BACCALAURÉAT GÉNÉRAL

Session 2007

MATHÉMATIQUE

- Série

ENSEIGNEMENT OBLIGATOIRE

Durée de l'épreuve : 4 heures

Çoefficient : 7

Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur.

Du papier millimétré sera mis à la disposition des candidats

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour aborder les questions suivantes, à condition de l'indiquer clairement sur la copie. La qualité et la précision de la rédaction seront prises en compte dans l'appréciation des copies.

Le sujet comporte une annexe à rendre avec la copie.

Avant de composer, le candidat s'assurera que le sujet comporte bien 4 pages numérotées de 1 à 4.

Commun à tous les candidats

Les parties 1) et 2) portent sur un même thème, la dérivation, mais sont indépendantes.

1) Restitution organisée de connaissances

La formule donnant la dérivée du produit de deux fonctions dérivables est supposée connue. On a énoncé ci-dessous deux propositions désignées par P et Q. Dire pour chacune d'elles si elle est vraie ou fausse et justifier.

Dans cet exercice n désigne un entier naturel strictement supérieur à 1.

P: Soit f la fonction définie sur \mathbf{R} par $f(x) = x^n$; alors f est dérivable sur \mathbf{R} , de dérivée f' donnée sur \mathbf{R} par : $f'(x) = n x^{n-1}$.

Q: Soit u une fonction dérivable sur \mathbf{R} et soit f la fonction définie sur \mathbf{R} par $f = u^n$; alors f est dérivable sur \mathbf{R} , de dérivée f' donnée par $f' = n \ u^{n-1}$.

2) On désigne par g la fonction définie sur]-1; 1[par g(0)=0 et $g'(x)=\frac{1}{\sqrt{1-x^2}}$, où g' désigne la dérivée de la fonction g sur]-1; 1[; on ne cherchera pas à expliciter g(x).

On considère alors la fonction composée h définie sur $]-\pi$; 0[par $h(x)=g(\cos x)$.

a) Démontrer que pour tout x de $]-\pi$; 0 [on a h'(x)=1, où h' désigne la dérivée de h.

b) Calculer $h\left(-\frac{\pi}{2}\right)$ puis donner l'expression de h(x).

EXERCICE 2 (6 points)

Commun à tous les candidats

- 1) La suite u est définie par : $u_0 = 2$ et $u_{n+1} = \frac{1}{3} u_n + \frac{23}{27}$ pour tout entier naturel n.
 - a) On a représenté dans un repère orthonormé direct du plan en annexe, la droite d'équation $y = \frac{1}{3}x + \frac{23}{27}$ et le point A de coordonnées (2 ; 0). Construire sur l'axe des abscisses les quatre premiers termes de la suite u.
 - b) Démontrer que si la suite u est convergente alors sa limite est $\ell = \frac{23}{18}$.
 - c) Démontrer que pour tout entier naturel n on a : $u_n \ge \frac{23}{18}$.
 - d) Étudier la monotonie de la suite u et donner sa limite.
- 2) a) Soit n un entier naturel supérieur ou égal à 1. Démontrer que :

$$\sum_{k=2}^{n+1} \frac{1}{10^k} = \frac{1}{90} \left(1 - \frac{1}{10^n} \right) \text{ c'est-à-dire que } \frac{1}{10^2} + \frac{1}{10^3} + \dots + \frac{1}{10^{n+1}} = \frac{1}{90} \left(1 - \frac{1}{10^n} \right).$$

b) La suite v est définie par $v_n = 1,2777...7$ avec n décimales consécutives égales à 7.

Ainsi
$$v_0 = 1, 2$$
, $v_1 = 1, 27$ et $v_2 = 1, 277$.

En utilisant le a) démontrer que la limite de la suite v est un nombre rationnel r (c'est-à-dire le quotient de deux entiers).

3) La suite u définie au 1) et la suite v sont-elles adjacentes? Justifier.

EXERCICE 3 (5 points)

Candidats n'ayant pas suivi l'enseignement de spécialité

Soit les nombres complexes : $z_1 = \sqrt{2} + i\sqrt{6}$, $z_2 = 2 + 2i$ et $Z = \frac{z_1}{z_2}$.

- a) Écrire Z sous forme algébrique.
- b) Donner les modules et arguments de z_1 , z_2 et Z.
- c) En déduire $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- d) Le plan est muni d'un repère orthonormal; on prendra 2 cm comme unité graphique.

On désigne par A, B et C les points d'affixes respectives z_1 , z_2 et Z.

Placer le point B, puis placer les points A et C en utilisant la règle et le compas (on laissera les traits de construction apparents).

e) Écrire sous forme algébrique le nombre complexe Z^{2007} .

