Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / third_party / tcmalloc / chromium / src / tcmalloc.cc
blob1a56a3adbf5049d2f69f4fbd8780b877bbd69498
1 // Copyright (c) 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // ---
31 // Author: Sanjay Ghemawat <opensource@google.com>
33 // A malloc that uses a per-thread cache to satisfy small malloc requests.
34 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36 // See doc/tcmalloc.html for a high-level
37 // description of how this malloc works.
39 // SYNCHRONIZATION
40 // 1. The thread-specific lists are accessed without acquiring any locks.
41 // This is safe because each such list is only accessed by one thread.
42 // 2. We have a lock per central free-list, and hold it while manipulating
43 // the central free list for a particular size.
44 // 3. The central page allocator is protected by "pageheap_lock".
45 // 4. The pagemap (which maps from page-number to descriptor),
46 // can be read without holding any locks, and written while holding
47 // the "pageheap_lock".
48 // 5. To improve performance, a subset of the information one can get
49 // from the pagemap is cached in a data structure, pagemap_cache_,
50 // that atomically reads and writes its entries. This cache can be
51 // read and written without locking.
53 // This multi-threaded access to the pagemap is safe for fairly
54 // subtle reasons. We basically assume that when an object X is
55 // allocated by thread A and deallocated by thread B, there must
56 // have been appropriate synchronization in the handoff of object
57 // X from thread A to thread B. The same logic applies to pagemap_cache_.
59 // THE PAGEID-TO-SIZECLASS CACHE
60 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
61 // returns 0 for a particular PageID then that means "no information," not that
62 // the sizeclass is 0. The cache may have stale information for pages that do
63 // not hold the beginning of any free()'able object. Staleness is eliminated
64 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
65 // do_memalign() for all other relevant pages.
67 // PAGEMAP
68 // -------
69 // Page map contains a mapping from page id to Span.
71 // If Span s occupies pages [p..q],
72 // pagemap[p] == s
73 // pagemap[q] == s
74 // pagemap[p+1..q-1] are undefined
75 // pagemap[p-1] and pagemap[q+1] are defined:
76 // NULL if the corresponding page is not yet in the address space.
77 // Otherwise it points to a Span. This span may be free
78 // or allocated. If free, it is in one of pageheap's freelist.
80 // TODO: Bias reclamation to larger addresses
81 // TODO: implement mallinfo/mallopt
82 // TODO: Better testing
84 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
85 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
86 // * allocation of a reasonably complicated struct
87 // goes from about 1100 ns to about 300 ns.
89 #include "config.h"
90 #include <gperftools/tcmalloc.h>
92 #include <errno.h> // for ENOMEM, EINVAL, errno
93 #ifdef HAVE_SYS_CDEFS_H
94 #include <sys/cdefs.h> // for __THROW
95 #endif
96 #if defined HAVE_STDINT_H
97 #include <stdint.h>
98 #elif defined HAVE_INTTYPES_H
99 #include <inttypes.h>
100 #else
101 #include <sys/types.h>
102 #endif
103 #include <stddef.h> // for size_t, NULL
104 #include <stdlib.h> // for getenv
105 #include <string.h> // for strcmp, memset, strlen, etc
106 #ifdef HAVE_UNISTD_H
107 #include <unistd.h> // for getpagesize, write, etc
108 #endif
109 #include <algorithm> // for max, min
110 #include <limits> // for numeric_limits
111 #include <new> // for nothrow_t (ptr only), etc
112 #include <vector> // for vector
114 #include <gperftools/malloc_extension.h>
115 #include <gperftools/malloc_hook.h> // for MallocHook
116 #include "base/basictypes.h" // for int64
117 #include "base/commandlineflags.h" // for RegisterFlagValidator, etc
118 #include "base/dynamic_annotations.h" // for RunningOnValgrind
119 #include "base/spinlock.h" // for SpinLockHolder
120 #include "central_freelist.h" // for CentralFreeListPadded
121 #include "common.h" // for StackTrace, kPageShift, etc
122 #include "free_list.h" // for FL_Init
123 #include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc
124 #include "malloc_hook-inl.h" // for MallocHook::InvokeNewHook, etc
125 #include "page_heap.h" // for PageHeap, PageHeap::Stats
126 #include "page_heap_allocator.h" // for PageHeapAllocator
127 #include "span.h" // for Span, DLL_Prepend, etc
128 #include "stack_trace_table.h" // for StackTraceTable
129 #include "static_vars.h" // for Static
130 #include "system-alloc.h" // for DumpSystemAllocatorStats, etc
131 #include "tcmalloc_guard.h" // for TCMallocGuard
132 #include "thread_cache.h" // for ThreadCache
134 #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
135 # define WIN32_DO_PATCHING 1
136 #endif
138 // Some windows file somewhere (at least on cygwin) #define's small (!)
