Initial import.
[ccrypt.git] / kernel / cgroup.c
blobd8abe996e009702663d9769714f6428f88aac641
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
48 #include <asm/atomic.h>
50 static DEFINE_MUTEX(cgroup_mutex);
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
64 struct cgroupfs_root {
65 struct super_block *sb;
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
71 unsigned long subsys_bits;
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
88 /* Hierarchy-specific flags */
89 unsigned long flags;
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
105 static struct cgroupfs_root rootnode;
107 /* The list of hierarchy roots */
109 static LIST_HEAD(roots);
110 static int root_count;
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
120 static int need_forkexit_callback;
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
152 static int notify_on_release(const struct cgroup *cgrp)
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
182 struct list_head cgrp_link_list;
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
187 struct list_head cg_link_list;
188 struct css_set *cg;
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
228 * unlink a css_set from the list and free it
230 static void unlink_css_set(struct css_set *cg)
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
243 write_unlock(&css_set_lock);
246 static void __release_css_set(struct kref *k, int taskexit)
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
251 unlink_css_set(cg);
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
263 rcu_read_unlock();
264 kfree(cg);
267 static void release_css_set(struct kref *k)
269 __release_css_set(k, 0);
272 static void release_css_set_taskexit(struct kref *k)
274 __release_css_set(k, 1);
278 * refcounted get/put for css_set objects
280 static inline void get_css_set(struct css_set *cg)
282 kref_get(&cg->ref);
285 static inline void put_css_set(struct css_set *cg)
287 kref_put(&cg->ref, release_css_set);
290 static inline void put_css_set_taskexit(struct css_set *cg)
292 kref_put(&cg->ref, release_css_set_taskexit);
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
305 * cgrp: the cgroup that we're moving into
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
310 static struct css_set *find_existing_css_set(
311 struct css_set *oldcg,
312 struct cgroup *cgrp,
313 struct cgroup_subsys_state *template[])
315 int i;
316 struct cgroupfs_root *root = cgrp->root;
317 struct list_head *l = &init_css_set.list;
319 /* Built the set of subsystem state objects that we want to
320 * see in the new css_set */
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
322 if (root->subsys_bits & (1UL << i)) {
323 /* Subsystem is in this hierarchy. So we want
324 * the subsystem state from the new
325 * cgroup */
326 template[i] = cgrp->subsys[i];
327 } else {
328 /* Subsystem is not in this hierarchy, so we
329 * don't want to change the subsystem state */
330 template[i] = oldcg->subsys[i];
334 /* Look through existing cgroup groups to find one to reuse */
335 do {
336 struct css_set *cg =
337 list_entry(l, struct css_set, list);
339 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
340 /* All subsystems matched */
341 return cg;
343 /* Try the next cgroup group */
344 l = l->next;
345 } while (l != &init_css_set.list);
347 /* No existing cgroup group matched */
348 return NULL;
352 * allocate_cg_links() allocates "count" cg_cgroup_link structures
353 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
354 * success or a negative error
356 static int allocate_cg_links(int count, struct list_head *tmp)
358 struct cg_cgroup_link *link;
359 int i;
360 INIT_LIST_HEAD(tmp);
361 for (i = 0; i < count; i++) {
362 link = kmalloc(sizeof(*link), GFP_KERNEL);
363 if (!link) {
364 while (!list_empty(tmp)) {
365 link = list_entry(tmp->next,
366 struct cg_cgroup_link,
367 cgrp_link_list);
368 list_del(&link->cgrp_link_list);
369 kfree(link);
371 return -ENOMEM;
373 list_add(&link->cgrp_link_list, tmp);
375 return 0;
378 static void free_cg_links(struct list_head *tmp)
380 while (!list_empty(tmp)) {
381 struct cg_cgroup_link *link;
382 link = list_entry(tmp->next,
383 struct cg_cgroup_link,
384 cgrp_link_list);
385 list_del(&link->cgrp_link_list);
386 kfree(link);
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
395 * cgroup_mutex held
397 static struct css_set *find_css_set(
398 struct css_set *oldcg, struct cgroup *cgrp)
400 struct css_set *res;
401 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
402 int i;
404 struct list_head tmp_cg_links;
405 struct cg_cgroup_link *link;
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
409 write_lock(&css_set_lock);
410 res = find_existing_css_set(oldcg, cgrp, template);
411 if (res)
412 get_css_set(res);
413 write_unlock(&css_set_lock);
415 if (res)
416 return res;
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
428 kref_init(&res->ref);
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
432 /* Copy the set of subsystem state objects generated in
433 * find_existing_css_set() */
434 memcpy(res->subsys, template, sizeof(res->subsys));
436 write_lock(&css_set_lock);
437 /* Add reference counts and links from the new css_set. */
438 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439 struct cgroup *cgrp = res->subsys[i]->cgroup;
440 struct cgroup_subsys *ss = subsys[i];
441 atomic_inc(&cgrp->count);
443 * We want to add a link once per cgroup, so we
444 * only do it for the first subsystem in each
445 * hierarchy
447 if (ss->root->subsys_list.next == &ss->sibling) {
448 BUG_ON(list_empty(&tmp_cg_links));
449 link = list_entry(tmp_cg_links.next,
450 struct cg_cgroup_link,
451 cgrp_link_list);
452 list_del(&link->cgrp_link_list);
453 list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 link->cg = res;
455 list_add(&link->cg_link_list, &res->cg_links);
458 if (list_empty(&rootnode.subsys_list)) {
459 link = list_entry(tmp_cg_links.next,
460 struct cg_cgroup_link,
461 cgrp_link_list);
462 list_del(&link->cgrp_link_list);
463 list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 link->cg = res;
465 list_add(&link->cg_link_list, &res->cg_links);
468 BUG_ON(!list_empty(&tmp_cg_links));
470 /* Link this cgroup group into the list */
471 list_add(&res->list, &init_css_set.list);
472 css_set_count++;
473 write_unlock(&css_set_lock);
475 return res;
479 * There is one global cgroup mutex. We also require taking
480 * task_lock() when dereferencing a task's cgroup subsys pointers.
481 * See "The task_lock() exception", at the end of this comment.
483 * A task must hold cgroup_mutex to modify cgroups.
485 * Any task can increment and decrement the count field without lock.
486 * So in general, code holding cgroup_mutex can't rely on the count
487 * field not changing. However, if the count goes to zero, then only
488 * cgroup_attach_task() can increment it again. Because a count of zero
489 * means that no tasks are currently attached, therefore there is no
490 * way a task attached to that cgroup can fork (the other way to
491 * increment the count). So code holding cgroup_mutex can safely
492 * assume that if the count is zero, it will stay zero. Similarly, if
493 * a task holds cgroup_mutex on a cgroup with zero count, it
494 * knows that the cgroup won't be removed, as cgroup_rmdir()
495 * needs that mutex.
497 * The cgroup_common_file_write handler for operations that modify
498 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
499 * single threading all such cgroup modifications across the system.
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
516 * The task_lock() exception
518 * The need for this exception arises from the action of
519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
520 * another. It does so using cgroup_mutex, however there are
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
528 * P.S. One more locking exception. RCU is used to guard the
529 * update of a tasks cgroup pointer by cgroup_attach_task()
533 * cgroup_lock - lock out any changes to cgroup structures
536 void cgroup_lock(void)
538 mutex_lock(&cgroup_mutex);
542 * cgroup_unlock - release lock on cgroup changes
544 * Undo the lock taken in a previous cgroup_lock() call.
546 void cgroup_unlock(void)
548 mutex_unlock(&cgroup_mutex);
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
555 * -> cgroup_mkdir.
558 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
559 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560 static int cgroup_populate_dir(struct cgroup *cgrp);
561 static struct inode_operations cgroup_dir_inode_operations;
562 static struct file_operations proc_cgroupstats_operations;
564 static struct backing_dev_info cgroup_backing_dev_info = {
565 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
568 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
570 struct inode *inode = new_inode(sb);
572 if (inode) {
573 inode->i_mode = mode;
574 inode->i_uid = current->fsuid;
575 inode->i_gid = current->fsgid;
576 inode->i_blocks = 0;
577 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
578 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
580 return inode;
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
587 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
589 struct cgroup_subsys *ss;
590 for_each_subsys(cgrp->root, ss)
591 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
592 ss->pre_destroy(ss, cgrp);
593 return;
596 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode->i_mode)) {
600 struct cgroup *cgrp = dentry->d_fsdata;
601 struct cgroup_subsys *ss;
602 BUG_ON(!(cgroup_is_removed(cgrp)));
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
608 * agent */
609 synchronize_rcu();
611 mutex_lock(&cgroup_mutex);
613 * Release the subsystem state objects.
