Merge branch 'master' of https://github.com/calf-studio-gear/calf
[calf.git] / src / calf / biquad.h
blob95c4a39ca56774e0953fc1e75ed946e17b8c5cbe
1 /* Calf DSP Library
2 * Biquad filters
3 * Copyright (C) 2001-2007 Krzysztof Foltman
5 * Most of code in this file is based on freely
6 * available other work of other people (filter equations).
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General
19 * Public License along with this program; if not, write to the
20 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 * Boston, MA 02110-1301 USA
23 #ifndef __CALF_BIQUAD_H
24 #define __CALF_BIQUAD_H
26 #include <complex>
27 #include "primitives.h"
29 namespace dsp {
31 /**
32 * Coefficients for two-pole two-zero filter, for floating point values,
33 * plus a bunch of functions to set them to typical values.
35 * Coefficient calculation is based on famous Robert Bristow-Johnson's equations,
36 * except where it's not.
37 * The coefficient calculation is NOT mine, the only exception is the lossy
38 * optimization in Zoelzer and rbj HP filter code.
40 * See http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt for reference.
42 * don't use this for integers because it won't work
44 class biquad_coeffs
46 public:
47 // filter coefficients
48 double a0, a1, a2, b1, b2;
49 typedef std::complex<double> cfloat;
51 biquad_coeffs()
53 set_null();
56 inline void set_null()
58 a0 = 1.0;
59 b1 = b2 = a1 = a2 = 0.f;
62 /** Lowpass filter based on Robert Bristow-Johnson's equations
63 * Perhaps every synth code that doesn't use SVF uses these
64 * equations :)
65 * @param fc resonant frequency
66 * @param q resonance (gain at fc)
67 * @param sr sample rate
68 * @param gain amplification (gain at 0Hz)
70 inline void set_lp_rbj(float fc, float q, float sr, float gain = 1.0)
72 double omega=(2.0*M_PI*fc/sr);
73 double sn=sin(omega);
74 double cs=cos(omega);
75 double alpha=(sn/(2*q));
76 double inv=(1.0/(1.0+alpha));
78 a2 = a0 = (gain*inv*(1.0 - cs)*0.5);
79 a1 = a0 + a0;
80 b1 = (-2.0*cs*inv);
81 b2 = ((1.0 - alpha)*inv);
84 // different lowpass filter, based on Zoelzer's equations, modified by
85 // me (kfoltman) to use polynomials to approximate tangent function
86 // not very accurate, but perhaps good enough for synth work :)
87 // odsr is "one divided by samplerate"
88 // from how it looks, it perhaps uses bilinear transform - but who knows :)
89 inline void set_lp_zoelzer(float fc, float q, float odsr, float gain=1.0)
91 double omega=(M_PI*fc*odsr);
92 double omega2=omega*omega;
93 double K=omega*(1+omega2*omega2*(1.0/1.45));
94 double KK=K*K;
95 double QK=q*(KK+1.f);
96 double iQK=1.0f/(QK+K);
97 double inv=q*iQK;
98 b2 = (iQK*(QK-K));
99 b1 = (2.*(KK-1.f)*inv);
100 a2 = a0 = (inv*gain*KK);
101 a1 = a0 + a0;
104 /** Highpass filter based on Robert Bristow-Johnson's equations
105 * @param fc resonant frequency
106 * @param q resonance (gain at fc)
107 * @param sr sample rate
108 * @param gain amplification (gain at sr/2)
