* elf32-xtensa.c (xtensa_elf_dynamic_symbol_p): Renamed to...
[binutils.git] / bfd / elf64-sparc.c
blob0eefc95c125eb982c9df3420b4bd5fdf32f259c9
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
58 PTR allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
66 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
74 native_relocs = (bfd_byte *) allocated;
76 relents = asect->relocation + canon_reloc_count (asect);
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81 count = rel_hdr->sh_size / entsize;
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
100 if (ELF64_R_SYM (rela.r_info) == 0)
101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
102 else
104 asymbol **ps, *s;
106 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
107 s = *ps;
109 /* Canonicalize ELF section symbols. FIXME: Why? */
110 if ((s->flags & BSF_SECTION_SYM) == 0)
111 relent->sym_ptr_ptr = ps;
112 else
113 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116 relent->addend = rela.r_addend;
118 r_type = ELF64_R_TYPE_ID (rela.r_info);
119 if (r_type == R_SPARC_OLO10)
121 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
122 relent[1].address = relent->address;
123 relent++;
124 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
125 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
126 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
128 else
129 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132 canon_reloc_count (asect) += relent - relents;
134 if (allocated != NULL)
135 free (allocated);
137 return TRUE;
139 error_return:
140 if (allocated != NULL)
141 free (allocated);
142 return FALSE;
145 /* Read in and swap the external relocs. */
147 static bfd_boolean
148 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
149 asymbol **symbols, bfd_boolean dynamic)
151 struct bfd_elf_section_data * const d = elf_section_data (asect);
152 Elf_Internal_Shdr *rel_hdr;
153 Elf_Internal_Shdr *rel_hdr2;
154 bfd_size_type amt;
156 if (asect->relocation != NULL)
157 return TRUE;
159 if (! dynamic)
161 if ((asect->flags & SEC_RELOC) == 0
162 || asect->reloc_count == 0)
163 return TRUE;
165 rel_hdr = &d->rel_hdr;
166 rel_hdr2 = d->rel_hdr2;
168 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
169 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
171 else
173 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
174 case because relocations against this section may use the
175 dynamic symbol table, and in that case bfd_section_from_shdr
176 in elf.c does not update the RELOC_COUNT. */
177 if (asect->size == 0)
178 return TRUE;
180 rel_hdr = &d->this_hdr;
181 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
182 rel_hdr2 = NULL;
185 amt = asect->reloc_count;
186 amt *= 2 * sizeof (arelent);
187 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
188 if (asect->relocation == NULL)
189 return FALSE;
191 /* The elf64_sparc_slurp_one_reloc_table routine increments
192 canon_reloc_count. */
193 canon_reloc_count (asect) = 0;
195 if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
196 dynamic))
197 return FALSE;
199 if (rel_hdr2
200 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
201 dynamic))
202 return FALSE;
204 return TRUE;
207 /* Canonicalize the relocs. */
209 static long
210 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
211 arelent **relptr, asymbol **symbols)
213 arelent *tblptr;
214 unsigned int i;
215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
217 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
218 return -1;
220 tblptr = section->relocation;
221 for (i = 0; i < canon_reloc_count (section); i++)
222 *relptr++ = tblptr++;
224 *relptr = NULL;
226 return canon_reloc_count (section);
230 /* Canonicalize the dynamic relocation entries. Note that we return
231 the dynamic relocations as a single block, although they are
232 actually associated with particular sections; the interface, which
233 was designed for SunOS style shared libraries, expects that there
234 is only one set of dynamic relocs. Any section that was actually
235 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
236 the dynamic symbol table, is considered to be a dynamic reloc
237 section. */
239 static long
240 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
241 asymbol **syms)
243 asection *s;
244 long ret;
246 if (elf_dynsymtab (abfd) == 0)
248 bfd_set_error (bfd_error_invalid_operation);
249 return -1;
252 ret = 0;
253 for (s = abfd->sections; s != NULL; s = s->next)
255 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
256 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
258 arelent *p;
259 long count, i;
261 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
