
8814 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8815 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8818 signed_addend
&= ~ howto
->src_mask
;
8819 signed_addend
|= addend
;
8822 signed_addend
= addend
;
8823 /* The value in the insn has been right shifted. We need to
8824 undo this, so that we can perform the address calculation
8825 in terms of bytes. */
8826 signed_addend
<<= howto
->rightshift
;
8828 relocation
= value
+ signed_addend
;
8830 relocation
-= (input_section
->output_section
->vma
8831 + input_section
->output_offset
8834 relocation
>>= howto
->rightshift
;
8835 signed_check
= relocation
;
8837 if (r_type
== R_ARM_THM_JUMP6
)
8838 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
8840 relocation
&= howto
->dst_mask
;
8841 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8843 bfd_put_16 (input_bfd
, relocation
, hit_data
);
8845 /* Assumes two's complement. */
8846 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8847 return bfd_reloc_overflow
;
8849 return bfd_reloc_ok
;
8852 case R_ARM_ALU_PCREL7_0
:
8853 case R_ARM_ALU_PCREL15_8
:
8854 case R_ARM_ALU_PCREL23_15
:
8859 insn
= bfd_get_32 (input_bfd
, hit_data
);
8860 if (globals
->use_rel
)
8862 /* Extract the addend. */
8863 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
8864 signed_addend
= addend
;
8866 relocation
= value
+ signed_addend
;
8868 relocation
-= (input_section
->output_section
->vma
8869 + input_section
->output_offset
8871 insn
= (insn
& ~0xfff)
8872 | ((howto
->bitpos
<< 7) & 0xf00)
8873 | ((relocation
>> howto
->bitpos
) & 0xff);
8874 bfd_put_32 (input_bfd
, value
, hit_data
);
8876 return bfd_reloc_ok
;
8878 case R_ARM_GNU_VTINHERIT
:
8879 case R_ARM_GNU_VTENTRY
:
8880 return bfd_reloc_ok
;
8882 case R_ARM_GOTOFF32
:
8883 /* Relocation is relative to the start of the
8884 global offset table. */
8886 BFD_ASSERT (sgot
!= NULL
);
8888 return bfd_reloc_notsupported
;
8890 /* If we are addressing a Thumb function, we need to adjust the
8891 address by one, so that attempts to call the function pointer will
8892 correctly interpret it as Thumb code. */
8893 if (branch_type
== ST_BRANCH_TO_THUMB
)
8896 /* Note that sgot->output_offset is not involved in this
8897 calculation. We always want the start of .got. If we
8898 define _GLOBAL_OFFSET_TABLE in a different way, as is
8899 permitted by the ABI, we might have to change this
8901 value
-= sgot
->output_section
->vma
;
8902 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8903 contents
, rel
->r_offset
, value
,
8907 /* Use global offset table as symbol value. */
8908 BFD_ASSERT (sgot
!= NULL
);
8911 return bfd_reloc_notsupported
;
8913 *unresolved_reloc_p
= FALSE
;
8914 value
= sgot
->output_section
->vma
;
8915 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8916 contents
, rel
->r_offset
, value
,
8920 case R_ARM_GOT_PREL
:
8921 /* Relocation is to the entry for this symbol in the
8922 global offset table. */
8924 return bfd_reloc_notsupported
;
8926 if (dynreloc_st_type
== STT_GNU_IFUNC
8927 && plt_offset
!= (bfd_vma
) -1
8928 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
8930 /* We have a relocation against a locally-binding STT_GNU_IFUNC
8931 symbol, and the relocation resolves directly to the runtime
8932 target rather than to the .iplt entry. This means that any
8933 .got entry would be the same value as the .igot.plt entry,
8934 so there's no point creating both. */
8935 sgot
= globals
->root
.igotplt
;
8936 value
= sgot
->output_offset
+ gotplt_offset
;
8942 off
= h
->got
.offset
;
8943 BFD_ASSERT (off
!= (bfd_vma
) -1);
8946 /* We have already processsed one GOT relocation against
8949 if (globals
->root
.dynamic_sections_created
8950 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
8951 *unresolved_reloc_p
= FALSE
;
8955 Elf_Internal_Rela outrel
;
8957 if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
8959 /* If the symbol doesn't resolve locally in a static
8960 object, we have an undefined reference. If the
8961 symbol doesn't resolve locally in a dynamic object,
8962 it should be resolved by the dynamic linker. */
8963 if (globals
->root
.dynamic_sections_created
)
8965 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
8966 *unresolved_reloc_p
= FALSE
;
8970 outrel
.r_addend
= 0;
8974 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8975 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
8976 else if (info
->shared
)
8977 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
8980 outrel
.r_addend
= dynreloc_value
;
8983 /* The GOT entry is initialized to zero by default.
8984 See if we should install a different value. */
8985 if (outrel
.r_addend
!= 0
8986 && (outrel
.r_info
== 0 || globals
->use_rel
))
8988 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8989 sgot
->contents
+ off
);
8990 outrel
.r_addend
= 0;
8993 if (outrel
.r_info
!= 0)
8995 outrel
.r_offset
= (sgot
->output_section
->vma
8996 + sgot
->output_offset
8998 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9002 value
= sgot
->output_offset
+ off
;
9008 BFD_ASSERT (local_got_offsets
!= NULL
&&
9009 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
9011 off
= local_got_offsets
[r_symndx
];
9013 /* The offset must always be a multiple of 4. We use the
9014 least significant bit to record whether we have already
9015 generated the necessary reloc. */
9020 if (globals
->use_rel
)
9021 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
9023 if (info
->shared
|| dynreloc_st_type
== STT_GNU_IFUNC
)
9025 Elf_Internal_Rela outrel
;
9027 outrel
.r_addend
= addend
+ dynreloc_value
;
9028 outrel
.r_offset
= (sgot
->output_section
->vma
9029 + sgot
->output_offset
9031 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9032 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9034 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9035 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9038 local_got_offsets
[r_symndx
] |= 1;
9041 value
= sgot
->output_offset
+ off
;
9043 if (r_type
!= R_ARM_GOT32
)
9044 value
+= sgot
->output_section
->vma
;
9046 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9047 contents
, rel
->r_offset
, value
,
9050 case R_ARM_TLS_LDO32
:
9051 value
= value
- dtpoff_base (info
);
9053 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9054 contents
, rel
->r_offset
, value
,
9057 case R_ARM_TLS_LDM32
:
9064 off
= globals
->tls_ldm_got
.offset
;
9070 /* If we don't know the module number, create a relocation
9074 Elf_Internal_Rela outrel
;
9076 if (srelgot
== NULL
)
9079 outrel
.r_addend
= 0;
9080 outrel
.r_offset
= (sgot
->output_section
->vma
9081 + sgot
->output_offset
+ off
);
9082 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
9084 if (globals
->use_rel
)
9085 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9086 sgot
->contents
+ off
);
9088 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9091 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
9093 globals
->tls_ldm_got
.offset
|= 1;
9096 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
9097 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
9099 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9100 contents
, rel
->r_offset
, value
,
9104 case R_ARM_TLS_CALL
:
9105 case R_ARM_THM_TLS_CALL
:
9106 case R_ARM_TLS_GD32
:
9107 case R_ARM_TLS_IE32
:
9108 case R_ARM_TLS_GOTDESC
:
9109 case R_ARM_TLS_DESCSEQ
:
9110 case R_ARM_THM_TLS_DESCSEQ
:
9112 bfd_vma off
, offplt
;
9116 BFD_ASSERT (sgot
!= NULL
);
9121 dyn
= globals
->root
.dynamic_sections_created
;
9122 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
9124 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9126 *unresolved_reloc_p
= FALSE
;
9129 off
= h
->got
.offset
;
9130 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
9131 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
9135 BFD_ASSERT (local_got_offsets
!= NULL
);
9136 off
= local_got_offsets
[r_symndx
];
9137 offplt
= local_tlsdesc_gotents
[r_symndx
];
9138 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
9141 /* Linker relaxations happens from one of the
9142 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9143 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
9144 tls_type
= GOT_TLS_IE
;
9146 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
9152 bfd_boolean need_relocs
= FALSE
;
9153 Elf_Internal_Rela outrel
;
9156 /* The GOT entries have not been initialized yet. Do it
9157 now, and emit any relocations. If both an IE GOT and a
9158 GD GOT are necessary, we emit the GD first. */
9160 if ((info
->shared
|| indx
!= 0)
9162 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9163 || h
->root
.type
!= bfd_link_hash_undefweak
))
9166 BFD_ASSERT (srelgot
!= NULL
);
9169 if (tls_type
& GOT_TLS_GDESC
)
9173 /* We should have relaxed, unless this is an undefined
9175 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
9177 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
9178 <= globals
->root
.sgotplt
->size
);
9180 outrel
.r_addend
= 0;
9181 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
9182 + globals
->root
.sgotplt
->output_offset
9184 + globals
->sgotplt_jump_table_size
);
9186 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
9187 sreloc
= globals
->root
.srelplt
;
9188 loc
= sreloc
->contents
;
9189 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
9190 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
9191 <= sreloc
->contents
+ sreloc
->size
);
9193 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
9195 /* For globals, the first word in the relocation gets
9196 the relocation index and the top bit set, or zero,
9197 if we're binding now. For locals, it gets the
9198 symbol's offset in the tls section. */
9199 bfd_put_32 (output_bfd
,
9200 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
9201 : info
->flags
& DF_BIND_NOW
? 0
9202 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
9203 globals
->root
.sgotplt
->contents
+ offplt
+
9204 globals
->sgotplt_jump_table_size
);
9206 /* Second word in the relocation is always zero. */
9207 bfd_put_32 (output_bfd
, 0,
9208 globals
->root
.sgotplt
->contents
+ offplt
+
9209 globals
->sgotplt_jump_table_size
+ 4);
9211 if (tls_type
& GOT_TLS_GD
)
9215 outrel
.r_addend
= 0;
9216 outrel
.r_offset
= (sgot
->output_section
->vma
9217 + sgot
->output_offset
9219 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
9221 if (globals
->use_rel
)
9222 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9223 sgot
->contents
+ cur_off
);
9225 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9228 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9229 sgot
->contents
+ cur_off
+ 4);
9232 outrel
.r_addend
= 0;
9233 outrel
.r_info
= ELF32_R_INFO (indx
,
9234 R_ARM_TLS_DTPOFF32
);
9235 outrel
.r_offset
+= 4;
9237 if (globals
->use_rel
)
9238 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9239 sgot
->contents
+ cur_off
+ 4);
9241 elf32_arm_add_dynreloc (output_bfd
, info
,
9247 /* If we are not emitting relocations for a
9248 general dynamic reference, then we must be in a
9249 static link or an executable link with the
9250 symbol binding locally. Mark it as belonging
9251 to module 1, the executable. */
9252 bfd_put_32 (output_bfd
, 1,
9253 sgot
->contents
+ cur_off
);
9254 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9255 sgot
->contents
+ cur_off
+ 4);
9261 if (tls_type
& GOT_TLS_IE
)
9266 outrel
.r_addend
= value
- dtpoff_base (info
);
9268 outrel
.r_addend
= 0;
9269 outrel
.r_offset
= (sgot
->output_section
->vma
9270 + sgot
->output_offset
9272 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
9274 if (globals
->use_rel
)
9275 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9276 sgot
->contents
+ cur_off
);
9278 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9281 bfd_put_32 (output_bfd
, tpoff (info
, value
),
9282 sgot
->contents
+ cur_off
);
9289 local_got_offsets
[r_symndx
] |= 1;
9292 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
9294 else if (tls_type
& GOT_TLS_GDESC
)
9297 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
9298 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
9300 bfd_signed_vma offset
;
9301 enum elf32_arm_stub_type stub_type
9302 = arm_type_of_stub (info
, input_section
, rel
,
9303 st_type
, &branch_type
,
9304 (struct elf32_arm_link_hash_entry
*)h
,
9305 globals
->tls_trampoline
, globals
->root
.splt
,
9306 input_bfd
, sym_name
);
9308 if (stub_type
!= arm_stub_none
)
9310 struct elf32_arm_stub_hash_entry
*stub_entry
9311 = elf32_arm_get_stub_entry
9312 (input_section
, globals
->root
.splt
, 0, rel
,
9313 globals
, stub_type
);
9314 offset
= (stub_entry
->stub_offset
9315 + stub_entry
->stub_sec
->output_offset
9316 + stub_entry
->stub_sec
->output_section
->vma
);
9319 offset
= (globals
->root
.splt
->output_section
->vma
9320 + globals
->root
.splt
->output_offset
9321 + globals
->tls_trampoline
);
9323 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
9327 offset
-= (input_section
->output_section
->vma
+
9328 input_section
->output_offset
+ rel
->r_offset
+ 8);
9332 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
9336 /* Thumb blx encodes the offset in a complicated
9338 unsigned upper_insn
, lower_insn
;
9341 offset
-= (input_section
->output_section
->vma
+
9342 input_section
->output_offset
9343 + rel
->r_offset
+ 4);
9345 /* Round up the offset to a word boundary */
9346 offset
= (offset
+ 2) & ~2;
9348 upper_insn
= (0xf000
9349 | ((offset
>> 12) & 0x3ff)
9351 lower_insn
= (0xc000
9352 | (((!((offset
>> 23) & 1)) ^ neg
) << 13)
9353 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
9354 | ((offset
>> 1) & 0x7ff));
9355 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9356 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9357 return bfd_reloc_ok
;
9360 /* These relocations needs special care, as besides the fact
9361 they point somewhere in .gotplt, the addend must be
9362 adjusted accordingly depending on the type of instruction
9364 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
9366 unsigned long data
, insn
;
9369 data
= bfd_get_32 (input_bfd
, hit_data
);
9375 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
9376 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
9378 | bfd_get_16 (input_bfd
,
9379 contents
+ rel
->r_offset
- data
+ 2);
9380 if ((insn
& 0xf800c000) == 0xf000c000)
9383 else if ((insn
& 0xffffff00) == 0x4400)
9388 (*_bfd_error_handler
)
9389 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9390 input_bfd
, input_section
,
9391 (unsigned long)rel
->r_offset
, insn
);
9392 return bfd_reloc_notsupported
;
9397 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
9402 case 0xfa: /* blx */
9406 case 0xe0: /* add */
9411 (*_bfd_error_handler
)
9412 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9413 input_bfd
, input_section
,
9414 (unsigned long)rel
->r_offset
, insn
);
9415 return bfd_reloc_notsupported
;
9419 value
+= ((globals
->root
.sgotplt
->output_section
->vma
9420 + globals
->root
.sgotplt
->output_offset
+ off
)
9421 - (input_section
->output_section
->vma
9422 + input_section
->output_offset
9424 + globals
->sgotplt_jump_table_size
);
9427 value
= ((globals
->root
.sgot
->output_section
->vma
9428 + globals
->root
.sgot
->output_offset
+ off
)
9429 - (input_section
->output_section
->vma
9430 + input_section
->output_offset
+ rel
->r_offset
));
9432 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9433 contents
, rel
->r_offset
, value
,
9437 case R_ARM_TLS_LE32
:
9440 (*_bfd_error_handler
)
9441 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9442 input_bfd
, input_section
,
9443 (long) rel
->r_offset
, howto
->name
);
9444 return (bfd_reloc_status_type
) FALSE
;
9447 value
= tpoff (info
, value
);
9449 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9450 contents
, rel
->r_offset
, value
,
9454 if (globals
->fix_v4bx
)
9456 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9458 /* Ensure that we have a BX instruction. */
9459 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
9461 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
9463 /* Branch to veneer. */
9465 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
9466 glue_addr
-= input_section
->output_section
->vma
9467 + input_section
->output_offset
9468 + rel
->r_offset
+ 8;
9469 insn
= (insn
& 0xf0000000) | 0x0a000000
9470 | ((glue_addr
>> 2) & 0x00ffffff);
9474 /* Preserve Rm (lowest four bits) and the condition code
9475 (highest four bits). Other bits encode MOV PC,Rm. */
9476 insn
= (insn
& 0xf000000f) | 0x01a0f000;
9479 bfd_put_32 (input_bfd
, insn
, hit_data
);
9481 return bfd_reloc_ok
;
9483 case R_ARM_MOVW_ABS_NC
:
9484 case R_ARM_MOVT_ABS
:
9485 case R_ARM_MOVW_PREL_NC
:
9486 case R_ARM_MOVT_PREL
:
9487 /* Until we properly support segment-base-relative addressing then
9488 we assume the segment base to be zero, as for the group relocations.
9489 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9490 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9491 case R_ARM_MOVW_BREL_NC
:
9492 case R_ARM_MOVW_BREL
:
9493 case R_ARM_MOVT_BREL
:
9495 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9497 if (globals
->use_rel
)
9499 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
9500 signed_addend
= (addend
^ 0x8000) - 0x8000;
9503 value
+= signed_addend
;
9505 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
9506 value
-= (input_section
->output_section
->vma
9507 + input_section
->output_offset
+ rel
->r_offset
);
9509 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
9510 return bfd_reloc_overflow
;
9512 if (branch_type
== ST_BRANCH_TO_THUMB
)
9515 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
9516 || r_type
== R_ARM_MOVT_BREL
)
9520 insn
|= value
& 0xfff;
9521 insn
|= (value
& 0xf000) << 4;
9522 bfd_put_32 (input_bfd
, insn
, hit_data
);
9524 return bfd_reloc_ok
;
9526 case R_ARM_THM_MOVW_ABS_NC
:
9527 case R_ARM_THM_MOVT_ABS
:
9528 case R_ARM_THM_MOVW_PREL_NC
:
9529 case R_ARM_THM_MOVT_PREL
:
9530 /* Until we properly support segment-base-relative addressing then
9531 we assume the segment base to be zero, as for the above relocations.
9532 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9533 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9534 as R_ARM_THM_MOVT_ABS. */
9535 case R_ARM_THM_MOVW_BREL_NC
:
9536 case R_ARM_THM_MOVW_BREL
:
9537 case R_ARM_THM_MOVT_BREL
:
9541 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
9542 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
9544 if (globals
->use_rel
)
9546 addend
= ((insn
>> 4) & 0xf000)
9547 | ((insn
>> 15) & 0x0800)
9548 | ((insn
>> 4) & 0x0700)
9550 signed_addend
= (addend
^ 0x8000) - 0x8000;
9553 value
+= signed_addend
;
9555 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
9556 value
-= (input_section
->output_section
->vma
9557 + input_section
->output_offset
+ rel
->r_offset
);
9559 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
9560 return bfd_reloc_overflow
;
9562 if (branch_type
== ST_BRANCH_TO_THUMB
)
9565 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
9566 || r_type
== R_ARM_THM_MOVT_BREL
)
9570 insn
|= (value
& 0xf000) << 4;
9571 insn
|= (value
& 0x0800) << 15;
9572 insn
|= (value
& 0x0700) << 4;
9573 insn
|= (value
& 0x00ff);
9575 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
9576 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
9578 return bfd_reloc_ok
;
9580 case R_ARM_ALU_PC_G0_NC
:
9581 case R_ARM_ALU_PC_G1_NC
:
9582 case R_ARM_ALU_PC_G0
:
9583 case R_ARM_ALU_PC_G1
:
9584 case R_ARM_ALU_PC_G2
:
9585 case R_ARM_ALU_SB_G0_NC
:
9586 case R_ARM_ALU_SB_G1_NC
:
9587 case R_ARM_ALU_SB_G0
:
9588 case R_ARM_ALU_SB_G1
:
9589 case R_ARM_ALU_SB_G2
:
9591 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9592 bfd_vma pc
= input_section
->output_section
->vma
9593 + input_section
->output_offset
+ rel
->r_offset
;
9594 /* sb should be the origin of the *segment* containing the symbol.
9595 It is not clear how to obtain this OS-dependent value, so we
9596 make an arbitrary choice of zero. */
9600 bfd_signed_vma signed_value
;
9603 /* Determine which group of bits to select. */
9606 case R_ARM_ALU_PC_G0_NC
:
9607 case R_ARM_ALU_PC_G0
:
9608 case R_ARM_ALU_SB_G0_NC
:
9609 case R_ARM_ALU_SB_G0
:
9613 case R_ARM_ALU_PC_G1_NC
:
9614 case R_ARM_ALU_PC_G1
:
9615 case R_ARM_ALU_SB_G1_NC
:
9616 case R_ARM_ALU_SB_G1
:
9620 case R_ARM_ALU_PC_G2
:
9621 case R_ARM_ALU_SB_G2
:
9629 /* If REL, extract the addend from the insn. If RELA, it will
9630 have already been fetched for us. */
9631 if (globals
->use_rel
)
9634 bfd_vma constant
= insn
& 0xff;
9635 bfd_vma rotation
= (insn
& 0xf00) >> 8;
9638 signed_addend
= constant
;
9641 /* Compensate for the fact that in the instruction, the
9642 rotation is stored in multiples of 2 bits. */
9645 /* Rotate "constant" right by "rotation" bits. */
9646 signed_addend
= (constant
>> rotation
) |
9647 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
9650 /* Determine if the instruction is an ADD or a SUB.
