Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / third_party / tcmalloc / chromium / src / debugallocation.cc
blobcccaf982b3115451b97e1e9bcbbae4e2c2216e74
1 // Copyright (c) 2000, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // ---
31 // Author: Urs Holzle <opensource@google.com>
33 #include "config.h"
34 #include <errno.h>
35 #ifdef HAVE_FCNTL_H
36 #include <fcntl.h>
37 #endif
38 #ifdef HAVE_INTTYPES_H
39 #include <inttypes.h>
40 #endif
41 // We only need malloc.h for struct mallinfo.
42 #ifdef HAVE_STRUCT_MALLINFO
43 // Malloc can be in several places on older versions of OS X.
44 # if defined(HAVE_MALLOC_H)
45 # include <malloc.h>
46 # elif defined(HAVE_MALLOC_MALLOC_H)
47 # include <malloc/malloc.h>
48 # elif defined(HAVE_SYS_MALLOC_H)
49 # include <sys/malloc.h>
50 # endif
51 #endif
52 #ifdef HAVE_PTHREAD
53 #include <pthread.h>
54 #endif
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <string.h>
58 #ifdef HAVE_MMAP
59 #include <sys/mman.h>
60 #endif
61 #include <sys/stat.h>
62 #include <sys/types.h>
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #endif
67 #include <gperftools/malloc_extension.h>
68 #include <gperftools/malloc_hook.h>
69 #include <gperftools/stacktrace.h>
70 #include "addressmap-inl.h"
71 #include "base/abort.h"
72 #include "base/commandlineflags.h"
73 #include "base/googleinit.h"
74 #include "base/logging.h"
75 #include "base/spinlock.h"
76 #include "malloc_hook-inl.h"
77 #include "symbolize.h"
79 #define TCMALLOC_USING_DEBUGALLOCATION
80 #include "tcmalloc.cc"
82 // __THROW is defined in glibc systems. It means, counter-intuitively,
83 // "This function will never throw an exception." It's an optional
84 // optimization tool, but we may need to use it to match glibc prototypes.
85 #ifndef __THROW // I guess we're not on a glibc system
86 # define __THROW // __THROW is just an optimization, so ok to make it ""
87 #endif
89 // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
90 // form of the name instead.
91 #ifndef MAP_ANONYMOUS
92 # define MAP_ANONYMOUS MAP_ANON
93 #endif
95 // ========================================================================= //
97 DEFINE_bool(malloctrace,
98 EnvToBool("TCMALLOC_TRACE", false),
99 "Enables memory (de)allocation tracing to /tmp/google.alloc.");
100 #ifdef HAVE_MMAP
101 DEFINE_bool(malloc_page_fence,
102 EnvToBool("TCMALLOC_PAGE_FENCE", false),
103 "Enables putting of memory allocations at page boundaries "
104 "with a guard page following the allocation (to catch buffer "
105 "overruns right when they happen).");
106 DEFINE_bool(malloc_page_fence_never_reclaim,
107 EnvToBool("TCMALLOC_PAGE_FRANCE_NEVER_RECLAIM", false),
108 "Enables making the virtual address space inaccessible "
109 "upon a deallocation instead of returning it and reusing later.");
110 #else
111 DEFINE_bool(malloc_page_fence, false, "Not usable (requires mmap)");
112 DEFINE_bool(malloc_page_fence_never_reclaim, false, "Not usable (required mmap)");
113 #endif
114 DEFINE_bool(malloc_reclaim_memory,
115 EnvToBool("TCMALLOC_RECLAIM_MEMORY", true),
116 "If set to false, we never return memory to malloc "
117 "when an object is deallocated. This ensures that all "
118 "heap object addresses are unique.");
119 DEFINE_int32(max_free_queue_size,
120 EnvToInt("TCMALLOC_MAX_FREE_QUEUE_SIZE", 10*1024*1024),
121 "If greater than 0, keep freed blocks in a queue instead of "
122 "releasing them to the allocator immediately. Release them when "
123 "the total size of all blocks in the queue would otherwise exceed "
124 "this limit.");
126 DEFINE_bool(symbolize_stacktrace,
127 EnvToBool("TCMALLOC_SYMBOLIZE_STACKTRACE", true),
128 "Symbolize the stack trace when provided (on some error exits)");
130 // If we are LD_PRELOAD-ed against a non-pthreads app, then
131 // pthread_once won't be defined. We declare it here, for that
132 // case (with weak linkage) which will cause the non-definition to
133 // resolve to NULL. We can then check for NULL or not in Instance.
134 extern "C" int pthread_once(pthread_once_t *, void (*)(void))
135 ATTRIBUTE_WEAK;
137 // ========================================================================= //
139 // A safe version of printf() that does not do any allocation and
140 // uses very little stack space.
141 static void TracePrintf(int fd, const char *fmt, ...)
142 __attribute__ ((__format__ (__printf__, 2, 3)));
144 // The do_* functions are defined in tcmalloc/tcmalloc.cc,
145 // which is included before this file
146 // when TCMALLOC_FOR_DEBUGALLOCATION is defined
147 // TODO(csilvers): get rid of these now that we are tied to tcmalloc.
148 #define BASE_MALLOC_NEW do_malloc
149 #define BASE_MALLOC do_malloc
150 #define BASE_FREE do_free
151 #define BASE_MALLOC_STATS do_malloc_stats
152 #define BASE_MALLOPT do_mallopt
153 #define BASE_MALLINFO do_mallinfo
155 // ========================================================================= //
157 class MallocBlock;
159 // A circular buffer to hold freed blocks of memory. MallocBlock::Deallocate
160 // (below) pushes blocks into this queue instead of returning them to the
161 // underlying allocator immediately. See MallocBlock::Deallocate for more
162 // information.
164 // We can't use an STL class for this because we need to be careful not to
165 // perform any heap de-allocations in any of the code in this class, since the
166 // code in MallocBlock::Deallocate is not re-entrant.
167 template <typename QueueEntry>
168 class FreeQueue {
169 public:
170 FreeQueue() : q_front_(0), q_back_(0) {}
172 bool Full() {
173 return (q_front_ + 1) % kFreeQueueSize == q_back_;
176 void Push(const QueueEntry& block) {
177 q_[q_front_] = block;
178 q_front_ = (q_front_ + 1) % kFreeQueueSize;
181 QueueEntry Pop() {
182 RAW_CHECK(q_back_ != q_front_, "Queue is empty");
183 const QueueEntry& ret = q_[q_back_];
184 q_back_ = (q_back_ + 1) % kFreeQueueSize;
185 return ret;
188 size_t size() const {
189 return (q_front_ - q_back_ + kFreeQueueSize) % kFreeQueueSize;
192 private:
193 // Maximum number of blocks kept in the free queue before being freed.
