1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o
, off_t offset
, off_t len
)
56 return ftruncate(o
, offset
+ len
);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed
;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters
->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size
)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list
* segment_list
,
101 const Layout::Section_list
* section_list
,
102 const Layout::Section_list
* unattached_section_list
,
103 const Stringpool
* secnamepool
,
104 const Output_section
* shstrtab_section
)
106 segment_list_(segment_list
),
107 section_list_(section_list
),
108 unattached_section_list_(unattached_section_list
),
109 secnamepool_(secnamepool
),
110 shstrtab_section_(shstrtab_section
)
114 // Compute the current data size.
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
121 if (!parameters
->options().relocatable())
123 for (Layout::Segment_list::const_iterator p
=
124 this->segment_list_
->begin();
125 p
!= this->segment_list_
->end();
127 if ((*p
)->type() == elfcpp::PT_LOAD
)
128 count
+= (*p
)->output_section_count();
132 for (Layout::Section_list::const_iterator p
=
133 this->section_list_
->begin();
134 p
!= this->section_list_
->end();
136 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
139 count
+= this->unattached_section_list_
->size();
141 const int size
= parameters
->target().get_size();
144 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
146 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
150 return count
* shdr_size
;
153 // Write out the section headers.
156 Output_section_headers::do_write(Output_file
* of
)
158 switch (parameters
->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE
:
162 this->do_sized_write
<32, false>(of
);
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG
:
167 this->do_sized_write
<32, true>(of
);
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE
:
172 this->do_sized_write
<64, false>(of
);
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG
:
177 this->do_sized_write
<64, true>(of
);
185 template<int size
, bool big_endian
>
187 Output_section_headers::do_sized_write(Output_file
* of
)
189 off_t all_shdrs_size
= this->data_size();
190 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
192 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
193 unsigned char* v
= view
;
196 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
197 oshdr
.put_sh_name(0);
198 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
199 oshdr
.put_sh_flags(0);
200 oshdr
.put_sh_addr(0);
201 oshdr
.put_sh_offset(0);
203 size_t section_count
= (this->data_size()
204 / elfcpp::Elf_sizes
<size
>::shdr_size
);
205 if (section_count
< elfcpp::SHN_LORESERVE
)
206 oshdr
.put_sh_size(0);
208 oshdr
.put_sh_size(section_count
);
210 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
211 if (shstrndx
< elfcpp::SHN_LORESERVE
)
212 oshdr
.put_sh_link(0);
214 oshdr
.put_sh_link(shstrndx
);
216 size_t segment_count
= this->segment_list_
->size();
217 oshdr
.put_sh_info(segment_count
>= elfcpp::PN_XNUM
? segment_count
: 0);
219 oshdr
.put_sh_addralign(0);
220 oshdr
.put_sh_entsize(0);
225 unsigned int shndx
= 1;
226 if (!parameters
->options().relocatable())
228 for (Layout::Segment_list::const_iterator p
=
229 this->segment_list_
->begin();
230 p
!= this->segment_list_
->end();
232 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
239 for (Layout::Section_list::const_iterator p
=
240 this->section_list_
->begin();
241 p
!= this->section_list_
->end();
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
247 && (*p
)->type() != elfcpp::SHT_GROUP
)
249 gold_assert(shndx
== (*p
)->out_shndx());
250 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
251 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
257 for (Layout::Section_list::const_iterator p
=
258 this->unattached_section_list_
->begin();
259 p
!= this->unattached_section_list_
->end();
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p
)->type() == elfcpp::SHT_GROUP
265 && parameters
->options().relocatable())
267 gold_assert(shndx
== (*p
)->out_shndx());
268 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
269 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
274 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list
& segment_list
)
281 : segment_list_(segment_list
)
286 Output_segment_headers::do_write(Output_file
* of
)
288 switch (parameters
->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE
:
292 this->do_sized_write
<32, false>(of
);
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG
:
297 this->do_sized_write
<32, true>(of
);
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE
:
302 this->do_sized_write
<64, false>(of
);
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG
:
307 this->do_sized_write
<64, true>(of
);
315 template<int size
, bool big_endian
>
317 Output_segment_headers::do_sized_write(Output_file
* of
)
319 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
320 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
321 gold_assert(all_phdrs_size
== this->data_size());
322 unsigned char* view
= of
->get_output_view(this->offset(),
324 unsigned char* v
= view
;
325 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
326 p
!= this->segment_list_
.end();
329 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
330 (*p
)->write_header(&ophdr
);
334 gold_assert(v
- view
== all_phdrs_size
);
336 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
340 Output_segment_headers::do_size() const
342 const int size
= parameters
->target().get_size();
345 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
347 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
351 return this->segment_list_
.size() * phdr_size
;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target
* target
,
357 const Symbol_table
* symtab
,
358 const Output_segment_headers
* osh
,
362 segment_header_(osh
),
363 section_header_(NULL
),
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
373 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
374 const Output_section
* shstrtab
)
376 this->section_header_
= shdrs
;
377 this->shstrtab_
= shstrtab
;
380 // Write out the file header.
383 Output_file_header::do_write(Output_file
* of
)
385 gold_assert(this->offset() == 0);
387 switch (parameters
->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE
:
391 this->do_sized_write
<32, false>(of
);
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG
:
396 this->do_sized_write
<32, true>(of
);
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE
:
401 this->do_sized_write
<64, false>(of
);
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG
:
406 this->do_sized_write
<64, true>(of
);
414 // Write out the file header with appropriate size and endianess.
416 template<int size
, bool big_endian
>
418 Output_file_header::do_sized_write(Output_file
* of
)
420 gold_assert(this->offset() == 0);
422 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
423 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
424 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
426 unsigned char e_ident
[elfcpp::EI_NIDENT
];
427 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
428 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
429 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
430 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
431 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
433 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
435 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
438 e_ident
[elfcpp::EI_DATA
] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB
);
441 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
442 oehdr
.put_e_ident(e_ident
);
445 if (parameters
->options().relocatable())
446 e_type
= elfcpp::ET_REL
;
447 else if (parameters
->options().output_is_position_independent())
448 e_type
= elfcpp::ET_DYN
;
450 e_type
= elfcpp::ET_EXEC
;
451 oehdr
.put_e_type(e_type
);
453 oehdr
.put_e_machine(this->target_
->machine_code());
454 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
456 oehdr
.put_e_entry(this->entry
<size
>());
458 if (this->segment_header_
== NULL
)
459 oehdr
.put_e_phoff(0);
461 oehdr
.put_e_phoff(this->segment_header_
->offset());
463 oehdr
.put_e_shoff(this->section_header_
->offset());
464 oehdr
.put_e_flags(this->target_
->processor_specific_flags());
465 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
467 if (this->segment_header_
== NULL
)
469 oehdr
.put_e_phentsize(0);
470 oehdr
.put_e_phnum(0);
474 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
475 size_t phnum
= (this->segment_header_
->data_size()
476 / elfcpp::Elf_sizes
<size
>::phdr_size
);
477 if (phnum
> elfcpp::PN_XNUM
)
478 phnum
= elfcpp::PN_XNUM
;
479 oehdr
.put_e_phnum(phnum
);
482 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
483 size_t section_count
= (this->section_header_
->data_size()
484 / elfcpp::Elf_sizes
<size
>::shdr_size
);
486 if (section_count
< elfcpp::SHN_LORESERVE
)
487 oehdr
.put_e_shnum(this->section_header_
->data_size()
488 / elfcpp::Elf_sizes
<size
>::shdr_size
);
490 oehdr
.put_e_shnum(0);
492 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
493 if (shstrndx
< elfcpp::SHN_LORESERVE
)
494 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
496 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters
->target().adjust_elf_header(view
, ehdr_size
);
502 of
->write_output_view(0, ehdr_size
, view
);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
509 typename
elfcpp::Elf_types
<size
>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning
= (this->entry_
!= NULL
513 && !parameters
->options().relocatable()
514 && !parameters
->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry
= this->entry_
;
521 Symbol
* sym
= this->symtab_
->lookup(entry
);
523 typename Sized_symbol
<size
>::Value_type v
;
526 Sized_symbol
<size
>* ssym
;
527 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
528 if (!ssym
->is_defined() && should_issue_warning
)
529 gold_warning("entry symbol '%s' exists but is not defined", entry
);
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
537 v
= strtoull(entry
, &endptr
, 0);
540 if (should_issue_warning
)
541 gold_warning("cannot find entry symbol '%s'", entry
);
549 // Compute the current data size.
552 Output_file_header::do_size() const
554 const int size
= parameters
->target().get_size();
556 return elfcpp::Elf_sizes
<32>::ehdr_size
;
558 return elfcpp::Elf_sizes
<64>::ehdr_size
;
563 // Output_data_const methods.
566 Output_data_const::do_write(Output_file
* of
)
568 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
571 // Output_data_const_buffer methods.
574 Output_data_const_buffer::do_write(Output_file
* of
)
576 of
->write(this->offset(), this->p_
, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
584 Output_section_data::set_output_section(Output_section
* os
)
586 gold_assert(this->output_section_
== NULL
);
587 this->output_section_
= os
;
588 this->do_adjust_output_section(os
);
591 // Return the section index of the output section.
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_
!= NULL
);
597 return this->output_section_
->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
604 Output_section_data::set_addralign(uint64_t addralign
)
606 this->addralign_
= addralign
;
607 if (this->output_section_
!= NULL
608 && this->output_section_
->addralign() < addralign
)
609 this->output_section_
->set_addralign(addralign
);
612 // Output_data_strtab methods.
614 // Set the final data size.
617 Output_data_strtab::set_final_data_size()
619 this->strtab_
->set_string_offsets();
620 this->set_data_size(this->strtab_
->get_strtab_size());
623 // Write out a string table.
626 Output_data_strtab::do_write(Output_file
* of
)
628 this->strtab_
->write(of
, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic
, int size
, bool big_endian
>
636 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
643 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
644 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
645 is_section_symbol_(false), shndx_(INVALID_CODE
)
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_
== type
);
649 this->u1_
.gsym
= gsym
;
652 this->set_needs_dynsym_index();
655 template<bool dynamic
, int size
, bool big_endian
>
656 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
659 Sized_relobj
<size
, big_endian
>* relobj
,
664 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
665 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
666 is_section_symbol_(false), shndx_(shndx
)
668 gold_assert(shndx
!= INVALID_CODE
);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_
== type
);
671 this->u1_
.gsym
= gsym
;
672 this->u2_
.relobj
= relobj
;
674 this->set_needs_dynsym_index();
677 // A reloc against a local symbol.
679 template<bool dynamic
, int size
, bool big_endian
>
680 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
681 Sized_relobj
<size
, big_endian
>* relobj
,
682 unsigned int local_sym_index
,
688 bool is_section_symbol
)
689 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
690 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
691 is_section_symbol_(is_section_symbol
), shndx_(INVALID_CODE
)
693 gold_assert(local_sym_index
!= GSYM_CODE
694 && local_sym_index
!= INVALID_CODE
);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_
== type
);
697 this->u1_
.relobj
= relobj
;
700 this->set_needs_dynsym_index();
703 template<bool dynamic
, int size
, bool big_endian
>
704 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
705 Sized_relobj
<size
, big_endian
>* relobj
,
706 unsigned int local_sym_index
,
712 bool is_section_symbol
)
713 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
714 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
715 is_section_symbol_(is_section_symbol
), shndx_(shndx
)
717 gold_assert(local_sym_index
!= GSYM_CODE
718 && local_sym_index
!= INVALID_CODE
);
719 gold_assert(shndx
!= INVALID_CODE
);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_
== type
);
722 this->u1_
.relobj
= relobj
;
723 this->u2_
.relobj
= relobj
;
725 this->set_needs_dynsym_index();
728 // A reloc against the STT_SECTION symbol of an output section.
730 template<bool dynamic
, int size
, bool big_endian
>
731 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
736 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE
)
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_
== type
);
745 this->set_needs_dynsym_index();
747 os
->set_needs_symtab_index();
750 template<bool dynamic
, int size
, bool big_endian
>
751 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
754 Sized_relobj
<size
, big_endian
>* relobj
,
757 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx
)
761 gold_assert(shndx
!= INVALID_CODE
);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_
== type
);
765 this->u2_
.relobj
= relobj
;
767 this->set_needs_dynsym_index();
769 os
->set_needs_symtab_index();
772 // An absolute relocation.
774 template<bool dynamic
, int size
, bool big_endian
>
775 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
779 : address_(address
), local_sym_index_(0), type_(type
),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE
)
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_
== type
);
785 this->u1_
.relobj
= NULL
;
789 template<bool dynamic
, int size
, bool big_endian
>
790 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
792 Sized_relobj
<size
, big_endian
>* relobj
,
795 : address_(address
), local_sym_index_(0), type_(type
),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx
)
799 gold_assert(shndx
!= INVALID_CODE
);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_
== type
);
802 this->u1_
.relobj
= NULL
;
803 this->u2_
.relobj
= relobj
;
806 // A target specific relocation.