9651 (For REL, this determines the sign of the addend.) */
9652 negative
= identify_add_or_sub (insn
);
9655 (*_bfd_error_handler
)
9656 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9657 input_bfd
, input_section
,
9658 (long) rel
->r_offset
, howto
->name
);
9659 return bfd_reloc_overflow
;
9662 signed_addend
*= negative
;
9665 /* Compute the value (X) to go in the place. */
9666 if (r_type
== R_ARM_ALU_PC_G0_NC
9667 || r_type
== R_ARM_ALU_PC_G1_NC
9668 || r_type
== R_ARM_ALU_PC_G0
9669 || r_type
== R_ARM_ALU_PC_G1
9670 || r_type
== R_ARM_ALU_PC_G2
)
9672 signed_value
= value
- pc
+ signed_addend
;
9674 /* Section base relative. */
9675 signed_value
= value
- sb
+ signed_addend
;
9677 /* If the target symbol is a Thumb function, then set the
9678 Thumb bit in the address. */
9679 if (branch_type
== ST_BRANCH_TO_THUMB
)
9682 /* Calculate the value of the relevant G_n, in encoded
9683 constant-with-rotation format. */
9684 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
9687 /* Check for overflow if required. */
9688 if ((r_type
== R_ARM_ALU_PC_G0
9689 || r_type
== R_ARM_ALU_PC_G1
9690 || r_type
== R_ARM_ALU_PC_G2
9691 || r_type
== R_ARM_ALU_SB_G0
9692 || r_type
== R_ARM_ALU_SB_G1
9693 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
9695 (*_bfd_error_handler
)
9696 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9697 input_bfd
, input_section
,
9698 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9699 return bfd_reloc_overflow
;
9702 /* Mask out the value and the ADD/SUB part of the opcode; take care
9703 not to destroy the S bit. */
9706 /* Set the opcode according to whether the value to go in the
9707 place is negative. */
9708 if (signed_value
< 0)
9713 /* Encode the offset. */
9716 bfd_put_32 (input_bfd
, insn
, hit_data
);
9718 return bfd_reloc_ok
;
9720 case R_ARM_LDR_PC_G0
:
9721 case R_ARM_LDR_PC_G1
:
9722 case R_ARM_LDR_PC_G2
:
9723 case R_ARM_LDR_SB_G0
:
9724 case R_ARM_LDR_SB_G1
:
9725 case R_ARM_LDR_SB_G2
:
9727 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9728 bfd_vma pc
= input_section
->output_section
->vma
9729 + input_section
->output_offset
+ rel
->r_offset
;
9730 bfd_vma sb
= 0; /* See note above. */
9732 bfd_signed_vma signed_value
;
9735 /* Determine which groups of bits to calculate. */
9738 case R_ARM_LDR_PC_G0
:
9739 case R_ARM_LDR_SB_G0
:
9743 case R_ARM_LDR_PC_G1
:
9744 case R_ARM_LDR_SB_G1
:
9748 case R_ARM_LDR_PC_G2
:
9749 case R_ARM_LDR_SB_G2
:
9757 /* If REL, extract the addend from the insn. If RELA, it will
9758 have already been fetched for us. */
9759 if (globals
->use_rel
)
9761 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9762 signed_addend
= negative
* (insn
& 0xfff);
9765 /* Compute the value (X) to go in the place. */
9766 if (r_type
== R_ARM_LDR_PC_G0
9767 || r_type
== R_ARM_LDR_PC_G1
9768 || r_type
== R_ARM_LDR_PC_G2
)
9770 signed_value
= value
- pc
+ signed_addend
;
9772 /* Section base relative. */
9773 signed_value
= value
- sb
+ signed_addend
;
9775 /* Calculate the value of the relevant G_{n-1} to obtain
9776 the residual at that stage. */
9777 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9779 /* Check for overflow. */
9780 if (residual
>= 0x1000)
9782 (*_bfd_error_handler
)
9783 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9784 input_bfd
, input_section
,
9785 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9786 return bfd_reloc_overflow
;
9789 /* Mask out the value and U bit. */
9792 /* Set the U bit if the value to go in the place is non-negative. */
9793 if (signed_value
>= 0)
9796 /* Encode the offset. */
9799 bfd_put_32 (input_bfd
, insn
, hit_data
);
9801 return bfd_reloc_ok
;
9803 case R_ARM_LDRS_PC_G0
:
9804 case R_ARM_LDRS_PC_G1
:
9805 case R_ARM_LDRS_PC_G2
:
9806 case R_ARM_LDRS_SB_G0
:
9807 case R_ARM_LDRS_SB_G1
:
9808 case R_ARM_LDRS_SB_G2
:
9810 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9811 bfd_vma pc
= input_section
->output_section
->vma
9812 + input_section
->output_offset
+ rel
->r_offset
;
9813 bfd_vma sb
= 0; /* See note above. */
9815 bfd_signed_vma signed_value
;
9818 /* Determine which groups of bits to calculate. */
9821 case R_ARM_LDRS_PC_G0
:
9822 case R_ARM_LDRS_SB_G0
:
9826 case R_ARM_LDRS_PC_G1
:
9827 case R_ARM_LDRS_SB_G1
:
9831 case R_ARM_LDRS_PC_G2
:
9832 case R_ARM_LDRS_SB_G2
:
9840 /* If REL, extract the addend from the insn. If RELA, it will
9841 have already been fetched for us. */
9842 if (globals
->use_rel
)
9844 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9845 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
9848 /* Compute the value (X) to go in the place. */
9849 if (r_type
== R_ARM_LDRS_PC_G0
9850 || r_type
== R_ARM_LDRS_PC_G1
9851 || r_type
== R_ARM_LDRS_PC_G2
)
9853 signed_value
= value
- pc
+ signed_addend
;
9855 /* Section base relative. */
9856 signed_value
= value
- sb
+ signed_addend
;
9858 /* Calculate the value of the relevant G_{n-1} to obtain
9859 the residual at that stage. */
9860 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9862 /* Check for overflow. */
9863 if (residual
>= 0x100)
9865 (*_bfd_error_handler
)
9866 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9867 input_bfd
, input_section
,
9868 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9869 return bfd_reloc_overflow
;
9872 /* Mask out the value and U bit. */
9875 /* Set the U bit if the value to go in the place is non-negative. */
9876 if (signed_value
>= 0)
9879 /* Encode the offset. */
9880 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
9882 bfd_put_32 (input_bfd
, insn
, hit_data
);
9884 return bfd_reloc_ok
;
9886 case R_ARM_LDC_PC_G0
:
9887 case R_ARM_LDC_PC_G1
:
9888 case R_ARM_LDC_PC_G2
:
9889 case R_ARM_LDC_SB_G0
:
9890 case R_ARM_LDC_SB_G1
:
9891 case R_ARM_LDC_SB_G2
:
9893 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9894 bfd_vma pc
= input_section
->output_section
->vma
9895 + input_section
->output_offset
+ rel
->r_offset
;
9896 bfd_vma sb
= 0; /* See note above. */
9898 bfd_signed_vma signed_value
;
9901 /* Determine which groups of bits to calculate. */
9904 case R_ARM_LDC_PC_G0
:
9905 case R_ARM_LDC_SB_G0
:
9909 case R_ARM_LDC_PC_G1
:
9910 case R_ARM_LDC_SB_G1
:
9914 case R_ARM_LDC_PC_G2
:
9915 case R_ARM_LDC_SB_G2
:
9923 /* If REL, extract the addend from the insn. If RELA, it will
9924 have already been fetched for us. */
9925 if (globals
->use_rel
)
9927 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9928 signed_addend
= negative
* ((insn
& 0xff) << 2);
9931 /* Compute the value (X) to go in the place. */
9932 if (r_type
== R_ARM_LDC_PC_G0
9933 || r_type
== R_ARM_LDC_PC_G1
9934 || r_type
== R_ARM_LDC_PC_G2
)
9936 signed_value
= value
- pc
+ signed_addend
;
9938 /* Section base relative. */
9939 signed_value
= value
- sb
+ signed_addend
;
9941 /* Calculate the value of the relevant G_{n-1} to obtain
9942 the residual at that stage. */
9943 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9945 /* Check for overflow. (The absolute value to go in the place must be
9946 divisible by four and, after having been divided by four, must
9947 fit in eight bits.) */
9948 if ((residual
& 0x3) != 0 || residual
>= 0x400)
9950 (*_bfd_error_handler
)
9951 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9952 input_bfd
, input_section
,
9953 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9954 return bfd_reloc_overflow
;
9957 /* Mask out the value and U bit. */
9960 /* Set the U bit if the value to go in the place is non-negative. */
9961 if (signed_value
>= 0)
9964 /* Encode the offset. */
9965 insn
|= residual
>> 2;
9967 bfd_put_32 (input_bfd
, insn
, hit_data
);
9969 return bfd_reloc_ok
;
9972 return bfd_reloc_notsupported
;
9976 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
9978 arm_add_to_rel (bfd
* abfd
,
9980 reloc_howto_type
* howto
,
9981 bfd_signed_vma increment
)
9983 bfd_signed_vma addend
;
9985 if (howto
->type
== R_ARM_THM_CALL
9986 || howto
->type
== R_ARM_THM_JUMP24
)
9988 int upper_insn
, lower_insn
;
9991 upper_insn
= bfd_get_16 (abfd
, address
);
9992 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
9993 upper
= upper_insn
& 0x7ff;
9994 lower
= lower_insn
& 0x7ff;
9996 addend
= (upper
<< 12) | (lower
<< 1);
9997 addend
+= increment
;
10000 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
10001 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
10003 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
10004 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
10010 contents
= bfd_get_32 (abfd
, address
);
10012 /* Get the (signed) value from the instruction. */
10013 addend
= contents
& howto
->src_mask
;
10014 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10016 bfd_signed_vma mask
;
10019 mask
&= ~ howto
->src_mask
;
10023 /* Add in the increment, (which is a byte value). */
10024 switch (howto
->type
)
10027 addend
+= increment
;
10034 addend
<<= howto
->size
;
10035 addend
+= increment
;
10037 /* Should we check for overflow here ? */
10039 /* Drop any undesired bits. */
10040 addend
>>= howto
->rightshift
;
10044 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
10046 bfd_put_32 (abfd
, contents
, address
);
10050 #define IS_ARM_TLS_RELOC(R_TYPE) \
10051 ((R_TYPE) == R_ARM_TLS_GD32 \
10052 || (R_TYPE) == R_ARM_TLS_LDO32 \
10053 || (R_TYPE) == R_ARM_TLS_LDM32 \
10054 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10055 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10056 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10057 || (R_TYPE) == R_ARM_TLS_LE32 \
10058 || (R_TYPE) == R_ARM_TLS_IE32 \
10059 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10061 /* Specific set of relocations for the gnu tls dialect. */
10062 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10063 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10064 || (R_TYPE) == R_ARM_TLS_CALL \
10065 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10066 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10067 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10069 /* Relocate an ARM ELF section. */
10072 elf32_arm_relocate_section (bfd
* output_bfd
,
10073 struct bfd_link_info
* info
,
10075 asection
* input_section
,
10076 bfd_byte
* contents
,
10077 Elf_Internal_Rela
* relocs
,
10078 Elf_Internal_Sym
* local_syms
,
10079 asection
** local_sections
)
10081 Elf_Internal_Shdr
*symtab_hdr
;
10082 struct elf_link_hash_entry
**sym_hashes
;
10083 Elf_Internal_Rela
*rel
;
10084 Elf_Internal_Rela
*relend
;
10086 struct elf32_arm_link_hash_table
* globals
;
10088 globals
= elf32_arm_hash_table (info
);
10089 if (globals
== NULL
)
10092 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
10093 sym_hashes
= elf_sym_hashes (input_bfd
);
10096 relend
= relocs
+ input_section
->reloc_count
;
10097 for (; rel
< relend
; rel
++)
10100 reloc_howto_type
* howto
;
10101 unsigned long r_symndx
;
10102 Elf_Internal_Sym
* sym
;
10104 struct elf_link_hash_entry
* h
;
10105 bfd_vma relocation
;
10106 bfd_reloc_status_type r
;
10109 bfd_boolean unresolved_reloc
= FALSE
;
10110 char *error_message
= NULL
;
10112 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10113 r_type
= ELF32_R_TYPE (rel
->r_info
);
10114 r_type
= arm_real_reloc_type (globals
, r_type
);
10116 if ( r_type
== R_ARM_GNU_VTENTRY
10117 || r_type
== R_ARM_GNU_VTINHERIT
)
10120 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
10121 howto
= bfd_reloc
.howto
;
10127 if (r_symndx
< symtab_hdr
->sh_info
)
10129 sym
= local_syms
+ r_symndx
;
10130 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
10131 sec
= local_sections
[r_symndx
];
10133 /* An object file might have a reference to a local
10134 undefined symbol. This is a daft object file, but we
10135 should at least do something about it. V4BX & NONE
10136 relocations do not use the symbol and are explicitly
10137 allowed to use the undefined symbol, so allow those.
10138 Likewise for relocations against STN_UNDEF. */
10139 if (r_type
!= R_ARM_V4BX
10140 && r_type
!= R_ARM_NONE
10141 && r_symndx
!= STN_UNDEF
10142 && bfd_is_und_section (sec
)
10143 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
10145 if (!info
->callbacks
->undefined_symbol
10146 (info
, bfd_elf_string_from_elf_section
10147 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
10148 input_bfd
, input_section
,
10149 rel
->r_offset
, TRUE
))
10153 if (globals
->use_rel
)
10155 relocation
= (sec
->output_section
->vma
10156 + sec
->output_offset
10158 if (!info
->relocatable
10159 && (sec
->flags
& SEC_MERGE
)
10160 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10163 bfd_vma addend
, value
;
10167 case R_ARM_MOVW_ABS_NC
:
10168 case R_ARM_MOVT_ABS
:
10169 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10170 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
10171 addend
= (addend
^ 0x8000) - 0x8000;
10174 case R_ARM_THM_MOVW_ABS_NC
:
10175 case R_ARM_THM_MOVT_ABS
:
10176 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
10178 value
|= bfd_get_16 (input_bfd
,
10179 contents
+ rel
->r_offset
+ 2);
10180 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
10181 | ((value
& 0x04000000) >> 15);
10182 addend
= (addend
^ 0x8000) - 0x8000;
10186 if (howto
->rightshift
10187 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
10189 (*_bfd_error_handler
)
10190 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10191 input_bfd
, input_section
,
10192 (long) rel
->r_offset
, howto
->name
);
10196 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10198 /* Get the (signed) value from the instruction. */
10199 addend
= value
& howto
->src_mask
;
10200 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10202 bfd_signed_vma mask
;
10205 mask
&= ~ howto
->src_mask
;
10213 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
10215 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
10217 /* Cases here must match those in the preceeding
10218 switch statement. */
10221 case R_ARM_MOVW_ABS_NC
:
10222 case R_ARM_MOVT_ABS
:
10223 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
10224 | (addend
& 0xfff);
10225 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10228 case R_ARM_THM_MOVW_ABS_NC
:
10229 case R_ARM_THM_MOVT_ABS
:
10230 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
10231 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
10232 bfd_put_16 (input_bfd
, value
>> 16,
10233 contents
+ rel
->r_offset
);
10234 bfd_put_16 (input_bfd
, value
,
10235 contents
+ rel
->r_offset
+ 2);
10239 value
= (value
& ~ howto
->dst_mask
)
10240 | (addend
& howto
->dst_mask
);
10241 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10247 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10251 bfd_boolean warned
;
10253 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
10254 r_symndx
, symtab_hdr
, sym_hashes
,
10255 h
, sec
, relocation
,
10256 unresolved_reloc
, warned
);
10258 sym_type
= h
->type
;
10261 if (sec
!= NULL
&& elf_discarded_section (sec
))
10262 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10263 rel
, relend
, howto
, contents
);
10265 if (info
->relocatable
)
10267 /* This is a relocatable link. We don't have to change
10268 anything, unless the reloc is against a section symbol,
10269 in which case we have to adjust according to where the
10270 section symbol winds up in the output section. */
10271 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10273 if (globals
->use_rel
)
10274 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
10275 howto
, (bfd_signed_vma
) sec
->output_offset
);
10277 rel
->r_addend
+= sec
->output_offset
;
10283 name
= h
->root
.root
.string
;
10286 name
= (bfd_elf_string_from_elf_section
10287 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
10288 if (name
== NULL
|| *name
== '\0')
10289 name
= bfd_section_name (input_bfd
, sec
);
10292 if (r_symndx
!= STN_UNDEF
10293 && r_type
!= R_ARM_NONE
10295 || h
->root
.type
== bfd_link_hash_defined
10296 || h
->root
.type
== bfd_link_hash_defweak
)
10297 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
10299 (*_bfd_error_handler
)
10300 ((sym_type
== STT_TLS
10301 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10302 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10305 (long) rel
->r_offset
,
10310 /* We call elf32_arm_final_link_relocate unless we're completely
10311 done, i.e., the relaxation produced the final output we want,
10312 and we won't let anybody mess with it. Also, we have to do
10313 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10314 both in relaxed and non-relaxed cases */
10315 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
10316 || (IS_ARM_TLS_GNU_RELOC (r_type
)
10317 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
10318 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
10321 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
10322 contents
, rel
, h
== NULL
);
10323 /* This may have been marked unresolved because it came from
10324 a shared library. But we've just dealt with that. */
10325 unresolved_reloc
= 0;
10328 r
= bfd_reloc_continue
;
10330 if (r
== bfd_reloc_continue
)
10331 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
10332 input_section
, contents
, rel
,
10333 relocation
, info
, sec
, name
, sym_type
,
10334 (h
? h
->target_internal
10335 : ARM_SYM_BRANCH_TYPE (sym
)), h
,
10336 &unresolved_reloc
, &error_message
);
10338 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10339 because such sections are not SEC_ALLOC and thus ld.so will
10340 not process them. */
10341 if (unresolved_reloc
10342 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
10343 && h
->def_dynamic
))
10345 (*_bfd_error_handler
)
10346 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10349 (long) rel
->r_offset
,
10351 h
->root
.root
.string
);
10355 if (r
!= bfd_reloc_ok
)
10359 case bfd_reloc_overflow
:
10360 /* If the overflowing reloc was to an undefined symbol,
10361 we have already printed one error message and there
10362 is no point complaining again. */
10364 h
->root
.type
!= bfd_link_hash_undefined
)
10365 && (!((*info
->callbacks
->reloc_overflow
)
10366 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
10367 (bfd_vma
) 0, input_bfd
, input_section
,
10372 case bfd_reloc_undefined
:
10373 if (!((*info
->callbacks
->undefined_symbol
)
10374 (info
, name
, input_bfd
, input_section
,
10375 rel
->r_offset
, TRUE
)))
10379 case bfd_reloc_outofrange
:
10380 error_message
= _("out of range");
10383 case bfd_reloc_notsupported
:
10384 error_message
= _("unsupported relocation");
10387 case bfd_reloc_dangerous
:
10388 /* error_message should already be set. */
10392 error_message
= _("unknown error");
10393 /* Fall through. */
10396 BFD_ASSERT (error_message
!= NULL
);
10397 if (!((*info
->callbacks
->reloc_dangerous
)
10398 (info
, error_message
, input_bfd
, input_section
,
10409 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10410 adds the edit to the start of the list. (The list must be built in order of
10411 ascending TINDEX: the function's callers are primarily responsible for
10412 maintaining that condition). */
10415 add_unwind_table_edit (arm_unwind_table_edit
**head
,
10416 arm_unwind_table_edit
**tail
,
10417 arm_unwind_edit_type type
,
10418 asection
*linked_section
,
10419 unsigned int tindex
)
10421 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
10422 xmalloc (sizeof (arm_unwind_table_edit
));
10424 new_edit
->type
= type
;
10425 new_edit
->linked_section
= linked_section
;
10426 new_edit
->index
= tindex
;
10430 new_edit
->next
= NULL
;
10433 (*tail
)->next
= new_edit
;
10435 (*tail
) = new_edit
;
10438 (*head
) = new_edit
;
10442 new_edit
->next
= *head
;
10451 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
10453 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10455 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
10459 if (!exidx_sec
->rawsize
)
10460 exidx_sec
->rawsize
= exidx_sec
->size
;
10462 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
10463 out_sec
= exidx_sec
->output_section
;
10464 /* Adjust size of output section. */
10465 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
10468 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10470 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
10472 struct _arm_elf_section_data
*exidx_arm_data
;
10474 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10475 add_unwind_table_edit (
10476 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
10477 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
10478 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
10480 adjust_exidx_size(exidx_sec
, 8);
10483 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10484 made to those tables, such that:
10486 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10487 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10488 codes which have been inlined into the index).
