Import_3ds: Improved distance cue node setup
[blender-addons.git] / mesh_inset / model.py
blobaf627b593f84110ab926590d000fc49e8b7ec1e2
1 # SPDX-FileCopyrightText: 2011-2022 Blender Foundation
3 # SPDX-License-Identifier: GPL-2.0-or-later
5 """Manipulations of Models.
6 """
8 __author__ = "howard.trickey@gmail.com"
10 from . import geom
11 from . import triquad
12 from . import offset
13 import math
16 def PolyAreasToModel(polyareas, bevel_amount, bevel_pitch, quadrangulate):
17 """Convert a PolyAreas into a Model object.
19 Assumes polyareas are in xy plane.
21 Args:
22 polyareas: geom.PolyAreas
23 bevel_amount: float - if > 0, amount of bevel
24 bevel_pitch: float - if > 0, angle in radians of bevel
25 quadrangulate: bool - should n-gons be quadrangulated?
26 Returns:
27 geom.Model
28 """
30 m = geom.Model()
31 if not polyareas:
32 return m
33 polyareas.points.AddZCoord(0.0)
34 m.points = polyareas.points
35 for pa in polyareas.polyareas:
36 PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
37 return m
40 def PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate):
41 if bevel_amount > 0.0:
42 BevelPolyAreaInModel(m, pa, bevel_amount, bevel_pitch, quadrangulate,
43 False)
44 elif quadrangulate:
45 if len(pa.poly) == 0:
46 return
47 qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points)
48 m.faces.extend(qpa)
49 m.face_data.extend([pa.data] * len(qpa))
50 else:
51 m.faces.append(pa.poly)
52 # TODO: just the first part of QuadrangulateFaceWithHoles, to join
53 # holes to outer poly
54 m.face_data.append(pa.data)
57 def ExtrudePolyAreasInModel(mdl, polyareas, depth, cap_back):
58 """Extrude the boundaries given by polyareas by -depth in z.
60 Assumes polyareas are in xy plane.
62 Arguments:
63 mdl: geom.Model - where to do extrusion
64 polyareas: geom.Polyareas
65 depth: float
66 cap_back: bool - if True, cap off the back
67 Side Effects:
68 For all edges in polys in polyareas, make quads in Model
69 extending those edges by depth in the negative z direction.
70 The application data will be the data of the face that the edge
71 is part of.
72 """
74 for pa in polyareas.polyareas:
75 back_poly = _ExtrudePoly(mdl, pa.poly, depth, pa.data, True)
76 back_holes = []
77 for p in pa.holes:
78 back_holes.append(_ExtrudePoly(mdl, p, depth, pa.data, False))
79 if cap_back:
80 qpa = triquad.QuadrangulateFaceWithHoles(back_poly, back_holes,
81 polyareas.points)
82 # need to reverse each poly to get normals pointing down
83 for i, p in enumerate(qpa):
84 t = list(p)
85 t.reverse()
86 qpa[i] = tuple(t)
87 mdl.faces.extend(qpa)
88 mdl.face_data.extend([pa.data] * len(qpa))
91 def _ExtrudePoly(mdl, poly, depth, data, isccw):
92 """Extrude the poly by -depth in z
94 Arguments:
95 mdl: geom.Model - where to do extrusion
96 poly: list of vertex indices
97 depth: float
98 data: application data
99 isccw: True if counter-clockwise
100 Side Effects
101 For all edges in poly, make quads in Model
102 extending those edges by depth in the negative z direction.
103 The application data will be the data of the face that the edge
104 is part of.