615 for_each_subsys(cgrp->root, ss) {
616 if (cgrp->subsys[ss->subsys_id])
617 ss->destroy(ss, cgrp);
620 cgrp->root->number_of_cgroups--;
621 mutex_unlock(&cgroup_mutex);
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp->root->sb);
627 kfree(cgrp);
629 iput(inode);
632 static void remove_dir(struct dentry *d)
634 struct dentry *parent = dget(d->d_parent);
636 d_delete(d);
637 simple_rmdir(parent->d_inode, d);
638 dput(parent);
641 static void cgroup_clear_directory(struct dentry *dentry)
643 struct list_head *node;
645 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
646 spin_lock(&dcache_lock);
647 node = dentry->d_subdirs.next;
648 while (node != &dentry->d_subdirs) {
649 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
650 list_del_init(node);
651 if (d->d_inode) {
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d->d_inode->i_mode & S_IFDIR);
655 d = dget_locked(d);
656 spin_unlock(&dcache_lock);
657 d_delete(d);
658 simple_unlink(dentry->d_inode, d);
659 dput(d);
660 spin_lock(&dcache_lock);
662 node = dentry->d_subdirs.next;
664 spin_unlock(&dcache_lock);
668 * NOTE : the dentry must have been dget()'ed
670 static void cgroup_d_remove_dir(struct dentry *dentry)
672 cgroup_clear_directory(dentry);
674 spin_lock(&dcache_lock);
675 list_del_init(&dentry->d_u.d_child);
676 spin_unlock(&dcache_lock);
677 remove_dir(dentry);
680 static int rebind_subsystems(struct cgroupfs_root *root,
681 unsigned long final_bits)
683 unsigned long added_bits, removed_bits;
684 struct cgroup *cgrp = &root->top_cgroup;
685 int i;
687 removed_bits = root->actual_subsys_bits & ~final_bits;
688 added_bits = final_bits & ~root->actual_subsys_bits;
689 /* Check that any added subsystems are currently free */
690 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
691 unsigned long bit = 1UL << i;
692 struct cgroup_subsys *ss = subsys[i];
693 if (!(bit & added_bits))
694 continue;
695 if (ss->root != &rootnode) {
696 /* Subsystem isn't free */
697 return -EBUSY;
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
704 * later */
705 if (!list_empty(&cgrp->children))
706 return -EBUSY;
708 /* Process each subsystem */
709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
710 struct cgroup_subsys *ss = subsys[i];
711 unsigned long bit = 1UL << i;
712 if (bit & added_bits) {
713 /* We're binding this subsystem to this hierarchy */
714 BUG_ON(cgrp->subsys[i]);
715 BUG_ON(!dummytop->subsys[i]);
716 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
717 cgrp->subsys[i] = dummytop->subsys[i];
718 cgrp->subsys[i]->cgroup = cgrp;
719 list_add(&ss->sibling, &root->subsys_list);
720 rcu_assign_pointer(ss->root, root);
721 if (ss->bind)
722 ss->bind(ss, cgrp);
724 } else if (bit & removed_bits) {
725 /* We're removing this subsystem */
726 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
727 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
728 if (ss->bind)
729 ss->bind(ss, dummytop);
730 dummytop->subsys[i]->cgroup = dummytop;
731 cgrp->subsys[i] = NULL;
732 rcu_assign_pointer(subsys[i]->root, &rootnode);
733 list_del(&ss->sibling);
734 } else if (bit & final_bits) {
735 /* Subsystem state should already exist */
736 BUG_ON(!cgrp->subsys[i]);
737 } else {
738 /* Subsystem state shouldn't exist */
739 BUG_ON(cgrp->subsys[i]);
742 root->subsys_bits = root->actual_subsys_bits = final_bits;
743 synchronize_rcu();
745 return 0;
748 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
750 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
751 struct cgroup_subsys *ss;
753 mutex_lock(&cgroup_mutex);
754 for_each_subsys(root, ss)
755 seq_printf(seq, ",%s", ss->name);
756 if (test_bit(ROOT_NOPREFIX, &root->flags))
757 seq_puts(seq, ",noprefix");
758 if (strlen(root->release_agent_path))
759 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
760 mutex_unlock(&cgroup_mutex);
761 return 0;
764 struct cgroup_sb_opts {
765 unsigned long subsys_bits;
766 unsigned long flags;
767 char *release_agent;
770 /* Convert a hierarchy specifier into a bitmask of subsystems and
771 * flags. */
772 static int parse_cgroupfs_options(char *data,
773 struct cgroup_sb_opts *opts)
775 char *token, *o = data ?: "all";
777 opts->subsys_bits = 0;
778 opts->flags = 0;
779 opts->release_agent = NULL;
781 while ((token = strsep(&o, ",")) != NULL) {
782 if (!*token)
783 return -EINVAL;
784 if (!strcmp(token, "all")) {
785 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
786 } else if (!strcmp(token, "noprefix")) {
787 set_bit(ROOT_NOPREFIX, &opts->flags);
788 } else if (!strncmp(token, "release_agent=", 14)) {
789 /* Specifying two release agents is forbidden */
790 if (opts->release_agent)
791 return -EINVAL;
792 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
793 if (!opts->release_agent)
794 return -ENOMEM;
795 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
796 opts->release_agent[PATH_MAX - 1] = 0;
797 } else {
798 struct cgroup_subsys *ss;
799 int i;
800 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
801 ss = subsys[i];
802 if (!strcmp(token, ss->name)) {
803 set_bit(i, &opts->subsys_bits);
804 break;
807 if (i == CGROUP_SUBSYS_COUNT)
808 return -ENOENT;
812 /* We can't have an empty hierarchy */
813 if (!opts->subsys_bits)
814 return -EINVAL;
816 return 0;
819 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
821 int ret = 0;
822 struct cgroupfs_root *root = sb->s_fs_info;
823 struct cgroup *cgrp = &root->top_cgroup;
824 struct cgroup_sb_opts opts;
826 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
827 mutex_lock(&cgroup_mutex);
829 /* See what subsystems are wanted */
830 ret = parse_cgroupfs_options(data, &opts);
831 if (ret)
832 goto out_unlock;
834 /* Don't allow flags to change at remount */
835 if (opts.flags != root->flags) {
836 ret = -EINVAL;
837 goto out_unlock;
840 ret = rebind_subsystems(root, opts.subsys_bits);
842 /* (re)populate subsystem files */
843 if (!ret)
844 cgroup_populate_dir(cgrp);
846 if (opts.release_agent)
847 strcpy(root->release_agent_path, opts.release_agent);
848 out_unlock:
849 if (opts.release_agent)
850 kfree(opts.release_agent);
851 mutex_unlock(&cgroup_mutex);
852 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
853 return ret;
856 static struct super_operations cgroup_ops = {
857 .statfs = simple_statfs,
858 .drop_inode = generic_delete_inode,
859 .show_options = cgroup_show_options,
860 .remount_fs = cgroup_remount,
863 static void init_cgroup_root(struct cgroupfs_root *root)
865 struct cgroup *cgrp = &root->top_cgroup;
866 INIT_LIST_HEAD(&root->subsys_list);
867 INIT_LIST_HEAD(&root->root_list);
868 root->number_of_cgroups = 1;
869 cgrp->root = root;
870 cgrp->top_cgroup = cgrp;
871 INIT_LIST_HEAD(&cgrp->sibling);
872 INIT_LIST_HEAD(&cgrp->children);
873 INIT_LIST_HEAD(&cgrp->css_sets);
874 INIT_LIST_HEAD(&cgrp->release_list);
877 static int cgroup_test_super(struct super_block *sb, void *data)
879 struct cgroupfs_root *new = data;
880 struct cgroupfs_root *root = sb->s_fs_info;
882 /* First check subsystems */
883 if (new->subsys_bits != root->subsys_bits)
884 return 0;
886 /* Next check flags */
887 if (new->flags != root->flags)
888 return 0;
890 return 1;
893 static int cgroup_set_super(struct super_block *sb, void *data)
895 int ret;
896 struct cgroupfs_root *root = data;
898 ret = set_anon_super(sb, NULL);
899 if (ret)
900 return ret;
902 sb->s_fs_info = root;
903 root->sb = sb;
905 sb->s_blocksize = PAGE_CACHE_SIZE;
906 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
907 sb->s_magic = CGROUP_SUPER_MAGIC;
908 sb->s_op = &cgroup_ops;
910 return 0;
913 static int cgroup_get_rootdir(struct super_block *sb)
915 struct inode *inode =
916 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
917 struct dentry *dentry;
919 if (!inode)
920 return -ENOMEM;
922 inode->i_fop = &simple_dir_operations;
923 inode->i_op = &cgroup_dir_inode_operations;
924 /* directories start off with i_nlink == 2 (for "." entry) */
925 inc_nlink(inode);
926 dentry = d_alloc_root(inode);
927 if (!dentry) {
928 iput(inode);
929 return -ENOMEM;
931 sb->s_root = dentry;
932 return 0;
935 static int cgroup_get_sb(struct file_system_type *fs_type,
936 int flags, const char *unused_dev_name,
937 void *data, struct vfsmount *mnt)
939 struct cgroup_sb_opts opts;
940 int ret = 0;
941 struct super_block *sb;
942 struct cgroupfs_root *root;
943 struct list_head tmp_cg_links, *l;
944 INIT_LIST_HEAD(&tmp_cg_links);
946 /* First find the desired set of subsystems */
947 ret = parse_cgroupfs_options(data, &opts);
948 if (ret) {
949 if (opts.release_agent)
950 kfree(opts.release_agent);
951 return ret;
954 root = kzalloc(sizeof(*root), GFP_KERNEL);
955 if (!root) {
956 if (opts.release_agent)
957 kfree(opts.release_agent);
958 return -ENOMEM;
961 init_cgroup_root(root);
962 root->subsys_bits = opts.subsys_bits;
963 root->flags = opts.flags;
964 if (opts.release_agent) {
965 strcpy(root->release_agent_path, opts.release_agent);
966 kfree(opts.release_agent);
969 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
971 if (IS_ERR(sb)) {
972 kfree(root);
973 return PTR_ERR(sb);
976 if (sb->s_fs_info != root) {
977 /* Reusing an existing superblock */
978 BUG_ON(sb->s_root == NULL);
979 kfree(root);
980 root = NULL;
981 } else {
982 /* New superblock */
983 struct cgroup *cgrp = &root->top_cgroup;
984 struct inode *inode;