10490 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10492 The edits are applied when the tables are written
10493 (in elf32_arm_write_section).
10497 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
10498 unsigned int num_text_sections
,
10499 struct bfd_link_info
*info
,
10500 bfd_boolean merge_exidx_entries
)
10503 unsigned int last_second_word
= 0, i
;
10504 asection
*last_exidx_sec
= NULL
;
10505 asection
*last_text_sec
= NULL
;
10506 int last_unwind_type
= -1;
10508 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10510 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
10514 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
10516 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
10517 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
10519 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
10522 if (elf_sec
->linked_to
)
10524 Elf_Internal_Shdr
*linked_hdr
10525 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
10526 struct _arm_elf_section_data
*linked_sec_arm_data
10527 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
10529 if (linked_sec_arm_data
== NULL
)
10532 /* Link this .ARM.exidx section back from the text section it
10534 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
10539 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10540 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10541 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10543 for (i
= 0; i
< num_text_sections
; i
++)
10545 asection
*sec
= text_section_order
[i
];
10546 asection
*exidx_sec
;
10547 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
10548 struct _arm_elf_section_data
*exidx_arm_data
;
10549 bfd_byte
*contents
= NULL
;
10550 int deleted_exidx_bytes
= 0;
10552 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
10553 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
10554 Elf_Internal_Shdr
*hdr
;
10557 if (arm_data
== NULL
)
10560 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
10561 if (exidx_sec
== NULL
)
10563 /* Section has no unwind data. */
10564 if (last_unwind_type
== 0 || !last_exidx_sec
)
10567 /* Ignore zero sized sections. */
10568 if (sec
->size
== 0)
10571 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10572 last_unwind_type
= 0;
10576 /* Skip /DISCARD/ sections. */
10577 if (bfd_is_abs_section (exidx_sec
->output_section
))
10580 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
10581 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
10584 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10585 if (exidx_arm_data
== NULL
)
10588 ibfd
= exidx_sec
->owner
;
10590 if (hdr
->contents
!= NULL
)
10591 contents
= hdr
->contents
;
10592 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
10596 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
10598 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
10602 /* An EXIDX_CANTUNWIND entry. */
10603 if (second_word
== 1)
10605 if (last_unwind_type
== 0)
10609 /* Inlined unwinding data. Merge if equal to previous. */
10610 else if ((second_word
& 0x80000000) != 0)
10612 if (merge_exidx_entries
10613 && last_second_word
== second_word
&& last_unwind_type
== 1)
10616 last_second_word
= second_word
;
10618 /* Normal table entry. In theory we could merge these too,
10619 but duplicate entries are likely to be much less common. */
10625 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
10626 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
10628 deleted_exidx_bytes
+= 8;
10631 last_unwind_type
= unwind_type
;
10634 /* Free contents if we allocated it ourselves. */
10635 if (contents
!= hdr
->contents
)
10638 /* Record edits to be applied later (in elf32_arm_write_section). */
10639 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
10640 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
10642 if (deleted_exidx_bytes
> 0)
10643 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
10645 last_exidx_sec
= exidx_sec
;
10646 last_text_sec
= sec
;
10649 /* Add terminating CANTUNWIND entry. */
10650 if (last_exidx_sec
&& last_unwind_type
!= 0)
10651 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10657 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
10658 bfd
*ibfd
, const char *name
)
10660 asection
*sec
, *osec
;
10662 sec
= bfd_get_section_by_name (ibfd
, name
);
10663 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
10666 osec
= sec
->output_section
;
10667 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
10670 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
10671 sec
->output_offset
, sec
->size
))
10678 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10680 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
10681 asection
*sec
, *osec
;
10683 if (globals
== NULL
)
10686 /* Invoke the regular ELF backend linker to do all the work. */
10687 if (!bfd_elf_final_link (abfd
, info
))
10690 /* Process stub sections (eg BE8 encoding, ...). */
10691 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
10693 for (i
=0; i
<htab
->top_id
; i
++)
10695 sec
= htab
->stub_group
[i
].stub_sec
;
10696 /* Only process it once, in its link_sec slot. */
10697 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
10699 osec
= sec
->output_section
;
10700 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
10701 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
10702 sec
->output_offset
, sec
->size
))
10707 /* Write out any glue sections now that we have created all the
10709 if (globals
->bfd_of_glue_owner
!= NULL
)
10711 if (! elf32_arm_output_glue_section (info
, abfd
,
10712 globals
->bfd_of_glue_owner
,
10713 ARM2THUMB_GLUE_SECTION_NAME
))
10716 if (! elf32_arm_output_glue_section (info
, abfd
,
10717 globals
->bfd_of_glue_owner
,
10718 THUMB2ARM_GLUE_SECTION_NAME
))
10721 if (! elf32_arm_output_glue_section (info
, abfd
,
10722 globals
->bfd_of_glue_owner
,
10723 VFP11_ERRATUM_VENEER_SECTION_NAME
))
10726 if (! elf32_arm_output_glue_section (info
, abfd
,
10727 globals
->bfd_of_glue_owner
,
10728 ARM_BX_GLUE_SECTION_NAME
))
10735 /* Set the right machine number. */
10738 elf32_arm_object_p (bfd
*abfd
)
10742 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
10744 if (mach
!= bfd_mach_arm_unknown
)
10745 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10747 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
10748 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
10751 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10756 /* Function to keep ARM specific flags in the ELF header. */
10759 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
10761 if (elf_flags_init (abfd
)
10762 && elf_elfheader (abfd
)->e_flags
!= flags
)
10764 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
10766 if (flags
& EF_ARM_INTERWORK
)
10767 (*_bfd_error_handler
)
10768 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10772 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10778 elf_elfheader (abfd
)->e_flags
= flags
;
10779 elf_flags_init (abfd
) = TRUE
;
10785 /* Copy backend specific data from one object module to another. */
10788 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
10791 flagword out_flags
;
10793 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10796 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10797 out_flags
= elf_elfheader (obfd
)->e_flags
;
10799 if (elf_flags_init (obfd
)
10800 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
10801 && in_flags
!= out_flags
)
10803 /* Cannot mix APCS26 and APCS32 code. */
10804 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10807 /* Cannot mix float APCS and non-float APCS code. */
10808 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10811 /* If the src and dest have different interworking flags
10812 then turn off the interworking bit. */
10813 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10815 if (out_flags
& EF_ARM_INTERWORK
)
10817 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10820 in_flags
&= ~EF_ARM_INTERWORK
;
10823 /* Likewise for PIC, though don't warn for this case. */
10824 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
10825 in_flags
&= ~EF_ARM_PIC
;
10828 elf_elfheader (obfd
)->e_flags
= in_flags
;
10829 elf_flags_init (obfd
) = TRUE
;
10831 /* Also copy the EI_OSABI field. */
10832 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
10833 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
10835 /* Copy object attributes. */
10836 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
10841 /* Values for Tag_ABI_PCS_R9_use. */
10850 /* Values for Tag_ABI_PCS_RW_data. */
10853 AEABI_PCS_RW_data_absolute
,
10854 AEABI_PCS_RW_data_PCrel
,
10855 AEABI_PCS_RW_data_SBrel
,
10856 AEABI_PCS_RW_data_unused
10859 /* Values for Tag_ABI_enum_size. */
10865 AEABI_enum_forced_wide
10868 /* Determine whether an object attribute tag takes an integer, a
10872 elf32_arm_obj_attrs_arg_type (int tag
)
10874 if (tag
== Tag_compatibility
)
10875 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
10876 else if (tag
== Tag_nodefaults
)
10877 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
10878 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
10879 return ATTR_TYPE_FLAG_STR_VAL
;
10881 return ATTR_TYPE_FLAG_INT_VAL
;
10883 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
10886 /* The ABI defines that Tag_conformance should be emitted first, and that
10887 Tag_nodefaults should be second (if either is defined). This sets those
10888 two positions, and bumps up the position of all the remaining tags to
10891 elf32_arm_obj_attrs_order (int num
)
10893 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
10894 return Tag_conformance
;
10895 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
10896 return Tag_nodefaults
;
10897 if ((num
- 2) < Tag_nodefaults
)
10899 if ((num
- 1) < Tag_conformance
)
10904 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10906 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
10908 if ((tag
& 127) < 64)
10911 (_("%B: Unknown mandatory EABI object attribute %d"),
10913 bfd_set_error (bfd_error_bad_value
);
10919 (_("Warning: %B: Unknown EABI object attribute %d"),
10925 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10926 Returns -1 if no architecture could be read. */
10929 get_secondary_compatible_arch (bfd
*abfd
)
10931 obj_attribute
*attr
=
10932 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
10934 /* Note: the tag and its argument below are uleb128 values, though
10935 currently-defined values fit in one byte for each. */
10937 && attr
->s
[0] == Tag_CPU_arch
10938 && (attr
->s
[1] & 128) != 128
10939 && attr
->s
[2] == 0)
10942 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10946 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10947 The tag is removed if ARCH is -1. */
10950 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
10952 obj_attribute
*attr
=
10953 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
10961 /* Note: the tag and its argument below are uleb128 values, though
10962 currently-defined values fit in one byte for each. */
10964 attr
->s
= (char *) bfd_alloc (abfd
, 3);
10965 attr
->s
[0] = Tag_CPU_arch
;
10970 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10974 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
10975 int newtag
, int secondary_compat
)
10977 #define T(X) TAG_CPU_ARCH_##X
10978 int tagl
, tagh
, result
;
10981 T(V6T2
), /* PRE_V4. */
10983 T(V6T2
), /* V4T. */
10984 T(V6T2
), /* V5T. */
10985 T(V6T2
), /* V5TE. */
10986 T(V6T2
), /* V5TEJ. */
10989 T(V6T2
) /* V6T2. */
10993 T(V6K
), /* PRE_V4. */
10997 T(V6K
), /* V5TE. */
10998 T(V6K
), /* V5TEJ. */
11000 T(V6KZ
), /* V6KZ. */
11006 T(V7
), /* PRE_V4. */
11011 T(V7
), /* V5TEJ. */
11024 T(V6K
), /* V5TE. */
11025 T(V6K
), /* V5TEJ. */
11027 T(V6KZ
), /* V6KZ. */
11031 T(V6_M
) /* V6_M. */
11033 const int v6s_m
[] =
11039 T(V6K
), /* V5TE. */
11040 T(V6K
), /* V5TEJ. */
11042 T(V6KZ
), /* V6KZ. */
11046 T(V6S_M
), /* V6_M. */
11047 T(V6S_M
) /* V6S_M. */
11049 const int v7e_m
[] =
11053 T(V7E_M
), /* V4T. */
11054 T(V7E_M
), /* V5T. */
11055 T(V7E_M
), /* V5TE. */
11056 T(V7E_M
), /* V5TEJ. */
11057 T(V7E_M
), /* V6. */
11058 T(V7E_M
), /* V6KZ. */
11059 T(V7E_M
), /* V6T2. */
11060 T(V7E_M
), /* V6K. */
11061 T(V7E_M
), /* V7. */
11062 T(V7E_M
), /* V6_M. */
11063 T(V7E_M
), /* V6S_M. */
11064 T(V7E_M
) /* V7E_M. */
11066 const int v4t_plus_v6_m
[] =
11072 T(V5TE
), /* V5TE. */
11073 T(V5TEJ
), /* V5TEJ. */
11075 T(V6KZ
), /* V6KZ. */
11076 T(V6T2
), /* V6T2. */
11079 T(V6_M
), /* V6_M. */
11080 T(V6S_M
), /* V6S_M. */
11081 T(V7E_M
), /* V7E_M. */
11082 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
11084 const int *comb
[] =
11092 /* Pseudo-architecture. */
11096 /* Check we've not got a higher architecture than we know about. */
11098 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
11100 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
11104 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11106 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
11107 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
11108 oldtag
= T(V4T_PLUS_V6_M
);
11110 /* And override the new tag if we have a Tag_also_compatible_with on the
11113 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
11114 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
11115 newtag
= T(V4T_PLUS_V6_M
);
11117 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
11118 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
11120 /* Architectures before V6KZ add features monotonically. */
11121 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
11124 result
= comb
[tagh
- T(V6T2
)][tagl
];
11126 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11127 as the canonical version. */
11128 if (result
== T(V4T_PLUS_V6_M
))
11131 *secondary_compat_out
= T(V6_M
);
11134 *secondary_compat_out
= -1;
11138 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11139 ibfd
, oldtag
, newtag
);
11147 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11148 are conflicting attributes. */
11151 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
11153 obj_attribute
*in_attr
;
11154 obj_attribute
*out_attr
;
11155 /* Some tags have 0 = don't care, 1 = strong requirement,
11156 2 = weak requirement. */
11157 static const int order_021
[3] = {0, 2, 1};
11159 bfd_boolean result
= TRUE
;
11161 /* Skip the linker stubs file. This preserves previous behavior
11162 of accepting unknown attributes in the first input file - but
11164 if (ibfd
->flags
& BFD_LINKER_CREATED
)
11167 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
11169 /* This is the first object. Copy the attributes. */
11170 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
11172 out_attr
= elf_known_obj_attributes_proc (obfd
);
11174 /* Use the Tag_null value to indicate the attributes have been
11178 /* We do not output objects with Tag_MPextension_use_legacy - we move
11179 the attribute's value to Tag_MPextension_use. */
11180 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
11182 if (out_attr
[Tag_MPextension_use
].i
!= 0
11183 && out_attr
[Tag_MPextension_use_legacy
].i
11184 != out_attr
[Tag_MPextension_use
].i
)
11187 (_("Error: %B has both the current and legacy "
11188 "Tag_MPextension_use attributes"), ibfd
);
11192 out_attr
[Tag_MPextension_use
] =
11193 out_attr
[Tag_MPextension_use_legacy
];
11194 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
11195 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
11201 in_attr
= elf_known_obj_attributes_proc (ibfd
);
11202 out_attr
= elf_known_obj_attributes_proc (obfd
);
11203 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11204 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
11206 /* Ignore mismatches if the object doesn't use floating point. */
11207 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
11208 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
11209 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
11212 (_("error: %B uses VFP register arguments, %B does not"),
11213 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
11214 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
11219 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
11221 /* Merge this attribute with existing attributes. */
11224 case Tag_CPU_raw_name
:
11226 /* These are merged after Tag_CPU_arch. */
11229 case Tag_ABI_optimization_goals
:
11230 case Tag_ABI_FP_optimization_goals
:
11231 /* Use the first value seen. */
11236 int secondary_compat
= -1, secondary_compat_out
= -1;
11237 unsigned int saved_out_attr
= out_attr
[i
].i
;
11238 static const char *name_table
[] = {
11239 /* These aren't real CPU names, but we can't guess
11240 that from the architecture version alone. */
11256 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11257 secondary_compat
= get_secondary_compatible_arch (ibfd
);
11258 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
11259 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
11260 &secondary_compat_out
,
11263 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
11265 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11266 if (out_attr
[i
].i
== saved_out_attr
)
11267 ; /* Leave the names alone. */
11268 else if (out_attr
[i
].i
== in_attr
[i
].i
)
11270 /* The output architecture has been changed to match the
11271 input architecture. Use the input names. */
11272 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
11273 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
11275 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
11276 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
11281 out_attr
[Tag_CPU_name
].s
= NULL
;
11282 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
11285 /* If we still don't have a value for Tag_CPU_name,
11286 make one up now. Tag_CPU_raw_name remains blank. */
11287 if (out_attr
[Tag_CPU_name
].s
== NULL
11288 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
11289 out_attr
[Tag_CPU_name
].s
=
11290 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
11294 case Tag_ARM_ISA_use
:
11295 case Tag_THUMB_ISA_use
:
11296 case Tag_WMMX_arch
:
11297 case Tag_Advanced_SIMD_arch
:
11298 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11299 case Tag_ABI_FP_rounding
:
11300 case Tag_ABI_FP_exceptions
:
11301 case Tag_ABI_FP_user_exceptions
:
11302 case Tag_ABI_FP_number_model
:
11303 case Tag_FP_HP_extension
:
11304 case Tag_CPU_unaligned_access
:
11306 case Tag_MPextension_use
:
11307 /* Use the largest value specified. */
11308 if (in_attr
[i
].i
> out_attr
[i
].i
)
11309 out_attr
[i
].i
= in_attr
[i
].i
;
11312 case Tag_ABI_align_preserved
:
11313 case Tag_ABI_PCS_RO_data
:
11314 /* Use the smallest value specified. */
11315 if (in_attr
[i
].i
< out_attr
[i
].i
)
11316 out_attr
[i
].i
= in_attr
[i
].i
;
11319 case Tag_ABI_align_needed
:
11320 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
11321 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
11322 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
11324 /* This error message should be enabled once all non-conformant
11325 binaries in the toolchain have had the attributes set
11328 (_("error: %B: 8-byte data alignment conflicts with %B"),
11332 /* Fall through. */
11333 case Tag_ABI_FP_denormal
:
11334 case Tag_ABI_PCS_GOT_use
:
11335 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11336 value if greater than 2 (for future-proofing). */
11337 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
11338 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
11339 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
11340 out_attr
[i
].i
= in_attr
[i
].i
;
11343 case Tag_Virtualization_use
:
11344 /* The virtualization tag effectively stores two bits of
11345 information: the intended use of TrustZone (in bit 0), and the
11346 intended use of Virtualization (in bit 1). */
11347 if (out_attr
[i
].i
== 0)
11348 out_attr
[i
].i
= in_attr
[i
].i
;
11349 else if (in_attr
[i
].i
!= 0
11350 && in_attr
[i
].i
!= out_attr
[i
].i
)
11352 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
11357 (_("error: %B: unable to merge virtualization attributes "
11365 case Tag_CPU_arch_profile
:
11366 if (out_attr
[i
].i
!= in_attr
[i
].i
)
11368 /* 0 will merge with anything.
11369 'A' and 'S' merge to 'A'.
11370 'R' and 'S' merge to 'R'.
11371 'M' and 'A|R|S' is an error. */
11372 if (out_attr
[i
].i
== 0
11373 || (out_attr
[i
].i
== 'S'
11374 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
11375 out_attr
[i
].i
= in_attr
[i
].i
;
11376 else if (in_attr
[i
].i
== 0
11377 || (in_attr
[i
].i
== 'S'
11378 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
11379 ; /* Do nothing. */
11383 (_("error: %B: Conflicting architecture profiles %c/%c"),
11385 in_attr
[i
].i
? in_attr
[i
].i
: '0',
11386 out_attr
[i
].i
? out_attr
[i
].i
: '0');
11393 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11394 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11395 when it's 0. It might mean absence of FP hardware if
11396 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11398 static const struct
11402 } vfp_versions
[7] =
11416 /* If the output has no requirement about FP hardware,
11417 follow the requirement of the input. */
11418 if (out_attr
[i
].i
== 0)
11420 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
11421 out_attr
[i
].i
= in_attr
[i
].i
;
11422 out_attr
[Tag_ABI_HardFP_use
].i
11423 = in_attr
[Tag_ABI_HardFP_use
].i
;
11426 /* If the input has no requirement about FP hardware, do
11428 else if (in_attr
[i
].i
== 0)
11430 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
11434 /* Both the input and the output have nonzero Tag_FP_arch.