110 inline void set_hp_rbj(float fc, float q, float esr, float gain=1.0)
112 double omega=(double)(2*M_PI*fc/esr);
113 double sn=sin(omega);
114 double cs=cos(omega);
115 double alpha=(double)(sn/(2*q));
117 double inv=(double)(1.0/(1.0+alpha));
119 a0 = (gain*inv*(1 + cs)/2);
120 a1 = -2.f * a0;
121 a2 = a0;
122 b1 = (-2*cs*inv);
123 b2 = ((1 - alpha)*inv);
126 // this replaces sin/cos with polynomial approximation
127 inline void set_hp_rbj_optimized(float fc, float q, float esr, float gain=1.0)
129 double omega=(double)(2*M_PI*fc/esr);
130 double sn=omega+omega*omega*omega*(1.0/6.0)+omega*omega*omega*omega*omega*(1.0/120);
131 double cs=1-omega*omega*(1.0/2.0)+omega*omega*omega*omega*(1.0/24);
132 double alpha=(double)(sn/(2*q));
134 double inv=(double)(1.0/(1.0+alpha));
136 a0 = (gain*inv*(1 + cs)*(1.0/2.0));
137 a1 = -2.f * a0;
138 a2 = a0;
139 b1 = (-2.*cs*inv);
140 b2 = ((1. - alpha)*inv);
143 /** Bandpass filter based on Robert Bristow-Johnson's equations (normalized to 1.0 at center frequency)
144 * @param fc center frequency (gain at fc = 1.0)
145 * @param q =~ fc/bandwidth (not quite, but close) - 1/Q = 2*sinh(ln(2)/2*BW*w0/sin(w0))
146 * @param sr sample rate
147 * @param gain amplification (gain at sr/2)
149 inline void set_bp_rbj(double fc, double q, double esr, double gain=1.0)
151 double omega=(double)(2*M_PI*fc/esr);
152 double sn=sin(omega);
153 double cs=cos(omega);
154 double alpha=(double)(sn/(2*q));
156 double inv=(double)(1.0/(1.0+alpha));
158 a0 = (double)(gain*inv*alpha);
159 a1 = 0.f;
160 a2 = (double)(-gain*inv*alpha);
161 b1 = (double)(-2*cs*inv);
162 b2 = (double)((1 - alpha)*inv);
165 // rbj's bandreject
166 inline void set_br_rbj(double fc, double q, double esr, double gain=1.0)
168 double omega=(double)(2*M_PI*fc/esr);
169 double sn=sin(omega);
170 double cs=cos(omega);
171 double alpha=(double)(sn/(2*q));
173 double inv=(double)(1.0/(1.0+alpha));
175 a0 = (gain*inv);
176 a1 = (-gain*inv*2.*cs);
177 a2 = (gain*inv);
178 b1 = (-2.*cs*inv);
179 b2 = ((1. - alpha)*inv);
181 // this is mine (and, I guess, it sucks/doesn't work)
182 void set_allpass(float freq, float pole_r, float sr)
184 double a=prewarp(freq, sr);
185 double q=pole_r;
186 set_bilinear(a*a+q*q, -2.0f*a, 1, a*a+q*q, 2.0f*a, 1);
188 /// prewarping for bilinear transform, maps given digital frequency to analog counterpart for analog filter design
189 static inline double prewarp(float freq, float sr)
191 if (freq>sr*0.49) freq=(float)(sr*0.49);
192 return (double)(tan(M_PI*freq/sr));
194 /// convert analog angular frequency value to digital
195 static inline double unwarp(float omega, float sr)
197 double T = 1.0 / sr;
198 return (2 / T) * atan(omega * T / 2);
200 /// convert analog filter time constant to digital counterpart
201 static inline double unwarpf(float t, float sr)
203 // this is most likely broken and works by pure accident!
204 double omega = 1.0 / t;
205 omega = unwarp(omega, sr);
206 // I really don't know why does it have to be M_PI and not 2 * M_PI!