194 static const int kFreeQueueSize = 1024;
196 QueueEntry q_[kFreeQueueSize];
197 int q_front_;
198 int q_back_;
201 struct MallocBlockQueueEntry {
202 MallocBlockQueueEntry() : block(NULL), size(0),
203 num_deleter_pcs(0), deleter_threadid(0) {}
204 MallocBlockQueueEntry(MallocBlock* b, size_t s) : block(b), size(s) {
205 if (FLAGS_max_free_queue_size != 0 && b != NULL) {
206 // Adjust the number of frames to skip (4) if you change the
207 // location of this call.
208 num_deleter_pcs =
209 GetStackTrace(deleter_pcs,
210 sizeof(deleter_pcs) / sizeof(deleter_pcs[0]),
212 deleter_threadid = pthread_self();
213 } else {
214 num_deleter_pcs = 0;
215 // Zero is an illegal pthread id by my reading of the pthread
216 // implementation:
217 deleter_threadid = 0;
221 MallocBlock* block;
222 size_t size;
224 // When deleted and put in the free queue, we (flag-controlled)
225 // record the stack so that if corruption is later found, we can
226 // print the deleter's stack. (These three vars add 144 bytes of
227 // overhead under the LP64 data model.)
228 void* deleter_pcs[16];
229 int num_deleter_pcs;
230 pthread_t deleter_threadid;
233 class MallocBlock {
234 public: // allocation type constants
236 // Different allocation types we distinguish.
237 // Note: The lower 4 bits are not random: we index kAllocName array
238 // by these values masked with kAllocTypeMask;
239 // the rest are "random" magic bits to help catch memory corruption.
240 static const int kMallocType = 0xEFCDAB90;
241 static const int kNewType = 0xFEBADC81;
242 static const int kArrayNewType = 0xBCEADF72;
244 private: // constants
246 // A mask used on alloc types above to get to 0, 1, 2
247 static const int kAllocTypeMask = 0x3;
248 // An additional bit to set in AllocType constants
249 // to mark now deallocated regions.
250 static const int kDeallocatedTypeBit = 0x4;
252 // For better memory debugging, we initialize all storage to known
253 // values, and overwrite the storage when it's deallocated:
254 // Byte that fills uninitialized storage.
255 static const int kMagicUninitializedByte = 0xAB;
256 // Byte that fills deallocated storage.
257 // NOTE: tcmalloc.cc depends on the value of kMagicDeletedByte
258 // to work around a bug in the pthread library.
259 static const int kMagicDeletedByte = 0xCD;
260 // A size_t (type of alloc_type_ below) in a deallocated storage
261 // filled with kMagicDeletedByte.
262 static const size_t kMagicDeletedSizeT =
263 0xCDCDCDCD | (((size_t)0xCDCDCDCD << 16) << 16);
264 // Initializer works for 32 and 64 bit size_ts;
265 // "<< 16 << 16" is to fool gcc from issuing a warning
266 // when size_ts are 32 bits.
268 // NOTE: on Linux, you can enable malloc debugging support in libc by
269 // setting the environment variable MALLOC_CHECK_ to 1 before you
270 // start the program (see man malloc).
272 // We use either BASE_MALLOC or mmap to make the actual allocation. In
273 // order to remember which one of the two was used for any block, we store an
274 // appropriate magic word next to the block.
275 static const int kMagicMalloc = 0xDEADBEEF;
276 static const int kMagicMMap = 0xABCDEFAB;
278 // This array will be filled with 0xCD, for use with memcmp.
279 static unsigned char kMagicDeletedBuffer[1024];
280 static pthread_once_t deleted_buffer_initialized_;
281 static bool deleted_buffer_initialized_no_pthreads_;
283 private: // data layout
285 // The four fields size1_,offset_,magic1_,alloc_type_
286 // should together occupy a multiple of 16 bytes. (At the
287 // moment, sizeof(size_t) == 4 or 8 depending on piii vs
288 // k8, and 4 of those sum to 16 or 32 bytes).
289 // This, combined with BASE_MALLOC's alignment guarantees,
290 // ensures that SSE types can be stored into the returned
291 // block, at &size2_.
292 size_t size1_;
293 size_t offset_; // normally 0 unless memaligned memory
294 // see comments in memalign() and FromRawPointer().
295 size_t magic1_;
296 size_t alloc_type_;
297 // here comes the actual data (variable length)
298 // ...
299 // then come the size2_ and magic2_, or a full page of mprotect-ed memory
300 // if the malloc_page_fence feature is enabled.
301 size_t size2_;
302 int magic2_;
304 private: // static data and helpers
306 // Allocation map: stores the allocation type for each allocated object,
307 // or the type or'ed with kDeallocatedTypeBit
308 // for each formerly allocated object.
309 typedef AddressMap<int> AllocMap;
310 static AllocMap* alloc_map_;
311 // This protects alloc_map_ and consistent state of metadata
312 // for each still-allocated object in it.
313 // We use spin locks instead of pthread_mutex_t locks
314 // to prevent crashes via calls to pthread_mutex_(un)lock
315 // for the (de)allocations coming from pthreads initialization itself.
316 static SpinLock alloc_map_lock_;
318 // A queue of freed blocks. Instead of releasing blocks to the allocator
319 // immediately, we put them in a queue, freeing them only when necessary
320 // to keep the total size of all the freed blocks below the limit set by
321 // FLAGS_max_free_queue_size.
322 static FreeQueue<MallocBlockQueueEntry>* free_queue_;
324 static size_t free_queue_size_; // total size of blocks in free_queue_
325 // protects free_queue_ and free_queue_size_
326 static SpinLock free_queue_lock_;
328 // Names of allocation types (kMallocType, kNewType, kArrayNewType)
329 static const char* const kAllocName[];
330 // Names of corresponding deallocation types
331 static const char* const kDeallocName[];
333 static const char* AllocName(int type) {
334 return kAllocName[type & kAllocTypeMask];
337 static const char* DeallocName(int type) {
338 return kDeallocName[type & kAllocTypeMask];
341 private: // helper accessors
343 bool IsMMapped() const { return kMagicMMap == magic1_; }
345 bool IsValidMagicValue(int value) const {
346 return kMagicMMap == value || kMagicMalloc == value;
349 static size_t real_malloced_size(size_t size) {
350 return size + sizeof(MallocBlock);
352 static size_t real_mmapped_size(size_t size) {
353 return size + MallocBlock::data_offset();
356 size_t real_size() {
357 return IsMMapped() ? real_mmapped_size(size1_) : real_malloced_size(size1_);
360 // NOTE: if the block is mmapped (that is, we're using the
361 // malloc_page_fence option) then there's no size2 or magic2
362 // (instead, the guard page begins where size2 would be).