262 return -1;
263 count = canon_reloc_count (s);
264 p = s->relocation;
265 for (i = 0; i < count; i++)
266 *storage++ = p++;
267 ret += count;
271 *storage = NULL;
273 return ret;
276 /* Write out the relocs. */
278 static void
279 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
281 bfd_boolean *failedp = (bfd_boolean *) data;
282 Elf_Internal_Shdr *rela_hdr;
283 bfd_vma addr_offset;
284 Elf64_External_Rela *outbound_relocas, *src_rela;
285 unsigned int idx, count;
286 asymbol *last_sym = 0;
287 int last_sym_idx = 0;
289 /* If we have already failed, don't do anything. */
290 if (*failedp)
291 return;
293 if ((sec->flags & SEC_RELOC) == 0)
294 return;
296 /* The linker backend writes the relocs out itself, and sets the
297 reloc_count field to zero to inhibit writing them here. Also,
298 sometimes the SEC_RELOC flag gets set even when there aren't any
299 relocs. */
300 if (sec->reloc_count == 0)
301 return;
303 /* We can combine two relocs that refer to the same address
304 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
305 latter is R_SPARC_13 with no associated symbol. */
306 count = 0;
307 for (idx = 0; idx < sec->reloc_count; idx++)
309 bfd_vma addr;
311 ++count;
313 addr = sec->orelocation[idx]->address;
314 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
315 && idx < sec->reloc_count - 1)
317 arelent *r = sec->orelocation[idx + 1];
319 if (r->howto->type == R_SPARC_13
320 && r->address == addr
321 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
322 && (*r->sym_ptr_ptr)->value == 0)
323 ++idx;
327 rela_hdr = &elf_section_data (sec)->rel_hdr;
329 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
330 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
331 if (rela_hdr->contents == NULL)
333 *failedp = TRUE;
334 return;
337 /* Figure out whether the relocations are RELA or REL relocations. */
338 if (rela_hdr->sh_type != SHT_RELA)
339 abort ();
341 /* The address of an ELF reloc is section relative for an object
342 file, and absolute for an executable file or shared library.
343 The address of a BFD reloc is always section relative. */
344 addr_offset = 0;
345 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
346 addr_offset = sec->vma;
348 /* orelocation has the data, reloc_count has the count... */
349 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
350 src_rela = outbound_relocas;
352 for (idx = 0; idx < sec->reloc_count; idx++)
354 Elf_Internal_Rela dst_rela;
355 arelent *ptr;
356 asymbol *sym;
357 int n;
359 ptr = sec->orelocation[idx];
360 sym = *ptr->sym_ptr_ptr;
361 if (sym == last_sym)
362 n = last_sym_idx;
363 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
364 n = STN_UNDEF;
365 else
367 last_sym = sym;
368 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
369 if (n < 0)
371 *failedp = TRUE;
372 return;
374 last_sym_idx = n;
377 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
378 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
379 && ! _bfd_elf_validate_reloc (abfd, ptr))
381 *failedp = TRUE;
382 return;
385 if (ptr->howto->type == R_SPARC_LO10
386 && idx < sec->reloc_count - 1)
388 arelent *r = sec->orelocation[idx + 1];
390 if (r->howto->type == R_SPARC_13
391 && r->address == ptr->address
392 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
393 && (*r->sym_ptr_ptr)->value == 0)
395 idx++;
396 dst_rela.r_info
397 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
398 R_SPARC_OLO10));
400 else
401 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
403 else
404 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
406 dst_rela.r_offset = ptr->address + addr_offset;
407 dst_rela.r_addend = ptr->addend;
409 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
410 ++src_rela;
414 /* Hook called by the linker routine which adds symbols from an object
415 file. We use it for STT_REGISTER symbols. */
417 static bfd_boolean
418 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
419 Elf_Internal_Sym *sym, const char **namep,
420 flagword *flagsp ATTRIBUTE_UNUSED,
421 asection **secp ATTRIBUTE_UNUSED,
422 bfd_vma *valp ATTRIBUTE_UNUSED)
424 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
426 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
428 int reg;
429 struct _bfd_sparc_elf_app_reg *p;
431 reg = (int)sym->st_value;
432 switch (reg & ~1)
434 case 2: reg -= 2; break;
435 case 6: reg -= 4; break;
436 default:
437 (*_bfd_error_handler)
438 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
439 abfd);
440 return FALSE;
443 if (info->hash->creator != abfd->xvec
444 || (abfd->flags & DYNAMIC) != 0)
446 /* STT_REGISTER only works when linking an elf64_sparc object.