105 Returns:
106 list of int - vertices for extruded poly
109 if len(poly) < 2:
110 return
111 extruded_poly = []
112 points = mdl.points
113 if isccw:
114 incr = 1
115 else:
116 incr = -1
117 for i, v in enumerate(poly):
118 vnext = poly[(i + incr) % len(poly)]
119 (x0, y0, z0) = points.pos[v]
120 (x1, y1, z1) = points.pos[vnext]
121 vextrude = points.AddPoint((x0, y0, z0 - depth))
122 vnextextrude = points.AddPoint((x1, y1, z1 - depth))
123 if isccw:
124 sideface = [v, vextrude, vnextextrude, vnext]
125 else:
126 sideface = [v, vnext, vnextextrude, vextrude]
127 mdl.faces.append(sideface)
128 mdl.face_data.append(data)
129 extruded_poly.append(vextrude)
130 return extruded_poly
133 def BevelPolyAreaInModel(mdl, polyarea,
134 bevel_amount, bevel_pitch, quadrangulate, as_percent):
135 """Bevel the interior of polyarea in model.
137 This does smart beveling: advancing edges are merged
138 rather than doing an 'overlap'. Advancing edges that
139 hit an opposite edge result in a split into two beveled areas.
141 If the polyarea is not in the xy plane, do the work in a
142 transformed model, and then transfer the changes back.
144 Arguments:
145 mdl: geom.Model - where to do bevel
146 polyarea geom.PolyArea - area to bevel into
147 bevel_amount: float - if > 0, amount of bevel
148 bevel_pitch: float - if > 0, angle in radians of bevel
149 quadrangulate: bool - should n-gons be quadrangulated?
150 as_percent: bool - if True, interpret amount as percent of max
151 Side Effects:
152 Faces and points are added to model to model the
153 bevel and the interior of the polyareas.
156 pa_norm = polyarea.Normal()
157 if pa_norm == (0.0, 0.0, 1.0):
158 m = mdl
159 pa_rot = polyarea
160 else:
161 (pa_rot, inv_rot, inv_map) = _RotatedPolyAreaToXY(polyarea, pa_norm)
162 # don't have to add the original faces into model, just their points.
163 m = geom.Model()
164 m.points = pa_rot.points
165 vspeed = math.tan(bevel_pitch)
166 off = offset.Offset(pa_rot, 0.0, vspeed)
167 if as_percent:
168 bevel_amount = bevel_amount * off.MaxAmount() / 100.0
169 off.Build(bevel_amount)
170 inner_pas = AddOffsetFacesToModel(m, off, polyarea.data)
171 for pa in inner_pas.polyareas:
172 if quadrangulate:
173 if len(pa.poly) == 0:
174 continue
175 qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes,
176 pa.points)
177 m.faces.extend(qpa)
178 m.face_data.extend([pa.data] * len(qpa))
179 else:
180 m.faces.append(pa.poly)
181 m.face_data.append(pa.data)
182 if m != mdl:
183 _AddTransformedPolysToModel(mdl, m.faces, m.points, m.face_data,
184 inv_rot, inv_map)
187 def AddOffsetFacesToModel(mdl, off, data=None):
188 """Add the faces due to an offset into model.
190 Returns the remaining interiors of the offset as a PolyAreas.
192 Args:
193 mdl: geom.Model - model to add offset faces into
194 off: offset.Offset
195 data: any - application data to be copied to the faces
196 Returns:
197 geom.PolyAreas
200 mdl.points = off.polyarea.points
201 assert(len(mdl.points.pos) == 0 or len(mdl.points.pos[0]) == 3)
202 o = off
203 ostack = []
204 while o:
205 if o.endtime != 0.0:
206 for face in o.facespokes:
207 n = len(face)
208 for i, spoke in enumerate(face):
209 nextspoke = face[(i + 1) % n]
210 v0 = spoke.origin
211 v1 = nextspoke.origin
212 v2 = nextspoke.dest
213 v3 = spoke.dest
214 if v2 == v3:
215 mface = [v0, v1, v2]
216 else:
217 mface = [v0, v1, v2, v3]
218 mdl.faces.append(mface)
219 mdl.face_data.append(data)
220 ostack.extend(o.inneroffsets)
221 if ostack:
222 o = ostack.pop()
223 else:
224 o = None
225 return off.InnerPolyAreas()
228 def BevelSelectionInModel(mdl, bevel_amount, bevel_pitch, quadrangulate,
229 as_region, as_percent):
230 """Bevel all the faces in the model, perhaps as one region.