139 // For instance, <windows.h> appears to have "#define small char".
140 #undef small
142 using STL_NAMESPACE::max;
143 using STL_NAMESPACE::min;
144 using STL_NAMESPACE::numeric_limits;
145 using STL_NAMESPACE::vector;
147 #include "libc_override.h"
149 // __THROW is defined in glibc (via <sys/cdefs.h>). It means,
150 // counter-intuitively, "This function will never throw an exception."
151 // It's an optional optimization tool, but we may need to use it to
152 // match glibc prototypes.
153 #ifndef __THROW // I guess we're not on a glibc system
154 # define __THROW // __THROW is just an optimization, so ok to make it ""
155 #endif
157 using tcmalloc::AlignmentForSize;
158 using tcmalloc::kLog;
159 using tcmalloc::kCrash;
160 using tcmalloc::kCrashWithStats;
161 using tcmalloc::Log;
162 using tcmalloc::PageHeap;
163 using tcmalloc::PageHeapAllocator;
164 using tcmalloc::SizeMap;
165 using tcmalloc::Span;
166 using tcmalloc::StackTrace;
167 using tcmalloc::Static;
168 using tcmalloc::ThreadCache;
170 // ---- Functions doing validation with an extra mark.
171 static size_t ExcludeSpaceForMark(size_t size);
172 static void AddRoomForMark(size_t* size);
173 static void ExcludeMarkFromSize(size_t* new_size);
174 static void MarkAllocatedRegion(void* ptr);
175 static void ValidateAllocatedRegion(void* ptr, size_t cl);
176 // ---- End validation functions.
178 DECLARE_int64(tcmalloc_sample_parameter);
179 DECLARE_double(tcmalloc_release_rate);
181 // For windows, the printf we use to report large allocs is
182 // potentially dangerous: it could cause a malloc that would cause an
183 // infinite loop. So by default we set the threshold to a huge number
184 // on windows, so this bad situation will never trigger. You can
185 // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
186 // want this functionality.
187 #ifdef _WIN32
188 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
189 #else
190 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
191 #endif
192 DEFINE_int64(tcmalloc_large_alloc_report_threshold,
193 EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
194 kDefaultLargeAllocReportThreshold),
195 "Allocations larger than this value cause a stack "
196 "trace to be dumped to stderr. The threshold for "
197 "dumping stack traces is increased by a factor of 1.125 "
198 "every time we print a message so that the threshold "
199 "automatically goes up by a factor of ~1000 every 60 "
200 "messages. This bounds the amount of extra logging "
201 "generated by this flag. Default value of this flag "
202 "is very large and therefore you should see no extra "
203 "logging unless the flag is overridden. Set to 0 to "
204 "disable reporting entirely.");
207 // We already declared these functions in tcmalloc.h, but we have to
208 // declare them again to give them an ATTRIBUTE_SECTION: we want to
209 // put all callers of MallocHook::Invoke* in this module into
210 // ATTRIBUTE_SECTION(google_malloc) section, so that
211 // MallocHook::GetCallerStackTrace can function accurately.