364 size_t* size2_addr() { return (size_t*)((char*)&size2_ + size1_); }
365 const size_t* size2_addr() const {
366 return (const size_t*)((char*)&size2_ + size1_);
369 int* magic2_addr() { return (int*)(size2_addr() + 1); }
370 const int* magic2_addr() const { return (const int*)(size2_addr() + 1); }
372 private: // other helpers
374 void Initialize(size_t size, int type) {
375 RAW_CHECK(IsValidMagicValue(magic1_), "");
376 // record us as allocated in the map
377 alloc_map_lock_.Lock();
378 if (!alloc_map_) {
379 void* p = BASE_MALLOC(sizeof(AllocMap));
380 alloc_map_ = new(p) AllocMap(BASE_MALLOC, BASE_FREE);
382 alloc_map_->Insert(data_addr(), type);
383 // initialize us
384 size1_ = size;
385 offset_ = 0;
386 alloc_type_ = type;
387 if (!IsMMapped()) {
388 *magic2_addr() = magic1_;
389 *size2_addr() = size;
391 alloc_map_lock_.Unlock();
392 memset(data_addr(), kMagicUninitializedByte, size);
393 if (!IsMMapped()) {
394 RAW_CHECK(size1_ == *size2_addr(), "should hold");
395 RAW_CHECK(magic1_ == *magic2_addr(), "should hold");
399 size_t CheckAndClear(int type) {
400 alloc_map_lock_.Lock();
401 CheckLocked(type);
402 if (!IsMMapped()) {
403 RAW_CHECK(size1_ == *size2_addr(), "should hold");
405 // record us as deallocated in the map
406 alloc_map_->Insert(data_addr(), type | kDeallocatedTypeBit);
407 alloc_map_lock_.Unlock();
408 // clear us
409 const size_t size = real_size();
410 memset(this, kMagicDeletedByte, size);
411 return size;
414 void CheckLocked(int type) const {
415 int map_type = 0;
416 const int* found_type =
417 alloc_map_ != NULL ? alloc_map_->Find(data_addr()) : NULL;
418 if (found_type == NULL) {
419 RAW_LOG(FATAL, "memory allocation bug: object at %p "
420 "has never been allocated", data_addr());
421 } else {
422 map_type = *found_type;
424 if ((map_type & kDeallocatedTypeBit) != 0) {
425 RAW_LOG(FATAL, "memory allocation bug: object at %p "
426 "has been already deallocated (it was allocated with %s)",
427 data_addr(), AllocName(map_type & ~kDeallocatedTypeBit));
429 if (alloc_type_ == kMagicDeletedSizeT) {
430 RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
431 "has been corrupted; or else the object has been already "
432 "deallocated and our memory map has been corrupted",
433 data_addr());
435 if (!IsValidMagicValue(magic1_)) {
436 RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
437 "has been corrupted; "
438 "or else our memory map has been corrupted and this is a "
439 "deallocation for not (currently) heap-allocated object",
440 data_addr());
442 if (!IsMMapped()) {
443 if (size1_ != *size2_addr()) {
444 RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
445 "has been corrupted", data_addr());
447 if (!IsValidMagicValue(*magic2_addr())) {
448 RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
449 "has been corrupted", data_addr());
452 if (alloc_type_ != type) {
453 if ((alloc_type_ != MallocBlock::kMallocType) &&
454 (alloc_type_ != MallocBlock::kNewType) &&
455 (alloc_type_ != MallocBlock::kArrayNewType)) {
456 RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
457 "has been corrupted", data_addr());
459 RAW_LOG(FATAL, "memory allocation/deallocation mismatch at %p: "
460 "allocated with %s being deallocated with %s",
461 data_addr(), AllocName(alloc_type_), DeallocName(type));
463 if (alloc_type_ != map_type) {
464 RAW_LOG(FATAL, "memory stomping bug: our memory map has been corrupted : "
465 "allocation at %p made with %s "
466 "is recorded in the map to be made with %s",
467 data_addr(), AllocName(alloc_type_), AllocName(map_type));
471 public: // public accessors
473 void* data_addr() { return (void*)&size2_; }
474 const void* data_addr() const { return (const void*)&size2_; }
476 static size_t data_offset() { return OFFSETOF_MEMBER(MallocBlock, size2_); }
478 size_t data_size() const { return size1_; }
480 void set_offset(int offset) { this->offset_ = offset; }
482 public: // our main interface
484 static MallocBlock* Allocate(size_t size, int type) {
485 // Prevent an integer overflow / crash with large allocation sizes.
486 // TODO - Note that for a e.g. 64-bit size_t, max_size_t may not actually
487 // be the maximum value, depending on how the compiler treats ~0. The worst
488 // practical effect is that allocations are limited to 4Gb or so, even if
489 // the address space could take more.
490 static size_t max_size_t = ~0;
491 if (size > max_size_t - sizeof(MallocBlock)) {
492 RAW_LOG(ERROR, "Massive size passed to malloc: %"PRIuS"", size);
493 return NULL;
495 MallocBlock* b = NULL;
496 const bool use_malloc_page_fence = FLAGS_malloc_page_fence;
497 #ifdef HAVE_MMAP
498 if (use_malloc_page_fence) {
499 // Put the block towards the end of the page and make the next page
500 // inaccessible. This will catch buffer overrun right when it happens.
501 size_t sz = real_mmapped_size(size);
502 int pagesize = getpagesize();
503 int num_pages = (sz + pagesize - 1) / pagesize + 1;
504 char* p = (char*) mmap(NULL, num_pages * pagesize, PROT_READ|PROT_WRITE,
505 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
506 if (p == MAP_FAILED) {
507 // If the allocation fails, abort rather than returning NULL to
508 // malloc. This is because in most cases, the program will run out
509 // of memory in this mode due to tremendous amount of wastage. There
510 // is no point in propagating the error elsewhere.
511 RAW_LOG(FATAL, "Out of memory: possibly due to page fence overhead: %s",
512 strerror(errno));
514 // Mark the page after the block inaccessible
515 if (mprotect(p + (num_pages - 1) * pagesize, pagesize, PROT_NONE)) {
516 RAW_LOG(FATAL, "Guard page setup failed: %s", strerror(errno));
518 b = (MallocBlock*) (p + (num_pages - 1) * pagesize - sz);
519 } else {
520 b = (MallocBlock*) (type == kMallocType ?
521 BASE_MALLOC(real_malloced_size(size)) :
522 BASE_MALLOC_NEW(real_malloced_size(size)));
524 #else
525 b = (MallocBlock*) (type == kMallocType ?