11435 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11437 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11439 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
11440 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
11442 /* If the input and the output have different Tag_ABI_HardFP_use,
11443 the combination of them is 3 (SP & DP). */
11444 else if (in_attr
[Tag_ABI_HardFP_use
].i
11445 != out_attr
[Tag_ABI_HardFP_use
].i
)
11446 out_attr
[Tag_ABI_HardFP_use
].i
= 3;
11448 /* Now we can handle Tag_FP_arch. */
11450 /* Values greater than 6 aren't defined, so just pick the
11452 if (in_attr
[i
].i
> 6 && in_attr
[i
].i
> out_attr
[i
].i
)
11454 out_attr
[i
] = in_attr
[i
];
11457 /* The output uses the superset of input features
11458 (ISA version) and registers. */
11459 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
11460 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
11461 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
11462 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
11463 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
11464 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
11465 /* This assumes all possible supersets are also a valid
11467 for (newval
= 6; newval
> 0; newval
--)
11469 if (regs
== vfp_versions
[newval
].regs
11470 && ver
== vfp_versions
[newval
].ver
)
11473 out_attr
[i
].i
= newval
;
11476 case Tag_PCS_config
:
11477 if (out_attr
[i
].i
== 0)
11478 out_attr
[i
].i
= in_attr
[i
].i
;
11479 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
11481 /* It's sometimes ok to mix different configs, so this is only
11484 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
11487 case Tag_ABI_PCS_R9_use
:
11488 if (in_attr
[i
].i
!= out_attr
[i
].i
11489 && out_attr
[i
].i
!= AEABI_R9_unused
11490 && in_attr
[i
].i
!= AEABI_R9_unused
)
11493 (_("error: %B: Conflicting use of R9"), ibfd
);
11496 if (out_attr
[i
].i
== AEABI_R9_unused
)
11497 out_attr
[i
].i
= in_attr
[i
].i
;
11499 case Tag_ABI_PCS_RW_data
:
11500 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
11501 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
11502 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
11505 (_("error: %B: SB relative addressing conflicts with use of R9"),
11509 /* Use the smallest value specified. */
11510 if (in_attr
[i
].i
< out_attr
[i
].i
)
11511 out_attr
[i
].i
= in_attr
[i
].i
;
11513 case Tag_ABI_PCS_wchar_t
:
11514 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
11515 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
11518 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11519 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
11521 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
11522 out_attr
[i
].i
= in_attr
[i
].i
;
11524 case Tag_ABI_enum_size
:
11525 if (in_attr
[i
].i
!= AEABI_enum_unused
)
11527 if (out_attr
[i
].i
== AEABI_enum_unused
11528 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
11530 /* The existing object is compatible with anything.
11531 Use whatever requirements the new object has. */
11532 out_attr
[i
].i
= in_attr
[i
].i
;
11534 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
11535 && out_attr
[i
].i
!= in_attr
[i
].i
11536 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
11538 static const char *aeabi_enum_names
[] =
11539 { "", "variable-size", "32-bit", "" };
11540 const char *in_name
=
11541 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11542 ? aeabi_enum_names
[in_attr
[i
].i
]
11544 const char *out_name
=
11545 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11546 ? aeabi_enum_names
[out_attr
[i
].i
]
11549 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11550 ibfd
, in_name
, out_name
);
11554 case Tag_ABI_VFP_args
:
11557 case Tag_ABI_WMMX_args
:
11558 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11561 (_("error: %B uses iWMMXt register arguments, %B does not"),
11566 case Tag_compatibility
:
11567 /* Merged in target-independent code. */
11569 case Tag_ABI_HardFP_use
:
11570 /* This is handled along with Tag_FP_arch. */
11572 case Tag_ABI_FP_16bit_format
:
11573 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
11575 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11578 (_("error: fp16 format mismatch between %B and %B"),
11583 if (in_attr
[i
].i
!= 0)
11584 out_attr
[i
].i
= in_attr
[i
].i
;
11588 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11589 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11590 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11591 CPU. We will merge as follows: If the input attribute's value
11592 is one then the output attribute's value remains unchanged. If
11593 the input attribute's value is zero or two then if the output
11594 attribute's value is one the output value is set to the input
11595 value, otherwise the output value must be the same as the
11597 if (in_attr
[i
].i
!= 1 && out_attr
[i
].i
!= 1)
11599 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11602 (_("DIV usage mismatch between %B and %B"),
11608 if (in_attr
[i
].i
!= 1)
11609 out_attr
[i
].i
= in_attr
[i
].i
;
11613 case Tag_MPextension_use_legacy
:
11614 /* We don't output objects with Tag_MPextension_use_legacy - we
11615 move the value to Tag_MPextension_use. */
11616 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
11618 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
11621 (_("%B has has both the current and legacy "
11622 "Tag_MPextension_use attributes"),
11628 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
11629 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
11633 case Tag_nodefaults
:
11634 /* This tag is set if it exists, but the value is unused (and is
11635 typically zero). We don't actually need to do anything here -
11636 the merge happens automatically when the type flags are merged
11639 case Tag_also_compatible_with
:
11640 /* Already done in Tag_CPU_arch. */
11642 case Tag_conformance
:
11643 /* Keep the attribute if it matches. Throw it away otherwise.
11644 No attribute means no claim to conform. */
11645 if (!in_attr
[i
].s
|| !out_attr
[i
].s
11646 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
11647 out_attr
[i
].s
= NULL
;
11652 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
11655 /* If out_attr was copied from in_attr then it won't have a type yet. */
11656 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
11657 out_attr
[i
].type
= in_attr
[i
].type
;
11660 /* Merge Tag_compatibility attributes and any common GNU ones. */
11661 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
11664 /* Check for any attributes not known on ARM. */
11665 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
11671 /* Return TRUE if the two EABI versions are incompatible. */
11674 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
11676 /* v4 and v5 are the same spec before and after it was released,
11677 so allow mixing them. */
11678 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
11679 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
11682 return (iver
== over
);
11685 /* Merge backend specific data from an object file to the output
11686 object file when linking. */
11689 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
11691 /* Display the flags field. */
11694 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
11696 FILE * file
= (FILE *) ptr
;
11697 unsigned long flags
;
11699 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11701 /* Print normal ELF private data. */
11702 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11704 flags
= elf_elfheader (abfd
)->e_flags
;
11705 /* Ignore init flag - it may not be set, despite the flags field
11706 containing valid data. */
11708 /* xgettext:c-format */
11709 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
11711 switch (EF_ARM_EABI_VERSION (flags
))
11713 case EF_ARM_EABI_UNKNOWN
:
11714 /* The following flag bits are GNU extensions and not part of the
11715 official ARM ELF extended ABI. Hence they are only decoded if
11716 the EABI version is not set. */
11717 if (flags
& EF_ARM_INTERWORK
)
11718 fprintf (file
, _(" [interworking enabled]"));
11720 if (flags
& EF_ARM_APCS_26
)
11721 fprintf (file
, " [APCS-26]");
11723 fprintf (file
, " [APCS-32]");
11725 if (flags
& EF_ARM_VFP_FLOAT
)
11726 fprintf (file
, _(" [VFP float format]"));
11727 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
11728 fprintf (file
, _(" [Maverick float format]"));
11730 fprintf (file
, _(" [FPA float format]"));
11732 if (flags
& EF_ARM_APCS_FLOAT
)
11733 fprintf (file
, _(" [floats passed in float registers]"));
11735 if (flags
& EF_ARM_PIC
)
11736 fprintf (file
, _(" [position independent]"));
11738 if (flags
& EF_ARM_NEW_ABI
)
11739 fprintf (file
, _(" [new ABI]"));
11741 if (flags
& EF_ARM_OLD_ABI
)
11742 fprintf (file
, _(" [old ABI]"));
11744 if (flags
& EF_ARM_SOFT_FLOAT
)
11745 fprintf (file
, _(" [software FP]"));
11747 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
11748 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
11749 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
11750 | EF_ARM_MAVERICK_FLOAT
);
11753 case EF_ARM_EABI_VER1
:
11754 fprintf (file
, _(" [Version1 EABI]"));
11756 if (flags
& EF_ARM_SYMSARESORTED
)
11757 fprintf (file
, _(" [sorted symbol table]"));
11759 fprintf (file
, _(" [unsorted symbol table]"));
11761 flags
&= ~ EF_ARM_SYMSARESORTED
;
11764 case EF_ARM_EABI_VER2
:
11765 fprintf (file
, _(" [Version2 EABI]"));
11767 if (flags
& EF_ARM_SYMSARESORTED
)
11768 fprintf (file
, _(" [sorted symbol table]"));
11770 fprintf (file
, _(" [unsorted symbol table]"));
11772 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
11773 fprintf (file
, _(" [dynamic symbols use segment index]"));
11775 if (flags
& EF_ARM_MAPSYMSFIRST
)
11776 fprintf (file
, _(" [mapping symbols precede others]"));
11778 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
11779 | EF_ARM_MAPSYMSFIRST
);
11782 case EF_ARM_EABI_VER3
:
11783 fprintf (file
, _(" [Version3 EABI]"));
11786 case EF_ARM_EABI_VER4
:
11787 fprintf (file
, _(" [Version4 EABI]"));
11790 case EF_ARM_EABI_VER5
:
11791 fprintf (file
, _(" [Version5 EABI]"));
11793 if (flags
& EF_ARM_BE8
)
11794 fprintf (file
, _(" [BE8]"));
11796 if (flags
& EF_ARM_LE8
)
11797 fprintf (file
, _(" [LE8]"));
11799 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
11803 fprintf (file
, _(" <EABI version unrecognised>"));
11807 flags
&= ~ EF_ARM_EABIMASK
;
11809 if (flags
& EF_ARM_RELEXEC
)
11810 fprintf (file
, _(" [relocatable executable]"));
11812 if (flags
& EF_ARM_HASENTRY
)
11813 fprintf (file
, _(" [has entry point]"));
11815 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
11818 fprintf (file
, _("<Unrecognised flag bits set>"));
11820 fputc ('\n', file
);
11826 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
11828 switch (ELF_ST_TYPE (elf_sym
->st_info
))
11830 case STT_ARM_TFUNC
:
11831 return ELF_ST_TYPE (elf_sym
->st_info
);
11833 case STT_ARM_16BIT
:
11834 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11835 This allows us to distinguish between data used by Thumb instructions
11836 and non-data (which is probably code) inside Thumb regions of an
11838 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
11839 return ELF_ST_TYPE (elf_sym
->st_info
);
11850 elf32_arm_gc_mark_hook (asection
*sec
,
11851 struct bfd_link_info
*info
,
11852 Elf_Internal_Rela
*rel
,
11853 struct elf_link_hash_entry
*h
,
11854 Elf_Internal_Sym
*sym
)
11857 switch (ELF32_R_TYPE (rel
->r_info
))
11859 case R_ARM_GNU_VTINHERIT
:
11860 case R_ARM_GNU_VTENTRY
:
11864 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
11867 /* Update the got entry reference counts for the section being removed. */
11870 elf32_arm_gc_sweep_hook (bfd
* abfd
,
11871 struct bfd_link_info
* info
,
11873 const Elf_Internal_Rela
* relocs
)
11875 Elf_Internal_Shdr
*symtab_hdr
;
11876 struct elf_link_hash_entry
**sym_hashes
;
11877 bfd_signed_vma
*local_got_refcounts
;
11878 const Elf_Internal_Rela
*rel
, *relend
;
11879 struct elf32_arm_link_hash_table
* globals
;
11881 if (info
->relocatable
)
11884 globals
= elf32_arm_hash_table (info
);
11885 if (globals
== NULL
)
11888 elf_section_data (sec
)->local_dynrel
= NULL
;
11890 symtab_hdr
= & elf_symtab_hdr (abfd
);
11891 sym_hashes
= elf_sym_hashes (abfd
);
11892 local_got_refcounts
= elf_local_got_refcounts (abfd
);
11894 check_use_blx (globals
);
11896 relend
= relocs
+ sec
->reloc_count
;
11897 for (rel
= relocs
; rel
< relend
; rel
++)
11899 unsigned long r_symndx
;
11900 struct elf_link_hash_entry
*h
= NULL
;
11901 struct elf32_arm_link_hash_entry
*eh
;
11903 bfd_boolean call_reloc_p
;
11904 bfd_boolean may_become_dynamic_p
;
11905 bfd_boolean may_need_local_target_p
;
11906 union gotplt_union
*root_plt
;
11907 struct arm_plt_info
*arm_plt
;
11909 r_symndx
= ELF32_R_SYM (rel
->r_info
);
11910 if (r_symndx
>= symtab_hdr
->sh_info
)
11912 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
11913 while (h
->root
.type
== bfd_link_hash_indirect
11914 || h
->root
.type
== bfd_link_hash_warning
)
11915 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11917 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11919 call_reloc_p
= FALSE
;
11920 may_become_dynamic_p
= FALSE
;
11921 may_need_local_target_p
= FALSE
;
11923 r_type
= ELF32_R_TYPE (rel
->r_info
);
11924 r_type
= arm_real_reloc_type (globals
, r_type
);
11928 case R_ARM_GOT_PREL
:
11929 case R_ARM_TLS_GD32
:
11930 case R_ARM_TLS_IE32
:
11933 if (h
->got
.refcount
> 0)
11934 h
->got
.refcount
-= 1;
11936 else if (local_got_refcounts
!= NULL
)
11938 if (local_got_refcounts
[r_symndx
] > 0)
11939 local_got_refcounts
[r_symndx
] -= 1;
11943 case R_ARM_TLS_LDM32
:
11944 globals
->tls_ldm_got
.refcount
-= 1;
11952 case R_ARM_THM_CALL
:
11953 case R_ARM_THM_JUMP24
:
11954 case R_ARM_THM_JUMP19
:
11955 call_reloc_p
= TRUE
;
11956 may_need_local_target_p
= TRUE
;
11960 if (!globals
->vxworks_p
)
11962 may_need_local_target_p
= TRUE
;
11965 /* Fall through. */
11967 case R_ARM_ABS32_NOI
:
11969 case R_ARM_REL32_NOI
:
11970 case R_ARM_MOVW_ABS_NC
:
11971 case R_ARM_MOVT_ABS
:
11972 case R_ARM_MOVW_PREL_NC
:
11973 case R_ARM_MOVT_PREL
:
11974 case R_ARM_THM_MOVW_ABS_NC
:
11975 case R_ARM_THM_MOVT_ABS
:
11976 case R_ARM_THM_MOVW_PREL_NC
:
11977 case R_ARM_THM_MOVT_PREL
:
11978 /* Should the interworking branches be here also? */
11979 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
11980 && (sec
->flags
& SEC_ALLOC
) != 0)
11983 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
11985 call_reloc_p
= TRUE
;
11986 may_need_local_target_p
= TRUE
;
11989 may_become_dynamic_p
= TRUE
;
11992 may_need_local_target_p
= TRUE
;
11999 if (may_need_local_target_p
12000 && elf32_arm_get_plt_info (abfd
, eh
, r_symndx
, &root_plt
, &arm_plt
))
12002 BFD_ASSERT (root_plt
->refcount
> 0);
12003 root_plt
->refcount
-= 1;
12006 arm_plt
->noncall_refcount
--;
12008 if (r_type
== R_ARM_THM_CALL
)
12009 arm_plt
->maybe_thumb_refcount
--;
12011 if (r_type
== R_ARM_THM_JUMP24
12012 || r_type
== R_ARM_THM_JUMP19
)
12013 arm_plt
->thumb_refcount
--;
12016 if (may_become_dynamic_p
)
12018 struct elf_dyn_relocs
**pp
;
12019 struct elf_dyn_relocs
*p
;
12022 pp
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
12025 Elf_Internal_Sym
*isym
;
12027 isym
= bfd_sym_from_r_symndx (&globals
->sym_cache
,
12031 pp
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12035 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
12038 /* Everything must go for SEC. */
12048 /* Look through the relocs for a section during the first phase. */
12051 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
12052 asection
*sec
, const Elf_Internal_Rela
*relocs
)
12054 Elf_Internal_Shdr
*symtab_hdr
;
12055 struct elf_link_hash_entry
**sym_hashes
;
12056 const Elf_Internal_Rela
*rel
;
12057 const Elf_Internal_Rela
*rel_end
;
12060 struct elf32_arm_link_hash_table
*htab
;
12061 bfd_boolean call_reloc_p
;
12062 bfd_boolean may_become_dynamic_p
;
12063 bfd_boolean may_need_local_target_p
;
12064 unsigned long nsyms
;
12066 if (info
->relocatable
)
12069 BFD_ASSERT (is_arm_elf (abfd
));
12071 htab
= elf32_arm_hash_table (info
);
12077 /* Create dynamic sections for relocatable executables so that we can
12078 copy relocations. */
12079 if (htab
->root
.is_relocatable_executable
12080 && ! htab
->root
.dynamic_sections_created
)
12082 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
12086 if (htab
->root
.dynobj
== NULL
)
12087 htab
->root
.dynobj
= abfd
;
12088 if (!create_ifunc_sections (info
))
12091 dynobj
= htab
->root
.dynobj
;
12093 symtab_hdr
= & elf_symtab_hdr (abfd
);
12094 sym_hashes
= elf_sym_hashes (abfd
);
12095 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
12097 rel_end
= relocs
+ sec
->reloc_count
;
12098 for (rel
= relocs
; rel
< rel_end
; rel
++)
12100 Elf_Internal_Sym
*isym
;
12101 struct elf_link_hash_entry
*h
;
12102 struct elf32_arm_link_hash_entry
*eh
;
12103 unsigned long r_symndx
;
12106 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12107 r_type
= ELF32_R_TYPE (rel
->r_info
);
12108 r_type
= arm_real_reloc_type (htab
, r_type
);
12110 if (r_symndx
>= nsyms
12111 /* PR 9934: It is possible to have relocations that do not
12112 refer to symbols, thus it is also possible to have an
12113 object file containing relocations but no symbol table. */
12114 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
12116 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
12125 if (r_symndx
< symtab_hdr
->sh_info
)
12127 /* A local symbol. */
12128 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
12135 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12136 while (h
->root
.type
== bfd_link_hash_indirect
12137 || h
->root
.type
== bfd_link_hash_warning
)
12138 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12142 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12144 call_reloc_p
= FALSE
;
12145 may_become_dynamic_p
= FALSE
;
12146 may_need_local_target_p
= FALSE
;
12148 /* Could be done earlier, if h were already available. */
12149 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
12153 case R_ARM_GOT_PREL
:
12154 case R_ARM_TLS_GD32
:
12155 case R_ARM_TLS_IE32
:
12156 case R_ARM_TLS_GOTDESC
:
12157 case R_ARM_TLS_DESCSEQ
:
12158 case R_ARM_THM_TLS_DESCSEQ
:
12159 case R_ARM_TLS_CALL
:
12160 case R_ARM_THM_TLS_CALL
:
12161 /* This symbol requires a global offset table entry. */
12163 int tls_type
, old_tls_type
;
12167 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
12169 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
12171 case R_ARM_TLS_GOTDESC
:
12172 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
12173 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
12174 tls_type
= GOT_TLS_GDESC
; break;
12176 default: tls_type
= GOT_NORMAL
; break;
12182 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12186 /* This is a global offset table entry for a local symbol. */
12187 if (!elf32_arm_allocate_local_sym_info (abfd
))
12189 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
12190 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
12193 /* If a variable is accessed with both tls methods, two
12194 slots may be created. */
12195 if (GOT_TLS_GD_ANY_P (old_tls_type
)
12196 && GOT_TLS_GD_ANY_P (tls_type
))
12197 tls_type
|= old_tls_type
;
12199 /* We will already have issued an error message if there
12200 is a TLS/non-TLS mismatch, based on the symbol
12201 type. So just combine any TLS types needed. */
12202 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
12203 && tls_type
!= GOT_NORMAL
)
12204 tls_type
|= old_tls_type
;
12206 /* If the symbol is accessed in both IE and GDESC
12207 method, we're able to relax. Turn off the GDESC flag,
12208 without messing up with any other kind of tls types
12209 that may be involved */
12210 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
12211 tls_type
&= ~GOT_TLS_GDESC
;
12213 if (old_tls_type
!= tls_type
)
12216 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
12218 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
12221 /* Fall through. */
12223 case R_ARM_TLS_LDM32
:
12224 if (r_type
== R_ARM_TLS_LDM32
)
12225 htab
->tls_ldm_got
.refcount
++;
12226 /* Fall through. */
12228 case R_ARM_GOTOFF32
:
12230 if (htab
->root
.sgot
== NULL
12231 && !create_got_section (htab
->root
.dynobj
, info
))
12240 case R_ARM_THM_CALL
:
12241 case R_ARM_THM_JUMP24
:
12242 case R_ARM_THM_JUMP19
:
12243 call_reloc_p
= TRUE
;
12244 may_need_local_target_p
= TRUE
;
12248 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12249 ldr __GOTT_INDEX__ offsets. */
12250 if (!htab
->vxworks_p
)
12252 may_need_local_target_p
= TRUE
;
12255 /* Fall through. */
12257 case R_ARM_MOVW_ABS_NC
:
12258 case R_ARM_MOVT_ABS
:
12259 case R_ARM_THM_MOVW_ABS_NC
:
12260 case R_ARM_THM_MOVT_ABS
:
12263 (*_bfd_error_handler
)
12264 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12265 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
12266 (h
) ? h
->root
.root
.string
: "a local symbol");
12267 bfd_set_error (bfd_error_bad_value
);
12271 /* Fall through. */
12273 case R_ARM_ABS32_NOI
:
12275 case R_ARM_REL32_NOI
:
12276 case R_ARM_MOVW_PREL_NC
:
12277 case R_ARM_MOVT_PREL
:
12278 case R_ARM_THM_MOVW_PREL_NC
:
12279 case R_ARM_THM_MOVT_PREL
:
12281 /* Should the interworking branches be listed here? */
12282 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
12283 && (sec
->flags
& SEC_ALLOC
) != 0)
12286 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12288 /* In shared libraries and relocatable executables,
12289 we treat local relative references as calls;
12290 see the related SYMBOL_CALLS_LOCAL code in
12291 allocate_dynrelocs. */
12292 call_reloc_p
= TRUE
;
12293 may_need_local_target_p
= TRUE
;
12296 /* We are creating a shared library or relocatable
12297 executable, and this is a reloc against a global symbol,
12298 or a non-PC-relative reloc against a local symbol.