808 template<bool dynamic
, int size
, bool big_endian
>
809 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
814 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE
)
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_
== type
);
824 template<bool dynamic
, int size
, bool big_endian
>
825 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
828 Sized_relobj
<size
, big_endian
>* relobj
,
831 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx
)
835 gold_assert(shndx
!= INVALID_CODE
);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_
== type
);
839 this->u2_
.relobj
= relobj
;
842 // Record that we need a dynamic symbol index for this relocation.
844 template<bool dynamic
, int size
, bool big_endian
>
846 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
847 set_needs_dynsym_index()
849 if (this->is_symbolless_
)
851 switch (this->local_sym_index_
)
857 this->u1_
.gsym
->set_needs_dynsym_entry();
861 this->u1_
.os
->set_needs_dynsym_index();
865 // The target must take care of this if necessary.
873 const unsigned int lsi
= this->local_sym_index_
;
874 if (!this->is_section_symbol_
)
875 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
877 this->u1_
.relobj
->output_section(lsi
)->set_needs_dynsym_index();
883 // Get the symbol index of a relocation.
885 template<bool dynamic
, int size
, bool big_endian
>
887 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
891 if (this->is_symbolless_
)
893 switch (this->local_sym_index_
)
899 if (this->u1_
.gsym
== NULL
)
902 index
= this->u1_
.gsym
->dynsym_index();
904 index
= this->u1_
.gsym
->symtab_index();
909 index
= this->u1_
.os
->dynsym_index();
911 index
= this->u1_
.os
->symtab_index();
915 index
= parameters
->target().reloc_symbol_index(this->u1_
.arg
,
920 // Relocations without symbols use a symbol index of 0.
926 const unsigned int lsi
= this->local_sym_index_
;
927 if (!this->is_section_symbol_
)
930 index
= this->u1_
.relobj
->dynsym_index(lsi
);
932 index
= this->u1_
.relobj
->symtab_index(lsi
);
936 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
937 gold_assert(os
!= NULL
);
939 index
= os
->dynsym_index();
941 index
= os
->symtab_index();
946 gold_assert(index
!= -1U);
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
953 template<bool dynamic
, int size
, bool big_endian
>
954 typename
elfcpp::Elf_types
<size
>::Elf_Addr
955 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
956 local_section_offset(Addend addend
) const
958 gold_assert(this->local_sym_index_
!= GSYM_CODE
959 && this->local_sym_index_
!= SECTION_CODE
960 && this->local_sym_index_
!= TARGET_CODE
961 && this->local_sym_index_
!= INVALID_CODE
962 && this->local_sym_index_
!= 0
963 && this->is_section_symbol_
);
964 const unsigned int lsi
= this->local_sym_index_
;
965 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
966 gold_assert(os
!= NULL
);
967 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
968 if (offset
!= invalid_address
)
969 return offset
+ addend
;
970 // This is a merge section.
971 offset
= os
->output_address(this->u1_
.relobj
, lsi
, addend
);
972 gold_assert(offset
!= invalid_address
);
976 // Get the output address of a relocation.
978 template<bool dynamic
, int size
, bool big_endian
>
979 typename
elfcpp::Elf_types
<size
>::Elf_Addr
980 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
982 Address address
= this->address_
;
983 if (this->shndx_
!= INVALID_CODE
)
985 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
986 gold_assert(os
!= NULL
);
987 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
988 if (off
!= invalid_address
)
989 address
+= os
->address() + off
;
992 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
994 gold_assert(address
!= invalid_address
);
997 else if (this->u2_
.od
!= NULL
)
998 address
+= this->u2_
.od
->address();
1002 // Write out the offset and info fields of a Rel or Rela relocation
1005 template<bool dynamic
, int size
, bool big_endian
>
1006 template<typename Write_rel
>
1008 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
1009 Write_rel
* wr
) const
1011 wr
->put_r_offset(this->get_address());
1012 unsigned int sym_index
= this->get_symbol_index();
1013 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
1016 // Write out a Rel relocation.
1018 template<bool dynamic
, int size
, bool big_endian
>
1020 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
1021 unsigned char* pov
) const
1023 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
1024 this->write_rel(&orel
);
1027 // Get the value of the symbol referred to by a Rel relocation.
1029 template<bool dynamic
, int size
, bool big_endian
>
1030 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1031 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
1032 Addend addend
) const
1034 if (this->local_sym_index_
== GSYM_CODE
)
1036 const Sized_symbol
<size
>* sym
;
1037 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
1038 return sym
->value() + addend
;
1040 gold_assert(this->local_sym_index_
!= SECTION_CODE
1041 && this->local_sym_index_
!= TARGET_CODE
1042 && this->local_sym_index_
!= INVALID_CODE
1043 && this->local_sym_index_
!= 0
1044 && !this->is_section_symbol_
);
1045 const unsigned int lsi
= this->local_sym_index_
;
1046 const Symbol_value
<size
>* symval
= this->u1_
.relobj
->local_symbol(lsi
);
1047 return symval
->value(this->u1_
.relobj
, addend
);
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1056 template<bool dynamic
, int size
, bool big_endian
>
1058 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1059 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1062 if (this->is_relative_
)
1064 if (!r2
.is_relative_
)
1066 // Otherwise sort by reloc address below.
1068 else if (r2
.is_relative_
)
1072 unsigned int sym1
= this->get_symbol_index();
1073 unsigned int sym2
= r2
.get_symbol_index();
1076 else if (sym1
> sym2
)
1078 // Otherwise sort by reloc address.
1081 section_offset_type addr1
= this->get_address();
1082 section_offset_type addr2
= r2
.get_address();
1085 else if (addr1
> addr2
)
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1
= this->type_
;
1091 unsigned int type2
= r2
.type_
;
1094 else if (type1
> type2
)
1097 // These relocs appear to be exactly the same.
1101 // Write out a Rela relocation.
1103 template<bool dynamic
, int size
, bool big_endian
>
1105 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
1106 unsigned char* pov
) const
1108 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
1109 this->rel_
.write_rel(&orel
);
1110 Addend addend
= this->addend_
;
1111 if (this->rel_
.is_target_specific())
1112 addend
= parameters
->target().reloc_addend(this->rel_
.target_arg(),
1113 this->rel_
.type(), addend
);
1114 else if (this->rel_
.is_symbolless())
1115 addend
= this->rel_
.symbol_value(addend
);
1116 else if (this->rel_
.is_local_section_symbol())
1117 addend
= this->rel_
.local_section_offset(addend
);
1118 orel
.put_r_addend(addend
);
1121 // Output_data_reloc_base methods.
1123 // Adjust the output section.
1125 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1127 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1128 ::do_adjust_output_section(Output_section
* os
)
1130 if (sh_type
== elfcpp::SHT_REL
)
1131 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1132 else if (sh_type
== elfcpp::SHT_RELA
)
1133 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1137 os
->set_should_link_to_dynsym();
1139 os
->set_should_link_to_symtab();
1142 // Write out relocation data.
1144 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1146 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1149 const off_t off
= this->offset();
1150 const off_t oview_size
= this->data_size();
1151 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1153 if (this->sort_relocs())
1155 gold_assert(dynamic
);
1156 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1157 Sort_relocs_comparison());
1160 unsigned char* pov
= oview
;
1161 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1162 p
!= this->relocs_
.end();
1169 gold_assert(pov
- oview
== oview_size
);
1171 of
->write_output_view(off
, oview_size
, oview
);
1173 // We no longer need the relocation entries.
1174 this->relocs_
.clear();
1177 // Class Output_relocatable_relocs.
1179 template<int sh_type
, int size
, bool big_endian
>
1181 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1183 this->set_data_size(this->rr_
->output_reloc_count()
1184 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1187 // class Output_data_group.
1189 template<int size
, bool big_endian
>
1190 Output_data_group
<size
, big_endian
>::Output_data_group(
1191 Sized_relobj
<size
, big_endian
>* relobj
,
1192 section_size_type entry_count
,
1193 elfcpp::Elf_Word flags
,
1194 std::vector
<unsigned int>* input_shndxes
)
1195 : Output_section_data(entry_count
* 4, 4, false),
1199 this->input_shndxes_
.swap(*input_shndxes
);
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1205 template<int size
, bool big_endian
>
1207 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1209 const off_t off
= this->offset();
1210 const section_size_type oview_size
=
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1214 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1215 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1218 for (std::vector
<unsigned int>::const_iterator p
=
1219 this->input_shndxes_
.begin();
1220 p
!= this->input_shndxes_
.end();
1223 Output_section
* os
= this->relobj_
->output_section(*p
);
1225 unsigned int output_shndx
;
1227 output_shndx
= os
->out_shndx();
1230 this->relobj_
->error(_("section group retained but "
1231 "group element discarded"));
1235 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1238 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1239 gold_assert(wrote
== oview_size
);
1241 of
->write_output_view(off
, oview_size
, oview
);
1243 // We no longer need this information.
1244 this->input_shndxes_
.clear();
1247 // Output_data_got::Got_entry methods.
1249 // Write out the entry.
1251 template<int size
, bool big_endian
>
1253 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1257 switch (this->local_sym_index_
)
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol
* gsym
= this->u_
.gsym
;
1265 Sized_symbol
<size
>* sgsym
;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1270 val
= sgsym
->value();
1275 val
= this->u_
.constant
;
1280 const unsigned int lsi
= this->local_sym_index_
;
1281 const Symbol_value
<size
>* symval
= this->u_
.object
->local_symbol(lsi
);
1282 val
= symval
->value(this->u_
.object
, 0);
1287 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1290 // Output_data_got methods.
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1296 template<int size
, bool big_endian
>
1298 Output_data_got
<size
, big_endian
>::add_global(
1300 unsigned int got_type
)
1302 if (gsym
->has_got_offset(got_type
))
1305 this->entries_
.push_back(Got_entry(gsym
));
1306 this->set_got_size();
1307 gsym
->set_got_offset(got_type
, this->last_got_offset());
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size
, bool big_endian
>
1315 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1317 unsigned int got_type
,
1319 unsigned int r_type
)
1321 if (gsym
->has_got_offset(got_type
))
1324 this->entries_
.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset
= this->last_got_offset();
1327 gsym
->set_got_offset(got_type
, got_offset
);
1328 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1331 template<int size
, bool big_endian
>
1333 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1335 unsigned int got_type
,
1337 unsigned int r_type
)
1339 if (gsym
->has_got_offset(got_type
))
1342 this->entries_
.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset
= this->last_got_offset();
1345 gsym
->set_got_offset(got_type
, got_offset
);
1346 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size
, bool big_endian
>
1354 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1356 unsigned int got_type
,
1358 unsigned int r_type_1
,
1359 unsigned int r_type_2
)
1361 if (gsym
->has_got_offset(got_type
))
1364 this->entries_
.push_back(Got_entry());
1365 unsigned int got_offset
= this->last_got_offset();
1366 gsym
->set_got_offset(got_type
, got_offset
);
1367 rel_dyn
->add_global(gsym
, r_type_1
, this, got_offset
);
1369 this->entries_
.push_back(Got_entry());
1372 got_offset
= this->last_got_offset();
1373 rel_dyn
->add_global(gsym
, r_type_2
, this, got_offset
);
1376 this->set_got_size();
1379 template<int size
, bool big_endian
>
1381 Output_data_got
<size
, big_endian
>::add_global_pair_with_rela(
1383 unsigned int got_type
,
1385 unsigned int r_type_1
,
1386 unsigned int r_type_2
)
1388 if (gsym
->has_got_offset(got_type
))
1391 this->entries_
.push_back(Got_entry());
1392 unsigned int got_offset
= this->last_got_offset();
1393 gsym
->set_got_offset(got_type
, got_offset
);
1394 rela_dyn
->add_global(gsym
, r_type_1
, this, got_offset
, 0);
1396 this->entries_
.push_back(Got_entry());
1399 got_offset
= this->last_got_offset();
1400 rela_dyn
->add_global(gsym
, r_type_2
, this, got_offset
, 0);
1403 this->set_got_size();
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1410 template<int size
, bool big_endian
>
1412 Output_data_got
<size
, big_endian
>::add_local(
1413 Sized_relobj
<size
, big_endian
>* object
,
1414 unsigned int symndx
,
1415 unsigned int got_type
)
1417 if (object
->local_has_got_offset(symndx
, got_type
))
1420 this->entries_
.push_back(Got_entry(object
, symndx
));
1421 this->set_got_size();
1422 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size
, bool big_endian
>
1430 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1431 Sized_relobj
<size
, big_endian
>* object
,
1432 unsigned int symndx
,
1433 unsigned int got_type
,
1435 unsigned int r_type
)
1437 if (object
->local_has_got_offset(symndx
, got_type
))
1440 this->entries_
.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset
= this->last_got_offset();
1443 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1444 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1447 template<int size
, bool big_endian
>
1449 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1450 Sized_relobj
<size
, big_endian
>* object
,
1451 unsigned int symndx
,
1452 unsigned int got_type
,
1454 unsigned int r_type
)
1456 if (object
->local_has_got_offset(symndx
, got_type
))
1459 this->entries_
.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset
= this->last_got_offset();
1462 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1463 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size
, bool big_endian
>
1471 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1472 Sized_relobj
<size
, big_endian
>* object
,
1473 unsigned int symndx
,
1475 unsigned int got_type
,
1477 unsigned int r_type_1
,
1478 unsigned int r_type_2
)
1480 if (object
->local_has_got_offset(symndx
, got_type
))
1483 this->entries_
.push_back(Got_entry());
1484 unsigned int got_offset
= this->last_got_offset();
1485 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1486 Output_section
* os
= object
->output_section(shndx
);
1487 rel_dyn
->add_output_section(os
, r_type_1
, this, got_offset
);
1489 this->entries_
.push_back(Got_entry(object
, symndx
));
1492 got_offset
= this->last_got_offset();
1493 rel_dyn
->add_output_section(os
, r_type_2
, this, got_offset
);
1496 this->set_got_size();
1499 template<int size
, bool big_endian
>
1501 Output_data_got
<size
, big_endian
>::add_local_pair_with_rela(
1502 Sized_relobj
<size
, big_endian
>* object
,
1503 unsigned int symndx
,
1505 unsigned int got_type
,
1507 unsigned int r_type_1
,
1508 unsigned int r_type_2
)
1510 if (object
->local_has_got_offset(symndx
, got_type
))
1513 this->entries_
.push_back(Got_entry());
1514 unsigned int got_offset
= this->last_got_offset();
1515 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1516 Output_section
* os
= object
->output_section(shndx
);
1517 rela_dyn
->add_output_section(os
, r_type_1
, this, got_offset
, 0);
1519 this->entries_
.push_back(Got_entry(object
, symndx
));
1522 got_offset
= this->last_got_offset();
1523 rela_dyn
->add_output_section(os
, r_type_2
, this, got_offset
, 0);
1526 this->set_got_size();
1529 // Write out the GOT.