526 BASE_MALLOC(real_malloced_size(size)) :
527 BASE_MALLOC_NEW(real_malloced_size(size)));
528 #endif
530 // It would be nice to output a diagnostic on allocation failure
531 // here, but logging (other than FATAL) requires allocating
532 // memory, which could trigger a nasty recursion. Instead, preserve
533 // malloc semantics and return NULL on failure.
534 if (b != NULL) {
535 b->magic1_ = use_malloc_page_fence ? kMagicMMap : kMagicMalloc;
536 b->Initialize(size, type);
538 return b;
541 void Deallocate(int type) {
542 if (IsMMapped()) { // have to do this before CheckAndClear
543 #ifdef HAVE_MMAP
544 int size = CheckAndClear(type);
545 int pagesize = getpagesize();
546 int num_pages = (size + pagesize - 1) / pagesize + 1;
547 char* p = (char*) this;
548 if (FLAGS_malloc_page_fence_never_reclaim ||
549 !FLAGS_malloc_reclaim_memory) {
550 mprotect(p - (num_pages - 1) * pagesize + size,
551 num_pages * pagesize, PROT_NONE);
552 } else {
553 munmap(p - (num_pages - 1) * pagesize + size, num_pages * pagesize);
555 #endif
556 } else {
557 const size_t size = CheckAndClear(type);
558 if (FLAGS_malloc_reclaim_memory) {
559 // Instead of freeing the block immediately, push it onto a queue of
560 // recently freed blocks. Free only enough blocks to keep from
561 // exceeding the capacity of the queue or causing the total amount of
562 // un-released memory in the queue from exceeding
563 // FLAGS_max_free_queue_size.
564 ProcessFreeQueue(this, size, FLAGS_max_free_queue_size);
569 static size_t FreeQueueSize() {
570 SpinLockHolder l(&free_queue_lock_);
571 return free_queue_size_;
574 static void ProcessFreeQueue(MallocBlock* b, size_t size,
575 int max_free_queue_size) {
576 // MallocBlockQueueEntry are about 144 in size, so we can only
577 // use a small array of them on the stack.
578 MallocBlockQueueEntry entries[4];
579 int num_entries = 0;
580 MallocBlockQueueEntry new_entry(b, size);
581 free_queue_lock_.Lock();
582 if (free_queue_ == NULL)
583 free_queue_ = new FreeQueue<MallocBlockQueueEntry>;
584 RAW_CHECK(!free_queue_->Full(), "Free queue mustn't be full!");
586 if (b != NULL) {
587 free_queue_size_ += size + sizeof(MallocBlockQueueEntry);
588 free_queue_->Push(new_entry);
591 // Free blocks until the total size of unfreed blocks no longer exceeds
592 // max_free_queue_size, and the free queue has at least one free
593 // space in it.
594 while (free_queue_size_ > max_free_queue_size || free_queue_->Full()) {
595 RAW_CHECK(num_entries < arraysize(entries), "entries array overflow");
596 entries[num_entries] = free_queue_->Pop();
597 free_queue_size_ -=
598 entries[num_entries].size + sizeof(MallocBlockQueueEntry);
599 num_entries++;
600 if (num_entries == arraysize(entries)) {
601 // The queue will not be full at this point, so it is ok to
602 // release the lock. The queue may still contain more than
603 // max_free_queue_size, but this is not a strict invariant.
604 free_queue_lock_.Unlock();
605 for (int i = 0; i < num_entries; i++) {
606 CheckForDanglingWrites(entries[i]);
607 BASE_FREE(entries[i].block);
609 num_entries = 0;
610 free_queue_lock_.Lock();
613 RAW_CHECK(free_queue_size_ >= 0, "Free queue size went negative!");
614 free_queue_lock_.Unlock();
615 for (int i = 0; i < num_entries; i++) {
616 CheckForDanglingWrites(entries[i]);
617 BASE_FREE(entries[i].block);
621 static void InitDeletedBuffer() {
622 memset(kMagicDeletedBuffer, kMagicDeletedByte, sizeof(kMagicDeletedBuffer));
623 deleted_buffer_initialized_no_pthreads_ = true;
626 static void CheckForDanglingWrites(const MallocBlockQueueEntry& queue_entry) {
627 // Initialize the buffer if necessary.
628 if (pthread_once)
629 pthread_once(&deleted_buffer_initialized_, &InitDeletedBuffer);
630 if (!deleted_buffer_initialized_no_pthreads_) {
631 // This will be the case on systems that don't link in pthreads,
632 // including on FreeBSD where pthread_once has a non-zero address
633 // (but doesn't do anything) even when pthreads isn't linked in.
634 InitDeletedBuffer();
637 const unsigned char* p =
638 reinterpret_cast<unsigned char*>(queue_entry.block);
640 static const size_t size_of_buffer = sizeof(kMagicDeletedBuffer);
641 const size_t size = queue_entry.size;
642 const size_t buffers = size / size_of_buffer;
643 const size_t remainder = size % size_of_buffer;
644 size_t buffer_idx;
645 for (buffer_idx = 0; buffer_idx < buffers; ++buffer_idx) {
646 CheckForCorruptedBuffer(queue_entry, buffer_idx, p, size_of_buffer);
647 p += size_of_buffer;
649 CheckForCorruptedBuffer(queue_entry, buffer_idx, p, remainder);
652 static void CheckForCorruptedBuffer(const MallocBlockQueueEntry& queue_entry,
653 size_t buffer_idx,
654 const unsigned char* buffer,
655 size_t size_of_buffer) {
656 if (memcmp(buffer, kMagicDeletedBuffer, size_of_buffer) == 0) {
657 return;
660 RAW_LOG(ERROR,
661 "Found a corrupted memory buffer in MallocBlock (may be offset "
662 "from user ptr): buffer index: %zd, buffer ptr: %p, size of "
663 "buffer: %zd", buffer_idx, buffer, size_of_buffer);
665 // The magic deleted buffer should only be 1024 bytes, but in case
666 // this changes, let's put an upper limit on the number of debug
667 // lines we'll output:
668 if (size_of_buffer <= 1024) {
669 for (int i = 0; i < size_of_buffer; ++i) {
670 if (buffer[i] != kMagicDeletedByte) {
671 RAW_LOG(ERROR, "Buffer byte %d is 0x%02x (should be 0x%02x).",
672 i, buffer[i], kMagicDeletedByte);
675 } else {
676 RAW_LOG(ERROR, "Buffer too large to print corruption.");
679 const MallocBlock* b = queue_entry.block;
680 const size_t size = queue_entry.size;
681 if (queue_entry.num_deleter_pcs > 0) {
682 TracePrintf(STDERR_FILENO, "Deleted by thread %p\n",
683 reinterpret_cast<void*>(
684 PRINTABLE_PTHREAD(queue_entry.deleter_threadid)));
686 // We don't want to allocate or deallocate memory here, so we use
687 // placement-new. It's ok that we don't destroy this, since we're
688 // just going to error-exit below anyway. Union is for alignment.