447 If STT_REGISTER comes from a dynamic object, don't put it into
448 the output bfd. The dynamic linker will recheck it. */
449 *namep = NULL;
450 return TRUE;
453 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
455 if (p->name != NULL && strcmp (p->name, *namep))
457 (*_bfd_error_handler)
458 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
459 abfd, p->abfd, (int) sym->st_value,
460 **namep ? *namep : "#scratch",
461 *p->name ? p->name : "#scratch");
462 return FALSE;
465 if (p->name == NULL)
467 if (**namep)
469 struct elf_link_hash_entry *h;
471 h = (struct elf_link_hash_entry *)
472 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
474 if (h != NULL)
476 unsigned char type = h->type;
478 if (type > STT_FUNC)
479 type = 0;
480 (*_bfd_error_handler)
481 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
482 abfd, p->abfd, *namep, stt_types[type]);
483 return FALSE;
486 p->name = bfd_hash_allocate (&info->hash->table,
487 strlen (*namep) + 1);
488 if (!p->name)
489 return FALSE;
491 strcpy (p->name, *namep);
493 else
494 p->name = "";
495 p->bind = ELF_ST_BIND (sym->st_info);
496 p->abfd = abfd;
497 p->shndx = sym->st_shndx;
499 else
501 if (p->bind == STB_WEAK
502 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
504 p->bind = STB_GLOBAL;
505 p->abfd = abfd;
508 *namep = NULL;
509 return TRUE;
511 else if (*namep && **namep
512 && info->hash->creator == abfd->xvec)
514 int i;
515 struct _bfd_sparc_elf_app_reg *p;
517 p = _bfd_sparc_elf_hash_table(info)->app_regs;
518 for (i = 0; i < 4; i++, p++)
519 if (p->name != NULL && ! strcmp (p->name, *namep))
521 unsigned char type = ELF_ST_TYPE (sym->st_info);
523 if (type > STT_FUNC)
524 type = 0;
525 (*_bfd_error_handler)
526 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
527 abfd, p->abfd, *namep, stt_types[type]);
528 return FALSE;
531 return TRUE;
534 /* This function takes care of emitting STT_REGISTER symbols
535 which we cannot easily keep in the symbol hash table. */
537 static bfd_boolean
538 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
539 struct bfd_link_info *info,
540 PTR finfo, bfd_boolean (*func) (PTR, const char *,
541 Elf_Internal_Sym *,
542 asection *,
543 struct elf_link_hash_entry *))
545 int reg;
546 struct _bfd_sparc_elf_app_reg *app_regs =
547 _bfd_sparc_elf_hash_table(info)->app_regs;
548 Elf_Internal_Sym sym;
550 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
551 at the end of the dynlocal list, so they came at the end of the local
552 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
553 to back up symtab->sh_info. */
554 if (elf_hash_table (info)->dynlocal)
556 bfd * dynobj = elf_hash_table (info)->dynobj;
557 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
558 struct elf_link_local_dynamic_entry *e;
560 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
561 if (e->input_indx == -1)
562 break;
563 if (e)
565 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
566 = e->dynindx;
570 if (info->strip == strip_all)
571 return TRUE;
573 for (reg = 0; reg < 4; reg++)
574 if (app_regs [reg].name != NULL)
576 if (info->strip == strip_some
577 && bfd_hash_lookup (info->keep_hash,
578 app_regs [reg].name,
579 FALSE, FALSE) == NULL)
580 continue;
582 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
583 sym.st_size = 0;
584 sym.st_other = 0;
585 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