EXERCICE 4 (4 points)

Commun à tous les candidats

On considère les deux équations différentielles suivantes définies sur $\left]-\frac{\pi}{2}$; $\frac{\pi}{2}$:

$$(E) y' + (1 + \tan x) y = \cos x$$

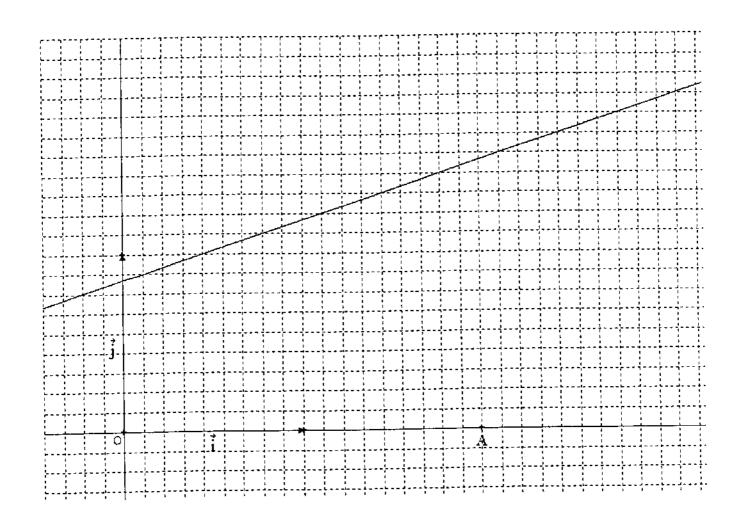
$$(E_0) y' + y = 1.$$

- 1) Donner l'ensemble des solutions de l'équation (E_0) .
- 2) Soient f et g deux fonctions dérivables sur $\left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2} \left[\text{ et telles que } f(x) = g(x) \cos x. \right]$ Démontrer que la fonction f est solution de (E) si et seulement si la fonction g est solution de (E_0) .
- 3) Déterminer la solution f de (E) telle que f(0) = 0.

ANNEXE

(À compléter et à rendre avec la copie)

EXERCICE 2



BACCALAURÉAT GÉNÉRAL

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour aborder les questions suivantes, à condition de l'indiquer clairement sur la copie. La qualité et la précision de la rédaction seront prises en compte dans l'appréciation des copies.

Le sujet comporte deux annexes à rendre avec la copie.

Avant de composer, le candidat s'assurera que le sujet comporte bien 5 pages numérotées de 1 à 5.

EXERCICE 1 (5 points)

Commun à tous les candidats

Les parties 1) et 2) portent sur un même thème, la dérivation, mais sont indépendantes.

1) Restitution organisée de connaissances

La formule donnant la dérivée du produit de deux fonctions dérivables est supposée connue.

On a énoncé ci-dessous deux propositions désignées par P et Q. Dire pour chacune d'elles si elle est vraie ou fausse et justifier.

Dans cet exercice n désigne un entier naturel strictement supérieur à 1.

P: Soit f la fonction définie sur \mathbf{R} par $f(x) = x^n$; alors f est dérivable sur \mathbf{R} , de dérivée f' donnée sur \mathbf{R} par : $f'(x) = n x^{n-1}$.

- Q: Soit u une fonction dérivable sur \mathbf{R} et soit f la fonction définie sur \mathbf{R} par $f = u^n$; alors f est dérivable sur \mathbf{R} , de dérivée f' donnée par $f' = n \ u^{n-1}$.
- 2) On désigne par g la fonction définie sur]-1; 1[par g(0)=0 et $g'(x)=\frac{1}{\sqrt{1-x^2}}$, où g' désigne la dérivée de la fonction g sur]-1; 1[; on ne cherchera pas à expliciter g(x). On considère alors la fonction composée h définie sur $]-\pi$; 0[par $h(x)=g(\cos x)$.
 - a) Démontrer que pour tout x de $]-\pi$; 0 [on a h'(x)=1, où h' désigne la dérivée de h.
 - b) Calculer $h\left(-\frac{\pi}{2}\right)$ puis donner l'expression de h(x).

EXERCICE 2 (6 points)

Commun à tous les candidats

- 1) La suite u est définie par : $u_0 = 2$ et $u_{n+1} = \frac{1}{3} u_n + \frac{23}{27}$ pour tout entier naturel n.
 - a) On a représenté dans un repère orthonormé direct du plan en annexe 1, la droite d'équation $y = \frac{1}{3}x + \frac{23}{27}$ et le point A de coordonnées (2 ; 0). Construire sur l'axe des abscisses les quatre premiers termes de la suite u.
 - b) Démontrer que si la suite u est convergente alors sa limite est $\ell = \frac{23}{18}$.
 - c) Démontrer que pour tout entier naturel n on a : $u_n \ge \frac{23}{18}$.
 - d) Étudier la monotonie de la suite u et donner sa limite.
- 2) a) Soit n un entier naturel supérieur ou égal à 1. Démontrer que :

$$\sum_{k=2}^{n+1} \frac{1}{10^k} = \frac{1}{90} \left(1 - \frac{1}{10^n} \right) \text{ c'est-à-dire que } \frac{1}{10^2} + \frac{1}{10^3} + \dots + \frac{1}{10^{n+1}} = \frac{1}{90} \left(1 - \frac{1}{10^n} \right).$$

b) La suite v est définie par $v_n = 1,2777...7$ avec n décimales consécutives égales à 7.