986 BUG_ON(sb->s_root != NULL);
988 ret = cgroup_get_rootdir(sb);
989 if (ret)
990 goto drop_new_super;
991 inode = sb->s_root->d_inode;
993 mutex_lock(&inode->i_mutex);
994 mutex_lock(&cgroup_mutex);
997 * We're accessing css_set_count without locking
998 * css_set_lock here, but that's OK - it can only be
999 * increased by someone holding cgroup_lock, and
1000 * that's us. The worst that can happen is that we
1001 * have some link structures left over
1003 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1004 if (ret) {
1005 mutex_unlock(&cgroup_mutex);
1006 mutex_unlock(&inode->i_mutex);
1007 goto drop_new_super;
1010 ret = rebind_subsystems(root, root->subsys_bits);
1011 if (ret == -EBUSY) {
1012 mutex_unlock(&cgroup_mutex);
1013 mutex_unlock(&inode->i_mutex);
1014 goto drop_new_super;
1017 /* EBUSY should be the only error here */
1018 BUG_ON(ret);
1020 list_add(&root->root_list, &roots);
1021 root_count++;
1023 sb->s_root->d_fsdata = &root->top_cgroup;
1024 root->top_cgroup.dentry = sb->s_root;
1026 /* Link the top cgroup in this hierarchy into all
1027 * the css_set objects */
1028 write_lock(&css_set_lock);
1029 l = &init_css_set.list;
1030 do {
1031 struct css_set *cg;
1032 struct cg_cgroup_link *link;
1033 cg = list_entry(l, struct css_set, list);
1034 BUG_ON(list_empty(&tmp_cg_links));
1035 link = list_entry(tmp_cg_links.next,
1036 struct cg_cgroup_link,
1037 cgrp_link_list);
1038 list_del(&link->cgrp_link_list);
1039 link->cg = cg;
1040 list_add(&link->cgrp_link_list,
1041 &root->top_cgroup.css_sets);
1042 list_add(&link->cg_link_list, &cg->cg_links);
1043 l = l->next;
1044 } while (l != &init_css_set.list);
1045 write_unlock(&css_set_lock);
1047 free_cg_links(&tmp_cg_links);
1049 BUG_ON(!list_empty(&cgrp->sibling));
1050 BUG_ON(!list_empty(&cgrp->children));
1051 BUG_ON(root->number_of_cgroups != 1);
1053 cgroup_populate_dir(cgrp);
1054 mutex_unlock(&inode->i_mutex);
1055 mutex_unlock(&cgroup_mutex);
1058 return simple_set_mnt(mnt, sb);
1060 drop_new_super:
1061 up_write(&sb->s_umount);
1062 deactivate_super(sb);
1063 free_cg_links(&tmp_cg_links);
1064 return ret;
1067 static void cgroup_kill_sb(struct super_block *sb) {
1068 struct cgroupfs_root *root = sb->s_fs_info;
1069 struct cgroup *cgrp = &root->top_cgroup;
1070 int ret;
1072 BUG_ON(!root);
1074 BUG_ON(root->number_of_cgroups != 1);
1075 BUG_ON(!list_empty(&cgrp->children));
1076 BUG_ON(!list_empty(&cgrp->sibling));
1078 mutex_lock(&cgroup_mutex);
1080 /* Rebind all subsystems back to the default hierarchy */
1081 ret = rebind_subsystems(root, 0);
1082 /* Shouldn't be able to fail ... */
1083 BUG_ON(ret);
1086 * Release all the links from css_sets to this hierarchy's
1087 * root cgroup
1089 write_lock(&css_set_lock);
1090 while (!list_empty(&cgrp->css_sets)) {
1091 struct cg_cgroup_link *link;
1092 link = list_entry(cgrp->css_sets.next,
1093 struct cg_cgroup_link, cgrp_link_list);
1094 list_del(&link->cg_link_list);
1095 list_del(&link->cgrp_link_list);
1096 kfree(link);
1098 write_unlock(&css_set_lock);
1100 if (!list_empty(&root->root_list)) {
1101 list_del(&root->root_list);
1102 root_count--;
1104 mutex_unlock(&cgroup_mutex);
1106 kfree(root);
1107 kill_litter_super(sb);
1110 static struct file_system_type cgroup_fs_type = {
1111 .name = "cgroup",
1112 .get_sb = cgroup_get_sb,
1113 .kill_sb = cgroup_kill_sb,
1116 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1118 return dentry->d_fsdata;
1121 static inline struct cftype *__d_cft(struct dentry *dentry)
1123 return dentry->d_fsdata;
1127 * cgroup_path - generate the path of a cgroup
1128 * @cgrp: the cgroup in question
1129 * @buf: the buffer to write the path into
1130 * @buflen: the length of the buffer
1132 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1133 * Returns 0 on success, -errno on error.
1135 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1137 char *start;
1139 if (cgrp == dummytop) {
1141 * Inactive subsystems have no dentry for their root
1142 * cgroup
1144 strcpy(buf, "/");
1145 return 0;
1148 start = buf + buflen;
1150 *--start = '\0';
1151 for (;;) {
1152 int len = cgrp->dentry->d_name.len;
1153 if ((start -= len) < buf)
1154 return -ENAMETOOLONG;
1155 memcpy(start, cgrp->dentry->d_name.name, len);
1156 cgrp = cgrp->parent;
1157 if (!cgrp)
1158 break;
1159 if (!cgrp->parent)
1160 continue;
1161 if (--start < buf)
1162 return -ENAMETOOLONG;
1163 *start = '/';
1165 memmove(buf, start, buf + buflen - start);
1166 return 0;
1170 * Return the first subsystem attached to a cgroup's hierarchy, and
1171 * its subsystem id.
1174 static void get_first_subsys(const struct cgroup *cgrp,
1175 struct cgroup_subsys_state **css, int *subsys_id)
1177 const struct cgroupfs_root *root = cgrp->root;
1178 const struct cgroup_subsys *test_ss;
1179 BUG_ON(list_empty(&root->subsys_list));
1180 test_ss = list_entry(root->subsys_list.next,
1181 struct cgroup_subsys, sibling);
1182 if (css) {
1183 *css = cgrp->subsys[test_ss->subsys_id];
1184 BUG_ON(!*css);
1186 if (subsys_id)
1187 *subsys_id = test_ss->subsys_id;
1191 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1192 * @cgrp: the cgroup the task is attaching to
1193 * @tsk: the task to be attached
1195 * Call holding cgroup_mutex. May take task_lock of
1196 * the task 'tsk' during call.
1198 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1200 int retval = 0;
1201 struct cgroup_subsys *ss;
1202 struct cgroup *oldcgrp;
1203 struct css_set *cg = tsk->cgroups;
1204 struct css_set *newcg;
1205 struct cgroupfs_root *root = cgrp->root;
1206 int subsys_id;
1208 get_first_subsys(cgrp, NULL, &subsys_id);
1210 /* Nothing to do if the task is already in that cgroup */
1211 oldcgrp = task_cgroup(tsk, subsys_id);
1212 if (cgrp == oldcgrp)
1213 return 0;
1215 for_each_subsys(root, ss) {
1216 if (ss->can_attach) {
1217 retval = ss->can_attach(ss, cgrp, tsk);
1218 if (retval)
1219 return retval;
1224 * Locate or allocate a new css_set for this task,
1225 * based on its final set of cgroups
1227 newcg = find_css_set(cg, cgrp);
1228 if (!newcg)
1229 return -ENOMEM;
1231 task_lock(tsk);
1232 if (tsk->flags & PF_EXITING) {
1233 task_unlock(tsk);
1234 put_css_set(newcg);
1235 return -ESRCH;
1237 rcu_assign_pointer(tsk->cgroups, newcg);
1238 task_unlock(tsk);
1240 /* Update the css_set linked lists if we're using them */
1241 write_lock(&css_set_lock);
1242 if (!list_empty(&tsk->cg_list)) {
1243 list_del(&tsk->cg_list);
1244 list_add(&tsk->cg_list, &newcg->tasks);
1246 write_unlock(&css_set_lock);
1248 for_each_subsys(root, ss) {
1249 if (ss->attach)
1250 ss->attach(ss, cgrp, oldcgrp, tsk);
1252 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1253 synchronize_rcu();
1254 put_css_set(cg);
1255 return 0;
1259 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1260 * cgroup_mutex, may take task_lock of task
1262 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1264 pid_t pid;
1265 struct task_struct *tsk;
1266 int ret;
1268 if (sscanf(pidbuf, "%d", &pid) != 1)
1269 return -EIO;
1271 if (pid) {
1272 rcu_read_lock();
1273 tsk = find_task_by_vpid(pid);
1274 if (!tsk || tsk->flags & PF_EXITING) {
1275 rcu_read_unlock();
1276 return -ESRCH;
1278 get_task_struct(tsk);
1279 rcu_read_unlock();
1281 if ((current->euid) && (current->euid != tsk->uid)
1282 && (current->euid != tsk->suid)) {
1283 put_task_struct(tsk);
1284 return -EACCES;
1286 } else {
1287 tsk = current;
1288 get_task_struct(tsk);
1291 ret = cgroup_attach_task(cgrp, tsk);
1292 put_task_struct(tsk);
1293 return ret;
1296 /* The various types of files and directories in a cgroup file system */
1297 enum cgroup_filetype {
1298 FILE_ROOT,
1299 FILE_DIR,
1300 FILE_TASKLIST,
1301 FILE_NOTIFY_ON_RELEASE,
1302 FILE_RELEASABLE,
1303 FILE_RELEASE_AGENT,
1306 static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1307 struct file *file,
1308 const char __user *userbuf,
1309 size_t nbytes, loff_t *unused_ppos)
1311 char buffer[64];
1312 int retval = 0;
1313 u64 val;
1314 char *end;
1316 if (!nbytes)
1317 return -EINVAL;
1318 if (nbytes >= sizeof(buffer))
1319 return -E2BIG;
1320 if (copy_from_user(buffer, userbuf, nbytes))
1321 return -EFAULT;
1323 buffer[nbytes] = 0; /* nul-terminate */
1325 /* strip newline if necessary */
1326 if (nbytes && (buffer[nbytes-1] == '\n'))
1327 buffer[nbytes-1] = 0;
1328 val = simple_strtoull(buffer, &end, 0);
1329 if (*end)
1330 return -EINVAL;
1332 /* Pass to subsystem */
1333 retval = cft->write_uint(cgrp, cft, val);
1334 if (!retval)
1335 retval = nbytes;
1336 return retval;
1339 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1340 struct cftype *cft,
1341 struct file *file,
1342 const char __user *userbuf,
1343 size_t nbytes, loff_t *unused_ppos)
1345 enum cgroup_filetype type = cft->private;
1346 char *buffer;
1347 int retval = 0;
1349 if (nbytes >= PATH_MAX)
1350 return -E2BIG;
1352 /* +1 for nul-terminator */
1353 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1354 if (buffer == NULL)
1355 return -ENOMEM;
1357 if (copy_from_user(buffer, userbuf, nbytes)) {
1358 retval = -EFAULT;
1359 goto out1;
1361 buffer[nbytes] = 0; /* nul-terminate */
1362 strstrip(buffer); /* strip -just- trailing whitespace */
1364 mutex_lock(&cgroup_mutex);
1367 * This was already checked for in cgroup_file_write(), but
1368 * check again now we're holding cgroup_mutex.