586 sym.st_shndx = app_regs [reg].shndx;
587 if (! (*func) (finfo, app_regs [reg].name, &sym,
588 sym.st_shndx == SHN_ABS
589 ? bfd_abs_section_ptr : bfd_und_section_ptr,
590 NULL))
591 return FALSE;
594 return TRUE;
597 static int
598 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
600 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
601 return STT_REGISTER;
602 else
603 return type;
606 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
607 even in SHN_UNDEF section. */
609 static void
610 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
612 elf_symbol_type *elfsym;
614 elfsym = (elf_symbol_type *) asym;
615 if (elfsym->internal_elf_sym.st_info
616 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
618 asym->flags |= BSF_GLOBAL;
623 /* Functions for dealing with the e_flags field. */
625 /* Merge backend specific data from an object file to the output
626 object file when linking. */
628 static bfd_boolean
629 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
631 bfd_boolean error;
632 flagword new_flags, old_flags;
633 int new_mm, old_mm;
635 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
636 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
637 return TRUE;
639 new_flags = elf_elfheader (ibfd)->e_flags;
640 old_flags = elf_elfheader (obfd)->e_flags;
642 if (!elf_flags_init (obfd)) /* First call, no flags set */
644 elf_flags_init (obfd) = TRUE;
645 elf_elfheader (obfd)->e_flags = new_flags;
648 else if (new_flags == old_flags) /* Compatible flags are ok */
651 else /* Incompatible flags */
653 error = FALSE;
655 #define EF_SPARC_ISA_EXTENSIONS \
656 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
658 if ((ibfd->flags & DYNAMIC) != 0)
660 /* We don't want dynamic objects memory ordering and
661 architecture to have any role. That's what dynamic linker
662 should do. */
663 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
664 new_flags |= (old_flags
665 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
667 else
669 /* Choose the highest architecture requirements. */
670 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
671 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
672 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
673 && (old_flags & EF_SPARC_HAL_R1))
675 error = TRUE;
676 (*_bfd_error_handler)
677 (_("%B: linking UltraSPARC specific with HAL specific code"),
678 ibfd);
680 /* Choose the most restrictive memory ordering. */
681 old_mm = (old_flags & EF_SPARCV9_MM);
682 new_mm = (new_flags & EF_SPARCV9_MM);
683 old_flags &= ~EF_SPARCV9_MM;
684 new_flags &= ~EF_SPARCV9_MM;
685 if (new_mm < old_mm)
686 old_mm = new_mm;
687 old_flags |= old_mm;
688 new_flags |= old_mm;
691 /* Warn about any other mismatches */
692 if (new_flags != old_flags)
694 error = TRUE;
695 (*_bfd_error_handler)
696 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
697 ibfd, (long) new_flags, (long) old_flags);
700 elf_elfheader (obfd)->e_flags = old_flags;
702 if (error)
704 bfd_set_error (bfd_error_bad_value);
705 return FALSE;
708 return TRUE;
711 /* MARCO: Set the correct entry size for the .stab section. */
713 static bfd_boolean
714 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
715 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
716 asection *sec)
718 const char *name;
720 name = bfd_get_section_name (abfd, sec);
722 if (strcmp (name, ".stab") == 0)