207 double f = M_PI / omega;
208 return f / sr;
210 /// set digital filter parameters based on given analog filter parameters
211 void set_bilinear(double aa0, double aa1, double aa2, double ab0, double ab1, double ab2)
213 double q=(double)(1.0/(ab0+ab1+ab2));
214 a0 = (aa0+aa1+aa2)*q;
215 a1 = 2*(aa0-aa2)*q;
216 a2 = (aa0-aa1+aa2)*q;
217 b1 = 2*(ab0-ab2)*q;
218 b2 = (ab0-ab1+ab2)*q;
221 /// set digital filter parameters directly
222 void set_bilinear_direct(double aa0, double aa1, double aa2, double ab1, double ab2)
224 a0 = aa0;
225 a1 = aa1;
226 a2 = aa2;
227 b1 = ab1;
228 b2 = ab2;
232 /// RBJ peaking EQ
233 /// @param freq peak frequency
234 /// @param q q (correlated to freq/bandwidth, @see set_bp_rbj)
235 /// @param peak peak gain (1.0 means no peak, >1.0 means a peak, less than 1.0 is a dip)
236 inline void set_peakeq_rbj(double freq, double q, double peak, double sr)
238 double A = sqrt(peak);
239 double w0 = freq * 2 * M_PI * (1.0 / sr);
240 double alpha = sin(w0) / (2 * q);
241 double ib0 = 1.0 / (1 + alpha/A);
242 a1 = b1 = -2*cos(w0) * ib0;
243 a0 = ib0 * (1 + alpha*A);
244 a2 = ib0 * (1 - alpha*A);
245 b2 = ib0 * (1 - alpha/A);
248 /// RBJ low shelf EQ - amplitication of 'peak' at 0 Hz and of 1.0 (0dB) at sr/2 Hz
249 /// @param freq corner frequency (gain at freq is sqrt(peak))
250 /// @param q q (relates bandwidth and peak frequency), the higher q, the louder the resonant peak (situated below fc) is
251 /// @param peak shelf gain (1.0 means no peak, >1.0 means a peak, less than 1.0 is a dip)
252 inline void set_lowshelf_rbj(float freq, float q, float peak, float sr)
254 double A = sqrt(peak);
255 double w0 = freq * 2 * M_PI * (1.0 / sr);
256 double alpha = sin(w0) / (2 * q);
257 double cw0 = cos(w0);
258 double tmp = 2 * sqrt(A) * alpha;
259 double b0 = 0.f, ib0 = 0.f;
261 a0 = A*( (A+1) - (A-1)*cw0 + tmp);
262 a1 = 2*A*( (A-1) - (A+1)*cw0);
263 a2 = A*( (A+1) - (A-1)*cw0 - tmp);
264 b0 = (A+1) + (A-1)*cw0 + tmp;
265 b1 = -2*( (A-1) + (A+1)*cw0);
266 b2 = (A+1) + (A-1)*cw0 - tmp;
268 ib0 = 1.0 / b0;
269 b1 *= ib0;
270 b2 *= ib0;
271 a0 *= ib0;
272 a1 *= ib0;
273 a2 *= ib0;
276 /// RBJ high shelf EQ - amplitication of 0dB at 0 Hz and of peak at sr/2 Hz
277 /// @param freq corner frequency (gain at freq is sqrt(peak))
278 /// @param q q (relates bandwidth and peak frequency), the higher q, the louder the resonant peak (situated above fc) is
279 /// @param peak shelf gain (1.0 means no peak, >1.0 means a peak, less than 1.0 is a dip)
280 inline void set_highshelf_rbj(float freq, float q, float peak, float sr)
282 double A = sqrt(peak);
283 double w0 = freq * 2 * M_PI * (1.0 / sr);
284 double alpha = sin(w0) / (2 * q);
285 double cw0 = cos(w0);
286 double tmp = 2 * sqrt(A) * alpha;
287 double b0 = 0.f, ib0 = 0.f;
289 a0 = A*( (A+1) + (A-1)*cw0 + tmp);
290 a1 = -2*A*( (A-1) + (A+1)*cw0);
291 a2 = A*( (A+1) + (A-1)*cw0 - tmp);
292 b0 = (A+1) - (A-1)*cw0 + tmp;
293 b1 = 2*( (A-1) - (A+1)*cw0);
294 b2 = (A+1) - (A-1)*cw0 - tmp;
296 ib0 = 1.0 / b0;
297 b1 *= ib0;
298 b2 *= ib0;
299 a0 *= ib0;
300 a1 *= ib0;
301 a2 *= ib0;
304 /// copy coefficients from another biquad
305 inline void copy_coeffs(const biquad_coeffs &src)
307 a0 = src.a0;
308 a1 = src.a1;
309 a2 = src.a2;
310 b1 = src.b1;
311 b2 = src.b2;
314 /// Return the filter's gain at frequency freq
315 /// @param freq Frequency to look up
316 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
317 float freq_gain(float freq, float sr) const
319 typedef std::complex<double> cfloat;
320 freq *= 2.0 * M_PI / sr;
321 cfloat z = 1.0 / exp(cfloat(0.0, freq));
323 return std::abs(h_z(z));
326 /// Return H(z) the filter's gain at frequency freq
327 /// @param z Z variable (e^jw)
328 cfloat h_z(const cfloat &z) const
331 return (cfloat(a0) + double(a1) * z + double(a2) * z*z) / (cfloat(1.0) + double(b1) * z + double(b2) * z*z);
337 * Two-pole two-zero filter, for floating point values.