Ainsi
$$v_0 = 1, 2, v_1 = 1, 27$$
 et $v_2 = 1, 277$.

En utilisant le a) démontrer que la limite de la suite v est un nombre rationnel r (c'est-à-dire le quotient de deux entiers).

3) La suite u définie au 1) et la suite v sont-elles adjacentes ? Justifier.

EXERCICE 3 (5 points)

Candidats ayant suivi l'enseignement de spécialité

- 1) On considère l'ensemble $A_7 = \{1; 2; 3; 4; 5; 6\}$
 - a) Pour tout élément a de A_7 écrire dans le tableau figurant en annexe 2 l'unique élément y de A_7 tel que ay = 1 (modulo 7).
 - b) Pour x entier relatif, démontrer que l'équation $3x \equiv 5 \pmod{7}$ équivaut à $x \equiv 4 \pmod{7}$.
 - c) Si a est un élément de A_7 , montrer que les seuls entiers relatifs x solutions de l'équation $ax \equiv 0 \pmod{7}$ sont les multiples de 7.
- 2) Dans toute cette question, p est un nombre premier supérieur ou égal à 3. On considère l'ensemble $A_p = \{1; 2; ...; p-1\}$ des entiers naturels non nuls et strictement inférieurs à p. Soit a un élément de A_p .
 - a) Vérifier que a^{p-2} est une solution de l'équation $ax \equiv 1 \pmod{p}$.
 - b) On note r le reste dans la division euclidienne de a^{p-2} par p. Démontrer que r est l'unique solution x dans A_p de l'équation $ax \equiv 1 \pmod{p}$.
 - c) Soient x et y deux entiers relatifs. Démontrer que $xy = 0 \pmod{p}$ si et seulement si x est un multiple de p ou y est un multiple de p.
 - d) Application : p = 31.

Résoudre dans A_{31} les équations : $2x \equiv 1 \pmod{31}$ et $3x \equiv 1 \pmod{31}$.

À l'aide des résultats précédents, résoudre dans Z l'équation $6x^2 - 5x + 1 \equiv 0$ (modulo 31).

EXERCICE 4 (4 points)

Commun à tous les candidats

On considère les deux équations différentielles suivantes définies sur $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$:

(E)
$$y' + (1 + \tan x) y = \cos x$$

$$(E_0) y' + y = 1.$$

- 1) Donner l'ensemble des solutions de l'équation (E_0) .
- 2) Soient f et g deux fonctions dérivables sur $\left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2} \left[\text{ et telles que } f(x) = g(x) \cos x \right]$.

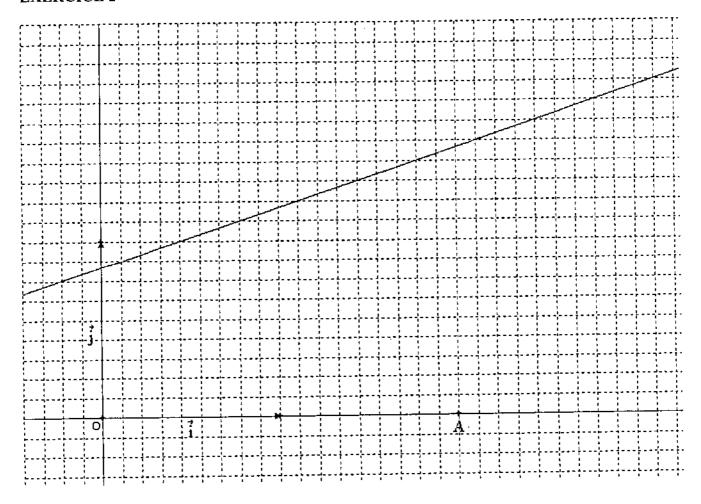
Démontrer que la fonction f est solution de (E) si et seulement si la fonction g est solution de (E_0) .

3) Déterminer la solution f de (E) telle que f(0) = 0.

ANNEXE 1

(À compléter et à rendre avec la copie)

EXERCICE 2



ANNEXE 2

(À compléter et à rendre avec la copie)

EXERCICE 3

		<u> </u>	1.00			
а	1	2	3	4	5	6
v						• 6