724 /* Even in the 64bit case the stab entries are only 12 bytes long. */
725 elf_section_data (sec)->this_hdr.sh_entsize = 12;
728 return TRUE;
731 /* Print a STT_REGISTER symbol to file FILE. */
733 static const char *
734 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
735 asymbol *symbol)
737 FILE *file = (FILE *) filep;
738 int reg, type;
740 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
741 != STT_REGISTER)
742 return NULL;
744 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
745 type = symbol->flags;
746 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
747 ((type & BSF_LOCAL)
748 ? (type & BSF_GLOBAL) ? '!' : 'l'
749 : (type & BSF_GLOBAL) ? 'g' : ' '),
750 (type & BSF_WEAK) ? 'w' : ' ');
751 if (symbol->name == NULL || symbol->name [0] == '\0')
752 return "#scratch";
753 else
754 return symbol->name;
757 static enum elf_reloc_type_class
758 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
760 switch ((int) ELF64_R_TYPE (rela->r_info))
762 case R_SPARC_RELATIVE:
763 return reloc_class_relative;
764 case R_SPARC_JMP_SLOT:
765 return reloc_class_plt;
766 case R_SPARC_COPY:
767 return reloc_class_copy;
768 default:
769 return reloc_class_normal;
773 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
774 standard ELF, because R_SPARC_OLO10 has secondary addend in
775 ELF64_R_TYPE_DATA field. This structure is used to redirect the
776 relocation handling routines. */
778 const struct elf_size_info elf64_sparc_size_info =
780 sizeof (Elf64_External_Ehdr),
781 sizeof (Elf64_External_Phdr),
782 sizeof (Elf64_External_Shdr),
783 sizeof (Elf64_External_Rel),
784 sizeof (Elf64_External_Rela),
785 sizeof (Elf64_External_Sym),
786 sizeof (Elf64_External_Dyn),
787 sizeof (Elf_External_Note),
788 4, /* hash-table entry size. */
789 /* Internal relocations per external relocations.
790 For link purposes we use just 1 internal per
791 1 external, for assembly and slurp symbol table
792 we use 2. */
794 64, /* arch_size. */
795 3, /* log_file_align. */
796 ELFCLASS64,
797 EV_CURRENT,
798 bfd_elf64_write_out_phdrs,
799 bfd_elf64_write_shdrs_and_ehdr,
800 elf64_sparc_write_relocs,
801 bfd_elf64_swap_symbol_in,
802 bfd_elf64_swap_symbol_out,
803 elf64_sparc_slurp_reloc_table,
804 bfd_elf64_slurp_symbol_table,
805 bfd_elf64_swap_dyn_in,
806 bfd_elf64_swap_dyn_out,
807 bfd_elf64_swap_reloc_in,
808 bfd_elf64_swap_reloc_out,
809 bfd_elf64_swap_reloca_in,
810 bfd_elf64_swap_reloca_out
813 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
814 #define TARGET_BIG_NAME "elf64-sparc"
815 #define ELF_ARCH bfd_arch_sparc
816 #define ELF_MAXPAGESIZE 0x100000
817 #define ELF_COMMONPAGESIZE 0x2000
819 /* This is the official ABI value. */
820 #define ELF_MACHINE_CODE EM_SPARCV9
822 /* This is the value that we used before the ABI was released. */
823 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
825 #define elf_backend_reloc_type_class \
826 elf64_sparc_reloc_type_class
827 #define bfd_elf64_get_reloc_upper_bound \
828 elf64_sparc_get_reloc_upper_bound
829 #define bfd_elf64_get_dynamic_reloc_upper_bound \
830 elf64_sparc_get_dynamic_reloc_upper_bound
831 #define bfd_elf64_canonicalize_reloc \
832 elf64_sparc_canonicalize_reloc
833 #define bfd_elf64_canonicalize_dynamic_reloc \
834 elf64_sparc_canonicalize_dynamic_reloc
835 #define elf_backend_add_symbol_hook \
836 elf64_sparc_add_symbol_hook
837 #define elf_backend_get_symbol_type \
838 elf64_sparc_get_symbol_type