232 If as_region is False, each face is beveled individually,
233 otherwise regions of contiguous faces are merged into
234 PolyAreas and beveled as a whole.
236 TODO: something if extracted PolyAreas are not approximately
237 planar.
239 Args:
240 mdl: geom.Model
241 bevel_amount: float - amount to inset
242 bevel_pitch: float - angle of bevel side
243 quadrangulate: bool - should insides be quadrangulated?
244 as_region: bool - should faces be merged into regions?
245 as_percent: bool - should amount be interpreted as a percent
246 of the maximum amount (if True) or an absolute amount?
247 Side effect:
248 Beveling faces will be added to the model
251 pas = []
252 if as_region:
253 pas = RegionToPolyAreas(mdl.faces, mdl.points, mdl.face_data)
254 else:
255 for f, face in enumerate(mdl.faces):
256 pas.append(geom.PolyArea(mdl.points, face, [],
257 mdl.face_data[f]))
258 for pa in pas:
259 BevelPolyAreaInModel(mdl, pa,
260 bevel_amount, bevel_pitch, quadrangulate, as_percent)
263 def RegionToPolyAreas(faces, points, data):
264 """Find polygonal outlines induced by union of faces.
266 Finds the polygons formed by boundary edges (those not
267 sharing an edge with another face in region_faces), and
268 turns those into PolyAreas.
269 In the general case, there will be holes inside.
270 We want to associate data with the region PolyAreas.
271 Just choose a representative element of data[] when
272 more than one face is combined into a PolyArea.
274 Args:
275 faces: list of list of int - each sublist is a face (indices into points)
276 points: geom.Points - gives coordinates for vertices
277 data: list of any - parallel to faces, app data to put in PolyAreas
278 Returns:
279 list of geom.PolyArea
282 ans = []
283 (edges, vtoe) = _GetEdgeData(faces)
284 (face_adj, is_interior_edge) = _GetFaceGraph(faces, edges, vtoe, points)
285 (components, ftoc) = _FindFaceGraphComponents(faces, face_adj)
286 for c in range(len(components)):
287 boundary_edges = set()
288 betodata = dict()
289 vstobe = dict()
290 for e, ((vs, ve), f) in enumerate(edges):
291 if ftoc[f] != c or is_interior_edge[e]:
292 continue
293 boundary_edges.add(e)
294 # vstobe[v] is set of edges leaving v
295 # (could be more than one if boundary touches itself at a vertex)
296 if vs in vstobe:
297 vstobe[vs].append(e)
298 else:
299 vstobe[vs] = [e]
300 betodata[(vs, ve)] = data[f]
301 polys = []
302 poly_data = []
303 while boundary_edges:
304 e = boundary_edges.pop()
305 ((vstart, ve), face_i) = edges[e]
306 poly = [vstart, ve]
307 datum = betodata[(vstart, ve)]
308 while ve != vstart:
309 if ve not in vstobe:
310 print("whoops, couldn't close boundary")
311 break
312 nextes = vstobe[ve]
313 if len(nextes) == 1:
314 nexte = nextes[0]
315 else:
316 # find a next edge with face index face_i
317 # TODO: this is not guaranteed to work,
318 # as continuation edge may have been for a different
319 # face that is now combined with face_i by erasing
320 # interior edges. Find a better algorithm here.
321 nexte = -1
322 for ne_cand in nextes:
323 if edges[ne_cand][1] == face_i:
324 nexte = ne_cand
325 break
326 if nexte == -1:
327 # case mentioned in TODO may have happened;
328 # just choose any nexte - may mess things up
329 nexte = nextes[0]
330 ((_, ve), face_i) = edges[nexte]
331 if nexte not in boundary_edges:
332 print("whoops, nexte not a boundary edge", nexte)
333 break
334 boundary_edges.remove(nexte)
335 if ve != vstart:
336 poly.append(ve)
337 polys.append(poly)
338 poly_data.append(datum)
339 if len(polys) == 0:
340 # can happen if an entire closed polytope is given
341 # at least until we do an edge check
342 return []
343 elif len(polys) == 1:
344 ans.append(geom.PolyArea(points, polys[0], [], poly_data[0]))
345 else:
346 outerf = _FindOuterPoly(polys, points, faces)
347 pa = geom.PolyArea(points, polys[outerf], [], poly_data[outerf])
348 pa.holes = [polys[i] for i in range(len(polys)) if i != outerf]
349 ans.append(pa)
350 return ans
353 def _GetEdgeData(faces):
354 """Find edges from faces, and some lookup dictionaries.