689 union { void* alignment; char buf[sizeof(SymbolTable)]; } tablebuf;
690 SymbolTable* symbolization_table = new (tablebuf.buf) SymbolTable;
691 for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
692 // Symbolizes the previous address of pc because pc may be in the
693 // next function. This may happen when the function ends with
694 // a call to a function annotated noreturn (e.g. CHECK).
695 char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
696 symbolization_table->Add(pc - 1);
698 if (FLAGS_symbolize_stacktrace)
699 symbolization_table->Symbolize();
700 for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
701 char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
702 TracePrintf(STDERR_FILENO, " @ %p %s\n",
703 pc, symbolization_table->GetSymbol(pc - 1));
705 } else {
706 RAW_LOG(ERROR,
707 "Skipping the printing of the deleter's stack! Its stack was "
708 "not found; either the corruption occurred too early in "
709 "execution to obtain a stack trace or --max_free_queue_size was "
710 "set to 0.");
713 RAW_LOG(FATAL,
714 "Memory was written to after being freed. MallocBlock: %p, user "
715 "ptr: %p, size: %zd. If you can't find the source of the error, "
716 "try using ASan (http://code.google.com/p/address-sanitizer/), "
717 "Valgrind, or Purify, or study the "
718 "output of the deleter's stack printed above.",
719 b, b->data_addr(), size);
722 static MallocBlock* FromRawPointer(void* p) {
723 const size_t data_offset = MallocBlock::data_offset();
724 // Find the header just before client's memory.
725 MallocBlock *mb = reinterpret_cast<MallocBlock *>(
726 reinterpret_cast<char *>(p) - data_offset);
727 // If mb->alloc_type_ is kMagicDeletedSizeT, we're not an ok pointer.
728 if (mb->alloc_type_ == kMagicDeletedSizeT) {
729 RAW_LOG(FATAL, "memory allocation bug: object at %p has been already"
730 " deallocated; or else a word before the object has been"
731 " corrupted (memory stomping bug)", p);
733 // If mb->offset_ is zero (common case), mb is the real header. If
734 // mb->offset_ is non-zero, this block was allocated by memalign, and
735 // mb->offset_ is the distance backwards to the real header from mb,
736 // which is a fake header. The following subtraction works for both zero
737 // and non-zero values.
738 return reinterpret_cast<MallocBlock *>(
739 reinterpret_cast<char *>(mb) - mb->offset_);
741 static const MallocBlock* FromRawPointer(const void* p) {
742 // const-safe version: we just cast about
743 return FromRawPointer(const_cast<void*>(p));
746 // Return whether p points to memory returned by memalign.
747 // Requires that p be non-zero and has been checked for sanity with
748 // FromRawPointer().
749 static bool IsMemaligned(const void* p) {
750 const MallocBlock* mb = reinterpret_cast<const MallocBlock*>(
751 reinterpret_cast<const char*>(p) - MallocBlock::data_offset());
752 // If the offset is non-zero, the block was allocated by memalign
753 // (see FromRawPointer above).
754 return mb->offset_ != 0;
757 void Check(int type) const {
758 alloc_map_lock_.Lock();
759 CheckLocked(type);
760 alloc_map_lock_.Unlock();
763 static bool CheckEverything() {
764 alloc_map_lock_.Lock();
765 if (alloc_map_ != NULL) alloc_map_->Iterate(CheckCallback, 0);
766 alloc_map_lock_.Unlock();
767 return true; // if we get here, we're okay
770 static bool MemoryStats(int* blocks, size_t* total,
771 int histogram[kMallocHistogramSize]) {
772 memset(histogram, 0, kMallocHistogramSize * sizeof(int));
773 alloc_map_lock_.Lock();
774 stats_blocks_ = 0;
775 stats_total_ = 0;
776 stats_histogram_ = histogram;
777 if (alloc_map_ != NULL) alloc_map_->Iterate(StatsCallback, 0);
778 *blocks = stats_blocks_;
779 *total = stats_total_;
780 alloc_map_lock_.Unlock();
781 return true;
784 private: // helpers for CheckEverything and MemoryStats
786 static void CheckCallback(const void* ptr, int* type, int dummy) {
787 if ((*type & kDeallocatedTypeBit) == 0) {
788 FromRawPointer(ptr)->CheckLocked(*type);
792 // Accumulation variables for StatsCallback protected by alloc_map_lock_
793 static int stats_blocks_;
794 static size_t stats_total_;
795 static int* stats_histogram_;
797 static void StatsCallback(const void* ptr, int* type, int dummy) {
798 if ((*type & kDeallocatedTypeBit) == 0) {
799 const MallocBlock* b = FromRawPointer(ptr);
800 b->CheckLocked(*type);
801 ++stats_blocks_;
802 size_t mysize = b->size1_;
803 int entry = 0;
804 stats_total_ += mysize;
805 while (mysize) {
806 ++entry;
807 mysize >>= 1;
809 RAW_CHECK(entry < kMallocHistogramSize,
810 "kMallocHistogramSize should be at least as large as log2 "
811 "of the maximum process memory size");
812 stats_histogram_[entry] += 1;
817 void DanglingWriteChecker() {
818 // Clear out the remaining free queue to check for dangling writes.
819 MallocBlock::ProcessFreeQueue(NULL, 0, 0);
822 // ========================================================================= //
824 const int MallocBlock::kMagicMalloc;
825 const int MallocBlock::kMagicMMap;
827 MallocBlock::AllocMap* MallocBlock::alloc_map_ = NULL;
828 SpinLock MallocBlock::alloc_map_lock_(SpinLock::LINKER_INITIALIZED);
830 FreeQueue<MallocBlockQueueEntry>* MallocBlock::free_queue_ = NULL;
831 size_t MallocBlock::free_queue_size_ = 0;
832 SpinLock MallocBlock::free_queue_lock_(SpinLock::LINKER_INITIALIZED);
834 unsigned char MallocBlock::kMagicDeletedBuffer[1024];
835 pthread_once_t MallocBlock::deleted_buffer_initialized_ = PTHREAD_ONCE_INIT;
836 bool MallocBlock::deleted_buffer_initialized_no_pthreads_ = false;
838 const char* const MallocBlock::kAllocName[] = {
839 "malloc",
840 "new",
841 "new []",
842 NULL,
845 const char* const MallocBlock::kDeallocName[] = {
846 "free",
847 "delete",
848 "delete []",
849 NULL,
852 int MallocBlock::stats_blocks_;
853 size_t MallocBlock::stats_total_;
854 int* MallocBlock::stats_histogram_;
856 // ========================================================================= //
858 // The following cut-down version of printf() avoids
859 // using stdio or ostreams.