1370 if (cgroup_is_removed(cgrp)) {
1371 retval = -ENODEV;
1372 goto out2;
1375 switch (type) {
1376 case FILE_TASKLIST:
1377 retval = attach_task_by_pid(cgrp, buffer);
1378 break;
1379 case FILE_NOTIFY_ON_RELEASE:
1380 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1381 if (simple_strtoul(buffer, NULL, 10) != 0)
1382 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1383 else
1384 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1385 break;
1386 case FILE_RELEASE_AGENT:
1387 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1388 strcpy(cgrp->root->release_agent_path, buffer);
1389 break;
1390 default:
1391 retval = -EINVAL;
1392 goto out2;
1395 if (retval == 0)
1396 retval = nbytes;
1397 out2:
1398 mutex_unlock(&cgroup_mutex);
1399 out1:
1400 kfree(buffer);
1401 return retval;
1404 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1405 size_t nbytes, loff_t *ppos)
1407 struct cftype *cft = __d_cft(file->f_dentry);
1408 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1410 if (!cft || cgroup_is_removed(cgrp))
1411 return -ENODEV;
1412 if (cft->write)
1413 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1414 if (cft->write_uint)
1415 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1416 return -EINVAL;
1419 static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1420 struct file *file,
1421 char __user *buf, size_t nbytes,
1422 loff_t *ppos)
1424 char tmp[64];
1425 u64 val = cft->read_uint(cgrp, cft);
1426 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1428 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1431 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1432 struct cftype *cft,
1433 struct file *file,
1434 char __user *buf,
1435 size_t nbytes, loff_t *ppos)
1437 enum cgroup_filetype type = cft->private;
1438 char *page;
1439 ssize_t retval = 0;
1440 char *s;
1442 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1443 return -ENOMEM;
1445 s = page;
1447 switch (type) {
1448 case FILE_RELEASE_AGENT:
1450 struct cgroupfs_root *root;
1451 size_t n;
1452 mutex_lock(&cgroup_mutex);
1453 root = cgrp->root;
1454 n = strnlen(root->release_agent_path,
1455 sizeof(root->release_agent_path));
1456 n = min(n, (size_t) PAGE_SIZE);
1457 strncpy(s, root->release_agent_path, n);
1458 mutex_unlock(&cgroup_mutex);
1459 s += n;
1460 break;
1462 default:
1463 retval = -EINVAL;
1464 goto out;
1466 *s++ = '\n';
1468 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1469 out:
1470 free_page((unsigned long)page);
1471 return retval;
1474 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1475 size_t nbytes, loff_t *ppos)
1477 struct cftype *cft = __d_cft(file->f_dentry);
1478 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1480 if (!cft || cgroup_is_removed(cgrp))
1481 return -ENODEV;
1483 if (cft->read)
1484 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1485 if (cft->read_uint)
1486 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1487 return -EINVAL;
1490 static int cgroup_file_open(struct inode *inode, struct file *file)
1492 int err;
1493 struct cftype *cft;
1495 err = generic_file_open(inode, file);
1496 if (err)
1497 return err;
1499 cft = __d_cft(file->f_dentry);
1500 if (!cft)
1501 return -ENODEV;
1502 if (cft->open)
1503 err = cft->open(inode, file);
1504 else
1505 err = 0;
1507 return err;
1510 static int cgroup_file_release(struct inode *inode, struct file *file)
1512 struct cftype *cft = __d_cft(file->f_dentry);
1513 if (cft->release)
1514 return cft->release(inode, file);
1515 return 0;
1519 * cgroup_rename - Only allow simple rename of directories in place.
1521 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1522 struct inode *new_dir, struct dentry *new_dentry)
1524 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1525 return -ENOTDIR;
1526 if (new_dentry->d_inode)
1527 return -EEXIST;
1528 if (old_dir != new_dir)
1529 return -EIO;
1530 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1533 static struct file_operations cgroup_file_operations = {
1534 .read = cgroup_file_read,
1535 .write = cgroup_file_write,
1536 .llseek = generic_file_llseek,
1537 .open = cgroup_file_open,
1538 .release = cgroup_file_release,
1541 static struct inode_operations cgroup_dir_inode_operations = {
1542 .lookup = simple_lookup,
1543 .mkdir = cgroup_mkdir,
1544 .rmdir = cgroup_rmdir,
1545 .rename = cgroup_rename,
1548 static int cgroup_create_file(struct dentry *dentry, int mode,
1549 struct super_block *sb)
1551 static struct dentry_operations cgroup_dops = {
1552 .d_iput = cgroup_diput,
1555 struct inode *inode;
1557 if (!dentry)
1558 return -ENOENT;
1559 if (dentry->d_inode)
1560 return -EEXIST;
1562 inode = cgroup_new_inode(mode, sb);
1563 if (!inode)
1564 return -ENOMEM;
1566 if (S_ISDIR(mode)) {
1567 inode->i_op = &cgroup_dir_inode_operations;
1568 inode->i_fop = &simple_dir_operations;
1570 /* start off with i_nlink == 2 (for "." entry) */
1571 inc_nlink(inode);
1573 /* start with the directory inode held, so that we can
1574 * populate it without racing with another mkdir */
1575 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1576 } else if (S_ISREG(mode)) {
1577 inode->i_size = 0;
1578 inode->i_fop = &cgroup_file_operations;
1580 dentry->d_op = &cgroup_dops;
1581 d_instantiate(dentry, inode);
1582 dget(dentry); /* Extra count - pin the dentry in core */
1583 return 0;
1587 * cgroup_create_dir - create a directory for an object.
1588 * @cgrp: the cgroup we create the directory for. It must have a valid
1589 * ->parent field. And we are going to fill its ->dentry field.
1590 * @dentry: dentry of the new cgroup
1591 * @mode: mode to set on new directory.
1593 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1594 int mode)
1596 struct dentry *parent;
1597 int error = 0;
1599 parent = cgrp->parent->dentry;
1600 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1601 if (!error) {
1602 dentry->d_fsdata = cgrp;
1603 inc_nlink(parent->d_inode);
1604 cgrp->dentry = dentry;
1605 dget(dentry);
1607 dput(dentry);
1609 return error;
1612 int cgroup_add_file(struct cgroup *cgrp,
1613 struct cgroup_subsys *subsys,
1614 const struct cftype *cft)
1616 struct dentry *dir = cgrp->dentry;
1617 struct dentry *dentry;
1618 int error;
1620 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1621 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1622 strcpy(name, subsys->name);
1623 strcat(name, ".");
1625 strcat(name, cft->name);
1626 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1627 dentry = lookup_one_len(name, dir, strlen(name));
1628 if (!IS_ERR(dentry)) {
1629 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1630 cgrp->root->sb);
1631 if (!error)
1632 dentry->d_fsdata = (void *)cft;
1633 dput(dentry);
1634 } else
1635 error = PTR_ERR(dentry);
1636 return error;
1639 int cgroup_add_files(struct cgroup *cgrp,
1640 struct cgroup_subsys *subsys,
1641 const struct cftype cft[],
1642 int count)
1644 int i, err;
1645 for (i = 0; i < count; i++) {
1646 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1647 if (err)
1648 return err;
1650 return 0;
1654 * cgroup_task_count - count the number of tasks in a cgroup.
1655 * @cgrp: the cgroup in question
1657 * Return the number of tasks in the cgroup.
1659 int cgroup_task_count(const struct cgroup *cgrp)
1661 int count = 0;
1662 struct list_head *l;
1664 read_lock(&css_set_lock);
1665 l = cgrp->css_sets.next;
1666 while (l != &cgrp->css_sets) {
1667 struct cg_cgroup_link *link =
1668 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1669 count += atomic_read(&link->cg->ref.refcount);
1670 l = l->next;
1672 read_unlock(&css_set_lock);
1673 return count;
1677 * Advance a list_head iterator. The iterator should be positioned at
1678 * the start of a css_set
1680 static void cgroup_advance_iter(struct cgroup *cgrp,
1681 struct cgroup_iter *it)
1683 struct list_head *l = it->cg_link;
1684 struct cg_cgroup_link *link;
1685 struct css_set *cg;
1687 /* Advance to the next non-empty css_set */
1688 do {
1689 l = l->next;
1690 if (l == &cgrp->css_sets) {
1691 it->cg_link = NULL;
1692 return;
1694 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1695 cg = link->cg;
1696 } while (list_empty(&cg->tasks));
1697 it->cg_link = l;
1698 it->task = cg->tasks.next;
1702 * To reduce the fork() overhead for systems that are not actually
1703 * using their cgroups capability, we don't maintain the lists running
1704 * through each css_set to its tasks until we see the list actually
1705 * used - in other words after the first call to cgroup_iter_start().