12299 We may need to copy the reloc into the output. */
12300 may_become_dynamic_p
= TRUE
;
12303 may_need_local_target_p
= TRUE
;
12306 /* This relocation describes the C++ object vtable hierarchy.
12307 Reconstruct it for later use during GC. */
12308 case R_ARM_GNU_VTINHERIT
:
12309 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
12313 /* This relocation describes which C++ vtable entries are actually
12314 used. Record for later use during GC. */
12315 case R_ARM_GNU_VTENTRY
:
12316 BFD_ASSERT (h
!= NULL
);
12318 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
12326 /* We may need a .plt entry if the function this reloc
12327 refers to is in a different object, regardless of the
12328 symbol's type. We can't tell for sure yet, because
12329 something later might force the symbol local. */
12331 else if (may_need_local_target_p
)
12332 /* If this reloc is in a read-only section, we might
12333 need a copy reloc. We can't check reliably at this
12334 stage whether the section is read-only, as input
12335 sections have not yet been mapped to output sections.
12336 Tentatively set the flag for now, and correct in
12337 adjust_dynamic_symbol. */
12338 h
->non_got_ref
= 1;
12341 if (may_need_local_target_p
12342 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
12344 union gotplt_union
*root_plt
;
12345 struct arm_plt_info
*arm_plt
;
12346 struct arm_local_iplt_info
*local_iplt
;
12350 root_plt
= &h
->plt
;
12351 arm_plt
= &eh
->plt
;
12355 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
12356 if (local_iplt
== NULL
)
12358 root_plt
= &local_iplt
->root
;
12359 arm_plt
= &local_iplt
->arm
;
12362 /* If the symbol is a function that doesn't bind locally,
12363 this relocation will need a PLT entry. */
12364 root_plt
->refcount
+= 1;
12367 arm_plt
->noncall_refcount
++;
12369 /* It's too early to use htab->use_blx here, so we have to
12370 record possible blx references separately from
12371 relocs that definitely need a thumb stub. */
12373 if (r_type
== R_ARM_THM_CALL
)
12374 arm_plt
->maybe_thumb_refcount
+= 1;
12376 if (r_type
== R_ARM_THM_JUMP24
12377 || r_type
== R_ARM_THM_JUMP19
)
12378 arm_plt
->thumb_refcount
+= 1;
12381 if (may_become_dynamic_p
)
12383 struct elf_dyn_relocs
*p
, **head
;
12385 /* Create a reloc section in dynobj. */
12386 if (sreloc
== NULL
)
12388 sreloc
= _bfd_elf_make_dynamic_reloc_section
12389 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
12391 if (sreloc
== NULL
)
12394 /* BPABI objects never have dynamic relocations mapped. */
12395 if (htab
->symbian_p
)
12399 flags
= bfd_get_section_flags (dynobj
, sreloc
);
12400 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
12401 bfd_set_section_flags (dynobj
, sreloc
, flags
);
12405 /* If this is a global symbol, count the number of
12406 relocations we need for this symbol. */
12408 head
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
12411 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12417 if (p
== NULL
|| p
->sec
!= sec
)
12419 bfd_size_type amt
= sizeof *p
;
12421 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
12431 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
12440 /* Unwinding tables are not referenced directly. This pass marks them as
12441 required if the corresponding code section is marked. */
12444 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
12445 elf_gc_mark_hook_fn gc_mark_hook
)
12448 Elf_Internal_Shdr
**elf_shdrp
;
12451 /* Marking EH data may cause additional code sections to be marked,
12452 requiring multiple passes. */
12457 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12461 if (! is_arm_elf (sub
))
12464 elf_shdrp
= elf_elfsections (sub
);
12465 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12467 Elf_Internal_Shdr
*hdr
;
12469 hdr
= &elf_section_data (o
)->this_hdr
;
12470 if (hdr
->sh_type
== SHT_ARM_EXIDX
12472 && hdr
->sh_link
< elf_numsections (sub
)
12474 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
12477 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12487 /* Treat mapping symbols as special target symbols. */
12490 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
12492 return bfd_is_arm_special_symbol_name (sym
->name
,
12493 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
12496 /* This is a copy of elf_find_function() from elf.c except that
12497 ARM mapping symbols are ignored when looking for function names
12498 and STT_ARM_TFUNC is considered to a function type. */
12501 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
12502 asection
* section
,
12503 asymbol
** symbols
,
12505 const char ** filename_ptr
,
12506 const char ** functionname_ptr
)
12508 const char * filename
= NULL
;
12509 asymbol
* func
= NULL
;
12510 bfd_vma low_func
= 0;
12513 for (p
= symbols
; *p
!= NULL
; p
++)
12515 elf_symbol_type
*q
;
12517 q
= (elf_symbol_type
*) *p
;
12519 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
12524 filename
= bfd_asymbol_name (&q
->symbol
);
12527 case STT_ARM_TFUNC
:
12529 /* Skip mapping symbols. */
12530 if ((q
->symbol
.flags
& BSF_LOCAL
)
12531 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
12532 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
12534 /* Fall through. */
12535 if (bfd_get_section (&q
->symbol
) == section
12536 && q
->symbol
.value
>= low_func
12537 && q
->symbol
.value
<= offset
)
12539 func
= (asymbol
*) q
;
12540 low_func
= q
->symbol
.value
;
12550 *filename_ptr
= filename
;
12551 if (functionname_ptr
)
12552 *functionname_ptr
= bfd_asymbol_name (func
);
12558 /* Find the nearest line to a particular section and offset, for error
12559 reporting. This code is a duplicate of the code in elf.c, except
12560 that it uses arm_elf_find_function. */
12563 elf32_arm_find_nearest_line (bfd
* abfd
,
12564 asection
* section
,
12565 asymbol
** symbols
,
12567 const char ** filename_ptr
,
12568 const char ** functionname_ptr
,
12569 unsigned int * line_ptr
)
12571 bfd_boolean found
= FALSE
;
12573 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12575 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
12576 filename_ptr
, functionname_ptr
,
12578 & elf_tdata (abfd
)->dwarf2_find_line_info
))
12580 if (!*functionname_ptr
)
12581 arm_elf_find_function (abfd
, section
, symbols
, offset
,
12582 *filename_ptr
? NULL
: filename_ptr
,
12588 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
12589 & found
, filename_ptr
,
12590 functionname_ptr
, line_ptr
,
12591 & elf_tdata (abfd
)->line_info
))
12594 if (found
&& (*functionname_ptr
|| *line_ptr
))
12597 if (symbols
== NULL
)
12600 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
12601 filename_ptr
, functionname_ptr
))
12609 elf32_arm_find_inliner_info (bfd
* abfd
,
12610 const char ** filename_ptr
,
12611 const char ** functionname_ptr
,
12612 unsigned int * line_ptr
)
12615 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
12616 functionname_ptr
, line_ptr
,
12617 & elf_tdata (abfd
)->dwarf2_find_line_info
);
12621 /* Adjust a symbol defined by a dynamic object and referenced by a
12622 regular object. The current definition is in some section of the
12623 dynamic object, but we're not including those sections. We have to
12624 change the definition to something the rest of the link can
12628 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
12629 struct elf_link_hash_entry
* h
)
12633 struct elf32_arm_link_hash_entry
* eh
;
12634 struct elf32_arm_link_hash_table
*globals
;
12636 globals
= elf32_arm_hash_table (info
);
12637 if (globals
== NULL
)
12640 dynobj
= elf_hash_table (info
)->dynobj
;
12642 /* Make sure we know what is going on here. */
12643 BFD_ASSERT (dynobj
!= NULL
12645 || h
->type
== STT_GNU_IFUNC
12646 || h
->u
.weakdef
!= NULL
12649 && !h
->def_regular
)));
12651 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12653 /* If this is a function, put it in the procedure linkage table. We
12654 will fill in the contents of the procedure linkage table later,
12655 when we know the address of the .got section. */
12656 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
12658 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12659 symbol binds locally. */
12660 if (h
->plt
.refcount
<= 0
12661 || (h
->type
!= STT_GNU_IFUNC
12662 && (SYMBOL_CALLS_LOCAL (info
, h
)
12663 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
12664 && h
->root
.type
== bfd_link_hash_undefweak
))))
12666 /* This case can occur if we saw a PLT32 reloc in an input
12667 file, but the symbol was never referred to by a dynamic
12668 object, or if all references were garbage collected. In
12669 such a case, we don't actually need to build a procedure
12670 linkage table, and we can just do a PC24 reloc instead. */
12671 h
->plt
.offset
= (bfd_vma
) -1;
12672 eh
->plt
.thumb_refcount
= 0;
12673 eh
->plt
.maybe_thumb_refcount
= 0;
12674 eh
->plt
.noncall_refcount
= 0;
12682 /* It's possible that we incorrectly decided a .plt reloc was
12683 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12684 in check_relocs. We can't decide accurately between function
12685 and non-function syms in check-relocs; Objects loaded later in
12686 the link may change h->type. So fix it now. */
12687 h
->plt
.offset
= (bfd_vma
) -1;
12688 eh
->plt
.thumb_refcount
= 0;
12689 eh
->plt
.maybe_thumb_refcount
= 0;
12690 eh
->plt
.noncall_refcount
= 0;
12693 /* If this is a weak symbol, and there is a real definition, the
12694 processor independent code will have arranged for us to see the
12695 real definition first, and we can just use the same value. */
12696 if (h
->u
.weakdef
!= NULL
)
12698 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
12699 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
12700 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
12701 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
12705 /* If there are no non-GOT references, we do not need a copy
12707 if (!h
->non_got_ref
)
12710 /* This is a reference to a symbol defined by a dynamic object which
12711 is not a function. */
12713 /* If we are creating a shared library, we must presume that the
12714 only references to the symbol are via the global offset table.
12715 For such cases we need not do anything here; the relocations will
12716 be handled correctly by relocate_section. Relocatable executables
12717 can reference data in shared objects directly, so we don't need to
12718 do anything here. */
12719 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
12724 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
12725 h
->root
.root
.string
);
12729 /* We must allocate the symbol in our .dynbss section, which will
12730 become part of the .bss section of the executable. There will be
12731 an entry for this symbol in the .dynsym section. The dynamic
12732 object will contain position independent code, so all references
12733 from the dynamic object to this symbol will go through the global
12734 offset table. The dynamic linker will use the .dynsym entry to
12735 determine the address it must put in the global offset table, so
12736 both the dynamic object and the regular object will refer to the
12737 same memory location for the variable. */
12738 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
12739 BFD_ASSERT (s
!= NULL
);
12741 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12742 copy the initial value out of the dynamic object and into the
12743 runtime process image. We need to remember the offset into the
12744 .rel(a).bss section we are going to use. */
12745 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
12749 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
12750 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
12754 return _bfd_elf_adjust_dynamic_copy (h
, s
);
12757 /* Allocate space in .plt, .got and associated reloc sections for
12761 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
12763 struct bfd_link_info
*info
;
12764 struct elf32_arm_link_hash_table
*htab
;
12765 struct elf32_arm_link_hash_entry
*eh
;
12766 struct elf_dyn_relocs
*p
;
12768 if (h
->root
.type
== bfd_link_hash_indirect
)
12771 if (h
->root
.type
== bfd_link_hash_warning
)
12772 /* When warning symbols are created, they **replace** the "real"
12773 entry in the hash table, thus we never get to see the real
12774 symbol in a hash traversal. So look at it now. */
12775 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12777 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12779 info
= (struct bfd_link_info
*) inf
;
12780 htab
= elf32_arm_hash_table (info
);
12784 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
12785 && h
->plt
.refcount
> 0)
12787 /* Make sure this symbol is output as a dynamic symbol.
12788 Undefined weak syms won't yet be marked as dynamic. */
12789 if (h
->dynindx
== -1
12790 && !h
->forced_local
)
12792 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12796 /* If the call in the PLT entry binds locally, the associated
12797 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12798 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12799 than the .plt section. */
12800 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
12803 if (eh
->plt
.noncall_refcount
== 0
12804 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12805 /* All non-call references can be resolved directly.
12806 This means that they can (and in some cases, must)
12807 resolve directly to the run-time target, rather than
12808 to the PLT. That in turns means that any .got entry
12809 would be equal to the .igot.plt entry, so there's
12810 no point having both. */
12811 h
->got
.refcount
= 0;
12816 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
12818 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
12820 /* If this symbol is not defined in a regular file, and we are
12821 not generating a shared library, then set the symbol to this
12822 location in the .plt. This is required to make function
12823 pointers compare as equal between the normal executable and
12824 the shared library. */
12826 && !h
->def_regular
)
12828 h
->root
.u
.def
.section
= htab
->root
.splt
;
12829 h
->root
.u
.def
.value
= h
->plt
.offset
;
12831 /* Make sure the function is not marked as Thumb, in case
12832 it is the target of an ABS32 relocation, which will
12833 point to the PLT entry. */
12834 h
->target_internal
= ST_BRANCH_TO_ARM
;
12837 htab
->next_tls_desc_index
++;
12839 /* VxWorks executables have a second set of relocations for
12840 each PLT entry. They go in a separate relocation section,
12841 which is processed by the kernel loader. */
12842 if (htab
->vxworks_p
&& !info
->shared
)
12844 /* There is a relocation for the initial PLT entry:
12845 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12846 if (h
->plt
.offset
== htab
->plt_header_size
)
12847 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
12849 /* There are two extra relocations for each subsequent
12850 PLT entry: an R_ARM_32 relocation for the GOT entry,
12851 and an R_ARM_32 relocation for the PLT entry. */
12852 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
12857 h
->plt
.offset
= (bfd_vma
) -1;
12863 h
->plt
.offset
= (bfd_vma
) -1;
12867 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12868 eh
->tlsdesc_got
= (bfd_vma
) -1;
12870 if (h
->got
.refcount
> 0)
12874 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12877 /* Make sure this symbol is output as a dynamic symbol.
12878 Undefined weak syms won't yet be marked as dynamic. */
12879 if (h
->dynindx
== -1
12880 && !h
->forced_local
)
12882 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12886 if (!htab
->symbian_p
)
12888 s
= htab
->root
.sgot
;
12889 h
->got
.offset
= s
->size
;
12891 if (tls_type
== GOT_UNKNOWN
)
12894 if (tls_type
== GOT_NORMAL
)
12895 /* Non-TLS symbols need one GOT slot. */
12899 if (tls_type
& GOT_TLS_GDESC
)
12901 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12903 = (htab
->root
.sgotplt
->size
12904 - elf32_arm_compute_jump_table_size (htab
));
12905 htab
->root
.sgotplt
->size
+= 8;
12906 h
->got
.offset
= (bfd_vma
) -2;
12907 /* plt.got_offset needs to know there's a TLS_DESC
12908 reloc in the middle of .got.plt. */
12909 htab
->num_tls_desc
++;
12912 if (tls_type
& GOT_TLS_GD
)
12914 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12915 the symbol is both GD and GDESC, got.offset may
12916 have been overwritten. */
12917 h
->got
.offset
= s
->size
;
12921 if (tls_type
& GOT_TLS_IE
)
12922 /* R_ARM_TLS_IE32 needs one GOT slot. */
12926 dyn
= htab
->root
.dynamic_sections_created
;
12929 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
12931 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
12934 if (tls_type
!= GOT_NORMAL
12935 && (info
->shared
|| indx
!= 0)
12936 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
12937 || h
->root
.type
!= bfd_link_hash_undefweak
))
12939 if (tls_type
& GOT_TLS_IE
)
12940 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12942 if (tls_type
& GOT_TLS_GD
)
12943 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12945 if (tls_type
& GOT_TLS_GDESC
)
12947 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
12948 /* GDESC needs a trampoline to jump to. */
12949 htab
->tls_trampoline
= -1;
12952 /* Only GD needs it. GDESC just emits one relocation per
12954 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
12955 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12957 else if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
12959 if (htab
->root
.dynamic_sections_created
)
12960 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
12961 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12963 else if (h
->type
== STT_GNU_IFUNC
12964 && eh
->plt
.noncall_refcount
== 0)
12965 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
12966 they all resolve dynamically instead. Reserve room for the
12967 GOT entry's R_ARM_IRELATIVE relocation. */
12968 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
12969 else if (info
->shared
)
12970 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
12971 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12975 h
->got
.offset
= (bfd_vma
) -1;
12977 /* Allocate stubs for exported Thumb functions on v4t. */
12978 if (!htab
->use_blx
&& h
->dynindx
!= -1
12980 && h
->target_internal
== ST_BRANCH_TO_THUMB
12981 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
12983 struct elf_link_hash_entry
* th
;
12984 struct bfd_link_hash_entry
* bh
;
12985 struct elf_link_hash_entry
* myh
;
12989 /* Create a new symbol to regist the real location of the function. */
12990 s
= h
->root
.u
.def
.section
;
12991 sprintf (name
, "__real_%s", h
->root
.root
.string
);
12992 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
12993 name
, BSF_GLOBAL
, s
,
12994 h
->root
.u
.def
.value
,
12995 NULL
, TRUE
, FALSE
, &bh
);
12997 myh
= (struct elf_link_hash_entry
*) bh
;
12998 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
12999 myh
->forced_local
= 1;
13000 myh
->target_internal
= ST_BRANCH_TO_THUMB
;
13001 eh
->export_glue
= myh
;
13002 th
= record_arm_to_thumb_glue (info
, h
);
13003 /* Point the symbol at the stub. */
13004 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
13005 h
->target_internal
= ST_BRANCH_TO_ARM
;
13006 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
13007 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
13010 if (eh
->dyn_relocs
== NULL
)
13013 /* In the shared -Bsymbolic case, discard space allocated for
13014 dynamic pc-relative relocs against symbols which turn out to be
13015 defined in regular objects. For the normal shared case, discard
13016 space for pc-relative relocs that have become local due to symbol
13017 visibility changes. */
13019 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
13021 /* The only relocs that use pc_count are R_ARM_REL32 and
13022 R_ARM_REL32_NOI, which will appear on something like
13023 ".long foo - .". We want calls to protected symbols to resolve
13024 directly to the function rather than going via the plt. If people
13025 want function pointer comparisons to work as expected then they
13026 should avoid writing assembly like ".long foo - .". */
13027 if (SYMBOL_CALLS_LOCAL (info
, h
))
13029 struct elf_dyn_relocs
**pp
;
13031 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13033 p
->count
-= p
->pc_count
;
13042 if (htab
->vxworks_p
)
13044 struct elf_dyn_relocs
**pp
;
13046 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13048 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
13055 /* Also discard relocs on undefined weak syms with non-default
13057 if (eh
->dyn_relocs
!= NULL
13058 && h
->root
.type
== bfd_link_hash_undefweak
)
13060 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
13061 eh
->dyn_relocs
= NULL
;
13063 /* Make sure undefined weak symbols are output as a dynamic
13065 else if (h
->dynindx
== -1
13066 && !h
->forced_local
)
13068 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13073 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
13074 && h
->root
.type
== bfd_link_hash_new
)
13076 /* Output absolute symbols so that we can create relocations
13077 against them. For normal symbols we output a relocation
13078 against the section that contains them. */
13079 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13086 /* For the non-shared case, discard space for relocs against
13087 symbols which turn out to need copy relocs or are not
13090 if (!h
->non_got_ref
13091 && ((h
->def_dynamic
13092 && !h
->def_regular
)
13093 || (htab
->root
.dynamic_sections_created
13094 && (h
->root
.type
== bfd_link_hash_undefweak
13095 || h
->root
.type
== bfd_link_hash_undefined
))))
13097 /* Make sure this symbol is output as a dynamic symbol.