1531 template<int size
, bool big_endian
>
1533 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1535 const int add
= size
/ 8;
1537 const off_t off
= this->offset();
1538 const off_t oview_size
= this->data_size();
1539 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1541 unsigned char* pov
= oview
;
1542 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1543 p
!= this->entries_
.end();
1550 gold_assert(pov
- oview
== oview_size
);
1552 of
->write_output_view(off
, oview_size
, oview
);
1554 // We no longer need the GOT entries.
1555 this->entries_
.clear();
1558 // Output_data_dynamic::Dynamic_entry methods.
1560 // Write out the entry.
1562 template<int size
, bool big_endian
>
1564 Output_data_dynamic::Dynamic_entry::write(
1566 const Stringpool
* pool
) const
1568 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1569 switch (this->offset_
)
1571 case DYNAMIC_NUMBER
:
1575 case DYNAMIC_SECTION_SIZE
:
1576 val
= this->u_
.od
->data_size();
1577 if (this->od2
!= NULL
)
1578 val
+= this->od2
->data_size();
1581 case DYNAMIC_SYMBOL
:
1583 const Sized_symbol
<size
>* s
=
1584 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1589 case DYNAMIC_STRING
:
1590 val
= pool
->get_offset(this->u_
.str
);
1594 val
= this->u_
.od
->address() + this->offset_
;
1598 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1599 dw
.put_d_tag(this->tag_
);
1603 // Output_data_dynamic methods.
1605 // Adjust the output section to set the entry size.
1608 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1610 if (parameters
->target().get_size() == 32)
1611 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1612 else if (parameters
->target().get_size() == 64)
1613 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1618 // Set the final data size.
1621 Output_data_dynamic::set_final_data_size()
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_
.empty() || this->entries_
.back().tag() != elfcpp::DT_NULL
)
1627 int extra
= parameters
->options().spare_dynamic_tags();
1628 for (int i
= 0; i
< extra
; ++i
)
1629 this->add_constant(elfcpp::DT_NULL
, 0);
1630 this->add_constant(elfcpp::DT_NULL
, 0);
1634 if (parameters
->target().get_size() == 32)
1635 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1636 else if (parameters
->target().get_size() == 64)
1637 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1640 this->set_data_size(this->entries_
.size() * dyn_size
);
1643 // Write out the dynamic entries.
1646 Output_data_dynamic::do_write(Output_file
* of
)
1648 switch (parameters
->size_and_endianness())
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE
:
1652 this->sized_write
<32, false>(of
);
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG
:
1657 this->sized_write
<32, true>(of
);
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE
:
1662 this->sized_write
<64, false>(of
);
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG
:
1667 this->sized_write
<64, true>(of
);
1675 template<int size
, bool big_endian
>
1677 Output_data_dynamic::sized_write(Output_file
* of
)
1679 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1681 const off_t offset
= this->offset();
1682 const off_t oview_size
= this->data_size();
1683 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1685 unsigned char* pov
= oview
;
1686 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1687 p
!= this->entries_
.end();
1690 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1694 gold_assert(pov
- oview
== oview_size
);
1696 of
->write_output_view(offset
, oview_size
, oview
);
1698 // We no longer need the dynamic entries.
1699 this->entries_
.clear();
1702 // Class Output_symtab_xindex.
1705 Output_symtab_xindex::do_write(Output_file
* of
)
1707 const off_t offset
= this->offset();
1708 const off_t oview_size
= this->data_size();
1709 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1711 memset(oview
, 0, oview_size
);
1713 if (parameters
->target().is_big_endian())
1714 this->endian_do_write
<true>(oview
);
1716 this->endian_do_write
<false>(oview
);
1718 of
->write_output_view(offset
, oview_size
, oview
);
1720 // We no longer need the data.
1721 this->entries_
.clear();
1724 template<bool big_endian
>
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1728 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1729 p
!= this->entries_
.end();
1732 unsigned int symndx
= p
->first
;
1733 gold_assert(symndx
* 4 < this->data_size());
1734 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ symndx
* 4, p
->second
);
1738 // Output_section::Input_section methods.
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1744 Output_section::Input_section::data_size() const
1746 if (this->is_input_section())
1747 return this->u1_
.data_size
;
1749 return this->u2_
.posd
->data_size();
1752 // Set the address and file offset.
1755 Output_section::Input_section::set_address_and_file_offset(
1758 off_t section_file_offset
)
1760 if (this->is_input_section())
1761 this->u2_
.object
->set_section_offset(this->shndx_
,
1762 file_offset
- section_file_offset
);
1764 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1767 // Reset the address and file offset.
1770 Output_section::Input_section::reset_address_and_file_offset()
1772 if (!this->is_input_section())
1773 this->u2_
.posd
->reset_address_and_file_offset();
1776 // Finalize the data size.
1779 Output_section::Input_section::finalize_data_size()
1781 if (!this->is_input_section())
1782 this->u2_
.posd
->finalize_data_size();
1785 // Try to turn an input offset into an output offset. We want to
1786 // return the output offset relative to the start of this
1787 // Input_section in the output section.
1790 Output_section::Input_section::output_offset(
1791 const Relobj
* object
,
1793 section_offset_type offset
,
1794 section_offset_type
*poutput
) const
1796 if (!this->is_input_section())
1797 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1800 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1807 // Return whether this is the merge section for the input section
1811 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1812 unsigned int shndx
) const
1814 if (this->is_input_section())
1816 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1819 // Write out the data. We don't have to do anything for an input
1820 // section--they are handled via Object::relocate--but this is where
1821 // we write out the data for an Output_section_data.
1824 Output_section::Input_section::write(Output_file
* of
)
1826 if (!this->is_input_section())
1827 this->u2_
.posd
->write(of
);
1830 // Write the data to a buffer. As for write(), we don't have to do
1831 // anything for an input section.
1834 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1836 if (!this->is_input_section())
1837 this->u2_
.posd
->write_to_buffer(buffer
);
1840 // Print to a map file.
1843 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
1845 switch (this->shndx_
)
1847 case OUTPUT_SECTION_CODE
:
1848 case MERGE_DATA_SECTION_CODE
:
1849 case MERGE_STRING_SECTION_CODE
:
1850 this->u2_
.posd
->print_to_mapfile(mapfile
);
1853 case RELAXED_INPUT_SECTION_CODE
:
1855 Output_relaxed_input_section
* relaxed_section
=
1856 this->relaxed_input_section();
1857 mapfile
->print_input_section(relaxed_section
->relobj(),
1858 relaxed_section
->shndx());
1862 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
1867 // Output_section methods.
1869 // Construct an Output_section. NAME will point into a Stringpool.
1871 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1872 elfcpp::Elf_Xword flags
)
1877 link_section_(NULL
),
1879 info_section_(NULL
),
1888 first_input_offset_(0),
1890 postprocessing_buffer_(NULL
),
1891 needs_symtab_index_(false),
1892 needs_dynsym_index_(false),
1893 should_link_to_symtab_(false),
1894 should_link_to_dynsym_(false),
1895 after_input_sections_(false),
1896 requires_postprocessing_(false),
1897 found_in_sections_clause_(false),
1898 has_load_address_(false),
1899 info_uses_section_index_(false),
1900 may_sort_attached_input_sections_(false),
1901 must_sort_attached_input_sections_(false),
1902 attached_input_sections_are_sorted_(false),
1904 is_relro_local_(false),
1905 is_last_relro_(false),
1906 is_first_non_relro_(false),
1907 is_small_section_(false),
1908 is_large_section_(false),
1910 is_dynamic_linker_section_(false),
1911 generate_code_fills_at_write_(false),
1912 is_entsize_zero_(false),
1913 section_offsets_need_adjustment_(false),
1917 merge_section_map_(),
1918 merge_section_by_properties_map_(),
1919 relaxed_input_section_map_(),
1920 is_relaxed_input_section_map_valid_(true)
1922 // An unallocated section has no address. Forcing this means that
1923 // we don't need special treatment for symbols defined in debug
1925 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
1926 this->set_address(0);
1929 Output_section::~Output_section()
1931 delete this->checkpoint_
;
1934 // Set the entry size.
1937 Output_section::set_entsize(uint64_t v
)
1939 if (this->is_entsize_zero_
)
1941 else if (this->entsize_
== 0)
1943 else if (this->entsize_
!= v
)
1946 this->is_entsize_zero_
= 1;
1950 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1951 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1952 // relocation section which applies to this section, or 0 if none, or
1953 // -1U if more than one. Return the offset of the input section
1954 // within the output section. Return -1 if the input section will
1955 // receive special handling. In the normal case we don't always keep
1956 // track of input sections for an Output_section. Instead, each
1957 // Object keeps track of the Output_section for each of its input
1958 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1959 // track of input sections here; this is used when SECTIONS appears in
1962 template<int size
, bool big_endian
>
1964 Output_section::add_input_section(Sized_relobj
<size
, big_endian
>* object
,
1966 const char* secname
,
1967 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1968 unsigned int reloc_shndx
,
1969 bool have_sections_script
)
1971 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
1972 if ((addralign
& (addralign
- 1)) != 0)
1974 object
->error(_("invalid alignment %lu for section \"%s\""),
1975 static_cast<unsigned long>(addralign
), secname
);
1979 if (addralign
> this->addralign_
)
1980 this->addralign_
= addralign
;
1982 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1983 uint64_t entsize
= shdr
.get_sh_entsize();
1985 // .debug_str is a mergeable string section, but is not always so
1986 // marked by compilers. Mark manually here so we can optimize.
1987 if (strcmp(secname
, ".debug_str") == 0)
1989 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
1993 this->update_flags_for_input_section(sh_flags
);
1994 this->set_entsize(entsize
);
1996 // If this is a SHF_MERGE section, we pass all the input sections to
1997 // a Output_data_merge. We don't try to handle relocations for such
1998 // a section. We don't try to handle empty merge sections--they
1999 // mess up the mappings, and are useless anyhow.
2000 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
2002 && shdr
.get_sh_size() > 0)
2004 if (this->add_merge_input_section(object
, shndx
, sh_flags
,
2005 entsize
, addralign
))
2007 // Tell the relocation routines that they need to call the
2008 // output_offset method to determine the final address.
2013 off_t offset_in_section
= this->current_data_size_for_child();
2014 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2017 // Determine if we want to delay code-fill generation until the output
2018 // section is written. When the target is relaxing, we want to delay fill
2019 // generating to avoid adjusting them during relaxation.
2020 if (!this->generate_code_fills_at_write_
2021 && !have_sections_script
2022 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2023 && parameters
->target().has_code_fill()
2024 && parameters
->target().may_relax())
2026 gold_assert(this->fills_
.empty());
2027 this->generate_code_fills_at_write_
= true;
2030 if (aligned_offset_in_section
> offset_in_section
2031 && !this->generate_code_fills_at_write_
2032 && !have_sections_script
2033 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2034 && parameters
->target().has_code_fill())
2036 // We need to add some fill data. Using fill_list_ when
2037 // possible is an optimization, since we will often have fill
2038 // sections without input sections.