1707 * The tasklist_lock is not held here, as do_each_thread() and
1708 * while_each_thread() are protected by RCU.
1710 void cgroup_enable_task_cg_lists(void)
1712 struct task_struct *p, *g;
1713 write_lock(&css_set_lock);
1714 use_task_css_set_links = 1;
1715 do_each_thread(g, p) {
1716 task_lock(p);
1717 if (list_empty(&p->cg_list))
1718 list_add(&p->cg_list, &p->cgroups->tasks);
1719 task_unlock(p);
1720 } while_each_thread(g, p);
1721 write_unlock(&css_set_lock);
1724 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1727 * The first time anyone tries to iterate across a cgroup,
1728 * we need to enable the list linking each css_set to its
1729 * tasks, and fix up all existing tasks.
1731 if (!use_task_css_set_links)
1732 cgroup_enable_task_cg_lists();
1734 read_lock(&css_set_lock);
1735 it->cg_link = &cgrp->css_sets;
1736 cgroup_advance_iter(cgrp, it);
1739 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1740 struct cgroup_iter *it)
1742 struct task_struct *res;
1743 struct list_head *l = it->task;
1745 /* If the iterator cg is NULL, we have no tasks */
1746 if (!it->cg_link)
1747 return NULL;
1748 res = list_entry(l, struct task_struct, cg_list);
1749 /* Advance iterator to find next entry */
1750 l = l->next;
1751 if (l == &res->cgroups->tasks) {
1752 /* We reached the end of this task list - move on to
1753 * the next cg_cgroup_link */
1754 cgroup_advance_iter(cgrp, it);
1755 } else {
1756 it->task = l;
1758 return res;
1761 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1763 read_unlock(&css_set_lock);
1766 static inline int started_after_time(struct task_struct *t1,
1767 struct timespec *time,
1768 struct task_struct *t2)
1770 int start_diff = timespec_compare(&t1->start_time, time);
1771 if (start_diff > 0) {
1772 return 1;
1773 } else if (start_diff < 0) {
1774 return 0;
1775 } else {
1777 * Arbitrarily, if two processes started at the same
1778 * time, we'll say that the lower pointer value
1779 * started first. Note that t2 may have exited by now
1780 * so this may not be a valid pointer any longer, but
1781 * that's fine - it still serves to distinguish
1782 * between two tasks started (effectively) simultaneously.
1784 return t1 > t2;
1789 * This function is a callback from heap_insert() and is used to order
1790 * the heap.
1791 * In this case we order the heap in descending task start time.
1793 static inline int started_after(void *p1, void *p2)
1795 struct task_struct *t1 = p1;
1796 struct task_struct *t2 = p2;
1797 return started_after_time(t1, &t2->start_time, t2);
1801 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1802 * @scan: struct cgroup_scanner containing arguments for the scan
1804 * Arguments include pointers to callback functions test_task() and
1805 * process_task().
1806 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1807 * and if it returns true, call process_task() for it also.
1808 * The test_task pointer may be NULL, meaning always true (select all tasks).
1809 * Effectively duplicates cgroup_iter_{start,next,end}()
1810 * but does not lock css_set_lock for the call to process_task().
1811 * The struct cgroup_scanner may be embedded in any structure of the caller's
1812 * creation.
1813 * It is guaranteed that process_task() will act on every task that
1814 * is a member of the cgroup for the duration of this call. This
1815 * function may or may not call process_task() for tasks that exit
1816 * or move to a different cgroup during the call, or are forked or
1817 * move into the cgroup during the call.
1819 * Note that test_task() may be called with locks held, and may in some
1820 * situations be called multiple times for the same task, so it should
1821 * be cheap.
1822 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1823 * pre-allocated and will be used for heap operations (and its "gt" member will
1824 * be overwritten), else a temporary heap will be used (allocation of which
1825 * may cause this function to fail).
1827 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1829 int retval, i;
1830 struct cgroup_iter it;
1831 struct task_struct *p, *dropped;
1832 /* Never dereference latest_task, since it's not refcounted */
1833 struct task_struct *latest_task = NULL;
1834 struct ptr_heap tmp_heap;
1835 struct ptr_heap *heap;
1836 struct timespec latest_time = { 0, 0 };
1838 if (scan->heap) {
1839 /* The caller supplied our heap and pre-allocated its memory */
1840 heap = scan->heap;
1841 heap->gt = &started_after;
1842 } else {
1843 /* We need to allocate our own heap memory */
1844 heap = &tmp_heap;
1845 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1846 if (retval)
1847 /* cannot allocate the heap */
1848 return retval;
1851 again:
1853 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1854 * to determine which are of interest, and using the scanner's
1855 * "process_task" callback to process any of them that need an update.
1856 * Since we don't want to hold any locks during the task updates,
1857 * gather tasks to be processed in a heap structure.
1858 * The heap is sorted by descending task start time.
1859 * If the statically-sized heap fills up, we overflow tasks that
1860 * started later, and in future iterations only consider tasks that
1861 * started after the latest task in the previous pass. This
1862 * guarantees forward progress and that we don't miss any tasks.
1864 heap->size = 0;
1865 cgroup_iter_start(scan->cg, &it);
1866 while ((p = cgroup_iter_next(scan->cg, &it))) {
1868 * Only affect tasks that qualify per the caller's callback,
1869 * if he provided one
1871 if (scan->test_task && !scan->test_task(p, scan))
1872 continue;
1874 * Only process tasks that started after the last task
1875 * we processed
1877 if (!started_after_time(p, &latest_time, latest_task))
1878 continue;
1879 dropped = heap_insert(heap, p);
1880 if (dropped == NULL) {
1882 * The new task was inserted; the heap wasn't
1883 * previously full
1885 get_task_struct(p);
1886 } else if (dropped != p) {
1888 * The new task was inserted, and pushed out a
1889 * different task
1891 get_task_struct(p);
1892 put_task_struct(dropped);
1895 * Else the new task was newer than anything already in
1896 * the heap and wasn't inserted
1899 cgroup_iter_end(scan->cg, &it);
1901 if (heap->size) {
1902 for (i = 0; i < heap->size; i++) {
1903 struct task_struct *p = heap->ptrs[i];
1904 if (i == 0) {
1905 latest_time = p->start_time;
1906 latest_task = p;
1908 /* Process the task per the caller's callback */
1909 scan->process_task(p, scan);
1910 put_task_struct(p);
1913 * If we had to process any tasks at all, scan again
1914 * in case some of them were in the middle of forking
1915 * children that didn't get processed.
1916 * Not the most efficient way to do it, but it avoids
1917 * having to take callback_mutex in the fork path
1919 goto again;
1921 if (heap == &tmp_heap)
1922 heap_free(&tmp_heap);
1923 return 0;
1927 * Stuff for reading the 'tasks' file.
1929 * Reading this file can return large amounts of data if a cgroup has
1930 * *lots* of attached tasks. So it may need several calls to read(),
1931 * but we cannot guarantee that the information we produce is correct
1932 * unless we produce it entirely atomically.
1934 * Upon tasks file open(), a struct ctr_struct is allocated, that
1935 * will have a pointer to an array (also allocated here). The struct
1936 * ctr_struct * is stored in file->private_data. Its resources will
1937 * be freed by release() when the file is closed. The array is used
1938 * to sprintf the PIDs and then used by read().
1940 struct ctr_struct {
1941 char *buf;
1942 int bufsz;
1946 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1947 * 'cgrp'. Return actual number of pids loaded. No need to
1948 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1949 * read section, so the css_set can't go away, and is
1950 * immutable after creation.
1952 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1954 int n = 0;
1955 struct cgroup_iter it;
1956 struct task_struct *tsk;
1957 cgroup_iter_start(cgrp, &it);
1958 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1959 if (unlikely(n == npids))
1960 break;
1961 pidarray[n++] = task_pid_vnr(tsk);
1963 cgroup_iter_end(cgrp, &it);
1964 return n;
1968 * cgroupstats_build - build and fill cgroupstats
1969 * @stats: cgroupstats to fill information into
1970 * @dentry: A dentry entry belonging to the cgroup for which stats have
1971 * been requested.
1973 * Build and fill cgroupstats so that taskstats can export it to user
1974 * space.
1976 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1978 int ret = -EINVAL;
1979 struct cgroup *cgrp;
1980 struct cgroup_iter it;
1981 struct task_struct *tsk;
1983 * Validate dentry by checking the superblock operations
1985 if (dentry->d_sb->s_op != &cgroup_ops)
1986 goto err;
1988 ret = 0;
1989 cgrp = dentry->d_fsdata;
1990 rcu_read_lock();
1992 cgroup_iter_start(cgrp, &it);
1993 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1994 switch (tsk->state) {
1995 case TASK_RUNNING:
1996 stats->nr_running++;
1997 break;
1998 case TASK_INTERRUPTIBLE:
1999 stats->nr_sleeping++;
2000 break;
2001 case TASK_UNINTERRUPTIBLE:
2002 stats->nr_uninterruptible++;
2003 break;
2004 case TASK_STOPPED:
2005 stats->nr_stopped++;
2006 break;
2007 default:
2008 if (delayacct_is_task_waiting_on_io(tsk))
2009 stats->nr_io_wait++;
2010 break;
2013 cgroup_iter_end(cgrp, &it);
2015 rcu_read_unlock();
2016 err:
2017 return ret;
2020 static int cmppid(const void *a, const void *b)
2022 return *(pid_t *)a - *(pid_t *)b;
2026 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2027 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2028 * count 'cnt' of how many chars would be written if buf were large enough.