212 extern "C" {
213 void* tc_malloc(size_t size) __THROW
214 ATTRIBUTE_SECTION(google_malloc);
215 void tc_free(void* ptr) __THROW
216 ATTRIBUTE_SECTION(google_malloc);
217 void* tc_realloc(void* ptr, size_t size) __THROW
218 ATTRIBUTE_SECTION(google_malloc);
219 void* tc_calloc(size_t nmemb, size_t size) __THROW
220 ATTRIBUTE_SECTION(google_malloc);
221 void tc_cfree(void* ptr) __THROW
222 ATTRIBUTE_SECTION(google_malloc);
224 void* tc_memalign(size_t __alignment, size_t __size) __THROW
225 ATTRIBUTE_SECTION(google_malloc);
226 int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
227 ATTRIBUTE_SECTION(google_malloc);
228 void* tc_valloc(size_t __size) __THROW
229 ATTRIBUTE_SECTION(google_malloc);
230 void* tc_pvalloc(size_t __size) __THROW
231 ATTRIBUTE_SECTION(google_malloc);
233 void tc_malloc_stats(void) __THROW
234 ATTRIBUTE_SECTION(google_malloc);
235 int tc_mallopt(int cmd, int value) __THROW
236 ATTRIBUTE_SECTION(google_malloc);
237 #ifdef HAVE_STRUCT_MALLINFO
238 struct mallinfo tc_mallinfo(void) __THROW
239 ATTRIBUTE_SECTION(google_malloc);
240 #endif
242 void* tc_new(size_t size)
243 ATTRIBUTE_SECTION(google_malloc);
244 void tc_delete(void* p) __THROW
245 ATTRIBUTE_SECTION(google_malloc);
246 void* tc_newarray(size_t size)
247 ATTRIBUTE_SECTION(google_malloc);
248 void tc_deletearray(void* p) __THROW
249 ATTRIBUTE_SECTION(google_malloc);
251 // And the nothrow variants of these:
252 void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
253 ATTRIBUTE_SECTION(google_malloc);
254 void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
255 ATTRIBUTE_SECTION(google_malloc);
256 // Surprisingly, standard C++ library implementations use a
257 // nothrow-delete internally. See, eg:
258 // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
259 void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW
260 ATTRIBUTE_SECTION(google_malloc);
261 void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW
262 ATTRIBUTE_SECTION(google_malloc);
264 // Some non-standard extensions that we support.
266 // This is equivalent to
267 // OS X: malloc_size()
268 // glibc: malloc_usable_size()
269 // Windows: _msize()
270 size_t tc_malloc_size(void* p) __THROW
271 ATTRIBUTE_SECTION(google_malloc);
272 } // extern "C"
275 // ----------------------- IMPLEMENTATION -------------------------------
277 static int tc_new_mode = 0; // See tc_set_new_mode().
279 // Routines such as free() and realloc() catch some erroneous pointers
280 // passed to them, and invoke the below when they do. (An erroneous pointer
281 // won't be caught if it's within a valid span or a stale span for which
282 // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
283 // required) kind of exception handling for these routines.
284 namespace {
285 void InvalidFree(void* ptr) {
286 Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
289 size_t InvalidGetSizeForRealloc(const void* old_ptr) {
290 Log(kCrash, __FILE__, __LINE__,
291 "Attempt to realloc invalid pointer", old_ptr);
292 return 0;
295 size_t InvalidGetAllocatedSize(const void* ptr) {
296 Log(kCrash, __FILE__, __LINE__,
297 "Attempt to get the size of an invalid pointer", ptr);
298 return 0;
301 // For security reasons, we want to limit the size of allocations.
302 // See crbug.com/169327.
303 inline bool IsAllocSizePermitted(size_t alloc_size) {
304 // Never allow an allocation larger than what can be indexed via an int.
305 // Remove kPageSize to account for various rounding, padding and to have a
306 // small margin.
307 return alloc_size <= ((std::numeric_limits<int>::max)() - kPageSize);
310 } // unnamed namespace
312 // Extract interesting stats
313 struct TCMallocStats {
314 uint64_t thread_bytes; // Bytes in thread caches
315 uint64_t central_bytes; // Bytes in central cache
316 uint64_t transfer_bytes; // Bytes in central transfer cache
317 uint64_t metadata_bytes; // Bytes alloced for metadata
318 uint64_t metadata_unmapped_bytes; // Address space reserved for metadata
319 // but is not committed.