2039 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
2040 if (this->input_sections_
.empty())
2041 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
2044 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2045 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
2046 this->input_sections_
.push_back(Input_section(odc
));
2050 this->set_current_data_size_for_child(aligned_offset_in_section
2051 + shdr
.get_sh_size());
2053 // We need to keep track of this section if we are already keeping
2054 // track of sections, or if we are relaxing. Also, if this is a
2055 // section which requires sorting, or which may require sorting in
2056 // the future, we keep track of the sections.
2057 if (have_sections_script
2058 || !this->input_sections_
.empty()
2059 || this->may_sort_attached_input_sections()
2060 || this->must_sort_attached_input_sections()
2061 || parameters
->options().user_set_Map()
2062 || parameters
->target().may_relax())
2063 this->input_sections_
.push_back(Input_section(object
, shndx
,
2067 return aligned_offset_in_section
;
2070 // Add arbitrary data to an output section.
2073 Output_section::add_output_section_data(Output_section_data
* posd
)
2075 Input_section
inp(posd
);
2076 this->add_output_section_data(&inp
);
2078 if (posd
->is_data_size_valid())
2080 off_t offset_in_section
= this->current_data_size_for_child();
2081 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2083 this->set_current_data_size_for_child(aligned_offset_in_section
2084 + posd
->data_size());
2088 // Add a relaxed input section.
2091 Output_section::add_relaxed_input_section(Output_relaxed_input_section
* poris
)
2093 Input_section
inp(poris
);
2094 this->add_output_section_data(&inp
);
2095 if (this->is_relaxed_input_section_map_valid_
)
2097 Const_section_id
csid(poris
->relobj(), poris
->shndx());
2098 this->relaxed_input_section_map_
[csid
] = poris
;
2101 // For a relaxed section, we use the current data size. Linker scripts
2102 // get all the input sections, including relaxed one from an output
2103 // section and add them back to them same output section to compute the
2104 // output section size. If we do not account for sizes of relaxed input
2105 // sections, an output section would be incorrectly sized.
2106 off_t offset_in_section
= this->current_data_size_for_child();
2107 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2108 poris
->addralign());
2109 this->set_current_data_size_for_child(aligned_offset_in_section
2110 + poris
->current_data_size());
2113 // Add arbitrary data to an output section by Input_section.
2116 Output_section::add_output_section_data(Input_section
* inp
)
2118 if (this->input_sections_
.empty())
2119 this->first_input_offset_
= this->current_data_size_for_child();
2121 this->input_sections_
.push_back(*inp
);
2123 uint64_t addralign
= inp
->addralign();
2124 if (addralign
> this->addralign_
)
2125 this->addralign_
= addralign
;
2127 inp
->set_output_section(this);
2130 // Add a merge section to an output section.
2133 Output_section::add_output_merge_section(Output_section_data
* posd
,
2134 bool is_string
, uint64_t entsize
)
2136 Input_section
inp(posd
, is_string
, entsize
);
2137 this->add_output_section_data(&inp
);
2140 // Add an input section to a SHF_MERGE section.
2143 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
2144 uint64_t flags
, uint64_t entsize
,
2147 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
2149 // We only merge strings if the alignment is not more than the
2150 // character size. This could be handled, but it's unusual.
2151 if (is_string
&& addralign
> entsize
)
2154 // We cannot restore merged input section states.
2155 gold_assert(this->checkpoint_
== NULL
);
2157 // Look up merge sections by required properties.
2158 Output_merge_base
* pomb
;
2159 Merge_section_properties
msp(is_string
, entsize
, addralign
);
2160 Merge_section_by_properties_map::const_iterator p
=
2161 this->merge_section_by_properties_map_
.find(msp
);
2162 if (p
!= this->merge_section_by_properties_map_
.end())
2165 gold_assert(pomb
->is_string() == is_string
2166 && pomb
->entsize() == entsize
2167 && pomb
->addralign() == addralign
);
2171 // Create a new Output_merge_data or Output_merge_string_data.
2173 pomb
= new Output_merge_data(entsize
, addralign
);
2179 pomb
= new Output_merge_string
<char>(addralign
);
2182 pomb
= new Output_merge_string
<uint16_t>(addralign
);
2185 pomb
= new Output_merge_string
<uint32_t>(addralign
);
2191 // Add new merge section to this output section and link merge
2192 // section properties to new merge section in map.
2193 this->add_output_merge_section(pomb
, is_string
, entsize
);
2194 this->merge_section_by_properties_map_
[msp
] = pomb
;
2197 if (pomb
->add_input_section(object
, shndx
))
2199 // Add input section to new merge section and link input section to new
2200 // merge section in map.
2201 Const_section_id
csid(object
, shndx
);
2202 this->merge_section_map_
[csid
] = pomb
;
2209 // Build a relaxation map to speed up relaxation of existing input sections.
2210 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2213 Output_section::build_relaxation_map(
2214 const Input_section_list
& input_sections
,
2216 Relaxation_map
* relaxation_map
) const
2218 for (size_t i
= 0; i
< limit
; ++i
)
2220 const Input_section
& is(input_sections
[i
]);
2221 if (is
.is_input_section() || is
.is_relaxed_input_section())
2223 Section_id
sid(is
.relobj(), is
.shndx());
2224 (*relaxation_map
)[sid
] = i
;
2229 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2230 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2231 // indices of INPUT_SECTIONS.
2234 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2235 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
2236 const Relaxation_map
& map
,
2237 Input_section_list
* input_sections
)
2239 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2241 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2242 Section_id
sid(poris
->relobj(), poris
->shndx());
2243 Relaxation_map::const_iterator p
= map
.find(sid
);
2244 gold_assert(p
!= map
.end());
2245 gold_assert((*input_sections
)[p
->second
].is_input_section());
2246 (*input_sections
)[p
->second
] = Input_section(poris
);
2250 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2251 // is a vector of pointers to Output_relaxed_input_section or its derived
2252 // classes. The relaxed sections must correspond to existing input sections.
2255 Output_section::convert_input_sections_to_relaxed_sections(
2256 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
)
2258 gold_assert(parameters
->target().may_relax());
2260 // We want to make sure that restore_states does not undo the effect of
2261 // this. If there is no checkpoint active, just search the current
2262 // input section list and replace the sections there. If there is
2263 // a checkpoint, also replace the sections there.
2265 // By default, we look at the whole list.
2266 size_t limit
= this->input_sections_
.size();
2268 if (this->checkpoint_
!= NULL
)
2270 // Replace input sections with relaxed input section in the saved
2271 // copy of the input section list.
2272 if (this->checkpoint_
->input_sections_saved())
2275 this->build_relaxation_map(
2276 *(this->checkpoint_
->input_sections()),
2277 this->checkpoint_
->input_sections()->size(),
2279 this->convert_input_sections_in_list_to_relaxed_sections(
2282 this->checkpoint_
->input_sections());
2286 // We have not copied the input section list yet. Instead, just
2287 // look at the portion that would be saved.
2288 limit
= this->checkpoint_
->input_sections_size();
2292 // Convert input sections in input_section_list.
2294 this->build_relaxation_map(this->input_sections_
, limit
, &map
);
2295 this->convert_input_sections_in_list_to_relaxed_sections(
2298 &this->input_sections_
);
2300 // Update fast look-up map.
2301 if (this->is_relaxed_input_section_map_valid_
)
2302 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2304 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2305 Const_section_id
csid(poris
->relobj(), poris
->shndx());
2306 this->relaxed_input_section_map_
[csid
] = poris
;
2310 // Update the output section flags based on input section flags.
2313 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2315 // If we created the section with SHF_ALLOC clear, we set the
2316 // address. If we are now setting the SHF_ALLOC flag, we need to
2318 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2319 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2320 this->mark_address_invalid();
2322 this->flags_
|= (flags
2323 & (elfcpp::SHF_WRITE
2325 | elfcpp::SHF_EXECINSTR
));
2327 if ((flags
& elfcpp::SHF_MERGE
) == 0)
2328 this->flags_
&=~ elfcpp::SHF_MERGE
;
2331 if (this->current_data_size_for_child() == 0)
2332 this->flags_
|= elfcpp::SHF_MERGE
;
2335 if ((flags
& elfcpp::SHF_STRINGS
) == 0)
2336 this->flags_
&=~ elfcpp::SHF_STRINGS
;
2339 if (this->current_data_size_for_child() == 0)
2340 this->flags_
|= elfcpp::SHF_STRINGS
;
2344 // Find the merge section into which an input section with index SHNDX in
2345 // OBJECT has been added. Return NULL if none found.
2347 Output_section_data
*
2348 Output_section::find_merge_section(const Relobj
* object
,
2349 unsigned int shndx
) const
2351 Const_section_id
csid(object
, shndx
);
2352 Output_section_data_by_input_section_map::const_iterator p
=
2353 this->merge_section_map_
.find(csid
);
2354 if (p
!= this->merge_section_map_
.end())
2356 Output_section_data
* posd
= p
->second
;
2357 gold_assert(posd
->is_merge_section_for(object
, shndx
));
2364 // Find an relaxed input section corresponding to an input section
2365 // in OBJECT with index SHNDX.
2367 const Output_relaxed_input_section
*
2368 Output_section::find_relaxed_input_section(const Relobj
* object
,
2369 unsigned int shndx
) const
2371 // Be careful that the map may not be valid due to input section export
2372 // to scripts or a check-point restore.
2373 if (!this->is_relaxed_input_section_map_valid_
)
2375 // Rebuild the map as needed.
2376 this->relaxed_input_section_map_
.clear();
2377 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2378 p
!= this->input_sections_
.end();
2380 if (p
->is_relaxed_input_section())
2382 Const_section_id
csid(p
->relobj(), p
->shndx());
2383 this->relaxed_input_section_map_
[csid
] =
2384 p
->relaxed_input_section();
2386 this->is_relaxed_input_section_map_valid_
= true;
2389 Const_section_id
csid(object
, shndx
);
2390 Output_relaxed_input_section_by_input_section_map::const_iterator p
=
2391 this->relaxed_input_section_map_
.find(csid
);
2392 if (p
!= this->relaxed_input_section_map_
.end())
2398 // Given an address OFFSET relative to the start of input section
2399 // SHNDX in OBJECT, return whether this address is being included in
2400 // the final link. This should only be called if SHNDX in OBJECT has
2401 // a special mapping.
2404 Output_section::is_input_address_mapped(const Relobj
* object
,
2408 // Look at the Output_section_data_maps first.
2409 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2411 posd
= this->find_relaxed_input_section(object
, shndx
);
2415 section_offset_type output_offset
;
2416 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2418 return output_offset
!= -1;
2421 // Fall back to the slow look-up.
2422 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2423 p
!= this->input_sections_
.end();
2426 section_offset_type output_offset
;
2427 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2428 return output_offset
!= -1;
2431 // By default we assume that the address is mapped. This should
2432 // only be called after we have passed all sections to Layout. At
2433 // that point we should know what we are discarding.
2437 // Given an address OFFSET relative to the start of input section
2438 // SHNDX in object OBJECT, return the output offset relative to the
2439 // start of the input section in the output section. This should only
2440 // be called if SHNDX in OBJECT has a special mapping.
2443 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2444 section_offset_type offset
) const
2446 // This can only be called meaningfully when we know the data size
2448 gold_assert(this->is_data_size_valid());
2450 // Look at the Output_section_data_maps first.
2451 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2453 posd
= this->find_relaxed_input_section(object
, shndx
);
2456 section_offset_type output_offset
;
2457 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2459 return output_offset
;
2462 // Fall back to the slow look-up.
2463 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2464 p
!= this->input_sections_
.end();
2467 section_offset_type output_offset
;
2468 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2469 return output_offset
;
2474 // Return the output virtual address of OFFSET relative to the start
2475 // of input section SHNDX in object OBJECT.
2478 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2481 uint64_t addr
= this->address() + this->first_input_offset_
;
2483 // Look at the Output_section_data_maps first.
2484 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2486 posd
= this->find_relaxed_input_section(object
, shndx
);
2487 if (posd
!= NULL
&& posd
->is_address_valid())
2489 section_offset_type output_offset
;
2490 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2492 return posd
->address() + output_offset
;
2495 // Fall back to the slow look-up.
2496 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2497 p
!= this->input_sections_
.end();
2500 addr
= align_address(addr
, p
->addralign());
2501 section_offset_type output_offset
;
2502 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2504 if (output_offset
== -1)
2506 return addr
+ output_offset
;
2508 addr
+= p
->data_size();
2511 // If we get here, it means that we don't know the mapping for this
2512 // input section. This might happen in principle if
2513 // add_input_section were called before add_output_section_data.
2514 // But it should never actually happen.
2519 // Find the output address of the start of the merged section for
2520 // input section SHNDX in object OBJECT.
2523 Output_section::find_starting_output_address(const Relobj
* object
,
2525 uint64_t* paddr
) const
2527 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2528 // Looking up the merge section map does not always work as we sometimes
2529 // find a merge section without its address set.