356 Args:
357 faces: list of list of int - each a closed CCW polygon of vertex indices
358 Returns:
359 (list of ((int, int), int), dict{ int->list of int}) -
360 list elements are ((startv, endv), face index)
361 dict maps vertices to edge indices
364 edges = []
365 vtoe = dict()
366 for findex, f in enumerate(faces):
367 nf = len(f)
368 for i, v in enumerate(f):
369 endv = f[(i + 1) % nf]
370 edges.append(((v, endv), findex))
371 eindex = len(edges) - 1
372 if v in vtoe:
373 vtoe[v].append(eindex)
374 else:
375 vtoe[v] = [eindex]
376 return (edges, vtoe)
379 def _GetFaceGraph(faces, edges, vtoe, points):
380 """Find the face adjacency graph.
382 Faces are adjacent if they share an edge,
383 and the shared edge goes in the reverse direction,
384 and if the angle between them isn't too large.
386 Args:
387 faces: list of list of int
388 edges: list of ((int, int), int) - see _GetEdgeData
389 vtoe: dict{ int->list of int } - see _GetEdgeData
390 points: geom.Points
391 Returns:
392 (list of list of int, list of bool) -
393 first list: each sublist is adjacent face indices for each face
394 second list: maps edge index to True if it separates adjacent faces
397 face_adj = [[] for i in range(len(faces))]
398 is_interior_edge = [False] * len(edges)
399 for e, ((vs, ve), f) in enumerate(edges):
400 for other in vtoe[ve]:
401 ((_, we), g) = edges[other]
402 if we == vs:
403 # face g is adjacent to face f
404 # TODO: angle check
405 if g not in face_adj[f]:
406 face_adj[f].append(g)
407 is_interior_edge[e] = True
408 # Don't bother with mirror relations, will catch later
409 return (face_adj, is_interior_edge)
412 def _FindFaceGraphComponents(faces, face_adj):
413 """Partition faces into connected components.
415 Args:
416 faces: list of list of int
417 face_adj: list of list of int - see _GetFaceGraph
418 Returns:
419 (list of list of int, list of int) -
420 first list partitions face indices into separate lists,
421 each a component
422 second list maps face indices into their component index
425 if not faces:
426 return ([], [])
427 components = []
428 ftoc = [-1] * len(faces)
429 for i in range(len(faces)):
430 if ftoc[i] == -1:
431 compi = len(components)
432 comp = []
433 _FFGCSearch(i, faces, face_adj, ftoc, compi, comp)
434 components.append(comp)
435 return (components, ftoc)
438 def _FFGCSearch(findex, faces, face_adj, ftoc, compi, comp):
439 """Depth first search helper function for _FindFaceGraphComponents
441 Searches recursively through all faces connected to findex, adding
442 each face found to comp and setting ftoc for that face to compi.
445 comp.append(findex)
446 ftoc[findex] = compi
447 for otherf in face_adj[findex]:
448 if ftoc[otherf] == -1:
449 _FFGCSearch(otherf, faces, face_adj, ftoc, compi, comp)
452 def _FindOuterPoly(polys, points, faces):
453 """Assuming polys has one CCW-oriented face when looking
454 down average normal of faces, return that one.
456 Only one of the faces should have a normal whose dot product
457 with the average normal of faces is positive.