2030 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2032 int cnt = 0;
2033 int i;
2035 for (i = 0; i < npids; i++)
2036 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2037 return cnt;
2041 * Handle an open on 'tasks' file. Prepare a buffer listing the
2042 * process id's of tasks currently attached to the cgroup being opened.
2044 * Does not require any specific cgroup mutexes, and does not take any.
2046 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2048 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2049 struct ctr_struct *ctr;
2050 pid_t *pidarray;
2051 int npids;
2052 char c;
2054 if (!(file->f_mode & FMODE_READ))
2055 return 0;
2057 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2058 if (!ctr)
2059 goto err0;
2062 * If cgroup gets more users after we read count, we won't have
2063 * enough space - tough. This race is indistinguishable to the
2064 * caller from the case that the additional cgroup users didn't
2065 * show up until sometime later on.
2067 npids = cgroup_task_count(cgrp);
2068 if (npids) {
2069 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2070 if (!pidarray)
2071 goto err1;
2073 npids = pid_array_load(pidarray, npids, cgrp);
2074 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2076 /* Call pid_array_to_buf() twice, first just to get bufsz */
2077 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2078 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2079 if (!ctr->buf)
2080 goto err2;
2081 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2083 kfree(pidarray);
2084 } else {
2085 ctr->buf = 0;
2086 ctr->bufsz = 0;
2088 file->private_data = ctr;
2089 return 0;
2091 err2:
2092 kfree(pidarray);
2093 err1:
2094 kfree(ctr);
2095 err0:
2096 return -ENOMEM;
2099 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2100 struct cftype *cft,
2101 struct file *file, char __user *buf,
2102 size_t nbytes, loff_t *ppos)
2104 struct ctr_struct *ctr = file->private_data;
2106 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2109 static int cgroup_tasks_release(struct inode *unused_inode,
2110 struct file *file)
2112 struct ctr_struct *ctr;
2114 if (file->f_mode & FMODE_READ) {
2115 ctr = file->private_data;
2116 kfree(ctr->buf);
2117 kfree(ctr);
2119 return 0;
2122 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2123 struct cftype *cft)
2125 return notify_on_release(cgrp);
2128 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2130 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2134 * for the common functions, 'private' gives the type of file
2136 static struct cftype files[] = {
2138 .name = "tasks",
2139 .open = cgroup_tasks_open,
2140 .read = cgroup_tasks_read,
2141 .write = cgroup_common_file_write,
2142 .release = cgroup_tasks_release,
2143 .private = FILE_TASKLIST,
2147 .name = "notify_on_release",
2148 .read_uint = cgroup_read_notify_on_release,
2149 .write = cgroup_common_file_write,
2150 .private = FILE_NOTIFY_ON_RELEASE,
2154 .name = "releasable",
2155 .read_uint = cgroup_read_releasable,
2156 .private = FILE_RELEASABLE,
2160 static struct cftype cft_release_agent = {
2161 .name = "release_agent",
2162 .read = cgroup_common_file_read,
2163 .write = cgroup_common_file_write,
2164 .private = FILE_RELEASE_AGENT,
2167 static int cgroup_populate_dir(struct cgroup *cgrp)
2169 int err;
2170 struct cgroup_subsys *ss;
2172 /* First clear out any existing files */
2173 cgroup_clear_directory(cgrp->dentry);
2175 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2176 if (err < 0)
2177 return err;
2179 if (cgrp == cgrp->top_cgroup) {
2180 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2181 return err;
2184 for_each_subsys(cgrp->root, ss) {
2185 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2186 return err;
2189 return 0;
2192 static void init_cgroup_css(struct cgroup_subsys_state *css,
2193 struct cgroup_subsys *ss,
2194 struct cgroup *cgrp)
2196 css->cgroup = cgrp;
2197 atomic_set(&css->refcnt, 0);
2198 css->flags = 0;
2199 if (cgrp == dummytop)
2200 set_bit(CSS_ROOT, &css->flags);
2201 BUG_ON(cgrp->subsys[ss->subsys_id]);
2202 cgrp->subsys[ss->subsys_id] = css;
2206 * cgroup_create - create a cgroup
2207 * @parent: cgroup that will be parent of the new cgroup
2208 * @dentry: dentry of the new cgroup
2209 * @mode: mode to set on new inode
2211 * Must be called with the mutex on the parent inode held
2213 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2214 int mode)
2216 struct cgroup *cgrp;
2217 struct cgroupfs_root *root = parent->root;
2218 int err = 0;
2219 struct cgroup_subsys *ss;
2220 struct super_block *sb = root->sb;
2222 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2223 if (!cgrp)
2224 return -ENOMEM;
2226 /* Grab a reference on the superblock so the hierarchy doesn't
2227 * get deleted on unmount if there are child cgroups. This
2228 * can be done outside cgroup_mutex, since the sb can't
2229 * disappear while someone has an open control file on the
2230 * fs */
2231 atomic_inc(&sb->s_active);
2233 mutex_lock(&cgroup_mutex);
2235 cgrp->flags = 0;
2236 INIT_LIST_HEAD(&cgrp->sibling);
2237 INIT_LIST_HEAD(&cgrp->children);
2238 INIT_LIST_HEAD(&cgrp->css_sets);
2239 INIT_LIST_HEAD(&cgrp->release_list);
2241 cgrp->parent = parent;
2242 cgrp->root = parent->root;
2243 cgrp->top_cgroup = parent->top_cgroup;
2245 for_each_subsys(root, ss) {
2246 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2247 if (IS_ERR(css)) {
2248 err = PTR_ERR(css);
2249 goto err_destroy;
2251 init_cgroup_css(css, ss, cgrp);
2254 list_add(&cgrp->sibling, &cgrp->parent->children);
2255 root->number_of_cgroups++;
2257 err = cgroup_create_dir(cgrp, dentry, mode);
2258 if (err < 0)
2259 goto err_remove;
2261 /* The cgroup directory was pre-locked for us */
2262 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2264 err = cgroup_populate_dir(cgrp);
2265 /* If err < 0, we have a half-filled directory - oh well ;) */
2267 mutex_unlock(&cgroup_mutex);
2268 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2270 return 0;
2272 err_remove:
2274 list_del(&cgrp->sibling);
2275 root->number_of_cgroups--;
2277 err_destroy:
2279 for_each_subsys(root, ss) {
2280 if (cgrp->subsys[ss->subsys_id])
2281 ss->destroy(ss, cgrp);
2284 mutex_unlock(&cgroup_mutex);
2286 /* Release the reference count that we took on the superblock */
2287 deactivate_super(sb);
2289 kfree(cgrp);
2290 return err;
2293 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2295 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2297 /* the vfs holds inode->i_mutex already */
2298 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2301 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2303 /* Check the reference count on each subsystem. Since we
2304 * already established that there are no tasks in the
2305 * cgroup, if the css refcount is also 0, then there should
2306 * be no outstanding references, so the subsystem is safe to
2307 * destroy. We scan across all subsystems rather than using
2308 * the per-hierarchy linked list of mounted subsystems since
2309 * we can be called via check_for_release() with no
2310 * synchronization other than RCU, and the subsystem linked
2311 * list isn't RCU-safe */
2312 int i;
2313 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2314 struct cgroup_subsys *ss = subsys[i];
2315 struct cgroup_subsys_state *css;
2316 /* Skip subsystems not in this hierarchy */
2317 if (ss->root != cgrp->root)
2318 continue;
2319 css = cgrp->subsys[ss->subsys_id];
2320 /* When called from check_for_release() it's possible
2321 * that by this point the cgroup has been removed
2322 * and the css deleted. But a false-positive doesn't
2323 * matter, since it can only happen if the cgroup
2324 * has been deleted and hence no longer needs the
2325 * release agent to be called anyway. */
2326 if (css && atomic_read(&css->refcnt))
2327 return 1;
2329 return 0;
2332 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2334 struct cgroup *cgrp = dentry->d_fsdata;
2335 struct dentry *d;
2336 struct cgroup *parent;
2337 struct super_block *sb;
2338 struct cgroupfs_root *root;
2340 /* the vfs holds both inode->i_mutex already */
2342 mutex_lock(&cgroup_mutex);
2343 if (atomic_read(&cgrp->count) != 0) {
2344 mutex_unlock(&cgroup_mutex);
2345 return -EBUSY;
2347 if (!list_empty(&cgrp->children)) {
2348 mutex_unlock(&cgroup_mutex);
2349 return -EBUSY;
2352 parent = cgrp->parent;
2353 root = cgrp->root;
2354 sb = root->sb;
2357 * Call pre_destroy handlers of subsys. Notify subsystems
2358 * that rmdir() request comes.