338 * Uses "traditional" Direct I form (separate FIR and IIR halves).
339 * don't use this for integers because it won't work
341 struct biquad_d1: public biquad_coeffs
343 /// input[n-1]
344 double x1;
345 /// input[n-2]
346 double x2;
347 /// output[n-1]
348 double y1;
349 /// output[n-2]
350 double y2;
351 /// Constructor (initializes state to all zeros)
352 biquad_d1()
354 reset();
356 /// direct I form with four state variables
357 inline double process(double in)
359 double out = in * a0 + x1 * a1 + x2 * a2 - y1 * b1 - y2 * b2;
360 x2 = x1;
361 y2 = y1;
362 x1 = in;
363 y1 = out;
364 return out;
367 /// direct I form with zero input
368 inline double process_zeroin()
370 double out = - y1 * b1 - y2 * b2;
371 y2 = y1;
372 y1 = out;
373 return out;
376 /// simplified version for lowpass case with two zeros at -1
377 inline double process_lp(double in)
379 double out = a0*(in + x1 + x1 + x2) - y1 * b1 - y2 * b2;
380 x2 = x1;
381 y2 = y1;
382 x1 = in;
383 y1 = out;
384 return out;
386 /// simplified version for highpass case with two zeros at 1
387 inline double process_hp(double in)
389 double out = a0*(in - x1 - x1 + x2) - y1 * b1 - y2 * b2;
390 x2 = x1;
391 y2 = y1;
392 x1 = in;
393 y1 = out;
394 return out;
396 /// Sanitize (set to 0 if potentially denormal) filter state
397 inline void sanitize()
399 dsp::sanitize(x1);
400 dsp::sanitize(y1);
401 dsp::sanitize(x2);
402 dsp::sanitize(y2);
404 /// Reset state variables
405 inline void reset()
407 dsp::zero(x1);
408 dsp::zero(y1);
409 dsp::zero(x2);
410 dsp::zero(y2);
412 inline bool empty() const {
413 return (y1 == 0. && y2 == 0.);
419 * Two-pole two-zero filter, for floating point values.
420 * Uses slightly faster Direct II form (combined FIR and IIR halves).
421 * However, when used with wildly varying coefficients, it may
422 * make more zipper noise than Direct I form, so it's better to
423 * use it when filter coefficients are not changed mid-stream.
425 struct biquad_d2: public biquad_coeffs
427 /// state[n-1]
428 double w1;
429 /// state[n-2]
430 double w2;
431 /// Constructor (initializes state to all zeros)
432 biquad_d2()
434 reset();
436 /// direct II form with two state variables
437 inline double process(double in)
439 double n = in;
440 dsp::sanitize_denormal(n);
441 dsp::sanitize(n);
442 dsp::sanitize(w1);
443 dsp::sanitize(w2);
445 double tmp = n - w1 * b1 - w2 * b2;
446 double out = tmp * a0 + w1 * a1 + w2 * a2;
447 w2 = w1;
448 w1 = tmp;
449 return out;
452 // direct II form with two state variables, lowpass version
453 // interesting fact: this is actually slower than the general version!
454 inline double process_lp(double in)
456 double tmp = in - w1 * b1 - w2 * b2;
457 double out = (tmp + w2 + w1* 2) * a0;
458 w2 = w1;
459 w1 = tmp;
460 return out;
463 /// Is the filter state completely silent? (i.e. set to 0 by sanitize function)
464 inline bool empty() const {
465 return (w1 == 0.f && w2 == 0.f);
469 /// Sanitize (set to 0 if potentially denormal) filter state
470 inline void sanitize()
472 dsp::sanitize(w1);
473 dsp::sanitize(w2);
476 /// Reset state variables
477 inline void reset()
479 dsp::zero(w1);
480 dsp::zero(w2);
485 * Two-pole two-zero filter, for floating point values.
486 * Uses "traditional" Direct I form (separate FIR and IIR halves).