860 // This is to guarantee no recursive calls into
861 // the allocator and to bound the stack space consumed. (The pthread
862 // manager thread in linuxthreads has a very small stack,
863 // so fprintf can't be called.)
864 static void TracePrintf(int fd, const char *fmt, ...) {
865 char buf[64];
866 int i = 0;
867 va_list ap;
868 va_start(ap, fmt);
869 const char *p = fmt;
870 char numbuf[25];
871 numbuf[sizeof(numbuf)-1] = 0;
872 while (*p != '\0') { // until end of format string
873 char *s = &numbuf[sizeof(numbuf)-1];
874 if (p[0] == '%' && p[1] != 0) { // handle % formats
875 int64 l = 0;
876 unsigned long base = 0;
877 if (*++p == 's') { // %s
878 s = va_arg(ap, char *);
879 } else if (*p == 'l' && p[1] == 'd') { // %ld
880 l = va_arg(ap, long);
881 base = 10;
882 p++;
883 } else if (*p == 'l' && p[1] == 'u') { // %lu
884 l = va_arg(ap, unsigned long);
885 base = 10;
886 p++;
887 } else if (*p == 'z' && p[1] == 'u') { // %zu
888 l = va_arg(ap, size_t);
889 base = 10;
890 p++;
891 } else if (*p == 'u') { // %u
892 l = va_arg(ap, unsigned int);
893 base = 10;
894 } else if (*p == 'd') { // %d
895 l = va_arg(ap, int);
896 base = 10;
897 } else if (*p == 'p') { // %p
898 l = va_arg(ap, intptr_t);
899 base = 16;
900 } else {
901 write(STDERR_FILENO, "Unimplemented TracePrintf format\n", 33);
902 write(STDERR_FILENO, p, 2);
903 write(STDERR_FILENO, "\n", 1);
904 tcmalloc::Abort();
906 p++;
907 if (base != 0) {
908 bool minus = (l < 0 && base == 10);
909 uint64 ul = minus? -l : l;
910 do {
911 *--s = "0123456789abcdef"[ul % base];
912 ul /= base;
913 } while (ul != 0);
914 if (base == 16) {
915 *--s = 'x';
916 *--s = '0';
917 } else if (minus) {
918 *--s = '-';
921 } else { // handle normal characters
922 *--s = *p++;
924 while (*s != 0) {
925 if (i == sizeof(buf)) {
926 write(fd, buf, i);
927 i = 0;
929 buf[i++] = *s++;
932 if (i != 0) {
933 write(fd, buf, i);
935 va_end(ap);
938 // Return the file descriptor we're writing a log to
939 static int TraceFd() {
940 static int trace_fd = -1;
941 if (trace_fd == -1) { // Open the trace file on the first call
942 trace_fd = open("/tmp/google.alloc", O_CREAT|O_TRUNC|O_WRONLY, 0666);
943 if (trace_fd == -1) {
944 trace_fd = 2;
945 TracePrintf(trace_fd,
946 "Can't open /tmp/google.alloc. Logging to stderr.\n");
948 // Add a header to the log.
949 TracePrintf(trace_fd, "Trace started: %lu\n",
950 static_cast<unsigned long>(time(NULL)));
951 TracePrintf(trace_fd,
952 "func\tsize\tptr\tthread_id\tstack pcs for tools/symbolize\n");
954 return trace_fd;
957 // Print the hex stack dump on a single line. PCs are separated by tabs.
958 static void TraceStack(void) {
959 void *pcs[16];
960 int n = GetStackTrace(pcs, sizeof(pcs)/sizeof(pcs[0]), 0);
961 for (int i = 0; i != n; i++) {
962 TracePrintf(TraceFd(), "\t%p", pcs[i]);
966 // This protects MALLOC_TRACE, to make sure its info is atomically written.
967 static SpinLock malloc_trace_lock(SpinLock::LINKER_INITIALIZED);
969 #define MALLOC_TRACE(name, size, addr) \
970 do { \
971 if (FLAGS_malloctrace) { \
972 SpinLockHolder l(&malloc_trace_lock); \
973 TracePrintf(TraceFd(), "%s\t%"PRIuS"\t%p\t%"GPRIuPTHREAD, \
974 name, size, addr, PRINTABLE_PTHREAD(pthread_self())); \
975 TraceStack(); \
976 TracePrintf(TraceFd(), "\n"); \
978 } while (0)
980 // ========================================================================= //
982 // Write the characters buf[0, ..., size-1] to
983 // the malloc trace buffer.
984 // This function is intended for debugging,
985 // and is not declared in any header file.
986 // You must insert a declaration of it by hand when you need
987 // to use it.
988 void __malloctrace_write(const char *buf, size_t size) {
989 if (FLAGS_malloctrace) {
990 write(TraceFd(), buf, size);
994 // ========================================================================= //
996 // General debug allocation/deallocation
998 static inline void* DebugAllocate(size_t size, int type) {
999 MallocBlock* ptr = MallocBlock::Allocate(size, type);
1000 if (ptr == NULL) return NULL;
1001 MALLOC_TRACE("malloc", size, ptr->data_addr());
1002 return ptr->data_addr();
1005 static inline void DebugDeallocate(void* ptr, int type) {
1006 MALLOC_TRACE("free",
1007 (ptr != 0 ? MallocBlock::FromRawPointer(ptr)->data_size() : 0),
1008 ptr);
1009 if (ptr) MallocBlock::FromRawPointer(ptr)->Deallocate(type);
1012 // ========================================================================= //
1014 // The following functions may be called via MallocExtension::instance()
1015 // for memory verification and statistics.