2360 cgroup_call_pre_destroy(cgrp);
2362 if (cgroup_has_css_refs(cgrp)) {
2363 mutex_unlock(&cgroup_mutex);
2364 return -EBUSY;
2367 spin_lock(&release_list_lock);
2368 set_bit(CGRP_REMOVED, &cgrp->flags);
2369 if (!list_empty(&cgrp->release_list))
2370 list_del(&cgrp->release_list);
2371 spin_unlock(&release_list_lock);
2372 /* delete my sibling from parent->children */
2373 list_del(&cgrp->sibling);
2374 spin_lock(&cgrp->dentry->d_lock);
2375 d = dget(cgrp->dentry);
2376 cgrp->dentry = NULL;
2377 spin_unlock(&d->d_lock);
2379 cgroup_d_remove_dir(d);
2380 dput(d);
2382 set_bit(CGRP_RELEASABLE, &parent->flags);
2383 check_for_release(parent);
2385 mutex_unlock(&cgroup_mutex);
2386 return 0;
2389 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2391 struct cgroup_subsys_state *css;
2392 struct list_head *l;
2394 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2396 /* Create the top cgroup state for this subsystem */
2397 ss->root = &rootnode;
2398 css = ss->create(ss, dummytop);
2399 /* We don't handle early failures gracefully */
2400 BUG_ON(IS_ERR(css));
2401 init_cgroup_css(css, ss, dummytop);
2403 /* Update all cgroup groups to contain a subsys
2404 * pointer to this state - since the subsystem is
2405 * newly registered, all tasks and hence all cgroup
2406 * groups are in the subsystem's top cgroup. */
2407 write_lock(&css_set_lock);
2408 l = &init_css_set.list;
2409 do {
2410 struct css_set *cg =
2411 list_entry(l, struct css_set, list);
2412 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2413 l = l->next;
2414 } while (l != &init_css_set.list);
2415 write_unlock(&css_set_lock);
2417 /* If this subsystem requested that it be notified with fork
2418 * events, we should send it one now for every process in the
2419 * system */
2420 if (ss->fork) {
2421 struct task_struct *g, *p;
2423 read_lock(&tasklist_lock);
2424 do_each_thread(g, p) {
2425 ss->fork(ss, p);
2426 } while_each_thread(g, p);
2427 read_unlock(&tasklist_lock);
2430 need_forkexit_callback |= ss->fork || ss->exit;
2432 ss->active = 1;
2436 * cgroup_init_early - cgroup initialization at system boot
2438 * Initialize cgroups at system boot, and initialize any
2439 * subsystems that request early init.
2441 int __init cgroup_init_early(void)
2443 int i;
2444 kref_init(&init_css_set.ref);
2445 kref_get(&init_css_set.ref);
2446 INIT_LIST_HEAD(&init_css_set.list);
2447 INIT_LIST_HEAD(&init_css_set.cg_links);
2448 INIT_LIST_HEAD(&init_css_set.tasks);
2449 css_set_count = 1;
2450 init_cgroup_root(&rootnode);
2451 list_add(&rootnode.root_list, &roots);
2452 root_count = 1;
2453 init_task.cgroups = &init_css_set;
2455 init_css_set_link.cg = &init_css_set;
2456 list_add(&init_css_set_link.cgrp_link_list,
2457 &rootnode.top_cgroup.css_sets);
2458 list_add(&init_css_set_link.cg_link_list,
2459 &init_css_set.cg_links);
2461 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2462 struct cgroup_subsys *ss = subsys[i];
2464 BUG_ON(!ss->name);
2465 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2466 BUG_ON(!ss->create);
2467 BUG_ON(!ss->destroy);
2468 if (ss->subsys_id != i) {
2469 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2470 ss->name, ss->subsys_id);
2471 BUG();
2474 if (ss->early_init)
2475 cgroup_init_subsys(ss);
2477 return 0;
2481 * cgroup_init - cgroup initialization
2483 * Register cgroup filesystem and /proc file, and initialize
2484 * any subsystems that didn't request early init.
2486 int __init cgroup_init(void)
2488 int err;
2489 int i;
2490 struct proc_dir_entry *entry;
2492 err = bdi_init(&cgroup_backing_dev_info);
2493 if (err)
2494 return err;
2496 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2497 struct cgroup_subsys *ss = subsys[i];
2498 if (!ss->early_init)
2499 cgroup_init_subsys(ss);
2502 err = register_filesystem(&cgroup_fs_type);
2503 if (err < 0)
2504 goto out;
2506 entry = create_proc_entry("cgroups", 0, NULL);
2507 if (entry)
2508 entry->proc_fops = &proc_cgroupstats_operations;
2510 out:
2511 if (err)
2512 bdi_destroy(&cgroup_backing_dev_info);
2514 return err;
2518 * proc_cgroup_show()
2519 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2520 * - Used for /proc/<pid>/cgroup.
2521 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2522 * doesn't really matter if tsk->cgroup changes after we read it,
2523 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2524 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2525 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2526 * cgroup to top_cgroup.
2529 /* TODO: Use a proper seq_file iterator */
2530 static int proc_cgroup_show(struct seq_file *m, void *v)
2532 struct pid *pid;
2533 struct task_struct *tsk;
2534 char *buf;
2535 int retval;
2536 struct cgroupfs_root *root;
2538 retval = -ENOMEM;
2539 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2540 if (!buf)
2541 goto out;
2543 retval = -ESRCH;
2544 pid = m->private;
2545 tsk = get_pid_task(pid, PIDTYPE_PID);
2546 if (!tsk)
2547 goto out_free;
2549 retval = 0;
2551 mutex_lock(&cgroup_mutex);
2553 for_each_root(root) {
2554 struct cgroup_subsys *ss;
2555 struct cgroup *cgrp;
2556 int subsys_id;
2557 int count = 0;
2559 /* Skip this hierarchy if it has no active subsystems */
2560 if (!root->actual_subsys_bits)
2561 continue;
2562 for_each_subsys(root, ss)
2563 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2564 seq_putc(m, ':');
2565 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2566 cgrp = task_cgroup(tsk, subsys_id);
2567 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2568 if (retval < 0)
2569 goto out_unlock;
2570 seq_puts(m, buf);
2571 seq_putc(m, '\n');
2574 out_unlock:
2575 mutex_unlock(&cgroup_mutex);
2576 put_task_struct(tsk);
2577 out_free:
2578 kfree(buf);
2579 out:
2580 return retval;
2583 static int cgroup_open(struct inode *inode, struct file *file)
2585 struct pid *pid = PROC_I(inode)->pid;
2586 return single_open(file, proc_cgroup_show, pid);
2589 struct file_operations proc_cgroup_operations = {
2590 .open = cgroup_open,
2591 .read = seq_read,
2592 .llseek = seq_lseek,
2593 .release = single_release,
2596 /* Display information about each subsystem and each hierarchy */
2597 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2599 int i;
2601 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2602 mutex_lock(&cgroup_mutex);
2603 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2604 struct cgroup_subsys *ss = subsys[i];
2605 seq_printf(m, "%s\t%lu\t%d\n",
2606 ss->name, ss->root->subsys_bits,
2607 ss->root->number_of_cgroups);
2609 mutex_unlock(&cgroup_mutex);
2610 return 0;
2613 static int cgroupstats_open(struct inode *inode, struct file *file)
2615 return single_open(file, proc_cgroupstats_show, 0);
2618 static struct file_operations proc_cgroupstats_operations = {
2619 .open = cgroupstats_open,
2620 .read = seq_read,
2621 .llseek = seq_lseek,
2622 .release = single_release,
2626 * cgroup_fork - attach newly forked task to its parents cgroup.
2627 * @child: pointer to task_struct of forking parent process.
2629 * Description: A task inherits its parent's cgroup at fork().
2631 * A pointer to the shared css_set was automatically copied in
2632 * fork.c by dup_task_struct(). However, we ignore that copy, since
2633 * it was not made under the protection of RCU or cgroup_mutex, so
2634 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2635 * have already changed current->cgroups, allowing the previously
2636 * referenced cgroup group to be removed and freed.
2638 * At the point that cgroup_fork() is called, 'current' is the parent
2639 * task, and the passed argument 'child' points to the child task.
2641 void cgroup_fork(struct task_struct *child)
2643 task_lock(current);
2644 child->cgroups = current->cgroups;
2645 get_css_set(child->cgroups);
2646 task_unlock(current);
2647 INIT_LIST_HEAD(&child->cg_list);
2651 * cgroup_fork_callbacks - run fork callbacks
2652 * @child: the new task
2654 * Called on a new task very soon before adding it to the
2655 * tasklist. No need to take any locks since no-one can
2656 * be operating on this task.
2658 void cgroup_fork_callbacks(struct task_struct *child)
2660 if (need_forkexit_callback) {
2661 int i;
2662 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2663 struct cgroup_subsys *ss = subsys[i];
2664 if (ss->fork)
2665 ss->fork(ss, child);
2671 * cgroup_post_fork - called on a new task after adding it to the task list
2672 * @child: the task in question
2674 * Adds the task to the list running through its css_set if necessary.
2675 * Has to be after the task is visible on the task list in case we race
2676 * with the first call to cgroup_iter_start() - to guarantee that the
2677 * new task ends up on its list.
2679 void cgroup_post_fork(struct task_struct *child)
2681 if (use_task_css_set_links) {
2682 write_lock(&css_set_lock);
2683 if (list_empty(&child->cg_list))
2684 list_add(&child->cg_list, &child->cgroups->tasks);
2685 write_unlock(&css_set_lock);
2689 * cgroup_exit - detach cgroup from exiting task
2690 * @tsk: pointer to task_struct of exiting process
2691 * @run_callback: run exit callbacks?
2693 * Description: Detach cgroup from @tsk and release it.
2695 * Note that cgroups marked notify_on_release force every task in
2696 * them to take the global cgroup_mutex mutex when exiting.
2697 * This could impact scaling on very large systems. Be reluctant to
2698 * use notify_on_release cgroups where very high task exit scaling
2699 * is required on large systems.