320 PageHeap::Stats pageheap; // Stats from page heap
323 // Get stats into "r". Also get per-size-class counts if class_count != NULL
324 static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
325 PageHeap::SmallSpanStats* small_spans,
326 PageHeap::LargeSpanStats* large_spans) {
327 r->central_bytes = 0;
328 r->transfer_bytes = 0;
329 for (int cl = 0; cl < kNumClasses; ++cl) {
330 const int length = Static::central_cache()[cl].length();
331 const int tc_length = Static::central_cache()[cl].tc_length();
332 const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
333 const size_t size = static_cast<uint64_t>(
334 Static::sizemap()->ByteSizeForClass(cl));
335 r->central_bytes += (size * length) + cache_overhead;
336 r->transfer_bytes += (size * tc_length);
337 if (class_count) class_count[cl] = length + tc_length;
340 // Add stats from per-thread heaps
341 r->thread_bytes = 0;
342 { // scope
343 SpinLockHolder h(Static::pageheap_lock());
344 ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
345 r->metadata_bytes = tcmalloc::metadata_system_bytes();
346 r->metadata_unmapped_bytes = tcmalloc::metadata_unmapped_bytes();
347 r->pageheap = Static::pageheap()->stats();
348 if (small_spans != NULL) {
349 Static::pageheap()->GetSmallSpanStats(small_spans);
351 if (large_spans != NULL) {
352 Static::pageheap()->GetLargeSpanStats(large_spans);
357 static double PagesToMiB(uint64_t pages) {
358 return (pages << kPageShift) / 1048576.0;
361 // WRITE stats to "out"
362 static void DumpStats(TCMalloc_Printer* out, int level) {
363 TCMallocStats stats;
364 uint64_t class_count[kNumClasses];
365 PageHeap::SmallSpanStats small;
366 PageHeap::LargeSpanStats large;
367 if (level >= 2) {
368 ExtractStats(&stats, class_count, &small, &large);
369 } else {
370 ExtractStats(&stats, NULL, NULL, NULL);
373 static const double MiB = 1048576.0;
375 const uint64_t physical_memory_used_by_metadata =
376 stats.metadata_bytes - stats.metadata_unmapped_bytes;
377 const uint64_t unmapped_bytes =
378 stats.pageheap.unmapped_bytes + stats.metadata_unmapped_bytes;
380 const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
381 + stats.metadata_bytes);
382 const uint64_t physical_memory_used = virtual_memory_used - unmapped_bytes;
383 const uint64_t bytes_in_use_by_app = (physical_memory_used
384 - physical_memory_used_by_metadata
385 - stats.pageheap.free_bytes
386 - stats.central_bytes
387 - stats.transfer_bytes
388 - stats.thread_bytes);
390 out->printf(
391 "WASTE: %7.1f MiB bytes in use\n"
392 "WASTE: + %7.1f MiB committed but not used\n"
393 "WASTE: ------------\n"
394 "WASTE: = %7.1f MiB bytes committed\n"
395 "WASTE: committed/used ratio of %f\n",
396 bytes_in_use_by_app / MiB,
397 (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB,
398 stats.pageheap.committed_bytes / MiB,
399 stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app)
401 #ifdef TCMALLOC_SMALL_BUT_SLOW
402 out->printf(
403 "NOTE: SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
404 #endif
405 out->printf(
406 "------------------------------------------------\n"
407 "MALLOC: %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
408 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
409 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
410 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
411 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
412 "MALLOC: ------------\n"
413 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Bytes committed\n"
414 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
415 "MALLOC: ------------\n"
416 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
417 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
418 "MALLOC: ------------\n"
419 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
420 "MALLOC:\n"
421 "MALLOC: %12" PRIu64 " Spans in use\n"
422 "MALLOC: %12" PRIu64 " Thread heaps in use\n"
423 "MALLOC: %12" PRIu64 " Tcmalloc page size\n"
424 "------------------------------------------------\n"
425 "Call ReleaseFreeMemory() to release freelist memory to the OS"
426 " (via madvise()).\n"
427 "Bytes released to the OS take up virtual address space"
428 " but no physical memory.\n",
429 bytes_in_use_by_app, bytes_in_use_by_app / MiB,
430 stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
431 stats.central_bytes, stats.central_bytes / MiB,
432 stats.transfer_bytes, stats.transfer_bytes / MiB,
433 stats.thread_bytes, stats.thread_bytes / MiB,
434 stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB,
435 physical_memory_used_by_metadata , physical_memory_used_by_metadata / MiB,
436 physical_memory_used, physical_memory_used / MiB,
437 unmapped_bytes, unmapped_bytes / MiB,
438 virtual_memory_used, virtual_memory_used / MiB,
439 uint64_t(Static::span_allocator()->inuse()),
440 uint64_t(ThreadCache::HeapsInUse()),
441 uint64_t(kPageSize));
443 if (level >= 2) {
444 out->printf("------------------------------------------------\n");
445 out->printf("Size class breakdown\n");