1016 class DebugMallocImplementation : public TCMallocImplementation {
1017 public:
1018 virtual bool GetNumericProperty(const char* name, size_t* value) {
1019 bool result = TCMallocImplementation::GetNumericProperty(name, value);
1020 if (result && (strcmp(name, "generic.current_allocated_bytes") == 0)) {
1021 // Subtract bytes kept in the free queue
1022 size_t qsize = MallocBlock::FreeQueueSize();
1023 if (*value >= qsize) {
1024 *value -= qsize;
1027 return result;
1030 virtual bool VerifyNewMemory(const void* p) {
1031 if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kNewType);
1032 return true;
1035 virtual bool VerifyArrayNewMemory(const void* p) {
1036 if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kArrayNewType);
1037 return true;
1040 virtual bool VerifyMallocMemory(const void* p) {
1041 if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kMallocType);
1042 return true;
1045 virtual bool VerifyAllMemory() {
1046 return MallocBlock::CheckEverything();
1049 virtual bool MallocMemoryStats(int* blocks, size_t* total,
1050 int histogram[kMallocHistogramSize]) {
1051 return MallocBlock::MemoryStats(blocks, total, histogram);
1054 virtual size_t GetEstimatedAllocatedSize(size_t size) {
1055 return size;
1058 virtual size_t GetAllocatedSize(const void* p) {
1059 if (p) {
1060 RAW_CHECK(GetOwnership(p) != MallocExtension::kNotOwned,
1061 "ptr not allocated by tcmalloc");
1062 return MallocBlock::FromRawPointer(p)->data_size();
1064 return 0;
1067 virtual MallocExtension::Ownership GetOwnership(const void* p) {
1068 if (p) {
1069 const MallocBlock* mb = MallocBlock::FromRawPointer(p);
1070 return TCMallocImplementation::GetOwnership(mb);
1072 return MallocExtension::kNotOwned; // nobody owns NULL
1075 virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
1076 static const char* kDebugFreeQueue = "debug.free_queue";
1078 TCMallocImplementation::GetFreeListSizes(v);
1080 MallocExtension::FreeListInfo i;
1081 i.type = kDebugFreeQueue;
1082 i.min_object_size = 0;
1083 i.max_object_size = numeric_limits<size_t>::max();
1084 i.total_bytes_free = MallocBlock::FreeQueueSize();
1085 v->push_back(i);
1090 static DebugMallocImplementation debug_malloc_implementation;
1092 REGISTER_MODULE_INITIALIZER(debugallocation, {
1093 // Either we or valgrind will control memory management. We
1094 // register our extension if we're the winner. Otherwise let
1095 // Valgrind use its own malloc (so don't register our extension).
1096 if (!RunningOnValgrind()) {
1097 MallocExtension::Register(&debug_malloc_implementation);
1101 REGISTER_MODULE_DESTRUCTOR(debugallocation, {
1102 if (!RunningOnValgrind()) {
1103 // When the program exits, check all blocks still in the free
1104 // queue for corruption.
1105 DanglingWriteChecker();
1109 // ========================================================================= //
1111 // This is mostly the same a cpp_alloc in tcmalloc.cc.
1112 // TODO(csilvers): change Allocate() above to call cpp_alloc, so we
1113 // don't have to reproduce the logic here. To make tc_new_mode work
1114 // properly, I think we'll need to separate out the logic of throwing
1115 // from the logic of calling the new-handler.
1116 inline void* debug_cpp_alloc(size_t size, int new_type, bool nothrow) {
1117 for (;;) {
1118 void* p = DebugAllocate(size, new_type);
1119 #ifdef PREANSINEW
1120 return p;
1121 #else
1122 if (p == NULL) { // allocation failed
1123 // Get the current new handler. NB: this function is not
1124 // thread-safe. We make a feeble stab at making it so here, but
1125 // this lock only protects against tcmalloc interfering with
1126 // itself, not with other libraries calling set_new_handler.
1127 std::new_handler nh;
1129 SpinLockHolder h(&set_new_handler_lock);
1130 nh = std::set_new_handler(0);
1131 (void) std::set_new_handler(nh);
1133 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1134 if (nh) {
1135 // Since exceptions are disabled, we don't really know if new_handler
1136 // failed. Assume it will abort if it fails.
1137 (*nh)();
1138 continue;
1140 return 0;
1141 #else
1142 // If no new_handler is established, the allocation failed.
1143 if (!nh) {
1144 if (nothrow) return 0;
1145 throw std::bad_alloc();
1147 // Otherwise, try the new_handler. If it returns, retry the
1148 // allocation. If it throws std::bad_alloc, fail the allocation.
1149 // if it throws something else, don't interfere.
1150 try {
1151 (*nh)();
1152 } catch (const std::bad_alloc&) {
1153 if (!nothrow) throw;
1154 return p;
1156 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1157 } else { // allocation success
1158 return p;
1160 #endif // PREANSINEW
1164 inline void* do_debug_malloc_or_debug_cpp_alloc(size_t size) {
1165 return tc_new_mode ? debug_cpp_alloc(size, MallocBlock::kMallocType, true)
1166 : DebugAllocate(size, MallocBlock::kMallocType);
1169 // Exported routines
1171 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
1172 void* ptr = do_debug_malloc_or_debug_cpp_alloc(size);
1173 MallocHook::InvokeNewHook(ptr, size);
1174 return ptr;
1177 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
1178 MallocHook::InvokeDeleteHook(ptr);
1179 DebugDeallocate(ptr, MallocBlock::kMallocType);
1182 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t count, size_t size) __THROW {
1183 // Overflow check
1184 const size_t total_size = count * size;
1185 if (size != 0 && total_size / size != count) return NULL;
1187 void* block = do_debug_malloc_or_debug_cpp_alloc(total_size);
1188 MallocHook::InvokeNewHook(block, total_size);
1189 if (block) memset(block, 0, total_size);
1190 return block;
1193 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
1194 MallocHook::InvokeDeleteHook(ptr);
1195 DebugDeallocate(ptr, MallocBlock::kMallocType);
1198 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* ptr, size_t size) __THROW {
1199 if (ptr == NULL) {
1200 ptr = do_debug_malloc_or_debug_cpp_alloc(size);
1201 MallocHook::InvokeNewHook(ptr, size);
1202 return ptr;
1204 MallocBlock* old = MallocBlock::FromRawPointer(ptr);
1205 old->Check(MallocBlock::kMallocType);
1206 if (MallocBlock::IsMemaligned(ptr)) {
1207 RAW_LOG(FATAL, "realloc/memalign mismatch at %p: "
1208 "non-NULL pointers passed to realloc must be obtained "
1209 "from malloc, calloc, or realloc", ptr);
1211 if (size == 0) {
1212 MallocHook::InvokeDeleteHook(ptr);
1213 DebugDeallocate(ptr, MallocBlock::kMallocType);
1214 return NULL;
1216 MallocBlock* p = MallocBlock::Allocate(size, MallocBlock::kMallocType);
1218 // If realloc fails we are to leave the old block untouched and
1219 // return null
1220 if (p == NULL) return NULL;
1222 memcpy(p->data_addr(), old->data_addr(),
1223 (old->data_size() < size) ? old->data_size() : size);
1224 MallocHook::InvokeDeleteHook(ptr);
1225 MallocHook::InvokeNewHook(p->data_addr(), size);
1226 DebugDeallocate(ptr, MallocBlock::kMallocType);
1227 MALLOC_TRACE("realloc", p->data_size(), p->data_addr());
1228 return p->data_addr();
1231 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
1232 void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, false);
1233 MallocHook::InvokeNewHook(ptr, size);
1234 if (ptr == NULL) {
1235 RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new failed.", size);
1237 return ptr;
1240 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
1241 void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, true);
1242 MallocHook::InvokeNewHook(ptr, size);
1243 return ptr;
1246 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
1247 MallocHook::InvokeDeleteHook(p);
1248 DebugDeallocate(p, MallocBlock::kNewType);
1251 // Some STL implementations explicitly invoke this.