2530 uint64_t addr
= this->address() + this->first_input_offset_
;
2531 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2532 p
!= this->input_sections_
.end();
2535 addr
= align_address(addr
, p
->addralign());
2537 // It would be nice if we could use the existing output_offset
2538 // method to get the output offset of input offset 0.
2539 // Unfortunately we don't know for sure that input offset 0 is
2541 if (p
->is_merge_section_for(object
, shndx
))
2547 addr
+= p
->data_size();
2550 // We couldn't find a merge output section for this input section.
2554 // Set the data size of an Output_section. This is where we handle
2555 // setting the addresses of any Output_section_data objects.
2558 Output_section::set_final_data_size()
2560 if (this->input_sections_
.empty())
2562 this->set_data_size(this->current_data_size_for_child());
2566 if (this->must_sort_attached_input_sections())
2567 this->sort_attached_input_sections();
2569 uint64_t address
= this->address();
2570 off_t startoff
= this->offset();
2571 off_t off
= startoff
+ this->first_input_offset_
;
2572 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2573 p
!= this->input_sections_
.end();
2576 off
= align_address(off
, p
->addralign());
2577 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2579 off
+= p
->data_size();
2582 this->set_data_size(off
- startoff
);
2585 // Reset the address and file offset.
2588 Output_section::do_reset_address_and_file_offset()
2590 // An unallocated section has no address. Forcing this means that
2591 // we don't need special treatment for symbols defined in debug
2592 // sections. We do the same in the constructor. This does not
2593 // apply to NOLOAD sections though.
2594 if (((this->flags_
& elfcpp::SHF_ALLOC
) == 0) && !this->is_noload_
)
2595 this->set_address(0);
2597 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2598 p
!= this->input_sections_
.end();
2600 p
->reset_address_and_file_offset();
2603 // Return true if address and file offset have the values after reset.
2606 Output_section::do_address_and_file_offset_have_reset_values() const
2608 if (this->is_offset_valid())
2611 // An unallocated section has address 0 after its construction or a reset.
2612 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0)
2613 return this->is_address_valid() && this->address() == 0;
2615 return !this->is_address_valid();
2618 // Set the TLS offset. Called only for SHT_TLS sections.
2621 Output_section::do_set_tls_offset(uint64_t tls_base
)
2623 this->tls_offset_
= this->address() - tls_base
;
2626 // In a few cases we need to sort the input sections attached to an
2627 // output section. This is used to implement the type of constructor
2628 // priority ordering implemented by the GNU linker, in which the
2629 // priority becomes part of the section name and the sections are
2630 // sorted by name. We only do this for an output section if we see an
2631 // attached input section matching ".ctor.*", ".dtor.*",
2632 // ".init_array.*" or ".fini_array.*".
2634 class Output_section::Input_section_sort_entry
2637 Input_section_sort_entry()
2638 : input_section_(), index_(-1U), section_has_name_(false),
2642 Input_section_sort_entry(const Input_section
& input_section
,
2644 : input_section_(input_section
), index_(index
),
2645 section_has_name_(input_section
.is_input_section()
2646 || input_section
.is_relaxed_input_section())
2648 if (this->section_has_name_
)
2650 // This is only called single-threaded from Layout::finalize,
2651 // so it is OK to lock. Unfortunately we have no way to pass
2653 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
2654 Object
* obj
= (input_section
.is_input_section()
2655 ? input_section
.relobj()
2656 : input_section
.relaxed_input_section()->relobj());
2657 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
2659 // This is a slow operation, which should be cached in
2660 // Layout::layout if this becomes a speed problem.
2661 this->section_name_
= obj
->section_name(input_section
.shndx());
2665 // Return the Input_section.
2666 const Input_section
&
2667 input_section() const
2669 gold_assert(this->index_
!= -1U);
2670 return this->input_section_
;
2673 // The index of this entry in the original list. This is used to
2674 // make the sort stable.
2678 gold_assert(this->index_
!= -1U);
2679 return this->index_
;
2682 // Whether there is a section name.
2684 section_has_name() const
2685 { return this->section_has_name_
; }
2687 // The section name.
2689 section_name() const
2691 gold_assert(this->section_has_name_
);
2692 return this->section_name_
;
2695 // Return true if the section name has a priority. This is assumed
2696 // to be true if it has a dot after the initial dot.
2698 has_priority() const
2700 gold_assert(this->section_has_name_
);
2701 return this->section_name_
.find('.', 1) != std::string::npos
;
2704 // Return true if this an input file whose base name matches
2705 // FILE_NAME. The base name must have an extension of ".o", and
2706 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2707 // This is to match crtbegin.o as well as crtbeginS.o without
2708 // getting confused by other possibilities. Overall matching the
2709 // file name this way is a dreadful hack, but the GNU linker does it
2710 // in order to better support gcc, and we need to be compatible.
2712 match_file_name(const char* match_file_name
) const
2714 const std::string
& file_name(this->input_section_
.relobj()->name());
2715 const char* base_name
= lbasename(file_name
.c_str());
2716 size_t match_len
= strlen(match_file_name
);
2717 if (strncmp(base_name
, match_file_name
, match_len
) != 0)
2719 size_t base_len
= strlen(base_name
);
2720 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
2722 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
2726 // The Input_section we are sorting.
2727 Input_section input_section_
;
2728 // The index of this Input_section in the original list.
2729 unsigned int index_
;
2730 // Whether this Input_section has a section name--it won't if this
2731 // is some random Output_section_data.
2732 bool section_has_name_
;
2733 // The section name if there is one.
2734 std::string section_name_
;
2737 // Return true if S1 should come before S2 in the output section.
2740 Output_section::Input_section_sort_compare::operator()(
2741 const Output_section::Input_section_sort_entry
& s1
,
2742 const Output_section::Input_section_sort_entry
& s2
) const
2744 // crtbegin.o must come first.
2745 bool s1_begin
= s1
.match_file_name("crtbegin");
2746 bool s2_begin
= s2
.match_file_name("crtbegin");
2747 if (s1_begin
|| s2_begin
)
2753 return s1
.index() < s2
.index();
2756 // crtend.o must come last.
2757 bool s1_end
= s1
.match_file_name("crtend");
2758 bool s2_end
= s2
.match_file_name("crtend");
2759 if (s1_end
|| s2_end
)
2765 return s1
.index() < s2
.index();
2768 // We sort all the sections with no names to the end.
2769 if (!s1
.section_has_name() || !s2
.section_has_name())
2771 if (s1
.section_has_name())
2773 if (s2
.section_has_name())
2775 return s1
.index() < s2
.index();
2778 // A section with a priority follows a section without a priority.
2779 bool s1_has_priority
= s1
.has_priority();
2780 bool s2_has_priority
= s2
.has_priority();
2781 if (s1_has_priority
&& !s2_has_priority
)
2783 if (!s1_has_priority
&& s2_has_priority
)
2786 // Otherwise we sort by name.
2787 int compare
= s1
.section_name().compare(s2
.section_name());
2791 // Otherwise we keep the input order.
2792 return s1
.index() < s2
.index();
2795 // Return true if S1 should come before S2 in an .init_array or .fini_array
2799 Output_section::Input_section_sort_init_fini_compare::operator()(
2800 const Output_section::Input_section_sort_entry
& s1
,
2801 const Output_section::Input_section_sort_entry
& s2
) const
2803 // We sort all the sections with no names to the end.
2804 if (!s1
.section_has_name() || !s2
.section_has_name())
2806 if (s1
.section_has_name())
2808 if (s2
.section_has_name())
2810 return s1
.index() < s2
.index();
2813 // A section without a priority follows a section with a priority.
2814 // This is the reverse of .ctors and .dtors sections.
2815 bool s1_has_priority
= s1
.has_priority();
2816 bool s2_has_priority
= s2
.has_priority();
2817 if (s1_has_priority
&& !s2_has_priority
)
2819 if (!s1_has_priority
&& s2_has_priority
)
2822 // Otherwise we sort by name.
2823 int compare
= s1
.section_name().compare(s2
.section_name());
2827 // Otherwise we keep the input order.
2828 return s1
.index() < s2
.index();
2831 // Sort the input sections attached to an output section.
2834 Output_section::sort_attached_input_sections()
2836 if (this->attached_input_sections_are_sorted_
)
2839 if (this->checkpoint_
!= NULL
2840 && !this->checkpoint_
->input_sections_saved())
2841 this->checkpoint_
->save_input_sections();
2843 // The only thing we know about an input section is the object and
2844 // the section index. We need the section name. Recomputing this
2845 // is slow but this is an unusual case. If this becomes a speed
2846 // problem we can cache the names as required in Layout::layout.
2848 // We start by building a larger vector holding a copy of each
2849 // Input_section, plus its current index in the list and its name.
2850 std::vector
<Input_section_sort_entry
> sort_list
;
2853 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2854 p
!= this->input_sections_
.end();
2856 sort_list
.push_back(Input_section_sort_entry(*p
, i
));
2858 // Sort the input sections.
2859 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2860 || this->type() == elfcpp::SHT_INIT_ARRAY
2861 || this->type() == elfcpp::SHT_FINI_ARRAY
)
2862 std::sort(sort_list
.begin(), sort_list
.end(),
2863 Input_section_sort_init_fini_compare());
2865 std::sort(sort_list
.begin(), sort_list
.end(),
2866 Input_section_sort_compare());
2868 // Copy the sorted input sections back to our list.
2869 this->input_sections_
.clear();
2870 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
2871 p
!= sort_list
.end();
2873 this->input_sections_
.push_back(p
->input_section());
2875 // Remember that we sorted the input sections, since we might get
2877 this->attached_input_sections_are_sorted_
= true;
2880 // Write the section header to *OSHDR.
2882 template<int size
, bool big_endian
>
2884 Output_section::write_header(const Layout
* layout
,
2885 const Stringpool
* secnamepool
,
2886 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
2888 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
2889 oshdr
->put_sh_type(this->type_
);
2891 elfcpp::Elf_Xword flags
= this->flags_
;
2892 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
2893 flags
|= elfcpp::SHF_INFO_LINK
;
2894 oshdr
->put_sh_flags(flags
);
2896 oshdr
->put_sh_addr(this->address());
2897 oshdr
->put_sh_offset(this->offset());
2898 oshdr
->put_sh_size(this->data_size());
2899 if (this->link_section_
!= NULL
)
2900 oshdr
->put_sh_link(this->link_section_
->out_shndx());
2901 else if (this->should_link_to_symtab_
)
2902 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
2903 else if (this->should_link_to_dynsym_
)
2904 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
2906 oshdr
->put_sh_link(this->link_
);
2908 elfcpp::Elf_Word info
;
2909 if (this->info_section_
!= NULL
)
2911 if (this->info_uses_section_index_
)
2912 info
= this->info_section_
->out_shndx();
2914 info
= this->info_section_
->symtab_index();
2916 else if (this->info_symndx_
!= NULL
)
2917 info
= this->info_symndx_
->symtab_index();
2920 oshdr
->put_sh_info(info
);
2922 oshdr
->put_sh_addralign(this->addralign_
);
2923 oshdr
->put_sh_entsize(this->entsize_
);
2926 // Write out the data. For input sections the data is written out by
2927 // Object::relocate, but we have to handle Output_section_data objects
2931 Output_section::do_write(Output_file
* of
)
2933 gold_assert(!this->requires_postprocessing());
2935 // If the target performs relaxation, we delay filler generation until now.
2936 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
2938 off_t output_section_file_offset
= this->offset();
2939 for (Fill_list::iterator p
= this->fills_
.begin();
2940 p
!= this->fills_
.end();
2943 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2944 of
->write(output_section_file_offset
+ p
->section_offset(),
2945 fill_data
.data(), fill_data
.size());
2948 off_t off
= this->offset() + this->first_input_offset_
;
2949 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2950 p
!= this->input_sections_
.end();
2953 off_t aligned_off
= align_address(off
, p
->addralign());
2954 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
2956 size_t fill_len
= aligned_off
- off
;
2957 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2958 of
->write(off
, fill_data
.data(), fill_data
.size());
2962 off
= aligned_off
+ p
->data_size();
2966 // If a section requires postprocessing, create the buffer to use.
2969 Output_section::create_postprocessing_buffer()
2971 gold_assert(this->requires_postprocessing());
2973 if (this->postprocessing_buffer_
!= NULL
)
2976 if (!this->input_sections_
.empty())
2978 off_t off
= this->first_input_offset_
;
2979 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2980 p
!= this->input_sections_
.end();
2983 off
= align_address(off
, p
->addralign());
2984 p
->finalize_data_size();
2985 off
+= p
->data_size();
2987 this->set_current_data_size_for_child(off
);
2990 off_t buffer_size
= this->current_data_size_for_child();
2991 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
2994 // Write all the data of an Output_section into the postprocessing
2995 // buffer. This is used for sections which require postprocessing,
2996 // such as compression. Input sections are handled by
2997 // Object::Relocate.
3000 Output_section::write_to_postprocessing_buffer()
3002 gold_assert(this->requires_postprocessing());
3004 // If the target performs relaxation, we delay filler generation until now.