13098 Undefined weak syms won't yet be marked as dynamic. */
13099 if (h
->dynindx
== -1
13100 && !h
->forced_local
)
13102 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13106 /* If that succeeded, we know we'll be keeping all the
13108 if (h
->dynindx
!= -1)
13112 eh
->dyn_relocs
= NULL
;
13117 /* Finally, allocate space. */
13118 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13120 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
13121 if (h
->type
== STT_GNU_IFUNC
13122 && eh
->plt
.noncall_refcount
== 0
13123 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13124 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
13126 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
13132 /* Find any dynamic relocs that apply to read-only sections. */
13135 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
13137 struct elf32_arm_link_hash_entry
* eh
;
13138 struct elf_dyn_relocs
* p
;
13140 if (h
->root
.type
== bfd_link_hash_warning
)
13141 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
13143 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13144 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13146 asection
*s
= p
->sec
;
13148 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
13150 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
13152 info
->flags
|= DF_TEXTREL
;
13154 /* Not an error, just cut short the traversal. */
13162 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
13165 struct elf32_arm_link_hash_table
*globals
;
13167 globals
= elf32_arm_hash_table (info
);
13168 if (globals
== NULL
)
13171 globals
->byteswap_code
= byteswap_code
;
13174 /* Set the sizes of the dynamic sections. */
13177 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
13178 struct bfd_link_info
* info
)
13183 bfd_boolean relocs
;
13185 struct elf32_arm_link_hash_table
*htab
;
13187 htab
= elf32_arm_hash_table (info
);
13191 dynobj
= elf_hash_table (info
)->dynobj
;
13192 BFD_ASSERT (dynobj
!= NULL
);
13193 check_use_blx (htab
);
13195 if (elf_hash_table (info
)->dynamic_sections_created
)
13197 /* Set the contents of the .interp section to the interpreter. */
13198 if (info
->executable
)
13200 s
= bfd_get_section_by_name (dynobj
, ".interp");
13201 BFD_ASSERT (s
!= NULL
);
13202 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
13203 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
13207 /* Set up .got offsets for local syms, and space for local dynamic
13209 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13211 bfd_signed_vma
*local_got
;
13212 bfd_signed_vma
*end_local_got
;
13213 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
13214 char *local_tls_type
;
13215 bfd_vma
*local_tlsdesc_gotent
;
13216 bfd_size_type locsymcount
;
13217 Elf_Internal_Shdr
*symtab_hdr
;
13219 bfd_boolean is_vxworks
= htab
->vxworks_p
;
13220 unsigned int symndx
;
13222 if (! is_arm_elf (ibfd
))
13225 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
13227 struct elf_dyn_relocs
*p
;
13229 for (p
= (struct elf_dyn_relocs
*)
13230 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
13232 if (!bfd_is_abs_section (p
->sec
)
13233 && bfd_is_abs_section (p
->sec
->output_section
))
13235 /* Input section has been discarded, either because
13236 it is a copy of a linkonce section or due to
13237 linker script /DISCARD/, so we'll be discarding
13240 else if (is_vxworks
13241 && strcmp (p
->sec
->output_section
->name
,
13244 /* Relocations in vxworks .tls_vars sections are
13245 handled specially by the loader. */
13247 else if (p
->count
!= 0)
13249 srel
= elf_section_data (p
->sec
)->sreloc
;
13250 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
13251 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
13252 info
->flags
|= DF_TEXTREL
;
13257 local_got
= elf_local_got_refcounts (ibfd
);
13261 symtab_hdr
= & elf_symtab_hdr (ibfd
);
13262 locsymcount
= symtab_hdr
->sh_info
;
13263 end_local_got
= local_got
+ locsymcount
;
13264 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
13265 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
13266 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
13268 s
= htab
->root
.sgot
;
13269 srel
= htab
->root
.srelgot
;
13270 for (; local_got
< end_local_got
;
13271 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
13272 ++local_tlsdesc_gotent
, ++symndx
)
13274 *local_tlsdesc_gotent
= (bfd_vma
) -1;
13275 local_iplt
= *local_iplt_ptr
;
13276 if (local_iplt
!= NULL
)
13278 struct elf_dyn_relocs
*p
;
13280 if (local_iplt
->root
.refcount
> 0)
13282 elf32_arm_allocate_plt_entry (info
, TRUE
,
13285 if (local_iplt
->arm
.noncall_refcount
== 0)
13286 /* All references to the PLT are calls, so all
13287 non-call references can resolve directly to the
13288 run-time target. This means that the .got entry
13289 would be the same as the .igot.plt entry, so there's
13290 no point creating both. */
13295 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
13296 local_iplt
->root
.offset
= (bfd_vma
) -1;
13299 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13303 psrel
= elf_section_data (p
->sec
)->sreloc
;
13304 if (local_iplt
->arm
.noncall_refcount
== 0)
13305 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
13307 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
13310 if (*local_got
> 0)
13312 Elf_Internal_Sym
*isym
;
13314 *local_got
= s
->size
;
13315 if (*local_tls_type
& GOT_TLS_GD
)
13316 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13318 if (*local_tls_type
& GOT_TLS_GDESC
)
13320 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
13321 - elf32_arm_compute_jump_table_size (htab
);
13322 htab
->root
.sgotplt
->size
+= 8;
13323 *local_got
= (bfd_vma
) -2;
13324 /* plt.got_offset needs to know there's a TLS_DESC
13325 reloc in the middle of .got.plt. */
13326 htab
->num_tls_desc
++;
13328 if (*local_tls_type
& GOT_TLS_IE
)
13331 if (*local_tls_type
& GOT_NORMAL
)
13333 /* If the symbol is both GD and GDESC, *local_got
13334 may have been overwritten. */
13335 *local_got
= s
->size
;
13339 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ibfd
, symndx
);
13343 /* If all references to an STT_GNU_IFUNC PLT are calls,
13344 then all non-call references, including this GOT entry,
13345 resolve directly to the run-time target. */
13346 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
13347 && (local_iplt
== NULL
13348 || local_iplt
->arm
.noncall_refcount
== 0))
13349 elf32_arm_allocate_irelocs (info
, srel
, 1);
13350 else if ((info
->shared
&& !(*local_tls_type
& GOT_TLS_GDESC
))
13351 || *local_tls_type
& GOT_TLS_GD
)
13352 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13354 if (info
->shared
&& *local_tls_type
& GOT_TLS_GDESC
)
13356 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
13357 htab
->tls_trampoline
= -1;
13361 *local_got
= (bfd_vma
) -1;
13365 if (htab
->tls_ldm_got
.refcount
> 0)
13367 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13368 for R_ARM_TLS_LDM32 relocations. */
13369 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
13370 htab
->root
.sgot
->size
+= 8;
13372 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13375 htab
->tls_ldm_got
.offset
= -1;
13377 /* Allocate global sym .plt and .got entries, and space for global
13378 sym dynamic relocs. */
13379 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
13381 /* Here we rummage through the found bfds to collect glue information. */
13382 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13384 if (! is_arm_elf (ibfd
))
13387 /* Initialise mapping tables for code/data. */
13388 bfd_elf32_arm_init_maps (ibfd
);
13390 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
13391 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
13392 /* xgettext:c-format */
13393 _bfd_error_handler (_("Errors encountered processing file %s"),
13397 /* Allocate space for the glue sections now that we've sized them. */
13398 bfd_elf32_arm_allocate_interworking_sections (info
);
13400 /* For every jump slot reserved in the sgotplt, reloc_count is
13401 incremented. However, when we reserve space for TLS descriptors,
13402 it's not incremented, so in order to compute the space reserved
13403 for them, it suffices to multiply the reloc count by the jump
13405 if (htab
->root
.srelplt
)
13406 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
13408 if (htab
->tls_trampoline
)
13410 if (htab
->root
.splt
->size
== 0)
13411 htab
->root
.splt
->size
+= htab
->plt_header_size
;
13413 htab
->tls_trampoline
= htab
->root
.splt
->size
;
13414 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
13416 /* If we're not using lazy TLS relocations, don't generate the
13417 PLT and GOT entries they require. */
13418 if (!(info
->flags
& DF_BIND_NOW
))
13420 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
13421 htab
->root
.sgot
->size
+= 4;
13423 htab
->dt_tlsdesc_plt
= htab
->root
.splt
->size
;
13424 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
13428 /* The check_relocs and adjust_dynamic_symbol entry points have
13429 determined the sizes of the various dynamic sections. Allocate
13430 memory for them. */
13433 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
13437 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
13440 /* It's OK to base decisions on the section name, because none
13441 of the dynobj section names depend upon the input files. */
13442 name
= bfd_get_section_name (dynobj
, s
);
13444 if (s
== htab
->root
.splt
)
13446 /* Remember whether there is a PLT. */
13447 plt
= s
->size
!= 0;
13449 else if (CONST_STRNEQ (name
, ".rel"))
13453 /* Remember whether there are any reloc sections other
13454 than .rel(a).plt and .rela.plt.unloaded. */
13455 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
13458 /* We use the reloc_count field as a counter if we need
13459 to copy relocs into the output file. */
13460 s
->reloc_count
= 0;
13463 else if (s
!= htab
->root
.sgot
13464 && s
!= htab
->root
.sgotplt
13465 && s
!= htab
->root
.iplt
13466 && s
!= htab
->root
.igotplt
13467 && s
!= htab
->sdynbss
)
13469 /* It's not one of our sections, so don't allocate space. */
13475 /* If we don't need this section, strip it from the
13476 output file. This is mostly to handle .rel(a).bss and
13477 .rel(a).plt. We must create both sections in
13478 create_dynamic_sections, because they must be created
13479 before the linker maps input sections to output
13480 sections. The linker does that before
13481 adjust_dynamic_symbol is called, and it is that
13482 function which decides whether anything needs to go
13483 into these sections. */
13484 s
->flags
|= SEC_EXCLUDE
;
13488 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
13491 /* Allocate memory for the section contents. */
13492 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
13493 if (s
->contents
== NULL
)
13497 if (elf_hash_table (info
)->dynamic_sections_created
)
13499 /* Add some entries to the .dynamic section. We fill in the
13500 values later, in elf32_arm_finish_dynamic_sections, but we
13501 must add the entries now so that we get the correct size for
13502 the .dynamic section. The DT_DEBUG entry is filled in by the
13503 dynamic linker and used by the debugger. */
13504 #define add_dynamic_entry(TAG, VAL) \
13505 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13507 if (info
->executable
)
13509 if (!add_dynamic_entry (DT_DEBUG
, 0))
13515 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
13516 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
13517 || !add_dynamic_entry (DT_PLTREL
,
13518 htab
->use_rel
? DT_REL
: DT_RELA
)
13519 || !add_dynamic_entry (DT_JMPREL
, 0))
13522 if (htab
->dt_tlsdesc_plt
&&
13523 (!add_dynamic_entry (DT_TLSDESC_PLT
,0)
13524 || !add_dynamic_entry (DT_TLSDESC_GOT
,0)))
13532 if (!add_dynamic_entry (DT_REL
, 0)
13533 || !add_dynamic_entry (DT_RELSZ
, 0)
13534 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
13539 if (!add_dynamic_entry (DT_RELA
, 0)
13540 || !add_dynamic_entry (DT_RELASZ
, 0)
13541 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
13546 /* If any dynamic relocs apply to a read-only section,
13547 then we need a DT_TEXTREL entry. */
13548 if ((info
->flags
& DF_TEXTREL
) == 0)
13549 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
13552 if ((info
->flags
& DF_TEXTREL
) != 0)
13554 if (!add_dynamic_entry (DT_TEXTREL
, 0))
13557 if (htab
->vxworks_p
13558 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
13561 #undef add_dynamic_entry
13566 /* Size sections even though they're not dynamic. We use it to setup
13567 _TLS_MODULE_BASE_, if needed. */
13570 elf32_arm_always_size_sections (bfd
*output_bfd
,
13571 struct bfd_link_info
*info
)
13575 if (info
->relocatable
)
13578 tls_sec
= elf_hash_table (info
)->tls_sec
;
13582 struct elf_link_hash_entry
*tlsbase
;
13584 tlsbase
= elf_link_hash_lookup
13585 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
13589 struct bfd_link_hash_entry
*bh
= NULL
;
13590 const struct elf_backend_data
*bed
13591 = get_elf_backend_data (output_bfd
);
13593 if (!(_bfd_generic_link_add_one_symbol
13594 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
13595 tls_sec
, 0, NULL
, FALSE
,
13596 bed
->collect
, &bh
)))
13599 tlsbase
->type
= STT_TLS
;
13600 tlsbase
= (struct elf_link_hash_entry
*)bh
;
13601 tlsbase
->def_regular
= 1;
13602 tlsbase
->other
= STV_HIDDEN
;
13603 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
13609 /* Finish up dynamic symbol handling. We set the contents of various
13610 dynamic sections here. */
13613 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
13614 struct bfd_link_info
* info
,
13615 struct elf_link_hash_entry
* h
,
13616 Elf_Internal_Sym
* sym
)
13618 struct elf32_arm_link_hash_table
*htab
;
13619 struct elf32_arm_link_hash_entry
*eh
;
13621 htab
= elf32_arm_hash_table (info
);
13625 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13627 if (h
->plt
.offset
!= (bfd_vma
) -1)
13631 BFD_ASSERT (h
->dynindx
!= -1);
13632 elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
13636 if (!h
->def_regular
)
13638 /* Mark the symbol as undefined, rather than as defined in
13639 the .plt section. Leave the value alone. */
13640 sym
->st_shndx
= SHN_UNDEF
;
13641 /* If the symbol is weak, we do need to clear the value.
13642 Otherwise, the PLT entry would provide a definition for
13643 the symbol even if the symbol wasn't defined anywhere,
13644 and so the symbol would never be NULL. */
13645 if (!h
->ref_regular_nonweak
)
13648 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
13650 /* At least one non-call relocation references this .iplt entry,
13651 so the .iplt entry is the function's canonical address. */
13652 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
13653 sym
->st_target_internal
= ST_BRANCH_TO_ARM
;
13654 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
13655 (output_bfd
, htab
->root
.iplt
->output_section
));
13656 sym
->st_value
= (h
->plt
.offset
13657 + htab
->root
.iplt
->output_section
->vma
13658 + htab
->root
.iplt
->output_offset
);
13665 Elf_Internal_Rela rel
;
13667 /* This symbol needs a copy reloc. Set it up. */
13668 BFD_ASSERT (h
->dynindx
!= -1
13669 && (h
->root
.type
== bfd_link_hash_defined
13670 || h
->root
.type
== bfd_link_hash_defweak
));
13673 BFD_ASSERT (s
!= NULL
);
13676 rel
.r_offset
= (h
->root
.u
.def
.value
13677 + h
->root
.u
.def
.section
->output_section
->vma
13678 + h
->root
.u
.def
.section
->output_offset
);
13679 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
13680 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
13683 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13684 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13685 to the ".got" section. */
13686 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
13687 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
13688 sym
->st_shndx
= SHN_ABS
;
13694 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
13696 const unsigned long *template, unsigned count
)
13700 for (ix
= 0; ix
!= count
; ix
++)
13702 unsigned long insn
= template[ix
];
13704 /* Emit mov pc,rx if bx is not permitted. */
13705 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
13706 insn
= (insn
& 0xf000000f) | 0x01a0f000;
13707 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
13711 /* Finish up the dynamic sections. */
13714 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
13719 struct elf32_arm_link_hash_table
*htab
;
13721 htab
= elf32_arm_hash_table (info
);
13725 dynobj
= elf_hash_table (info
)->dynobj
;
13727 sgot
= htab
->root
.sgotplt
;
13728 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
13730 if (elf_hash_table (info
)->dynamic_sections_created
)
13733 Elf32_External_Dyn
*dyncon
, *dynconend
;
13735 splt
= htab
->root
.splt
;
13736 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
13737 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
13739 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
13740 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
13742 for (; dyncon
< dynconend
; dyncon
++)
13744 Elf_Internal_Dyn dyn
;
13748 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
13755 if (htab
->vxworks_p
13756 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
13757 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13762 goto get_vma_if_bpabi
;
13765 goto get_vma_if_bpabi
;
13768 goto get_vma_if_bpabi
;
13770 name
= ".gnu.version";
13771 goto get_vma_if_bpabi
;
13773 name
= ".gnu.version_d";
13774 goto get_vma_if_bpabi
;
13776 name
= ".gnu.version_r";
13777 goto get_vma_if_bpabi
;
13783 name
= RELOC_SECTION (htab
, ".plt");
13785 s
= bfd_get_section_by_name (output_bfd
, name
);
13786 BFD_ASSERT (s
!= NULL
);
13787 if (!htab
->symbian_p
)
13788 dyn
.d_un
.d_ptr
= s
->vma
;
13790 /* In the BPABI, tags in the PT_DYNAMIC section point
13791 at the file offset, not the memory address, for the
13792 convenience of the post linker. */
13793 dyn
.d_un
.d_ptr
= s
->filepos
;
13794 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13798 if (htab
->symbian_p
)
13803 s
= htab
->root
.srelplt
;
13804 BFD_ASSERT (s
!= NULL
);
13805 dyn
.d_un
.d_val
= s
->size
;
13806 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13811 if (!htab
->symbian_p
)
13813 /* My reading of the SVR4 ABI indicates that the
13814 procedure linkage table relocs (DT_JMPREL) should be
13815 included in the overall relocs (DT_REL). This is
13816 what Solaris does. However, UnixWare can not handle
13817 that case. Therefore, we override the DT_RELSZ entry
13818 here to make it not include the JMPREL relocs. Since
13819 the linker script arranges for .rel(a).plt to follow all
13820 other relocation sections, we don't have to worry
13821 about changing the DT_REL entry. */
13822 s
= htab
->root
.srelplt
;
13824 dyn
.d_un
.d_val
-= s
->size
;
13825 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13828 /* Fall through. */
13832 /* In the BPABI, the DT_REL tag must point at the file
13833 offset, not the VMA, of the first relocation
13834 section. So, we use code similar to that in
13835 elflink.c, but do not check for SHF_ALLOC on the
13836 relcoation section, since relocations sections are
13837 never allocated under the BPABI. The comments above
13838 about Unixware notwithstanding, we include all of the
13839 relocations here. */
13840 if (htab
->symbian_p
)
13843 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
13844 ? SHT_REL
: SHT_RELA
);
13845 dyn
.d_un
.d_val
= 0;
13846 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
13848 Elf_Internal_Shdr
*hdr
13849 = elf_elfsections (output_bfd
)[i
];
13850 if (hdr
->sh_type
== type
)
13852 if (dyn
.d_tag
== DT_RELSZ
13853 || dyn
.d_tag
== DT_RELASZ
)
13854 dyn
.d_un
.d_val
+= hdr
->sh_size
;
13855 else if ((ufile_ptr
) hdr
->sh_offset
13856 <= dyn
.d_un
.d_val
- 1)
13857 dyn
.d_un
.d_val
= hdr
->sh_offset
;
13860 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13864 case DT_TLSDESC_PLT
:
13865 s
= htab
->root
.splt
;
13866 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13867 + htab
->dt_tlsdesc_plt
);
13868 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13871 case DT_TLSDESC_GOT
:
13872 s
= htab
->root
.sgot
;
13873 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13874 + htab
->dt_tlsdesc_got
);
13875 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13878 /* Set the bottom bit of DT_INIT/FINI if the
13879 corresponding function is Thumb. */
13881 name
= info
->init_function
;
13884 name
= info
->fini_function
;
13886 /* If it wasn't set by elf_bfd_final_link
13887 then there is nothing to adjust. */
13888 if (dyn
.d_un
.d_val
!= 0)
13890 struct elf_link_hash_entry
* eh
;
13892 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
13893 FALSE
, FALSE
, TRUE
);
13894 if (eh
!= NULL
&& eh
->target_internal
== ST_BRANCH_TO_THUMB
)
13896 dyn
.d_un
.d_val
|= 1;
13897 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13904 /* Fill in the first entry in the procedure linkage table. */
13905 if (splt
->size
> 0 && htab
->plt_header_size
)
13907 const bfd_vma
*plt0_entry
;
13908 bfd_vma got_address
, plt_address
, got_displacement
;
13910 /* Calculate the addresses of the GOT and PLT. */
13911 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
13912 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
13914 if (htab
->vxworks_p
)
13916 /* The VxWorks GOT is relocated by the dynamic linker.