839 #define elf_backend_symbol_processing \
840 elf64_sparc_symbol_processing
841 #define elf_backend_print_symbol_all \
842 elf64_sparc_print_symbol_all
843 #define elf_backend_output_arch_syms \
844 elf64_sparc_output_arch_syms
845 #define bfd_elf64_bfd_merge_private_bfd_data \
846 elf64_sparc_merge_private_bfd_data
847 #define elf_backend_fake_sections \
848 elf64_sparc_fake_sections
849 #define elf_backend_size_info \
850 elf64_sparc_size_info
852 #define elf_backend_plt_sym_val \
853 _bfd_sparc_elf_plt_sym_val
854 #define bfd_elf64_bfd_link_hash_table_create \
855 _bfd_sparc_elf_link_hash_table_create
856 #define elf_info_to_howto \
857 _bfd_sparc_elf_info_to_howto
858 #define elf_backend_copy_indirect_symbol \
859 _bfd_sparc_elf_copy_indirect_symbol
860 #define bfd_elf64_bfd_reloc_type_lookup \
861 _bfd_sparc_elf_reloc_type_lookup
862 #define bfd_elf64_bfd_relax_section \
863 _bfd_sparc_elf_relax_section
864 #define bfd_elf64_new_section_hook \
865 _bfd_sparc_elf_new_section_hook
867 #define elf_backend_create_dynamic_sections \
868 _bfd_sparc_elf_create_dynamic_sections
869 #define elf_backend_check_relocs \
870 _bfd_sparc_elf_check_relocs
871 #define elf_backend_adjust_dynamic_symbol \
872 _bfd_sparc_elf_adjust_dynamic_symbol
873 #define elf_backend_omit_section_dynsym \
874 _bfd_sparc_elf_omit_section_dynsym
875 #define elf_backend_size_dynamic_sections \
876 _bfd_sparc_elf_size_dynamic_sections
877 #define elf_backend_relocate_section \
878 _bfd_sparc_elf_relocate_section
879 #define elf_backend_finish_dynamic_symbol \
880 _bfd_sparc_elf_finish_dynamic_symbol
881 #define elf_backend_finish_dynamic_sections \
882 _bfd_sparc_elf_finish_dynamic_sections
884 #define bfd_elf64_mkobject \
885 _bfd_sparc_elf_mkobject
886 #define elf_backend_object_p \
887 _bfd_sparc_elf_object_p
888 #define elf_backend_gc_mark_hook \
889 _bfd_sparc_elf_gc_mark_hook
890 #define elf_backend_gc_sweep_hook \
891 _bfd_sparc_elf_gc_sweep_hook
892 #define elf_backend_init_index_section \
893 _bfd_elf_init_1_index_section
895 #define elf_backend_can_gc_sections 1
896 #define elf_backend_can_refcount 1
897 #define elf_backend_want_got_plt 0
898 #define elf_backend_plt_readonly 0
899 #define elf_backend_want_plt_sym 1
900 #define elf_backend_got_header_size 8
901 #define elf_backend_rela_normal 1
903 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
904 #define elf_backend_plt_alignment 8
906 #include "elf64-target.h"
908 /* FreeBSD support */
909 #undef TARGET_BIG_SYM
910 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
911 #undef TARGET_BIG_NAME
912 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
914 /* The kernel recognizes executables as valid only if they carry a
915 "FreeBSD" label in the ELF header. So we put this label on all
916 executables and (for simplicity) also all other object files. */
918 static void
919 elf64_sparc_fbsd_post_process_headers (bfd *abfd,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED)
922 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
924 i_ehdrp = elf_elfheader (abfd);
926 /* Put an ABI label supported by FreeBSD >= 4.1 */
927 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
930 #undef elf_backend_post_process_headers
931 #define elf_backend_post_process_headers elf64_sparc_fbsd_post_process_headers
932 #undef elf64_bed
933 #define elf64_bed elf64_sparc_fbsd_bed
935 #include "elf64-target.h"