1252 // It is completely equivalent to a normal delete (delete never throws).
1253 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
1254 MallocHook::InvokeDeleteHook(p);
1255 DebugDeallocate(p, MallocBlock::kNewType);
1258 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
1259 void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, false);
1260 MallocHook::InvokeNewHook(ptr, size);
1261 if (ptr == NULL) {
1262 RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new[] failed.", size);
1264 return ptr;
1267 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
1268 __THROW {
1269 void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, true);
1270 MallocHook::InvokeNewHook(ptr, size);
1271 return ptr;
1274 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
1275 MallocHook::InvokeDeleteHook(p);
1276 DebugDeallocate(p, MallocBlock::kArrayNewType);
1279 // Some STL implementations explicitly invoke this.
1280 // It is completely equivalent to a normal delete (delete never throws).
1281 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
1282 MallocHook::InvokeDeleteHook(p);
1283 DebugDeallocate(p, MallocBlock::kArrayNewType);
1286 // Round "value" up to next "alignment" boundary.
1287 // Requires that "alignment" be a power of two.
1288 static intptr_t RoundUp(intptr_t value, intptr_t alignment) {
1289 return (value + alignment - 1) & ~(alignment - 1);
1292 // This is mostly the same as do_memalign in tcmalloc.cc.
1293 static void *do_debug_memalign(size_t alignment, size_t size) {
1294 // Allocate >= size bytes aligned on "alignment" boundary
1295 // "alignment" is a power of two.
1296 void *p = 0;
1297 RAW_CHECK((alignment & (alignment-1)) == 0, "must be power of two");
1298 const size_t data_offset = MallocBlock::data_offset();
1299 // Allocate "alignment-1" extra bytes to ensure alignment is possible, and
1300 // a further data_offset bytes for an additional fake header.
1301 size_t extra_bytes = data_offset + alignment - 1;
1302 if (size + extra_bytes < size) return NULL; // Overflow
1303 p = DebugAllocate(size + extra_bytes, MallocBlock::kMallocType);
1304 if (p != 0) {
1305 intptr_t orig_p = reinterpret_cast<intptr_t>(p);
1306 // Leave data_offset bytes for fake header, and round up to meet
1307 // alignment.
1308 p = reinterpret_cast<void *>(RoundUp(orig_p + data_offset, alignment));
1309 // Create a fake header block with an offset_ that points back to the
1310 // real header. FromRawPointer uses this value.
1311 MallocBlock *fake_hdr = reinterpret_cast<MallocBlock *>(
1312 reinterpret_cast<char *>(p) - data_offset);
1313 // offset_ is distance between real and fake headers.
1314 // p is now end of fake header (beginning of client area),
1315 // and orig_p is the end of the real header, so offset_
1316 // is their difference.
1317 fake_hdr->set_offset(reinterpret_cast<intptr_t>(p) - orig_p);
1319 return p;
1322 // This is mostly the same as cpp_memalign in tcmalloc.cc.
1323 static void* debug_cpp_memalign(size_t align, size_t size) {
1324 for (;;) {
1325 void* p = do_debug_memalign(align, size);
1326 #ifdef PREANSINEW
1327 return p;
1328 #else
1329 if (p == NULL) { // allocation failed
1330 // Get the current new handler. NB: this function is not
1331 // thread-safe. We make a feeble stab at making it so here, but
1332 // this lock only protects against tcmalloc interfering with
1333 // itself, not with other libraries calling set_new_handler.
1334 std::new_handler nh;
1336 SpinLockHolder h(&set_new_handler_lock);
1337 nh = std::set_new_handler(0);
1338 (void) std::set_new_handler(nh);
1340 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1341 if (nh) {
1342 // Since exceptions are disabled, we don't really know if new_handler
1343 // failed. Assume it will abort if it fails.
1344 (*nh)();
1345 continue;
1347 return 0;
1348 #else
1349 // If no new_handler is established, the allocation failed.
1350 if (!nh)
1351 return 0;
1353 // Otherwise, try the new_handler. If it returns, retry the
1354 // allocation. If it throws std::bad_alloc, fail the allocation.
1355 // if it throws something else, don't interfere.
1356 try {
1357 (*nh)();
1358 } catch (const std::bad_alloc&) {
1359 return p;
1361 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1362 } else { // allocation success
1363 return p;
1365 #endif // PREANSINEW
1369 inline void* do_debug_memalign_or_debug_cpp_memalign(size_t align,
1370 size_t size) {
1371 return tc_new_mode ? debug_cpp_memalign(align, size)
1372 : do_debug_memalign(align, size);
1375 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) __THROW {
1376 void *p = do_debug_memalign_or_debug_cpp_memalign(align, size);
1377 MallocHook::InvokeNewHook(p, size);
1378 return p;
1381 // Implementation taken from tcmalloc/tcmalloc.cc
1382 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(void** result_ptr, size_t align, size_t size)
1383 __THROW {
1384 if (((align % sizeof(void*)) != 0) ||
1385 ((align & (align - 1)) != 0) ||
1386 (align == 0)) {
1387 return EINVAL;
1390 void* result = do_debug_memalign_or_debug_cpp_memalign(align, size);
1391 MallocHook::InvokeNewHook(result, size);
1392 if (result == NULL) {
1393 return ENOMEM;
1394 } else {
1395 *result_ptr = result;
1396 return 0;
1400 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
1401 // Allocate >= size bytes starting on a page boundary
1402 void *p = do_debug_memalign_or_debug_cpp_memalign(getpagesize(), size);
1403 MallocHook::InvokeNewHook(p, size);
1404 return p;
1407 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
1408 // Round size up to a multiple of pages
1409 // then allocate memory on a page boundary
1410 int pagesize = getpagesize();
1411 size = RoundUp(size, pagesize);
1412 if (size == 0) { // pvalloc(0) should allocate one page, according to
1413 size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html
1415 void *p = do_debug_memalign_or_debug_cpp_memalign(pagesize, size);
1416 MallocHook::InvokeNewHook(p, size);
1417 return p;
1420 // malloc_stats just falls through to the base implementation.
1421 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
1422 BASE_MALLOC_STATS();
1425 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
1426 return BASE_MALLOPT(cmd, value);
1429 #ifdef HAVE_STRUCT_MALLINFO
1430 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
1431 return BASE_MALLINFO();
1433 #endif
1435 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
1436 return MallocExtension::instance()->GetAllocatedSize(ptr);