446 out->printf("------------------------------------------------\n");
447 uint64_t cumulative = 0;
448 for (int cl = 0; cl < kNumClasses; ++cl) {
449 if (class_count[cl] > 0) {
450 uint64_t class_bytes =
451 class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
452 cumulative += class_bytes;
453 out->printf("class %3d [ %8" PRIuS " bytes ] : "
454 "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
455 cl, Static::sizemap()->ByteSizeForClass(cl),
456 class_count[cl],
457 class_bytes / MiB,
458 cumulative / MiB);
462 // append page heap info
463 int nonempty_sizes = 0;
464 for (int s = 0; s < kMaxPages; s++) {
465 if (small.normal_length[s] + small.returned_length[s] > 0) {
466 nonempty_sizes++;
469 out->printf("------------------------------------------------\n");
470 out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
471 nonempty_sizes, stats.pageheap.free_bytes / MiB,
472 stats.pageheap.unmapped_bytes / MiB);
473 out->printf("------------------------------------------------\n");
474 uint64_t total_normal = 0;
475 uint64_t total_returned = 0;
476 for (int s = 0; s < kMaxPages; s++) {
477 const int n_length = small.normal_length[s];
478 const int r_length = small.returned_length[s];
479 if (n_length + r_length > 0) {
480 uint64_t n_pages = s * n_length;
481 uint64_t r_pages = s * r_length;
482 total_normal += n_pages;
483 total_returned += r_pages;
484 out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
485 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
487 (n_length + r_length),
488 PagesToMiB(n_pages + r_pages),
489 PagesToMiB(total_normal + total_returned),
490 PagesToMiB(r_pages),
491 PagesToMiB(total_returned));
495 total_normal += large.normal_pages;
496 total_returned += large.returned_pages;
497 out->printf(">255 large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
498 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
499 static_cast<unsigned int>(large.spans),
500 PagesToMiB(large.normal_pages + large.returned_pages),
501 PagesToMiB(total_normal + total_returned),
502 PagesToMiB(large.returned_pages),
503 PagesToMiB(total_returned));
507 static void PrintStats(int level) {
508 const int kBufferSize = 16 << 10;
509 char* buffer = new char[kBufferSize];
510 TCMalloc_Printer printer(buffer, kBufferSize);
511 DumpStats(&printer, level);
512 write(STDERR_FILENO, buffer, strlen(buffer));
513 delete[] buffer;
516 static void** DumpHeapGrowthStackTraces() {
517 // Count how much space we need
518 int needed_slots = 0;
520 SpinLockHolder h(Static::pageheap_lock());
521 for (StackTrace* t = Static::growth_stacks();
522 t != NULL;
523 t = reinterpret_cast<StackTrace*>(
524 t->stack[tcmalloc::kMaxStackDepth-1])) {
525 needed_slots += 3 + t->depth;
527 needed_slots += 100; // Slop in case list grows
528 needed_slots += needed_slots/8; // An extra 12.5% slop
531 void** result = new void*[needed_slots];
532 if (result == NULL) {
533 Log(kLog, __FILE__, __LINE__,
534 "tcmalloc: allocation failed for stack trace slots",
535 needed_slots * sizeof(*result));
536 return NULL;
539 SpinLockHolder h(Static::pageheap_lock());
540 int used_slots = 0;
541 for (StackTrace* t = Static::growth_stacks();
542 t != NULL;
543 t = reinterpret_cast<StackTrace*>(
544 t->stack[tcmalloc::kMaxStackDepth-1])) {
545 ASSERT(used_slots < needed_slots); // Need to leave room for terminator
546 if (used_slots + 3 + t->depth >= needed_slots) {
547 // No more room
548 break;
551 result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
552 result[used_slots+1] = reinterpret_cast<void*>(t->size);
553 result[used_slots+2] = reinterpret_cast<void*>(t->depth);
554 for (int d = 0; d < t->depth; d++) {
555 result[used_slots+3+d] = t->stack[d];
557 used_slots += 3 + t->depth;
559 result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
560 return result;
563 static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
564 PageID page = 1; // Some code may assume that page==0 is never used
565 bool done = false;
566 while (!done) {
567 // Accumulate a small number of ranges in a local buffer
568 static const int kNumRanges = 16;
569 static base::MallocRange ranges[kNumRanges];
570 int n = 0;
572 SpinLockHolder h(Static::pageheap_lock());
573 while (n < kNumRanges) {
574 if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
575 done = true;
576 break;
577 } else {
578 uintptr_t limit = ranges[n].address + ranges[n].length;
579 page = (limit + kPageSize - 1) >> kPageShift;
580 n++;
585 for (int i = 0; i < n; i++) {
586 (*func)(arg, &ranges[i]);
591 // TCMalloc's support for extra malloc interfaces
592 class TCMallocImplementation : public MallocExtension {
593 private:
594 // ReleaseToSystem() might release more than the requested bytes because
595 // the page heap releases at the span granularity, and spans are of wildly
596 // different sizes. This member keeps track of the extra bytes bytes
597 // released so that the app can periodically call ReleaseToSystem() to
598 // release memory at a constant rate.