3005 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3007 unsigned char* buffer
= this->postprocessing_buffer();
3008 for (Fill_list::iterator p
= this->fills_
.begin();
3009 p
!= this->fills_
.end();
3012 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3013 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
3017 off_t off
= this->first_input_offset_
;
3018 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3019 p
!= this->input_sections_
.end();
3022 off_t aligned_off
= align_address(off
, p
->addralign());
3023 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3025 size_t fill_len
= aligned_off
- off
;
3026 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3027 memcpy(buffer
+ off
, fill_data
.data(), fill_data
.size());
3030 p
->write_to_buffer(buffer
+ aligned_off
);
3031 off
= aligned_off
+ p
->data_size();
3035 // Get the input sections for linker script processing. We leave
3036 // behind the Output_section_data entries. Note that this may be
3037 // slightly incorrect for merge sections. We will leave them behind,
3038 // but it is possible that the script says that they should follow
3039 // some other input sections, as in:
3040 // .rodata { *(.rodata) *(.rodata.cst*) }
3041 // For that matter, we don't handle this correctly:
3042 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3043 // With luck this will never matter.
3046 Output_section::get_input_sections(
3048 const std::string
& fill
,
3049 std::list
<Simple_input_section
>* input_sections
)
3051 if (this->checkpoint_
!= NULL
3052 && !this->checkpoint_
->input_sections_saved())
3053 this->checkpoint_
->save_input_sections();
3055 // Invalidate the relaxed input section map.
3056 this->is_relaxed_input_section_map_valid_
= false;
3058 uint64_t orig_address
= address
;
3060 address
= align_address(address
, this->addralign());
3062 Input_section_list remaining
;
3063 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3064 p
!= this->input_sections_
.end();
3067 if (p
->is_input_section())
3068 input_sections
->push_back(Simple_input_section(p
->relobj(),
3070 else if (p
->is_relaxed_input_section())
3071 input_sections
->push_back(
3072 Simple_input_section(p
->relaxed_input_section()));
3075 uint64_t aligned_address
= align_address(address
, p
->addralign());
3076 if (aligned_address
!= address
&& !fill
.empty())
3078 section_size_type length
=
3079 convert_to_section_size_type(aligned_address
- address
);
3080 std::string this_fill
;
3081 this_fill
.reserve(length
);
3082 while (this_fill
.length() + fill
.length() <= length
)
3084 if (this_fill
.length() < length
)
3085 this_fill
.append(fill
, 0, length
- this_fill
.length());
3087 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
3088 remaining
.push_back(Input_section(posd
));
3090 address
= aligned_address
;
3092 remaining
.push_back(*p
);
3094 p
->finalize_data_size();
3095 address
+= p
->data_size();
3099 this->input_sections_
.swap(remaining
);
3100 this->first_input_offset_
= 0;
3102 uint64_t data_size
= address
- orig_address
;
3103 this->set_current_data_size_for_child(data_size
);
3107 // Add an simple input section.
3110 Output_section::add_simple_input_section(const Simple_input_section
& sis
,
3114 if (addralign
> this->addralign_
)
3115 this->addralign_
= addralign
;
3117 off_t offset_in_section
= this->current_data_size_for_child();
3118 off_t aligned_offset_in_section
= align_address(offset_in_section
,
3121 this->set_current_data_size_for_child(aligned_offset_in_section
3125 (sis
.is_relaxed_input_section()
3126 ? Input_section(sis
.relaxed_input_section())
3127 : Input_section(sis
.relobj(), sis
.shndx(), data_size
, addralign
));
3128 this->input_sections_
.push_back(is
);
3131 // Save states for relaxation.
3134 Output_section::save_states()
3136 gold_assert(this->checkpoint_
== NULL
);
3137 Checkpoint_output_section
* checkpoint
=
3138 new Checkpoint_output_section(this->addralign_
, this->flags_
,
3139 this->input_sections_
,
3140 this->first_input_offset_
,
3141 this->attached_input_sections_are_sorted_
);
3142 this->checkpoint_
= checkpoint
;
3143 gold_assert(this->fills_
.empty());
3147 Output_section::discard_states()
3149 gold_assert(this->checkpoint_
!= NULL
);
3150 delete this->checkpoint_
;
3151 this->checkpoint_
= NULL
;
3152 gold_assert(this->fills_
.empty());
3154 // Simply invalidate the relaxed input section map since we do not keep
3156 this->is_relaxed_input_section_map_valid_
= false;
3160 Output_section::restore_states()
3162 gold_assert(this->checkpoint_
!= NULL
);
3163 Checkpoint_output_section
* checkpoint
= this->checkpoint_
;
3165 this->addralign_
= checkpoint
->addralign();
3166 this->flags_
= checkpoint
->flags();
3167 this->first_input_offset_
= checkpoint
->first_input_offset();
3169 if (!checkpoint
->input_sections_saved())
3171 // If we have not copied the input sections, just resize it.
3172 size_t old_size
= checkpoint
->input_sections_size();
3173 gold_assert(this->input_sections_
.size() >= old_size
);
3174 this->input_sections_
.resize(old_size
);
3178 // We need to copy the whole list. This is not efficient for
3179 // extremely large output with hundreads of thousands of input
3180 // objects. We may need to re-think how we should pass sections
3182 this->input_sections_
= *checkpoint
->input_sections();
3185 this->attached_input_sections_are_sorted_
=
3186 checkpoint
->attached_input_sections_are_sorted();
3188 // Simply invalidate the relaxed input section map since we do not keep
3190 this->is_relaxed_input_section_map_valid_
= false;
3193 // Update the section offsets of input sections in this. This is required if
3194 // relaxation causes some input sections to change sizes.
3197 Output_section::adjust_section_offsets()
3199 if (!this->section_offsets_need_adjustment_
)
3203 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3204 p
!= this->input_sections_
.end();
3207 off
= align_address(off
, p
->addralign());
3208 if (p
->is_input_section())
3209 p
->relobj()->set_section_offset(p
->shndx(), off
);
3210 off
+= p
->data_size();
3213 this->section_offsets_need_adjustment_
= false;
3216 // Print to the map file.
3219 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
3221 mapfile
->print_output_section(this);
3223 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3224 p
!= this->input_sections_
.end();
3226 p
->print_to_mapfile(mapfile
);
3229 // Print stats for merge sections to stderr.
3232 Output_section::print_merge_stats()
3234 Input_section_list::iterator p
;
3235 for (p
= this->input_sections_
.begin();
3236 p
!= this->input_sections_
.end();
3238 p
->print_merge_stats(this->name_
);
3241 // Output segment methods.
3243 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3255 is_max_align_known_(false),
3256 are_addresses_set_(false),
3257 is_large_data_segment_(false)
3259 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3261 if (type
== elfcpp::PT_TLS
)
3262 this->flags_
= elfcpp::PF_R
;
3265 // Add an Output_section to an Output_segment.
3268 Output_segment::add_output_section(Output_section
* os
,
3269 elfcpp::Elf_Word seg_flags
,
3272 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
3273 gold_assert(!this->is_max_align_known_
);
3274 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
3275 gold_assert(this->type() == elfcpp::PT_LOAD
|| !do_sort
);
3277 this->update_flags_for_output_section(seg_flags
);
3279 Output_segment::Output_data_list
* pdl
;
3280 if (os
->type() == elfcpp::SHT_NOBITS
)
3281 pdl
= &this->output_bss_
;
3283 pdl
= &this->output_data_
;
3285 // Note that while there may be many input sections in an output
3286 // section, there are normally only a few output sections in an
3287 // output segment. The loops below are expected to be fast.
3289 // So that PT_NOTE segments will work correctly, we need to ensure
3290 // that all SHT_NOTE sections are adjacent.
3291 if (os
->type() == elfcpp::SHT_NOTE
&& !pdl
->empty())
3293 Output_segment::Output_data_list::iterator p
= pdl
->end();
3297 if ((*p
)->is_section_type(elfcpp::SHT_NOTE
))
3304 while (p
!= pdl
->begin());
3307 // Similarly, so that PT_TLS segments will work, we need to group
3308 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3309 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3310 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3311 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3312 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3314 if (this->type_
!= elfcpp::PT_TLS
3315 && (os
->flags() & elfcpp::SHF_TLS
) != 0)
3317 pdl
= &this->output_data_
;
3320 bool nobits
= os
->type() == elfcpp::SHT_NOBITS
;
3321 bool sawtls
= false;
3322 Output_segment::Output_data_list::iterator p
= pdl
->end();
3323 gold_assert(p
!= pdl
->begin());
3328 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
3331 // Put a NOBITS section after the first TLS section.
3332 // Put a PROGBITS section after the first
3333 // TLS/PROGBITS section.
3334 insert
= nobits
|| !(*p
)->is_section_type(elfcpp::SHT_NOBITS
);
3338 // If we've gone past the TLS sections, but we've
3339 // seen a TLS section, then we need to insert this
3351 while (p
!= pdl
->begin());
3354 // There are no TLS sections yet; put this one at the requested
3355 // location in the section list.
3360 // For the PT_GNU_RELRO segment, we need to group relro
3361 // sections, and we need to put them before any non-relro
3362 // sections. Any relro local sections go before relro non-local
3363 // sections. One section may be marked as the last relro
3367 gold_assert(pdl
== &this->output_data_
);
3368 Output_segment::Output_data_list::iterator p
;
3369 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
3371 if (!(*p
)->is_section())
3374 Output_section
* pos
= (*p
)->output_section();
3375 if (!pos
->is_relro()
3376 || (os
->is_relro_local() && !pos
->is_relro_local())
3377 || (!os
->is_last_relro() && pos
->is_last_relro()))
3385 // One section may be marked as the first section which follows
3386 // the relro sections.
3387 if (os
->is_first_non_relro())
3389 gold_assert(pdl
== &this->output_data_
);
3390 Output_segment::Output_data_list::iterator p
;
3391 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
3393 if (!(*p
)->is_section())
3396 Output_section
* pos
= (*p
)->output_section();
3397 if (!pos
->is_relro())
3406 // Small data sections go at the end of the list of data sections.
3407 // If OS is not small, and there are small sections, we have to
3408 // insert it before the first small section.
3409 if (os
->type() != elfcpp::SHT_NOBITS
3410 && !os
->is_small_section()
3412 && pdl
->back()->is_section()
3413 && pdl
->back()->output_section()->is_small_section())
3415 for (Output_segment::Output_data_list::iterator p
= pdl
->begin();
3419 if ((*p
)->is_section()
3420 && (*p
)->output_section()->is_small_section())
3429 // A small BSS section goes at the start of the BSS sections, after
3430 // other small BSS sections.
3431 if (os
->type() == elfcpp::SHT_NOBITS
&& os
->is_small_section())
3433 for (Output_segment::Output_data_list::iterator p
= pdl
->begin();
3437 if (!(*p
)->is_section()
3438 || !(*p
)->output_section()->is_small_section())
3446 // A large BSS section goes at the end of the BSS sections, which
3447 // means that one that is not large must come before the first large
3449 if (os
->type() == elfcpp::SHT_NOBITS
3450 && !os
->is_large_section()
3452 && pdl
->back()->is_section()
3453 && pdl
->back()->output_section()->is_large_section())
3455 for (Output_segment::Output_data_list::iterator p
= pdl
->begin();
3459 if ((*p
)->is_section()
3460 && (*p
)->output_section()->is_large_section())
3469 // We do some further output section sorting in order to make the
3470 // generated program run more efficiently. We should only do this
3471 // when not using a linker script, so it is controled by the DO_SORT
3475 // FreeBSD requires the .interp section to be in the first page
3476 // of the executable. That is a more efficient location anyhow
3477 // for any OS, since it means that the kernel will have the data
3478 // handy after it reads the program headers.
3479 if (os
->is_interp() && !pdl
->empty())
3481 pdl
->insert(pdl
->begin(), os
);
3485 // Put loadable non-writable notes immediately after the .interp
3486 // sections, so that the PT_NOTE segment is on the first page of
3488 if (os
->type() == elfcpp::SHT_NOTE
3489 && (os
->flags() & elfcpp::SHF_WRITE
) == 0
3492 Output_segment::Output_data_list::iterator p
= pdl
->begin();
3493 if ((*p
)->is_section() && (*p
)->output_section()->is_interp())
3499 // If this section is used by the dynamic linker, and it is not
3500 // writable, then put it first, after the .interp section and
3501 // any loadable notes. This makes it more likely that the
3502 // dynamic linker will have to read less data from the disk.
3503 if (os
->is_dynamic_linker_section()
3505 && (os
->flags() & elfcpp::SHF_WRITE
) == 0)
3507 bool is_reloc
= (os
->type() == elfcpp::SHT_REL
3508 || os
->type() == elfcpp::SHT_RELA
);
3509 Output_segment::Output_data_list::iterator p
= pdl
->begin();
3510 while (p
!= pdl
->end()
3511 && (*p
)->is_section()
3512 && ((*p
)->output_section()->is_dynamic_linker_section()
3513 || (*p
)->output_section()->type() == elfcpp::SHT_NOTE
))
3515 // Put reloc sections after the other ones. Putting the
3516 // dynamic reloc sections first confuses BFD, notably
3517 // objcopy and strip.