487 * don't use this for integers because it won't work
489 struct biquad_d1_lerp: public biquad_coeffs
491 double a0cur, a1cur, a2cur, b1cur, b2cur;
492 double a0delta, a1delta, a2delta, b1delta, b2delta;
493 /// input[n-1]
494 double x1;
495 /// input[n-2]
496 double x2;
497 /// output[n-1]
498 double y1;
499 /// output[n-2]
500 double y2;
501 /// Constructor (initializes state to all zeros)
502 biquad_d1_lerp()
504 reset();
506 #define _DO_COEFF(coeff) coeff##delta = (coeff - coeff##cur) * (frac)
507 void big_step(double frac)
509 _DO_COEFF(a0);
510 _DO_COEFF(a1);
511 _DO_COEFF(a2);
512 _DO_COEFF(b1);
513 _DO_COEFF(b2);
515 #undef _DO_COEFF
516 /// direct I form with four state variables
517 inline double process(double in)
519 double out = in * a0cur + x1 * a1cur + x2 * a2cur - y1 * b1cur - y2 * b2cur;
520 x2 = x1;
521 y2 = y1;
522 x1 = in;
523 y1 = out;
524 a0cur += a0delta;
525 a1cur += a1delta;
526 a2cur += a2delta;
527 b1cur += b1delta;
528 b2cur += b2delta;
529 return out;
532 /// direct I form with zero input
533 inline double process_zeroin()
535 double out = - y1 * b1 - y2 * b2;
536 y2 = y1;
537 y1 = out;
538 b1cur += b1delta;
539 b2cur += b2delta;
540 return out;
543 /// simplified version for lowpass case with two zeros at -1
544 inline double process_lp(double in)
546 double out = a0*(in + x1 + x1 + x2) - y1 * b1 - y2 * b2;
547 x2 = x1;
548 y2 = y1;
549 x1 = in;
550 y1 = out;
551 return out;
553 /// Sanitize (set to 0 if potentially denormal) filter state
554 inline void sanitize()
556 dsp::sanitize(x1);
557 dsp::sanitize(y1);
558 dsp::sanitize(x2);
559 dsp::sanitize(y2);
560 dsp::sanitize(a0cur);
561 dsp::sanitize(a1cur);
562 dsp::sanitize(a2cur);
563 dsp::sanitize(b1cur);
564 dsp::sanitize(b2cur);
566 /// Reset state variables
567 inline void reset()
569 dsp::zero(x1);
570 dsp::zero(y1);
571 dsp::zero(x2);
572 dsp::zero(y2);
573 dsp::zero(a0cur);
574 dsp::zero(a1cur);
575 dsp::zero(a2cur);
576 dsp::zero(b1cur);
577 dsp::zero(b2cur);
579 inline bool empty() {
580 return (y1 == 0. && y2 == 0.);
585 /// Compose two filters in series
586 template<class F1, class F2>
587 class filter_compose {
588 public:
589 typedef std::complex<float> cfloat;
590 F1 f1;
591 F2 f2;
592 public:
593 float process(float value) {
594 return f2.process(f1.process(value));
597 inline cfloat h_z(const cfloat &z) const {
598 return f1.h_z(z) * f2.h_z(z);
601 /// Return the filter's gain at frequency freq
602 /// @param freq Frequency to look up
603 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
604 float freq_gain(float freq, float sr) const
606 typedef std::complex<double> cfloat;
607 freq *= 2.0 * M_PI / sr;
608 cfloat z = 1.0 / exp(cfloat(0.0, freq));
610 return std::abs(h_z(z));
613 void sanitize() {
614 f1.sanitize();
615 f2.sanitize();
619 /// Compose two filters in parallel
620 template<class F1, class F2>
621 class filter_sum {
622 public:
623 typedef std::complex<double> cfloat;
624 F1 f1;
625 F2 f2;
626 public:
627 double process(double value) {
628 return f2.process(value) + f1.process(value);
631 inline cfloat h_z(const cfloat &z) const {
632 return f1.h_z(z) + f2.h_z(z);
635 /// Return the filter's gain at frequency freq
636 /// @param freq Frequency to look up
637 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
638 float freq_gain(float freq, float sr) const
640 typedef std::complex<double> cfloat;
641 freq *= 2.0 * M_PI / sr;
642 cfloat z = 1.0 / exp(cfloat(0.0, freq));
644 return std::abs(h_z(z));
647 void sanitize() {
648 f1.sanitize();
649 f2.sanitize();
655 #endif