599 // NOTE: Protected by Static::pageheap_lock().
600 size_t extra_bytes_released_;
602 public:
603 TCMallocImplementation()
604 : extra_bytes_released_(0) {
607 virtual void GetStats(char* buffer, int buffer_length) {
608 ASSERT(buffer_length > 0);
609 TCMalloc_Printer printer(buffer, buffer_length);
611 // Print level one stats unless lots of space is available
612 if (buffer_length < 10000) {
613 DumpStats(&printer, 1);
614 } else {
615 DumpStats(&printer, 2);
619 // We may print an extra, tcmalloc-specific warning message here.
620 virtual void GetHeapSample(MallocExtensionWriter* writer) {
621 if (FLAGS_tcmalloc_sample_parameter == 0) {
622 const char* const kWarningMsg =
623 "%warn\n"
624 "%warn This heap profile does not have any data in it, because\n"
625 "%warn the application was run with heap sampling turned off.\n"
626 "%warn To get useful data from GetHeapSample(), you must\n"
627 "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
628 "%warn a positive sampling period, such as 524288.\n"
629 "%warn\n";
630 writer->append(kWarningMsg, strlen(kWarningMsg));
632 MallocExtension::GetHeapSample(writer);
635 virtual void** ReadStackTraces(int* sample_period) {
636 tcmalloc::StackTraceTable table;
638 SpinLockHolder h(Static::pageheap_lock());
639 Span* sampled = Static::sampled_objects();
640 for (Span* s = sampled->next; s != sampled; s = s->next) {
641 table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
644 *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
645 return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
648 virtual void** ReadHeapGrowthStackTraces() {
649 return DumpHeapGrowthStackTraces();
652 virtual void Ranges(void* arg, RangeFunction func) {
653 IterateOverRanges(arg, func);
656 virtual bool GetNumericProperty(const char* name, size_t* value) {
657 ASSERT(name != NULL);
659 if (strcmp(name, "generic.current_allocated_bytes") == 0) {
660 TCMallocStats stats;
661 ExtractStats(&stats, NULL, NULL, NULL);
662 *value = stats.pageheap.system_bytes
663 - stats.thread_bytes
664 - stats.central_bytes
665 - stats.transfer_bytes
666 - stats.pageheap.free_bytes
667 - stats.pageheap.unmapped_bytes;
668 return true;
671 if (strcmp(name, "generic.heap_size") == 0) {
672 TCMallocStats stats;
673 ExtractStats(&stats, NULL, NULL, NULL);
674 *value = stats.pageheap.system_bytes;
675 return true;
678 if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
679 // Kept for backwards compatibility. Now defined externally as:
680 // pageheap_free_bytes + pageheap_unmapped_bytes.
681 SpinLockHolder l(Static::pageheap_lock());
682 PageHeap::Stats stats = Static::pageheap()->stats();
683 *value = stats.free_bytes + stats.unmapped_bytes;
684 return true;
687 if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
688 SpinLockHolder l(Static::pageheap_lock());
689 *value = Static::pageheap()->stats().free_bytes;
690 return true;
693 if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
694 SpinLockHolder l(Static::pageheap_lock());
695 *value = Static::pageheap()->stats().unmapped_bytes;
696 return true;
699 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
700 SpinLockHolder l(Static::pageheap_lock());
701 *value = ThreadCache::overall_thread_cache_size();
702 return true;
705 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
706 TCMallocStats stats;
707 ExtractStats(&stats, NULL, NULL, NULL);
708 *value = stats.thread_bytes;
709 return true;
712 return false;
715 virtual bool SetNumericProperty(const char* name, size_t value) {
716 ASSERT(name != NULL);
718 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
719 SpinLockHolder l(Static::pageheap_lock());
720 ThreadCache::set_overall_thread_cache_size(value);
721 return true;
724 return false;
727 virtual void MarkThreadIdle() {
728 ThreadCache::BecomeIdle();
731 virtual void MarkThreadBusy(); // Implemented below
733 virtual SysAllocator* GetSystemAllocator() {
734 SpinLockHolder h(Static::pageheap_lock());
735 return sys_alloc;
738 virtual void SetSystemAllocator(SysAllocator* alloc) {
739 SpinLockHolder h(Static::pageheap_lock());
740 sys_alloc = alloc;
743 virtual void ReleaseToSystem(size_t num_bytes) {
744 SpinLockHolder h(Static::pageheap_lock());
745 if (num_bytes <= extra_bytes_released_) {
746 // We released too much on a prior call, so don't release any
747 // more this time.