3519 && ((*p
)->output_section()->type() == elfcpp::SHT_REL
3520 || (*p
)->output_section()->type() == elfcpp::SHT_RELA
))
3529 // If there were no constraints on the output section, just add it
3530 // to the end of the list.
3534 // Remove an Output_section from this segment. It is an error if it
3538 Output_segment::remove_output_section(Output_section
* os
)
3540 // We only need this for SHT_PROGBITS.
3541 gold_assert(os
->type() == elfcpp::SHT_PROGBITS
);
3542 for (Output_data_list::iterator p
= this->output_data_
.begin();
3543 p
!= this->output_data_
.end();
3548 this->output_data_
.erase(p
);
3555 // Add an Output_data (which need not be an Output_section) to the
3556 // start of a segment.
3559 Output_segment::add_initial_output_data(Output_data
* od
)
3561 gold_assert(!this->is_max_align_known_
);
3562 this->output_data_
.push_front(od
);
3565 // Return whether the first data section is a relro section.
3568 Output_segment::is_first_section_relro() const
3570 return (!this->output_data_
.empty()
3571 && this->output_data_
.front()->is_section()
3572 && this->output_data_
.front()->output_section()->is_relro());
3575 // Return the maximum alignment of the Output_data in Output_segment.
3578 Output_segment::maximum_alignment()
3580 if (!this->is_max_align_known_
)
3584 addralign
= Output_segment::maximum_alignment_list(&this->output_data_
);
3585 if (addralign
> this->max_align_
)
3586 this->max_align_
= addralign
;
3588 addralign
= Output_segment::maximum_alignment_list(&this->output_bss_
);
3589 if (addralign
> this->max_align_
)
3590 this->max_align_
= addralign
;
3592 this->is_max_align_known_
= true;
3595 return this->max_align_
;
3598 // Return the maximum alignment of a list of Output_data.
3601 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
3604 for (Output_data_list::const_iterator p
= pdl
->begin();
3608 uint64_t addralign
= (*p
)->addralign();
3609 if (addralign
> ret
)
3615 // Return the number of dynamic relocs applied to this segment.
3618 Output_segment::dynamic_reloc_count() const
3620 return (this->dynamic_reloc_count_list(&this->output_data_
)
3621 + this->dynamic_reloc_count_list(&this->output_bss_
));
3624 // Return the number of dynamic relocs applied to an Output_data_list.
3627 Output_segment::dynamic_reloc_count_list(const Output_data_list
* pdl
) const
3629 unsigned int count
= 0;
3630 for (Output_data_list::const_iterator p
= pdl
->begin();
3633 count
+= (*p
)->dynamic_reloc_count();
3637 // Set the section addresses for an Output_segment. If RESET is true,
3638 // reset the addresses first. ADDR is the address and *POFF is the
3639 // file offset. Set the section indexes starting with *PSHNDX.
3640 // Return the address of the immediately following segment. Update
3641 // *POFF and *PSHNDX.
3644 Output_segment::set_section_addresses(const Layout
* layout
, bool reset
,
3646 unsigned int increase_relro
,
3648 unsigned int* pshndx
)
3650 gold_assert(this->type_
== elfcpp::PT_LOAD
);
3652 off_t orig_off
= *poff
;
3654 // If we have relro sections, we need to pad forward now so that the
3655 // relro sections plus INCREASE_RELRO end on a common page boundary.
3656 if (parameters
->options().relro()
3657 && this->is_first_section_relro()
3658 && (!this->are_addresses_set_
|| reset
))
3660 uint64_t relro_size
= 0;
3662 for (Output_data_list::iterator p
= this->output_data_
.begin();
3663 p
!= this->output_data_
.end();
3666 if (!(*p
)->is_section())
3668 Output_section
* pos
= (*p
)->output_section();
3669 if (!pos
->is_relro())
3671 gold_assert(!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
));
3672 if ((*p
)->is_address_valid())
3673 relro_size
+= (*p
)->data_size();
3676 // FIXME: This could be faster.
3677 (*p
)->set_address_and_file_offset(addr
+ relro_size
,
3679 relro_size
+= (*p
)->data_size();
3680 (*p
)->reset_address_and_file_offset();
3683 relro_size
+= increase_relro
;
3685 uint64_t page_align
= parameters
->target().common_pagesize();
3687 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3688 uint64_t desired_align
= page_align
- (relro_size
% page_align
);
3689 if (desired_align
< *poff
% page_align
)
3690 *poff
+= page_align
- *poff
% page_align
;
3691 *poff
+= desired_align
- *poff
% page_align
;
3692 addr
+= *poff
- orig_off
;
3696 if (!reset
&& this->are_addresses_set_
)
3698 gold_assert(this->paddr_
== addr
);
3699 addr
= this->vaddr_
;
3703 this->vaddr_
= addr
;
3704 this->paddr_
= addr
;
3705 this->are_addresses_set_
= true;
3708 bool in_tls
= false;
3710 this->offset_
= orig_off
;
3712 addr
= this->set_section_list_addresses(layout
, reset
, &this->output_data_
,
3713 addr
, poff
, pshndx
, &in_tls
);
3714 this->filesz_
= *poff
- orig_off
;
3718 uint64_t ret
= this->set_section_list_addresses(layout
, reset
,
3723 // If the last section was a TLS section, align upward to the
3724 // alignment of the TLS segment, so that the overall size of the TLS
3725 // segment is aligned.
3728 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
3729 *poff
= align_address(*poff
, segment_align
);
3732 this->memsz_
= *poff
- orig_off
;
3734 // Ignore the file offset adjustments made by the BSS Output_data
3741 // Set the addresses and file offsets in a list of Output_data
3745 Output_segment::set_section_list_addresses(const Layout
* layout
, bool reset
,
3746 Output_data_list
* pdl
,
3747 uint64_t addr
, off_t
* poff
,
3748 unsigned int* pshndx
,
3751 off_t startoff
= *poff
;
3753 off_t off
= startoff
;
3754 for (Output_data_list::iterator p
= pdl
->begin();
3759 (*p
)->reset_address_and_file_offset();
3761 // When using a linker script the section will most likely
3762 // already have an address.
3763 if (!(*p
)->is_address_valid())
3765 uint64_t align
= (*p
)->addralign();
3767 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
3769 // Give the first TLS section the alignment of the
3770 // entire TLS segment. Otherwise the TLS segment as a
3771 // whole may be misaligned.
3774 Output_segment
* tls_segment
= layout
->tls_segment();
3775 gold_assert(tls_segment
!= NULL
);
3776 uint64_t segment_align
= tls_segment
->maximum_alignment();
3777 gold_assert(segment_align
>= align
);
3778 align
= segment_align
;
3785 // If this is the first section after the TLS segment,
3786 // align it to at least the alignment of the TLS
3787 // segment, so that the size of the overall TLS segment
3791 uint64_t segment_align
=
3792 layout
->tls_segment()->maximum_alignment();
3793 if (segment_align
> align
)
3794 align
= segment_align
;
3800 off
= align_address(off
, align
);
3801 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
3805 // The script may have inserted a skip forward, but it
3806 // better not have moved backward.
3807 if ((*p
)->address() >= addr
+ (off
- startoff
))
3808 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
3811 if (!layout
->script_options()->saw_sections_clause())
3815 Output_section
* os
= (*p
)->output_section();
3817 // Cast to unsigned long long to avoid format warnings.
3818 unsigned long long previous_dot
=
3819 static_cast<unsigned long long>(addr
+ (off
- startoff
));
3820 unsigned long long dot
=
3821 static_cast<unsigned long long>((*p
)->address());
3824 gold_error(_("dot moves backward in linker script "
3825 "from 0x%llx to 0x%llx"), previous_dot
, dot
);
3827 gold_error(_("address of section '%s' moves backward "
3828 "from 0x%llx to 0x%llx"),
3829 os
->name(), previous_dot
, dot
);
3832 (*p
)->set_file_offset(off
);
3833 (*p
)->finalize_data_size();
3836 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3837 // section. Such a section does not affect the size of a
3839 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
3840 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
3841 off
+= (*p
)->data_size();
3843 if ((*p
)->is_section())
3845 (*p
)->set_out_shndx(*pshndx
);
3851 return addr
+ (off
- startoff
);
3854 // For a non-PT_LOAD segment, set the offset from the sections, if
3855 // any. Add INCREASE to the file size and the memory size.
3858 Output_segment::set_offset(unsigned int increase
)
3860 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
3862 gold_assert(!this->are_addresses_set_
);
3864 if (this->output_data_
.empty() && this->output_bss_
.empty())
3866 gold_assert(increase
== 0);
3869 this->are_addresses_set_
= true;
3871 this->min_p_align_
= 0;
3877 const Output_data
* first
;
3878 if (this->output_data_
.empty())
3879 first
= this->output_bss_
.front();
3881 first
= this->output_data_
.front();
3882 this->vaddr_
= first
->address();
3883 this->paddr_
= (first
->has_load_address()
3884 ? first
->load_address()
3886 this->are_addresses_set_
= true;
3887 this->offset_
= first
->offset();
3889 if (this->output_data_
.empty())
3893 const Output_data
* last_data
= this->output_data_
.back();
3894 this->filesz_
= (last_data
->address()
3895 + last_data
->data_size()
3899 const Output_data
* last
;
3900 if (this->output_bss_
.empty())
3901 last
= this->output_data_
.back();
3903 last
= this->output_bss_
.back();
3904 this->memsz_
= (last
->address()
3908 this->filesz_
+= increase
;
3909 this->memsz_
+= increase
;
3911 // If this is a TLS segment, align the memory size. The code in
3912 // set_section_list ensures that the section after the TLS segment
3913 // is aligned to give us room.
3914 if (this->type_
== elfcpp::PT_TLS
)
3916 uint64_t segment_align
= this->maximum_alignment();
3917 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
3918 this->memsz_
= align_address(this->memsz_
, segment_align
);
3922 // Set the TLS offsets of the sections in the PT_TLS segment.
3925 Output_segment::set_tls_offsets()
3927 gold_assert(this->type_
== elfcpp::PT_TLS
);
3929 for (Output_data_list::iterator p
= this->output_data_
.begin();
3930 p
!= this->output_data_
.end();
3932 (*p
)->set_tls_offset(this->vaddr_
);
3934 for (Output_data_list::iterator p
= this->output_bss_
.begin();
3935 p
!= this->output_bss_
.end();
3937 (*p
)->set_tls_offset(this->vaddr_
);
3940 // Return the address of the first section.
3943 Output_segment::first_section_load_address() const
3945 for (Output_data_list::const_iterator p
= this->output_data_
.begin();
3946 p
!= this->output_data_
.end();
3948 if ((*p
)->is_section())
3949 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3951 for (Output_data_list::const_iterator p
= this->output_bss_
.begin();
3952 p
!= this->output_bss_
.end();
3954 if ((*p
)->is_section())
3955 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3960 // Return the number of Output_sections in an Output_segment.
3963 Output_segment::output_section_count() const
3965 return (this->output_section_count_list(&this->output_data_
)
3966 + this->output_section_count_list(&this->output_bss_
));
3969 // Return the number of Output_sections in an Output_data_list.
3972 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
3974 unsigned int count
= 0;
3975 for (Output_data_list::const_iterator p
= pdl
->begin();
3979 if ((*p
)->is_section())
3985 // Return the section attached to the list segment with the lowest
3986 // load address. This is used when handling a PHDRS clause in a
3990 Output_segment::section_with_lowest_load_address() const
3992 Output_section
* found
= NULL
;
3993 uint64_t found_lma
= 0;
3994 this->lowest_load_address_in_list(&this->output_data_
, &found
, &found_lma
);
3996 Output_section
* found_data
= found
;
3997 this->lowest_load_address_in_list(&this->output_bss_
, &found
, &found_lma
);
3998 if (found
!= found_data
&& found_data
!= NULL
)
4000 gold_error(_("nobits section %s may not precede progbits section %s "
4002 found
->name(), found_data
->name());
4009 // Look through a list for a section with a lower load address.
4012 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
4013 Output_section
** found
,
4014 uint64_t* found_lma
) const
4016 for (Output_data_list::const_iterator p
= pdl
->begin();
4020 if (!(*p
)->is_section())
4022 Output_section
* os
= static_cast<Output_section
*>(*p
);
4023 uint64_t lma
= (os
->has_load_address()
4024 ? os
->load_address()
4026 if (*found
== NULL
|| lma
< *found_lma
)
4034 // Write the segment data into *OPHDR.
4036 template<int size
, bool big_endian
>
4038 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
4040 ophdr
->put_p_type(this->type_
);
4041 ophdr
->put_p_offset(this->offset_
);
4042 ophdr
->put_p_vaddr(this->vaddr_
);
4043 ophdr
->put_p_paddr(this->paddr_
);
4044 ophdr
->put_p_filesz(this->filesz_
);
4045 ophdr
->put_p_memsz(this->memsz_
);
4046 ophdr
->put_p_flags(this->flags_
);
4047 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
4050 // Write the section headers into V.