13917 Therefore, we must emit relocations rather than simply
13918 computing the values now. */
13919 Elf_Internal_Rela rel
;
13921 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
13922 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
13923 splt
->contents
+ 0);
13924 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
13925 splt
->contents
+ 4);
13926 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
13927 splt
->contents
+ 8);
13928 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
13930 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
13931 rel
.r_offset
= plt_address
+ 12;
13932 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
13934 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
13935 htab
->srelplt2
->contents
);
13939 got_displacement
= got_address
- (plt_address
+ 16);
13941 plt0_entry
= elf32_arm_plt0_entry
;
13942 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
13943 splt
->contents
+ 0);
13944 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
13945 splt
->contents
+ 4);
13946 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
13947 splt
->contents
+ 8);
13948 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
13949 splt
->contents
+ 12);
13951 #ifdef FOUR_WORD_PLT
13952 /* The displacement value goes in the otherwise-unused
13953 last word of the second entry. */
13954 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
13956 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
13961 /* UnixWare sets the entsize of .plt to 4, although that doesn't
13962 really seem like the right value. */
13963 if (splt
->output_section
->owner
== output_bfd
)
13964 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
13966 if (htab
->dt_tlsdesc_plt
)
13968 bfd_vma got_address
13969 = sgot
->output_section
->vma
+ sgot
->output_offset
;
13970 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
13971 + htab
->root
.sgot
->output_offset
);
13972 bfd_vma plt_address
13973 = splt
->output_section
->vma
+ splt
->output_offset
;
13975 arm_put_trampoline (htab
, output_bfd
,
13976 splt
->contents
+ htab
->dt_tlsdesc_plt
,
13977 dl_tlsdesc_lazy_trampoline
, 6);
13979 bfd_put_32 (output_bfd
,
13980 gotplt_address
+ htab
->dt_tlsdesc_got
13981 - (plt_address
+ htab
->dt_tlsdesc_plt
)
13982 - dl_tlsdesc_lazy_trampoline
[6],
13983 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24);
13984 bfd_put_32 (output_bfd
,
13985 got_address
- (plt_address
+ htab
->dt_tlsdesc_plt
)
13986 - dl_tlsdesc_lazy_trampoline
[7],
13987 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24 + 4);
13990 if (htab
->tls_trampoline
)
13992 arm_put_trampoline (htab
, output_bfd
,
13993 splt
->contents
+ htab
->tls_trampoline
,
13994 tls_trampoline
, 3);
13995 #ifdef FOUR_WORD_PLT
13996 bfd_put_32 (output_bfd
, 0x00000000,
13997 splt
->contents
+ htab
->tls_trampoline
+ 12);
14001 if (htab
->vxworks_p
&& !info
->shared
&& htab
->root
.splt
->size
> 0)
14003 /* Correct the .rel(a).plt.unloaded relocations. They will have
14004 incorrect symbol indexes. */
14008 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
14009 / htab
->plt_entry_size
);
14010 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
14012 for (; num_plts
; num_plts
--)
14014 Elf_Internal_Rela rel
;
14016 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14017 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14018 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14019 p
+= RELOC_SIZE (htab
);
14021 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14022 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
14023 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14024 p
+= RELOC_SIZE (htab
);
14029 /* Fill in the first three entries in the global offset table. */
14032 if (sgot
->size
> 0)
14035 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
14037 bfd_put_32 (output_bfd
,
14038 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
14040 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
14041 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
14044 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
14051 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
14053 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
14054 struct elf32_arm_link_hash_table
*globals
;
14056 i_ehdrp
= elf_elfheader (abfd
);
14058 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
14059 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
14061 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
14062 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
14066 globals
= elf32_arm_hash_table (link_info
);
14067 if (globals
!= NULL
&& globals
->byteswap_code
)
14068 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
14072 static enum elf_reloc_type_class
14073 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
14075 switch ((int) ELF32_R_TYPE (rela
->r_info
))
14077 case R_ARM_RELATIVE
:
14078 return reloc_class_relative
;
14079 case R_ARM_JUMP_SLOT
:
14080 return reloc_class_plt
;
14082 return reloc_class_copy
;
14084 return reloc_class_normal
;
14088 /* Set the right machine number for an Arm ELF file. */
14091 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
14093 if (hdr
->sh_type
== SHT_NOTE
)
14094 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
14100 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
14102 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
14105 /* Return TRUE if this is an unwinding table entry. */
14108 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
14110 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
14111 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
14115 /* Set the type and flags for an ARM section. We do this by
14116 the section name, which is a hack, but ought to work. */
14119 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
14123 name
= bfd_get_section_name (abfd
, sec
);
14125 if (is_arm_elf_unwind_section_name (abfd
, name
))
14127 hdr
->sh_type
= SHT_ARM_EXIDX
;
14128 hdr
->sh_flags
|= SHF_LINK_ORDER
;
14133 /* Handle an ARM specific section when reading an object file. This is
14134 called when bfd_section_from_shdr finds a section with an unknown
14138 elf32_arm_section_from_shdr (bfd
*abfd
,
14139 Elf_Internal_Shdr
* hdr
,
14143 /* There ought to be a place to keep ELF backend specific flags, but
14144 at the moment there isn't one. We just keep track of the
14145 sections by their name, instead. Fortunately, the ABI gives
14146 names for all the ARM specific sections, so we will probably get
14148 switch (hdr
->sh_type
)
14150 case SHT_ARM_EXIDX
:
14151 case SHT_ARM_PREEMPTMAP
:
14152 case SHT_ARM_ATTRIBUTES
:
14159 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
14165 static _arm_elf_section_data
*
14166 get_arm_elf_section_data (asection
* sec
)
14168 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
14169 return elf32_arm_section_data (sec
);
14177 struct bfd_link_info
*info
;
14180 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
14181 asection
*, struct elf_link_hash_entry
*);
14182 } output_arch_syminfo
;
14184 enum map_symbol_type
14192 /* Output a single mapping symbol. */
14195 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
14196 enum map_symbol_type type
,
14199 static const char *names
[3] = {"$a", "$t", "$d"};
14200 Elf_Internal_Sym sym
;
14202 sym
.st_value
= osi
->sec
->output_section
->vma
14203 + osi
->sec
->output_offset
14207 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
14208 sym
.st_shndx
= osi
->sec_shndx
;
14209 sym
.st_target_internal
= 0;
14210 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
14211 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
14214 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14215 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14218 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
14219 bfd_boolean is_iplt_entry_p
,
14220 union gotplt_union
*root_plt
,
14221 struct arm_plt_info
*arm_plt
)
14223 struct elf32_arm_link_hash_table
*htab
;
14224 bfd_vma addr
, plt_header_size
;
14226 if (root_plt
->offset
== (bfd_vma
) -1)
14229 htab
= elf32_arm_hash_table (osi
->info
);
14233 if (is_iplt_entry_p
)
14235 osi
->sec
= htab
->root
.iplt
;
14236 plt_header_size
= 0;
14240 osi
->sec
= htab
->root
.splt
;
14241 plt_header_size
= htab
->plt_header_size
;
14243 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
14244 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
14246 addr
= root_plt
->offset
& -2;
14247 if (htab
->symbian_p
)
14249 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14251 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
14254 else if (htab
->vxworks_p
)
14256 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14258 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
14260 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
14262 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
14267 bfd_boolean thumb_stub_p
;
14269 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
14272 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
14275 #ifdef FOUR_WORD_PLT
14276 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14278 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
14281 /* A three-word PLT with no Thumb thunk contains only Arm code,
14282 so only need to output a mapping symbol for the first PLT entry and
14283 entries with thumb thunks. */
14284 if (thumb_stub_p
|| addr
== plt_header_size
)
14286 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14295 /* Output mapping symbols for PLT entries associated with H. */
14298 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
14300 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
14301 struct elf32_arm_link_hash_entry
*eh
;
14303 if (h
->root
.type
== bfd_link_hash_indirect
)
14306 if (h
->root
.type
== bfd_link_hash_warning
)
14307 /* When warning symbols are created, they **replace** the "real"
14308 entry in the hash table, thus we never get to see the real
14309 symbol in a hash traversal. So look at it now. */
14310 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14312 eh
= (struct elf32_arm_link_hash_entry
*) h
;
14313 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
14314 &h
->plt
, &eh
->plt
);
14317 /* Output a single local symbol for a generated stub. */
14320 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
14321 bfd_vma offset
, bfd_vma size
)
14323 Elf_Internal_Sym sym
;
14325 sym
.st_value
= osi
->sec
->output_section
->vma
14326 + osi
->sec
->output_offset
14328 sym
.st_size
= size
;
14330 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
14331 sym
.st_shndx
= osi
->sec_shndx
;
14332 sym
.st_target_internal
= 0;
14333 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
14337 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
14340 struct elf32_arm_stub_hash_entry
*stub_entry
;
14341 asection
*stub_sec
;
14344 output_arch_syminfo
*osi
;
14345 const insn_sequence
*template_sequence
;
14346 enum stub_insn_type prev_type
;
14349 enum map_symbol_type sym_type
;
14351 /* Massage our args to the form they really have. */
14352 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14353 osi
= (output_arch_syminfo
*) in_arg
;
14355 stub_sec
= stub_entry
->stub_sec
;
14357 /* Ensure this stub is attached to the current section being
14359 if (stub_sec
!= osi
->sec
)
14362 addr
= (bfd_vma
) stub_entry
->stub_offset
;
14363 stub_name
= stub_entry
->output_name
;
14365 template_sequence
= stub_entry
->stub_template
;
14366 switch (template_sequence
[0].type
)
14369 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
14374 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
14375 stub_entry
->stub_size
))
14383 prev_type
= DATA_TYPE
;
14385 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
14387 switch (template_sequence
[i
].type
)
14390 sym_type
= ARM_MAP_ARM
;
14395 sym_type
= ARM_MAP_THUMB
;
14399 sym_type
= ARM_MAP_DATA
;
14407 if (template_sequence
[i
].type
!= prev_type
)
14409 prev_type
= template_sequence
[i
].type
;
14410 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
14414 switch (template_sequence
[i
].type
)
14438 /* Output mapping symbols for linker generated sections,
14439 and for those data-only sections that do not have a
14443 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
14444 struct bfd_link_info
*info
,
14446 int (*func
) (void *, const char *,
14447 Elf_Internal_Sym
*,
14449 struct elf_link_hash_entry
*))
14451 output_arch_syminfo osi
;
14452 struct elf32_arm_link_hash_table
*htab
;
14454 bfd_size_type size
;
14457 htab
= elf32_arm_hash_table (info
);
14461 check_use_blx (htab
);
14467 /* Add a $d mapping symbol to data-only sections that
14468 don't have any mapping symbol. This may result in (harmless) redundant
14469 mapping symbols. */
14470 for (input_bfd
= info
->input_bfds
;
14472 input_bfd
= input_bfd
->link_next
)
14474 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
14475 for (osi
.sec
= input_bfd
->sections
;
14477 osi
.sec
= osi
.sec
->next
)
14479 if (osi
.sec
->output_section
!= NULL
14480 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
14482 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
14483 == SEC_HAS_CONTENTS
14484 && get_arm_elf_section_data (osi
.sec
) != NULL
14485 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
14486 && osi
.sec
->size
> 0)
14488 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14489 (output_bfd
, osi
.sec
->output_section
);
14490 if (osi
.sec_shndx
!= (int)SHN_BAD
)
14491 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
14496 /* ARM->Thumb glue. */
14497 if (htab
->arm_glue_size
> 0)
14499 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14500 ARM2THUMB_GLUE_SECTION_NAME
);
14502 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14503 (output_bfd
, osi
.sec
->output_section
);
14504 if (info
->shared
|| htab
->root
.is_relocatable_executable
14505 || htab
->pic_veneer
)
14506 size
= ARM2THUMB_PIC_GLUE_SIZE
;
14507 else if (htab
->use_blx
)
14508 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
14510 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
14512 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
14514 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
14515 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
14519 /* Thumb->ARM glue. */
14520 if (htab
->thumb_glue_size
> 0)
14522 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14523 THUMB2ARM_GLUE_SECTION_NAME
);
14525 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14526 (output_bfd
, osi
.sec
->output_section
);
14527 size
= THUMB2ARM_GLUE_SIZE
;
14529 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
14531 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
14532 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
14536 /* ARMv4 BX veneers. */
14537 if (htab
->bx_glue_size
> 0)
14539 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14540 ARM_BX_GLUE_SECTION_NAME
);
14542 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14543 (output_bfd
, osi
.sec
->output_section
);
14545 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
14548 /* Long calls stubs. */
14549 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
14551 asection
* stub_sec
;
14553 for (stub_sec
= htab
->stub_bfd
->sections
;
14555 stub_sec
= stub_sec
->next
)
14557 /* Ignore non-stub sections. */
14558 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
14561 osi
.sec
= stub_sec
;
14563 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14564 (output_bfd
, osi
.sec
->output_section
);
14566 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
14570 /* Finally, output mapping symbols for the PLT. */
14571 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14573 osi
.sec
= htab
->root
.splt
;
14574 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
14575 (output_bfd
, osi
.sec
->output_section
));
14577 /* Output mapping symbols for the plt header. SymbianOS does not have a
14579 if (htab
->vxworks_p
)
14581 /* VxWorks shared libraries have no PLT header. */
14584 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14586 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
14590 else if (!htab
->symbian_p
)
14592 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14594 #ifndef FOUR_WORD_PLT
14595 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
14600 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14601 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
14603 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
14604 for (input_bfd
= info
->input_bfds
;
14606 input_bfd
= input_bfd
->link_next
)
14608 struct arm_local_iplt_info
**local_iplt
;
14609 unsigned int i
, num_syms
;
14611 local_iplt
= elf32_arm_local_iplt (input_bfd
);
14612 if (local_iplt
!= NULL
)
14614 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
14615 for (i
= 0; i
< num_syms
; i
++)
14616 if (local_iplt
[i
] != NULL
14617 && !elf32_arm_output_plt_map_1 (&osi
, TRUE
,
14618 &local_iplt
[i
]->root
,
14619 &local_iplt
[i
]->arm
))
14624 if (htab
->dt_tlsdesc_plt
!= 0)
14626 /* Mapping symbols for the lazy tls trampoline. */
14627 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->dt_tlsdesc_plt
))
14630 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14631 htab
->dt_tlsdesc_plt
+ 24))
14634 if (htab
->tls_trampoline
!= 0)
14636 /* Mapping symbols for the tls trampoline. */
14637 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
14639 #ifdef FOUR_WORD_PLT
14640 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14641 htab
->tls_trampoline
+ 12))
14649 /* Allocate target specific section data. */
14652 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
14654 if (!sec
->used_by_bfd
)
14656 _arm_elf_section_data
*sdata
;
14657 bfd_size_type amt
= sizeof (*sdata
);
14659 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
14662 sec
->used_by_bfd
= sdata
;
14665 return _bfd_elf_new_section_hook (abfd
, sec
);
14669 /* Used to order a list of mapping symbols by address. */
14672 elf32_arm_compare_mapping (const void * a
, const void * b
)
14674 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
14675 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
14677 if (amap
->vma
> bmap
->vma
)
14679 else if (amap
->vma
< bmap
->vma
)
14681 else if (amap
->type
> bmap
->type
)
14682 /* Ensure results do not depend on the host qsort for objects with
14683 multiple mapping symbols at the same address by sorting on type
14686 else if (amap
->type
< bmap
->type
)
14692 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14694 static unsigned long
14695 offset_prel31 (unsigned long addr
, bfd_vma offset
)
14697 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
14700 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14704 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
14706 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
14707 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
14709 /* High bit of first word is supposed to be zero. */
14710 if ((first_word
& 0x80000000ul
) == 0)
14711 first_word
= offset_prel31 (first_word
, offset
);
14713 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14714 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14715 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
14716 second_word
= offset_prel31 (second_word
, offset
);
14718 bfd_put_32 (output_bfd
, first_word
, to
);
14719 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
14722 /* Data for make_branch_to_a8_stub(). */
14724 struct a8_branch_to_stub_data
{
14725 asection
*writing_section
;
14726 bfd_byte
*contents
;
14730 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14731 places for a particular section. */
14734 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
14737 struct elf32_arm_stub_hash_entry
*stub_entry
;
14738 struct a8_branch_to_stub_data
*data
;
14739 bfd_byte
*contents
;
14740 unsigned long branch_insn
;
14741 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
14742 bfd_signed_vma branch_offset
;
14744 unsigned int target
;
14746 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14747 data
= (struct a8_branch_to_stub_data
*) in_arg
;
14749 if (stub_entry
->target_section
!= data
->writing_section
14750 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
14753 contents
= data
->contents
;
14755 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
14756 + stub_entry
->target_section
->output_offset
14757 + stub_entry
->target_value
;
14759 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
14760 + stub_entry
->stub_sec
->output_offset
14761 + stub_entry
->stub_offset
;
14763 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
14764 veneered_insn_loc
&= ~3u;
14766 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
14768 abfd
= stub_entry
->target_section
->owner
;
14769 target
= stub_entry
->target_value
;
14771 /* We attempt to avoid this condition by setting stubs_always_after_branch
14772 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14773 This check is just to be on the safe side... */
14774 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
14776 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
14777 "allocated in unsafe location"), abfd
);
14781 switch (stub_entry
->stub_type
)
14783 case arm_stub_a8_veneer_b
:
14784 case arm_stub_a8_veneer_b_cond
:
14785 branch_insn
= 0xf0009000;
14788 case arm_stub_a8_veneer_blx
:
14789 branch_insn
= 0xf000e800;
14792 case arm_stub_a8_veneer_bl
:
14794 unsigned int i1
, j1
, i2
, j2
, s
;
14796 branch_insn
= 0xf000d000;
14799 if (branch_offset
< -16777216 || branch_offset
> 16777214)
14801 /* There's not much we can do apart from complain if this
14803 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
14804 "of range (input file too large)"), abfd
);
14808 /* i1 = not(j1 eor s), so:
14810 j1 = (not i1) eor s. */
14812 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
14813 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
14814 i2
= (branch_offset
>> 22) & 1;
14815 i1
= (branch_offset
>> 23) & 1;
14816 s
= (branch_offset
>> 24) & 1;
14819 branch_insn
|= j2
<< 11;
14820 branch_insn
|= j1
<< 13;
14821 branch_insn
|= s
<< 26;
14830 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
14831 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
14836 /* Do code byteswapping. Return FALSE afterwards so that the section is
14837 written out as normal. */
14840 elf32_arm_write_section (bfd
*output_bfd
,
14841 struct bfd_link_info
*link_info
,
14843 bfd_byte
*contents
)
14845 unsigned int mapcount
, errcount
;
14846 _arm_elf_section_data
*arm_data
;
14847 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
14848 elf32_arm_section_map
*map
;
14849 elf32_vfp11_erratum_list
*errnode
;
14852 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
14856 if (globals
== NULL
)
14859 /* If this section has not been allocated an _arm_elf_section_data
14860 structure then we cannot record anything. */
14861 arm_data
= get_arm_elf_section_data (sec
);
14862 if (arm_data
== NULL
)
14865 mapcount
= arm_data
->mapcount
;
14866 map
= arm_data
->map
;
14867 errcount
= arm_data
->erratumcount
;
14871 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
14873 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
14874 errnode
= errnode
->next
)
14876 bfd_vma target
= errnode
->vma
- offset
;
14878 switch (errnode
->type
)
14880 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
14882 bfd_vma branch_to_veneer
;
14883 /* Original condition code of instruction, plus bit mask for
14884 ARM B instruction. */
14885 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
14888 /* The instruction is before the label. */
14891 /* Above offset included in -4 below. */
14892 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
14893 - errnode
->vma
- 4;
14895 if ((signed) branch_to_veneer
< -(1 << 25)
14896 || (signed) branch_to_veneer
>= (1 << 25))
14897 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
14898 "range"), output_bfd
);
14900 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
14901 contents
[endianflip
^ target
] = insn
& 0xff;
14902 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
14903 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
14904 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
14908 case VFP11_ERRATUM_ARM_VENEER
:
14910 bfd_vma branch_from_veneer
;
14913 /* Take size of veneer into account. */
14914 branch_from_veneer
= errnode
->u
.v
.branch
->vma
14915 - errnode
->vma
- 12;
14917 if ((signed) branch_from_veneer
< -(1 << 25)
14918 || (signed) branch_from_veneer
>= (1 << 25))
14919 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
14920 "range"), output_bfd
);
14922 /* Original instruction. */
14923 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
14924 contents
[endianflip
^ target
] = insn
& 0xff;
14925 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
14926 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
14927 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
14929 /* Branch back to insn after original insn. */
14930 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
14931 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
14932 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
14933 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
14934 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
14944 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
14946 arm_unwind_table_edit
*edit_node
14947 = arm_data
->u
.exidx
.unwind_edit_list
;
14948 /* Now, sec->size is the size of the section we will write. The original
14949 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14950 markers) was sec->rawsize. (This isn't the case if we perform no
14951 edits, then rawsize will be zero and we should use size). */
14952 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
14953 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
14954 unsigned int in_index
, out_index
;
14955 bfd_vma add_to_offsets
= 0;
14957 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
14961 unsigned int edit_index
= edit_node
->index
;
14963 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
14965 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
14966 contents
+ in_index
* 8, add_to_offsets
);
14970 else if (in_index
== edit_index
14971 || (in_index
* 8 >= input_size
14972 && edit_index
== UINT_MAX
))
14974 switch (edit_node
->type
)
14976 case DELETE_EXIDX_ENTRY
:
14978 add_to_offsets
+= 8;
14981 case INSERT_EXIDX_CANTUNWIND_AT_END
:
14983 asection
*text_sec
= edit_node
->linked_section
;
14984 bfd_vma text_offset
= text_sec
->output_section
->vma
14985 + text_sec
->output_offset
14987 bfd_vma exidx_offset
= offset
+ out_index
* 8;
14988 unsigned long prel31_offset
;
14990 /* Note: this is meant to be equivalent to an
14991 R_ARM_PREL31 relocation. These synthetic
14992 EXIDX_CANTUNWIND markers are not relocated by the
14993 usual BFD method. */
14994 prel31_offset
= (text_offset
- exidx_offset
)
14997 /* First address we can't unwind. */
14998 bfd_put_32 (output_bfd
, prel31_offset
,
14999 &edited_contents
[out_index
* 8]);
15001 /* Code for EXIDX_CANTUNWIND. */
15002 bfd_put_32 (output_bfd
, 0x1,
15003 &edited_contents
[out_index
* 8 + 4]);
15006 add_to_offsets
-= 8;
15011 edit_node
= edit_node
->next
;
15016 /* No more edits, copy remaining entries verbatim. */
15017 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15018 contents
+ in_index
* 8, add_to_offsets
);
15024 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
15025 bfd_set_section_contents (output_bfd
, sec
->output_section
,
15027 (file_ptr
) sec
->output_offset
, sec
->size
);
15032 /* Fix code to point to Cortex-A8 erratum stubs. */
15033 if (globals
->fix_cortex_a8
)
15035 struct a8_branch_to_stub_data data
;
15037 data
.writing_section
= sec
;
15038 data
.contents
= contents
;
15040 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
15047 if (globals
->byteswap_code
)
15049 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
15052 for (i
= 0; i
< mapcount
; i
++)
15054 if (i
== mapcount
- 1)
15057 end
= map
[i
+ 1].vma
;
15059 switch (map
[i
].type
)
15062 /* Byte swap code words. */
15063 while (ptr
+ 3 < end
)
15065 tmp
= contents
[ptr
];
15066 contents
[ptr
] = contents
[ptr
+ 3];
15067 contents
[ptr
+ 3] = tmp
;
15068 tmp
= contents
[ptr
+ 1];
15069 contents
[ptr
+ 1] = contents
[ptr
+ 2];
15070 contents
[ptr
+ 2] = tmp
;
15076 /* Byte swap code halfwords. */
15077 while (ptr
+ 1 < end
)
15079 tmp
= contents
[ptr
];
15080 contents
[ptr
] = contents
[ptr
+ 1];
15081 contents
[ptr
+ 1] = tmp
;
15087 /* Leave data alone. */
15095 arm_data
->mapcount
= -1;
15096 arm_data
->mapsize
= 0;
15097 arm_data
->map
= NULL
;
15102 /* Mangle thumb function symbols as we read them in. */
15105 elf32_arm_swap_symbol_in (bfd
* abfd
,
15108 Elf_Internal_Sym
*dst
)
15110 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
15113 /* New EABI objects mark thumb function symbols by setting the low bit of
15115 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
15116 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
15117 && (dst
->st_value
& 1))
15119 dst
->st_value
&= ~(bfd_vma
) 1;
15120 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15122 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
15124 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
15125 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15127 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
15128 dst
->st_target_internal
= ST_BRANCH_LONG
;
15130 dst
->st_target_internal
= ST_BRANCH_TO_ARM
;
15136 /* Mangle thumb function symbols as we write them out. */
15139 elf32_arm_swap_symbol_out (bfd
*abfd
,
15140 const Elf_Internal_Sym
*src
,
15144 Elf_Internal_Sym newsym
;
15146 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15147 of the address set, as per the new EABI. We do this unconditionally
15148 because objcopy does not set the elf header flags until after
15149 it writes out the symbol table. */
15150 if (src
->st_target_internal
== ST_BRANCH_TO_THUMB
)
15153 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
15154 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
15155 if (newsym
.st_shndx
!= SHN_UNDEF
)
15157 /* Do this only for defined symbols. At link type, the static
15158 linker will simulate the work of dynamic linker of resolving
15159 symbols and will carry over the thumbness of found symbols to
15160 the output symbol table. It's not clear how it happens, but
15161 the thumbness of undefined symbols can well be different at
15162 runtime, and writing '1' for them will be confusing for users
15163 and possibly for dynamic linker itself.