748 extra_bytes_released_ = extra_bytes_released_ - num_bytes;
749 return;
751 num_bytes = num_bytes - extra_bytes_released_;
752 // num_bytes might be less than one page. If we pass zero to
753 // ReleaseAtLeastNPages, it won't do anything, so we release a whole
754 // page now and let extra_bytes_released_ smooth it out over time.
755 Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
756 size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
757 num_pages) << kPageShift;
758 if (bytes_released > num_bytes) {
759 extra_bytes_released_ = bytes_released - num_bytes;
760 } else {
761 // The PageHeap wasn't able to release num_bytes. Don't try to
762 // compensate with a big release next time. Specifically,
763 // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
764 extra_bytes_released_ = 0;
768 virtual void SetMemoryReleaseRate(double rate) {
769 FLAGS_tcmalloc_release_rate = rate;
772 virtual double GetMemoryReleaseRate() {
773 return FLAGS_tcmalloc_release_rate;
775 virtual size_t GetEstimatedAllocatedSize(size_t size) {
776 if (size <= kMaxSize) {
777 const size_t cl = Static::sizemap()->SizeClass(size);
778 const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
779 return alloc_size;
780 } else {
781 return tcmalloc::pages(size) << kPageShift;
785 // This just calls GetSizeWithCallback, but because that's in an
786 // unnamed namespace, we need to move the definition below it in the
787 // file.
788 virtual size_t GetAllocatedSize(const void* ptr);
790 // This duplicates some of the logic in GetSizeWithCallback, but is
791 // faster. This is important on OS X, where this function is called
792 // on every allocation operation.
793 virtual Ownership GetOwnership(const void* ptr) {
794 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
795 // The rest of tcmalloc assumes that all allocated pointers use at
796 // most kAddressBits bits. If ptr doesn't, then it definitely
797 // wasn't alloacted by tcmalloc.
798 if ((p >> (kAddressBits - kPageShift)) > 0) {
799 return kNotOwned;
801 size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
802 if (cl != 0) {
803 return kOwned;
805 const Span *span = Static::pageheap()->GetDescriptor(p);
806 return span ? kOwned : kNotOwned;
809 virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
810 static const char* kCentralCacheType = "tcmalloc.central";
811 static const char* kTransferCacheType = "tcmalloc.transfer";
812 static const char* kThreadCacheType = "tcmalloc.thread";
813 static const char* kPageHeapType = "tcmalloc.page";
814 static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
815 static const char* kLargeSpanType = "tcmalloc.large";
816 static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";
818 v->clear();
820 // central class information
821 int64 prev_class_size = 0;
822 for (int cl = 1; cl < kNumClasses; ++cl) {
823 size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
824 MallocExtension::FreeListInfo i;
825 i.min_object_size = prev_class_size + 1;
826 i.max_object_size = class_size;
827 i.total_bytes_free =
828 Static::central_cache()[cl].length() * class_size;
829 i.type = kCentralCacheType;
830 v->push_back(i);
832 // transfer cache
833 i.total_bytes_free =
834 Static::central_cache()[cl].tc_length() * class_size;
835 i.type = kTransferCacheType;
836 v->push_back(i);
838 prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
841 // Add stats from per-thread heaps
842 uint64_t class_count[kNumClasses];
843 memset(class_count, 0, sizeof(class_count));
845 SpinLockHolder h(Static::pageheap_lock());
846 uint64_t thread_bytes = 0;
847 ThreadCache::GetThreadStats(&thread_bytes, class_count);
850 prev_class_size = 0;
851 for (int cl = 1; cl < kNumClasses; ++cl) {
852 MallocExtension::FreeListInfo i;
853 i.min_object_size = prev_class_size + 1;
854 i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
855 i.total_bytes_free =
856 class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
857 i.type = kThreadCacheType;
858 v->push_back(i);
861 // append page heap info
862 PageHeap::SmallSpanStats small;
863 PageHeap::LargeSpanStats large;
865 SpinLockHolder h(Static::pageheap_lock());
866 Static::pageheap()->GetSmallSpanStats(&small);
867 Static::pageheap()->GetLargeSpanStats(&large);
870 // large spans: mapped
871 MallocExtension::FreeListInfo span_info;
872 span_info.type = kLargeSpanType;