2701 * the_top_cgroup_hack:
2703 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2705 * We call cgroup_exit() while the task is still competent to
2706 * handle notify_on_release(), then leave the task attached to the
2707 * root cgroup in each hierarchy for the remainder of its exit.
2709 * To do this properly, we would increment the reference count on
2710 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2711 * code we would add a second cgroup function call, to drop that
2712 * reference. This would just create an unnecessary hot spot on
2713 * the top_cgroup reference count, to no avail.
2715 * Normally, holding a reference to a cgroup without bumping its
2716 * count is unsafe. The cgroup could go away, or someone could
2717 * attach us to a different cgroup, decrementing the count on
2718 * the first cgroup that we never incremented. But in this case,
2719 * top_cgroup isn't going away, and either task has PF_EXITING set,
2720 * which wards off any cgroup_attach_task() attempts, or task is a failed
2721 * fork, never visible to cgroup_attach_task.
2723 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2725 int i;
2726 struct css_set *cg;
2728 if (run_callbacks && need_forkexit_callback) {
2729 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2730 struct cgroup_subsys *ss = subsys[i];
2731 if (ss->exit)
2732 ss->exit(ss, tsk);
2737 * Unlink from the css_set task list if necessary.
2738 * Optimistically check cg_list before taking
2739 * css_set_lock
2741 if (!list_empty(&tsk->cg_list)) {
2742 write_lock(&css_set_lock);
2743 if (!list_empty(&tsk->cg_list))
2744 list_del(&tsk->cg_list);
2745 write_unlock(&css_set_lock);
2748 /* Reassign the task to the init_css_set. */
2749 task_lock(tsk);
2750 cg = tsk->cgroups;
2751 tsk->cgroups = &init_css_set;
2752 task_unlock(tsk);
2753 if (cg)
2754 put_css_set_taskexit(cg);
2758 * cgroup_clone - clone the cgroup the given subsystem is attached to
2759 * @tsk: the task to be moved
2760 * @subsys: the given subsystem
2762 * Duplicate the current cgroup in the hierarchy that the given
2763 * subsystem is attached to, and move this task into the new
2764 * child.
2766 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2768 struct dentry *dentry;
2769 int ret = 0;
2770 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2771 struct cgroup *parent, *child;
2772 struct inode *inode;
2773 struct css_set *cg;
2774 struct cgroupfs_root *root;
2775 struct cgroup_subsys *ss;
2777 /* We shouldn't be called by an unregistered subsystem */
2778 BUG_ON(!subsys->active);
2780 /* First figure out what hierarchy and cgroup we're dealing
2781 * with, and pin them so we can drop cgroup_mutex */
2782 mutex_lock(&cgroup_mutex);
2783 again:
2784 root = subsys->root;
2785 if (root == &rootnode) {
2786 printk(KERN_INFO
2787 "Not cloning cgroup for unused subsystem %s\n",
2788 subsys->name);
2789 mutex_unlock(&cgroup_mutex);
2790 return 0;
2792 cg = tsk->cgroups;
2793 parent = task_cgroup(tsk, subsys->subsys_id);
2795 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2797 /* Pin the hierarchy */
2798 atomic_inc(&parent->root->sb->s_active);
2800 /* Keep the cgroup alive */
2801 get_css_set(cg);
2802 mutex_unlock(&cgroup_mutex);
2804 /* Now do the VFS work to create a cgroup */
2805 inode = parent->dentry->d_inode;
2807 /* Hold the parent directory mutex across this operation to
2808 * stop anyone else deleting the new cgroup */
2809 mutex_lock(&inode->i_mutex);
2810 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2811 if (IS_ERR(dentry)) {
2812 printk(KERN_INFO
2813 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2814 PTR_ERR(dentry));
2815 ret = PTR_ERR(dentry);
2816 goto out_release;
2819 /* Create the cgroup directory, which also creates the cgroup */
2820 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2821 child = __d_cgrp(dentry);
2822 dput(dentry);
2823 if (ret) {
2824 printk(KERN_INFO
2825 "Failed to create cgroup %s: %d\n", nodename,
2826 ret);
2827 goto out_release;
2830 if (!child) {
2831 printk(KERN_INFO
2832 "Couldn't find new cgroup %s\n", nodename);
2833 ret = -ENOMEM;
2834 goto out_release;
2837 /* The cgroup now exists. Retake cgroup_mutex and check
2838 * that we're still in the same state that we thought we
2839 * were. */
2840 mutex_lock(&cgroup_mutex);
2841 if ((root != subsys->root) ||
2842 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2843 /* Aargh, we raced ... */
2844 mutex_unlock(&inode->i_mutex);
2845 put_css_set(cg);
2847 deactivate_super(parent->root->sb);
2848 /* The cgroup is still accessible in the VFS, but
2849 * we're not going to try to rmdir() it at this
2850 * point. */
2851 printk(KERN_INFO
2852 "Race in cgroup_clone() - leaking cgroup %s\n",
2853 nodename);
2854 goto again;
2857 /* do any required auto-setup */
2858 for_each_subsys(root, ss) {
2859 if (ss->post_clone)
2860 ss->post_clone(ss, child);
2863 /* All seems fine. Finish by moving the task into the new cgroup */
2864 ret = cgroup_attach_task(child, tsk);
2865 mutex_unlock(&cgroup_mutex);
2867 out_release:
2868 mutex_unlock(&inode->i_mutex);
2870 mutex_lock(&cgroup_mutex);
2871 put_css_set(cg);
2872 mutex_unlock(&cgroup_mutex);
2873 deactivate_super(parent->root->sb);
2874 return ret;
2878 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2879 * @cgrp: the cgroup in question
2881 * See if @cgrp is a descendant of the current task's cgroup in
2882 * the appropriate hierarchy.
2884 * If we are sending in dummytop, then presumably we are creating
2885 * the top cgroup in the subsystem.
2887 * Called only by the ns (nsproxy) cgroup.
2889 int cgroup_is_descendant(const struct cgroup *cgrp)
2891 int ret;
2892 struct cgroup *target;
2893 int subsys_id;
2895 if (cgrp == dummytop)
2896 return 1;
2898 get_first_subsys(cgrp, NULL, &subsys_id);
2899 target = task_cgroup(current, subsys_id);
2900 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2901 cgrp = cgrp->parent;
2902 ret = (cgrp == target);
2903 return ret;
2906 static void check_for_release(struct cgroup *cgrp)
2908 /* All of these checks rely on RCU to keep the cgroup
2909 * structure alive */
2910 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2911 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2912 /* Control Group is currently removeable. If it's not
2913 * already queued for a userspace notification, queue
2914 * it now */
2915 int need_schedule_work = 0;
2916 spin_lock(&release_list_lock);
2917 if (!cgroup_is_removed(cgrp) &&
2918 list_empty(&cgrp->release_list)) {
2919 list_add(&cgrp->release_list, &release_list);
2920 need_schedule_work = 1;
2922 spin_unlock(&release_list_lock);
2923 if (need_schedule_work)
2924 schedule_work(&release_agent_work);
2928 void __css_put(struct cgroup_subsys_state *css)
2930 struct cgroup *cgrp = css->cgroup;
2931 rcu_read_lock();
2932 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2933 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2934 check_for_release(cgrp);
2936 rcu_read_unlock();
2940 * Notify userspace when a cgroup is released, by running the
2941 * configured release agent with the name of the cgroup (path
2942 * relative to the root of cgroup file system) as the argument.
2944 * Most likely, this user command will try to rmdir this cgroup.
2946 * This races with the possibility that some other task will be
2947 * attached to this cgroup before it is removed, or that some other
2948 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2949 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2950 * unused, and this cgroup will be reprieved from its death sentence,
2951 * to continue to serve a useful existence. Next time it's released,
2952 * we will get notified again, if it still has 'notify_on_release' set.
2954 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2955 * means only wait until the task is successfully execve()'d. The
2956 * separate release agent task is forked by call_usermodehelper(),
2957 * then control in this thread returns here, without waiting for the
2958 * release agent task. We don't bother to wait because the caller of
2959 * this routine has no use for the exit status of the release agent
2960 * task, so no sense holding our caller up for that.
2962 static void cgroup_release_agent(struct work_struct *work)
2964 BUG_ON(work != &release_agent_work);
2965 mutex_lock(&cgroup_mutex);
2966 spin_lock(&release_list_lock);
2967 while (!list_empty(&release_list)) {
2968 char *argv[3], *envp[3];
2969 int i;
2970 char *pathbuf;
2971 struct cgroup *cgrp = list_entry(release_list.next,
2972 struct cgroup,
2973 release_list);
2974 list_del_init(&cgrp->release_list);
2975 spin_unlock(&release_list_lock);
2976 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2977 if (!pathbuf) {
2978 spin_lock(&release_list_lock);
2979 continue;
2982 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2983 kfree(pathbuf);
2984 spin_lock(&release_list_lock);
2985 continue;
2988 i = 0;
2989 argv[i++] = cgrp->root->release_agent_path;
2990 argv[i++] = (char *)pathbuf;
2991 argv[i] = NULL;
2993 i = 0;
2994 /* minimal command environment */
2995 envp[i++] = "HOME=/";
2996 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2997 envp[i] = NULL;
2999 /* Drop the lock while we invoke the usermode helper,
3000 * since the exec could involve hitting disk and hence
3001 * be a slow process */
3002 mutex_unlock(&cgroup_mutex);
3003 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3004 kfree(pathbuf);
3005 mutex_lock(&cgroup_mutex);
3006 spin_lock(&release_list_lock);
3008 spin_unlock(&release_list_lock);
3009 mutex_unlock(&cgroup_mutex);