15165 newsym
.st_value
|= 1;
15170 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
15173 /* Add the PT_ARM_EXIDX program header. */
15176 elf32_arm_modify_segment_map (bfd
*abfd
,
15177 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15179 struct elf_segment_map
*m
;
15182 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15183 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15185 /* If there is already a PT_ARM_EXIDX header, then we do not
15186 want to add another one. This situation arises when running
15187 "strip"; the input binary already has the header. */
15188 m
= elf_tdata (abfd
)->segment_map
;
15189 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
15193 m
= (struct elf_segment_map
*)
15194 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
15197 m
->p_type
= PT_ARM_EXIDX
;
15199 m
->sections
[0] = sec
;
15201 m
->next
= elf_tdata (abfd
)->segment_map
;
15202 elf_tdata (abfd
)->segment_map
= m
;
15209 /* We may add a PT_ARM_EXIDX program header. */
15212 elf32_arm_additional_program_headers (bfd
*abfd
,
15213 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15217 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15218 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15224 /* Hook called by the linker routine which adds symbols from an object
15228 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
15229 Elf_Internal_Sym
*sym
, const char **namep
,
15230 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
15232 if ((abfd
->flags
& DYNAMIC
) == 0
15233 && ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
15234 elf_tdata (info
->output_bfd
)->has_ifunc_symbols
= TRUE
;
15236 if (elf32_arm_hash_table (info
)->vxworks_p
15237 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
15238 flagsp
, secp
, valp
))
15244 /* We use this to override swap_symbol_in and swap_symbol_out. */
15245 const struct elf_size_info elf32_arm_size_info
=
15247 sizeof (Elf32_External_Ehdr
),
15248 sizeof (Elf32_External_Phdr
),
15249 sizeof (Elf32_External_Shdr
),
15250 sizeof (Elf32_External_Rel
),
15251 sizeof (Elf32_External_Rela
),
15252 sizeof (Elf32_External_Sym
),
15253 sizeof (Elf32_External_Dyn
),
15254 sizeof (Elf_External_Note
),
15258 ELFCLASS32
, EV_CURRENT
,
15259 bfd_elf32_write_out_phdrs
,
15260 bfd_elf32_write_shdrs_and_ehdr
,
15261 bfd_elf32_checksum_contents
,
15262 bfd_elf32_write_relocs
,
15263 elf32_arm_swap_symbol_in
,
15264 elf32_arm_swap_symbol_out
,
15265 bfd_elf32_slurp_reloc_table
,
15266 bfd_elf32_slurp_symbol_table
,
15267 bfd_elf32_swap_dyn_in
,
15268 bfd_elf32_swap_dyn_out
,
15269 bfd_elf32_swap_reloc_in
,
15270 bfd_elf32_swap_reloc_out
,
15271 bfd_elf32_swap_reloca_in
,
15272 bfd_elf32_swap_reloca_out
15275 #define ELF_ARCH bfd_arch_arm
15276 #define ELF_TARGET_ID ARM_ELF_DATA
15277 #define ELF_MACHINE_CODE EM_ARM
15278 #ifdef __QNXTARGET__
15279 #define ELF_MAXPAGESIZE 0x1000
15281 #define ELF_MAXPAGESIZE 0x8000
15283 #define ELF_MINPAGESIZE 0x1000
15284 #define ELF_COMMONPAGESIZE 0x1000
15286 #define bfd_elf32_mkobject elf32_arm_mkobject
15288 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15289 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15290 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15291 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15292 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15293 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15294 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15295 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15296 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15297 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15298 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15299 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15300 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15302 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15303 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15304 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15305 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15306 #define elf_backend_check_relocs elf32_arm_check_relocs
15307 #define elf_backend_relocate_section elf32_arm_relocate_section
15308 #define elf_backend_write_section elf32_arm_write_section
15309 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15310 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15311 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15312 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15313 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15314 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15315 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15316 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15317 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15318 #define elf_backend_object_p elf32_arm_object_p
15319 #define elf_backend_section_flags elf32_arm_section_flags
15320 #define elf_backend_fake_sections elf32_arm_fake_sections
15321 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15322 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15323 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15324 #define elf_backend_size_info elf32_arm_size_info
15325 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15326 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15327 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15328 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15329 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15331 #define elf_backend_can_refcount 1
15332 #define elf_backend_can_gc_sections 1
15333 #define elf_backend_plt_readonly 1
15334 #define elf_backend_want_got_plt 1
15335 #define elf_backend_want_plt_sym 0
15336 #define elf_backend_may_use_rel_p 1
15337 #define elf_backend_may_use_rela_p 0
15338 #define elf_backend_default_use_rela_p 0
15340 #define elf_backend_got_header_size 12
15342 #undef elf_backend_obj_attrs_vendor
15343 #define elf_backend_obj_attrs_vendor "aeabi"
15344 #undef elf_backend_obj_attrs_section
15345 #define elf_backend_obj_attrs_section ".ARM.attributes"
15346 #undef elf_backend_obj_attrs_arg_type
15347 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15348 #undef elf_backend_obj_attrs_section_type
15349 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15350 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15351 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15353 #include "elf32-target.h"
15355 /* VxWorks Targets. */
15357 #undef TARGET_LITTLE_SYM
15358 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15359 #undef TARGET_LITTLE_NAME
15360 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15361 #undef TARGET_BIG_SYM
15362 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15363 #undef TARGET_BIG_NAME
15364 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15366 /* Like elf32_arm_link_hash_table_create -- but overrides
15367 appropriately for VxWorks. */
15369 static struct bfd_link_hash_table
*
15370 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
15372 struct bfd_link_hash_table
*ret
;
15374 ret
= elf32_arm_link_hash_table_create (abfd
);
15377 struct elf32_arm_link_hash_table
*htab
15378 = (struct elf32_arm_link_hash_table
*) ret
;
15380 htab
->vxworks_p
= 1;
15386 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
15388 elf32_arm_final_write_processing (abfd
, linker
);
15389 elf_vxworks_final_write_processing (abfd
, linker
);
15393 #define elf32_bed elf32_arm_vxworks_bed
15395 #undef bfd_elf32_bfd_link_hash_table_create
15396 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15397 #undef elf_backend_final_write_processing
15398 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15399 #undef elf_backend_emit_relocs
15400 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15402 #undef elf_backend_may_use_rel_p
15403 #define elf_backend_may_use_rel_p 0
15404 #undef elf_backend_may_use_rela_p
15405 #define elf_backend_may_use_rela_p 1
15406 #undef elf_backend_default_use_rela_p
15407 #define elf_backend_default_use_rela_p 1
15408 #undef elf_backend_want_plt_sym
15409 #define elf_backend_want_plt_sym 1
15410 #undef ELF_MAXPAGESIZE
15411 #define ELF_MAXPAGESIZE 0x1000
15413 #include "elf32-target.h"
15416 /* Merge backend specific data from an object file to the output
15417 object file when linking. */
15420 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
15422 flagword out_flags
;
15424 bfd_boolean flags_compatible
= TRUE
;
15427 /* Check if we have the same endianess. */
15428 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
15431 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
15434 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
15437 /* The input BFD must have had its flags initialised. */
15438 /* The following seems bogus to me -- The flags are initialized in
15439 the assembler but I don't think an elf_flags_init field is
15440 written into the object. */
15441 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15443 in_flags
= elf_elfheader (ibfd
)->e_flags
;
15444 out_flags
= elf_elfheader (obfd
)->e_flags
;
15446 /* In theory there is no reason why we couldn't handle this. However
15447 in practice it isn't even close to working and there is no real
15448 reason to want it. */
15449 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
15450 && !(ibfd
->flags
& DYNAMIC
)
15451 && (in_flags
& EF_ARM_BE8
))
15453 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15458 if (!elf_flags_init (obfd
))
15460 /* If the input is the default architecture and had the default
15461 flags then do not bother setting the flags for the output
15462 architecture, instead allow future merges to do this. If no
15463 future merges ever set these flags then they will retain their
15464 uninitialised values, which surprise surprise, correspond
15465 to the default values. */
15466 if (bfd_get_arch_info (ibfd
)->the_default
15467 && elf_elfheader (ibfd
)->e_flags
== 0)
15470 elf_flags_init (obfd
) = TRUE
;
15471 elf_elfheader (obfd
)->e_flags
= in_flags
;
15473 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15474 && bfd_get_arch_info (obfd
)->the_default
)
15475 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
15480 /* Determine what should happen if the input ARM architecture
15481 does not match the output ARM architecture. */
15482 if (! bfd_arm_merge_machines (ibfd
, obfd
))
15485 /* Identical flags must be compatible. */
15486 if (in_flags
== out_flags
)
15489 /* Check to see if the input BFD actually contains any sections. If
15490 not, its flags may not have been initialised either, but it
15491 cannot actually cause any incompatiblity. Do not short-circuit
15492 dynamic objects; their section list may be emptied by
15493 elf_link_add_object_symbols.
15495 Also check to see if there are no code sections in the input.
15496 In this case there is no need to check for code specific flags.
15497 XXX - do we need to worry about floating-point format compatability
15498 in data sections ? */
15499 if (!(ibfd
->flags
& DYNAMIC
))
15501 bfd_boolean null_input_bfd
= TRUE
;
15502 bfd_boolean only_data_sections
= TRUE
;
15504 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15506 /* Ignore synthetic glue sections. */
15507 if (strcmp (sec
->name
, ".glue_7")
15508 && strcmp (sec
->name
, ".glue_7t"))
15510 if ((bfd_get_section_flags (ibfd
, sec
)
15511 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15512 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15513 only_data_sections
= FALSE
;
15515 null_input_bfd
= FALSE
;
15520 if (null_input_bfd
|| only_data_sections
)
15524 /* Complain about various flag mismatches. */
15525 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
15526 EF_ARM_EABI_VERSION (out_flags
)))
15529 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15531 (in_flags
& EF_ARM_EABIMASK
) >> 24,
15532 (out_flags
& EF_ARM_EABIMASK
) >> 24);
15536 /* Not sure what needs to be checked for EABI versions >= 1. */
15537 /* VxWorks libraries do not use these flags. */
15538 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
15539 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
15540 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
15542 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
15545 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15547 in_flags
& EF_ARM_APCS_26
? 26 : 32,
15548 out_flags
& EF_ARM_APCS_26
? 26 : 32);
15549 flags_compatible
= FALSE
;
15552 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
15554 if (in_flags
& EF_ARM_APCS_FLOAT
)
15556 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15560 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15563 flags_compatible
= FALSE
;
15566 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
15568 if (in_flags
& EF_ARM_VFP_FLOAT
)
15570 (_("error: %B uses VFP instructions, whereas %B does not"),
15574 (_("error: %B uses FPA instructions, whereas %B does not"),
15577 flags_compatible
= FALSE
;
15580 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
15582 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
15584 (_("error: %B uses Maverick instructions, whereas %B does not"),
15588 (_("error: %B does not use Maverick instructions, whereas %B does"),
15591 flags_compatible
= FALSE
;
15594 #ifdef EF_ARM_SOFT_FLOAT
15595 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
15597 /* We can allow interworking between code that is VFP format
15598 layout, and uses either soft float or integer regs for
15599 passing floating point arguments and results. We already
15600 know that the APCS_FLOAT flags match; similarly for VFP
15602 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
15603 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
15605 if (in_flags
& EF_ARM_SOFT_FLOAT
)
15607 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15611 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15614 flags_compatible
= FALSE
;
15619 /* Interworking mismatch is only a warning. */
15620 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
15622 if (in_flags
& EF_ARM_INTERWORK
)
15625 (_("Warning: %B supports interworking, whereas %B does not"),
15631 (_("Warning: %B does not support interworking, whereas %B does"),
15637 return flags_compatible
;
15641 /* Symbian OS Targets. */
15643 #undef TARGET_LITTLE_SYM
15644 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15645 #undef TARGET_LITTLE_NAME
15646 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15647 #undef TARGET_BIG_SYM
15648 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15649 #undef TARGET_BIG_NAME
15650 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15652 /* Like elf32_arm_link_hash_table_create -- but overrides
15653 appropriately for Symbian OS. */
15655 static struct bfd_link_hash_table
*
15656 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
15658 struct bfd_link_hash_table
*ret
;
15660 ret
= elf32_arm_link_hash_table_create (abfd
);
15663 struct elf32_arm_link_hash_table
*htab
15664 = (struct elf32_arm_link_hash_table
*)ret
;
15665 /* There is no PLT header for Symbian OS. */
15666 htab
->plt_header_size
= 0;
15667 /* The PLT entries are each one instruction and one word. */
15668 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
15669 htab
->symbian_p
= 1;
15670 /* Symbian uses armv5t or above, so use_blx is always true. */
15672 htab
->root
.is_relocatable_executable
= 1;
15677 static const struct bfd_elf_special_section
15678 elf32_arm_symbian_special_sections
[] =
15680 /* In a BPABI executable, the dynamic linking sections do not go in
15681 the loadable read-only segment. The post-linker may wish to
15682 refer to these sections, but they are not part of the final
15684 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
15685 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
15686 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
15687 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
15688 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
15689 /* These sections do not need to be writable as the SymbianOS
15690 postlinker will arrange things so that no dynamic relocation is
15692 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
15693 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
15694 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
15695 { NULL
, 0, 0, 0, 0 }
15699 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
15700 struct bfd_link_info
*link_info
)
15702 /* BPABI objects are never loaded directly by an OS kernel; they are
15703 processed by a postlinker first, into an OS-specific format. If
15704 the D_PAGED bit is set on the file, BFD will align segments on
15705 page boundaries, so that an OS can directly map the file. With
15706 BPABI objects, that just results in wasted space. In addition,
15707 because we clear the D_PAGED bit, map_sections_to_segments will
15708 recognize that the program headers should not be mapped into any
15709 loadable segment. */
15710 abfd
->flags
&= ~D_PAGED
;
15711 elf32_arm_begin_write_processing (abfd
, link_info
);
15715 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
15716 struct bfd_link_info
*info
)
15718 struct elf_segment_map
*m
;
15721 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15722 segment. However, because the .dynamic section is not marked
15723 with SEC_LOAD, the generic ELF code will not create such a
15725 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
15728 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
15729 if (m
->p_type
== PT_DYNAMIC
)
15734 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
15735 m
->next
= elf_tdata (abfd
)->segment_map
;
15736 elf_tdata (abfd
)->segment_map
= m
;
15740 /* Also call the generic arm routine. */
15741 return elf32_arm_modify_segment_map (abfd
, info
);
15744 /* Return address for Ith PLT stub in section PLT, for relocation REL
15745 or (bfd_vma) -1 if it should not be included. */
15748 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
15749 const arelent
*rel ATTRIBUTE_UNUSED
)
15751 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
15756 #define elf32_bed elf32_arm_symbian_bed
15758 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15759 will process them and then discard them. */
15760 #undef ELF_DYNAMIC_SEC_FLAGS
15761 #define ELF_DYNAMIC_SEC_FLAGS \
15762 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15764 #undef elf_backend_emit_relocs
15766 #undef bfd_elf32_bfd_link_hash_table_create
15767 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15768 #undef elf_backend_special_sections
15769 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15770 #undef elf_backend_begin_write_processing
15771 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15772 #undef elf_backend_final_write_processing
15773 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15775 #undef elf_backend_modify_segment_map
15776 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15778 /* There is no .got section for BPABI objects, and hence no header. */
15779 #undef elf_backend_got_header_size
15780 #define elf_backend_got_header_size 0
15782 /* Similarly, there is no .got.plt section. */
15783 #undef elf_backend_want_got_plt
15784 #define elf_backend_want_got_plt 0
15786 #undef elf_backend_plt_sym_val
15787 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15789 #undef elf_backend_may_use_rel_p
15790 #define elf_backend_may_use_rel_p 1
15791 #undef elf_backend_may_use_rela_p
15792 #define elf_backend_may_use_rela_p 0
15793 #undef elf_backend_default_use_rela_p
15794 #define elf_backend_default_use_rela_p 0
15795 #undef elf_backend_want_plt_sym
15796 #define elf_backend_want_plt_sym 0
15797 #undef ELF_MAXPAGESIZE
15798 #define ELF_MAXPAGESIZE 0x8000
15800 #include "elf32-target.h"