4052 template<int size
, bool big_endian
>
4054 Output_segment::write_section_headers(const Layout
* layout
,
4055 const Stringpool
* secnamepool
,
4057 unsigned int *pshndx
) const
4059 // Every section that is attached to a segment must be attached to a
4060 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4062 if (this->type_
!= elfcpp::PT_LOAD
)
4065 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
4066 &this->output_data_
,
4068 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
4074 template<int size
, bool big_endian
>
4076 Output_segment::write_section_headers_list(const Layout
* layout
,
4077 const Stringpool
* secnamepool
,
4078 const Output_data_list
* pdl
,
4080 unsigned int* pshndx
) const
4082 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
4083 for (Output_data_list::const_iterator p
= pdl
->begin();
4087 if ((*p
)->is_section())
4089 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
4090 gold_assert(*pshndx
== ps
->out_shndx());
4091 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
4092 ps
->write_header(layout
, secnamepool
, &oshdr
);
4100 // Print the output sections to the map file.
4103 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
4105 if (this->type() != elfcpp::PT_LOAD
)
4107 this->print_section_list_to_mapfile(mapfile
, &this->output_data_
);
4108 this->print_section_list_to_mapfile(mapfile
, &this->output_bss_
);
4111 // Print an output section list to the map file.
4114 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
4115 const Output_data_list
* pdl
) const
4117 for (Output_data_list::const_iterator p
= pdl
->begin();
4120 (*p
)->print_to_mapfile(mapfile
);
4123 // Output_file methods.
4125 Output_file::Output_file(const char* name
)
4130 map_is_anonymous_(false),
4131 is_temporary_(false)
4135 // Try to open an existing file. Returns false if the file doesn't
4136 // exist, has a size of 0 or can't be mmapped.
4139 Output_file::open_for_modification()
4141 // The name "-" means "stdout".
4142 if (strcmp(this->name_
, "-") == 0)
4145 // Don't bother opening files with a size of zero.
4147 if (::stat(this->name_
, &s
) != 0 || s
.st_size
== 0)
4150 int o
= open_descriptor(-1, this->name_
, O_RDWR
, 0);
4152 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4154 this->file_size_
= s
.st_size
;
4156 // If the file can't be mmapped, copying the content to an anonymous
4157 // map will probably negate the performance benefits of incremental
4158 // linking. This could be helped by using views and loading only
4159 // the necessary parts, but this is not supported as of now.
4160 if (!this->map_no_anonymous())
4162 release_descriptor(o
, true);
4164 this->file_size_
= 0;
4171 // Open the output file.
4174 Output_file::open(off_t file_size
)
4176 this->file_size_
= file_size
;
4178 // Unlink the file first; otherwise the open() may fail if the file
4179 // is busy (e.g. it's an executable that's currently being executed).
4181 // However, the linker may be part of a system where a zero-length
4182 // file is created for it to write to, with tight permissions (gcc
4183 // 2.95 did something like this). Unlinking the file would work
4184 // around those permission controls, so we only unlink if the file
4185 // has a non-zero size. We also unlink only regular files to avoid
4186 // trouble with directories/etc.
4188 // If we fail, continue; this command is merely a best-effort attempt
4189 // to improve the odds for open().
4191 // We let the name "-" mean "stdout"
4192 if (!this->is_temporary_
)
4194 if (strcmp(this->name_
, "-") == 0)
4195 this->o_
= STDOUT_FILENO
;
4199 if (::stat(this->name_
, &s
) == 0
4200 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
4203 ::unlink(this->name_
);
4204 else if (!parameters
->options().relocatable())
4206 // If we don't unlink the existing file, add execute
4207 // permission where read permissions already exist
4208 // and where the umask permits.
4209 int mask
= ::umask(0);
4211 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
4212 ::chmod(this->name_
, s
.st_mode
& ~mask
);
4216 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
4217 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
4220 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4228 // Resize the output file.
4231 Output_file::resize(off_t file_size
)
4233 // If the mmap is mapping an anonymous memory buffer, this is easy:
4234 // just mremap to the new size. If it's mapping to a file, we want
4235 // to unmap to flush to the file, then remap after growing the file.
4236 if (this->map_is_anonymous_
)
4238 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
4240 if (base
== MAP_FAILED
)
4241 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
4242 this->base_
= static_cast<unsigned char*>(base
);
4243 this->file_size_
= file_size
;
4248 this->file_size_
= file_size
;
4249 if (!this->map_no_anonymous())
4250 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
4254 // Map an anonymous block of memory which will later be written to the
4255 // file. Return whether the map succeeded.
4258 Output_file::map_anonymous()
4260 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4261 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
4262 if (base
!= MAP_FAILED
)
4264 this->map_is_anonymous_
= true;
4265 this->base_
= static_cast<unsigned char*>(base
);
4271 // Map the file into memory. Return whether the mapping succeeded.
4274 Output_file::map_no_anonymous()
4276 const int o
= this->o_
;
4278 // If the output file is not a regular file, don't try to mmap it;
4279 // instead, we'll mmap a block of memory (an anonymous buffer), and
4280 // then later write the buffer to the file.
4282 struct stat statbuf
;
4283 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
4284 || ::fstat(o
, &statbuf
) != 0
4285 || !S_ISREG(statbuf
.st_mode
)
4286 || this->is_temporary_
)
4289 // Ensure that we have disk space available for the file. If we
4290 // don't do this, it is possible that we will call munmap, close,
4291 // and exit with dirty buffers still in the cache with no assigned
4292 // disk blocks. If the disk is out of space at that point, the
4293 // output file will wind up incomplete, but we will have already
4294 // exited. The alternative to fallocate would be to use fdatasync,
4295 // but that would be a more significant performance hit.
4296 if (::posix_fallocate(o
, 0, this->file_size_
) < 0)
4297 gold_fatal(_("%s: %s"), this->name_
, strerror(errno
));
4299 // Map the file into memory.
4300 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4303 // The mmap call might fail because of file system issues: the file
4304 // system might not support mmap at all, or it might not support
4305 // mmap with PROT_WRITE.
4306 if (base
== MAP_FAILED
)
4309 this->map_is_anonymous_
= false;
4310 this->base_
= static_cast<unsigned char*>(base
);
4314 // Map the file into memory.
4319 if (this->map_no_anonymous())
4322 // The mmap call might fail because of file system issues: the file
4323 // system might not support mmap at all, or it might not support
4324 // mmap with PROT_WRITE. I'm not sure which errno values we will
4325 // see in all cases, so if the mmap fails for any reason and we
4326 // don't care about file contents, try for an anonymous map.
4327 if (this->map_anonymous())
4330 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4331 this->name_
, static_cast<unsigned long>(this->file_size_
),
4335 // Unmap the file from memory.
4338 Output_file::unmap()
4340 if (::munmap(this->base_
, this->file_size_
) < 0)
4341 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
4345 // Close the output file.
4348 Output_file::close()
4350 // If the map isn't file-backed, we need to write it now.
4351 if (this->map_is_anonymous_
&& !this->is_temporary_
)
4353 size_t bytes_to_write
= this->file_size_
;
4355 while (bytes_to_write
> 0)
4357 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
4359 if (bytes_written
== 0)
4360 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
4361 else if (bytes_written
< 0)
4362 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
4365 bytes_to_write
-= bytes_written
;
4366 offset
+= bytes_written
;
4372 // We don't close stdout or stderr
4373 if (this->o_
!= STDOUT_FILENO
4374 && this->o_
!= STDERR_FILENO
4375 && !this->is_temporary_
)
4376 if (::close(this->o_
) < 0)
4377 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
4381 // Instantiate the templates we need. We could use the configure
4382 // script to restrict this to only the ones for implemented targets.
4384 #ifdef HAVE_TARGET_32_LITTLE
4387 Output_section::add_input_section
<32, false>(
4388 Sized_relobj
<32, false>* object
,
4390 const char* secname
,
4391 const elfcpp::Shdr
<32, false>& shdr
,
4392 unsigned int reloc_shndx
,
4393 bool have_sections_script
);
4396 #ifdef HAVE_TARGET_32_BIG
4399 Output_section::add_input_section
<32, true>(
4400 Sized_relobj
<32, true>* object
,
4402 const char* secname
,
4403 const elfcpp::Shdr
<32, true>& shdr
,
4404 unsigned int reloc_shndx
,
4405 bool have_sections_script
);
4408 #ifdef HAVE_TARGET_64_LITTLE
4411 Output_section::add_input_section
<64, false>(
4412 Sized_relobj
<64, false>* object
,
4414 const char* secname
,
4415 const elfcpp::Shdr
<64, false>& shdr
,
4416 unsigned int reloc_shndx
,
4417 bool have_sections_script
);
4420 #ifdef HAVE_TARGET_64_BIG
4423 Output_section::add_input_section
<64, true>(
4424 Sized_relobj
<64, true>* object
,
4426 const char* secname
,
4427 const elfcpp::Shdr
<64, true>& shdr
,
4428 unsigned int reloc_shndx
,
4429 bool have_sections_script
);
4432 #ifdef HAVE_TARGET_32_LITTLE
4434 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
4437 #ifdef HAVE_TARGET_32_BIG
4439 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
4442 #ifdef HAVE_TARGET_64_LITTLE
4444 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
4447 #ifdef HAVE_TARGET_64_BIG
4449 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
4452 #ifdef HAVE_TARGET_32_LITTLE
4454 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
4457 #ifdef HAVE_TARGET_32_BIG
4459 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
4462 #ifdef HAVE_TARGET_64_LITTLE
4464 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
4467 #ifdef HAVE_TARGET_64_BIG
4469 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
4472 #ifdef HAVE_TARGET_32_LITTLE
4474 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
4477 #ifdef HAVE_TARGET_32_BIG
4479 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
4482 #ifdef HAVE_TARGET_64_LITTLE
4484 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
4487 #ifdef HAVE_TARGET_64_BIG
4489 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
4492 #ifdef HAVE_TARGET_32_LITTLE
4494 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
4497 #ifdef HAVE_TARGET_32_BIG
4499 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
4502 #ifdef HAVE_TARGET_64_LITTLE
4504 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
4507 #ifdef HAVE_TARGET_64_BIG
4509 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
4512 #ifdef HAVE_TARGET_32_LITTLE
4514 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
4517 #ifdef HAVE_TARGET_32_BIG
4519 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
4522 #ifdef HAVE_TARGET_64_LITTLE
4524 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
4527 #ifdef HAVE_TARGET_64_BIG
4529 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
4532 #ifdef HAVE_TARGET_32_LITTLE
4534 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
4537 #ifdef HAVE_TARGET_32_BIG
4539 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
4542 #ifdef HAVE_TARGET_64_LITTLE
4544 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
4547 #ifdef HAVE_TARGET_64_BIG
4549 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
4552 #ifdef HAVE_TARGET_32_LITTLE
4554 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
4557 #ifdef HAVE_TARGET_32_BIG
4559 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
4562 #ifdef HAVE_TARGET_64_LITTLE
4564 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
4567 #ifdef HAVE_TARGET_64_BIG
4569 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
4572 #ifdef HAVE_TARGET_32_LITTLE
4574 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
4577 #ifdef HAVE_TARGET_32_BIG
4579 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
4582 #ifdef HAVE_TARGET_64_LITTLE
4584 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
4587 #ifdef HAVE_TARGET_64_BIG
4589 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
4592 #ifdef HAVE_TARGET_32_LITTLE
4594 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
4597 #ifdef HAVE_TARGET_32_BIG
4599 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
4602 #ifdef HAVE_TARGET_64_LITTLE
4604 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
4607 #ifdef HAVE_TARGET_64_BIG
4609 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
4612 #ifdef HAVE_TARGET_32_LITTLE
4614 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
4617 #ifdef HAVE_TARGET_32_BIG
4619 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
4622 #ifdef HAVE_TARGET_64_LITTLE
4624 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
4627 #ifdef HAVE_TARGET_64_BIG
4629 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
4632 #ifdef HAVE_TARGET_32_LITTLE
4634 class Output_data_group
<32, false>;
4637 #ifdef HAVE_TARGET_32_BIG
4639 class Output_data_group
<32, true>;
4642 #ifdef HAVE_TARGET_64_LITTLE
4644 class Output_data_group
<64, false>;
4647 #ifdef HAVE_TARGET_64_BIG
4649 class Output_data_group
<64, true>;
4652 #ifdef HAVE_TARGET_32_LITTLE
4654 class Output_data_got
<32, false>;
4657 #ifdef HAVE_TARGET_32_BIG
4659 class Output_data_got
<32, true>;
4662 #ifdef HAVE_TARGET_64_LITTLE
4664 class Output_data_got
<64, false>;
4667 #ifdef HAVE_TARGET_64_BIG
4669 class Output_data_got
<64, true>;
4672 } // End namespace gold.