459 Args:
460 polys: list of list of int - list of polys given by vertex indices
461 points: geom.Points
462 faces: list of list of int - original selected region, used to find
463 average normal
464 Returns:
465 int - the index in polys of the outermost one
468 if len(polys) < 2:
469 return 0
470 fnorm = (0.0, 0.0, 0.0)
471 for face in faces:
472 if len(face) > 2:
473 fnorm = geom.VecAdd(fnorm, geom.Newell(face, points))
474 if fnorm == (0.0, 0.0, 0.0):
475 return 0
476 # fnorm is really a multiple of the normal, but fine for test below
477 for i, poly in enumerate(polys):
478 if len(poly) > 2:
479 pnorm = geom.Newell(poly, points)
480 if geom.VecDot(fnorm, pnorm) > 0:
481 return i
482 print("whoops, couldn't find an outermost poly")
483 return 0
486 def _RotatedPolyAreaToXY(polyarea, norm):
487 """Return a PolyArea rotated to xy plane.
489 Only the points in polyarea will be transferred.
491 Args:
492 polyarea: geom.PolyArea
493 norm: the normal for polyarea
494 Returns:
495 (geom.PolyArea, (float, ..., float), dict{ int -> int }) - new PolyArea,
496 4x3 inverse transform, dict mapping new verts to old ones
499 # find rotation matrix that takes norm to (0,0,1)
500 (nx, ny, nz) = norm
501 if abs(nx) < abs(ny) and abs(nx) < abs(nz):
502 v = (vx, vy, vz) = geom.Norm3(0.0, nz, - ny)
503 elif abs(ny) < abs(nz):
504 v = (vx, vy, vz) = geom.Norm3(nz, 0.0, - nx)
505 else:
506 v = (vx, vy, vz) = geom.Norm3(ny, - nx, 0.0)
507 (ux, uy, uz) = geom.Cross3(v, norm)
508 rotmat = [ux, vx, nx, uy, vy, ny, uz, vz, nz, 0.0, 0.0, 0.0]
509 # rotation matrices are orthogonal, so inverse is transpose
510 invrotmat = [ux, uy, uz, vx, vy, vz, nx, ny, nz, 0.0, 0.0, 0.0]
511 pointmap = dict()
512 invpointmap = dict()
513 newpoints = geom.Points()
514 for poly in [polyarea.poly] + polyarea.holes:
515 for v in poly:
516 vcoords = polyarea.points.pos[v]
517 newvcoords = geom.MulPoint3(vcoords, rotmat)
518 newv = newpoints.AddPoint(newvcoords)
519 pointmap[v] = newv
520 invpointmap[newv] = v
521 pa = geom.PolyArea(newpoints)
522 pa.poly = [pointmap[v] for v in polyarea.poly]
523 pa.holes = [[pointmap[v] for v in hole] for hole in polyarea.holes]
524 pa.data = polyarea.data
525 return (pa, invrotmat, invpointmap)
528 def _AddTransformedPolysToModel(mdl, polys, points, poly_data,
529 transform, pointmap):
530 """Add (transformed) the points and faces to a model.
532 Add polys to mdl. The polys have coordinates given by indices
533 into points.pos; those need to be transformed by multiplying by
534 the transform matrix.
535 The vertices may already exist in mdl. Rather than relying on
536 AddPoint to detect the duplicate (transform rounding error makes
537 that dicey), the pointmap dictionar is used to map vertex indices
538 in polys into those in mdl - if they exist already.
540 Args:
541 mdl: geom.Model - where to put new vertices, faces
542 polys: list of list of int - each sublist a poly
543 points: geom.Points - coords for vertices in polys
544 poly_data: list of any - parallel to polys
545 transform: (float, ..., float) - 12-tuple, a 4x3 transform matrix
546 pointmap: dict { int -> int } - maps new vertex indices to old ones
547 Side Effects:
548 The model gets new faces and vertices, based on those in polys.
549 We are allowed to modify pointmap, as it will be discarded after call.
552 for i, coords in enumerate(points.pos):
553 if i not in pointmap:
554 p = geom.MulPoint3(coords, transform)
555 pointmap[i] = mdl.points.AddPoint(p)
556 for i, poly in enumerate(polys):
557 mpoly = [pointmap[v] for v in poly]
558 mdl.faces.append(mpoly)
559 mdl.face_data.append(poly_data[i])