873 span_info.max_object_size = (numeric_limits<size_t>::max)();
874 span_info.min_object_size = kMaxPages << kPageShift;
875 span_info.total_bytes_free = large.normal_pages << kPageShift;
876 v->push_back(span_info);
878 // large spans: unmapped
879 span_info.type = kLargeUnmappedSpanType;
880 span_info.total_bytes_free = large.returned_pages << kPageShift;
881 v->push_back(span_info);
883 // small spans
884 for (int s = 1; s < kMaxPages; s++) {
885 MallocExtension::FreeListInfo i;
886 i.max_object_size = (s << kPageShift);
887 i.min_object_size = ((s - 1) << kPageShift);
889 i.type = kPageHeapType;
890 i.total_bytes_free = (s << kPageShift) * small.normal_length[s];
891 v->push_back(i);
893 i.type = kPageHeapUnmappedType;
894 i.total_bytes_free = (s << kPageShift) * small.returned_length[s];
895 v->push_back(i);
900 // The constructor allocates an object to ensure that initialization
901 // runs before main(), and therefore we do not have a chance to become
902 // multi-threaded before initialization. We also create the TSD key
903 // here. Presumably by the time this constructor runs, glibc is in
904 // good enough shape to handle pthread_key_create().
906 // The constructor also takes the opportunity to tell STL to use
907 // tcmalloc. We want to do this early, before construct time, so
908 // all user STL allocations go through tcmalloc (which works really
909 // well for STL).
911 // The destructor prints stats when the program exits.
912 static int tcmallocguard_refcount = 0; // no lock needed: runs before main()
913 TCMallocGuard::TCMallocGuard() {
914 if (tcmallocguard_refcount++ == 0) {
915 #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
916 // Check whether the kernel also supports TLS (needs to happen at runtime)
917 tcmalloc::CheckIfKernelSupportsTLS();
918 #endif
919 ReplaceSystemAlloc(); // defined in libc_override_*.h
920 tc_free(tc_malloc(1));
921 ThreadCache::InitTSD();
922 tc_free(tc_malloc(1));
923 // Either we, or debugallocation.cc, or valgrind will control memory
924 // management. We register our extension if we're the winner.
925 #ifdef TCMALLOC_USING_DEBUGALLOCATION
926 // Let debugallocation register its extension.
927 #else
928 if (RunningOnValgrind()) {
929 // Let Valgrind uses its own malloc (so don't register our extension).
930 } else {
931 MallocExtension::Register(new TCMallocImplementation);
933 #endif
937 TCMallocGuard::~TCMallocGuard() {
938 if (--tcmallocguard_refcount == 0) {
939 const char* env = getenv("MALLOCSTATS");
940 if (env != NULL) {
941 int level = atoi(env);
942 if (level < 1) level = 1;
943 PrintStats(level);
947 #ifndef WIN32_OVERRIDE_ALLOCATORS
948 static TCMallocGuard module_enter_exit_hook;
949 #endif
951 //-------------------------------------------------------------------
952 // Helpers for the exported routines below
953 //-------------------------------------------------------------------
955 static inline bool CheckCachedSizeClass(void *ptr) {
956 PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
957 size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
958 return cached_value == 0 ||
959 cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
962 static inline void* CheckMallocResult(void *result) {
963 ASSERT(result == NULL || CheckCachedSizeClass(result));
964 MarkAllocatedRegion(result);
965 return result;
968 static inline void* SpanToMallocResult(Span *span) {
969 Static::pageheap()->CacheSizeClass(span->start, 0);
970 return
971 CheckMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
974 static void* DoSampledAllocation(size_t size) {
975 // Grab the stack trace outside the heap lock
976 StackTrace tmp;
977 tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
978 tmp.size = size;
980 SpinLockHolder h(Static::pageheap_lock());
981 // Allocate span
982 Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
983 if (span == NULL) {
984 return NULL;
987 // Allocate stack trace
988 StackTrace *stack = Static::stacktrace_allocator()->New();
989 if (stack == NULL) {
990 // Sampling failed because of lack of memory
991 return span;
993 *stack = tmp;
994 span->sample = 1;
995 span->objects = stack;
996 tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
998 return SpanToMallocResult(span);
1001 namespace {
1003 // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
1004 // automatic increases factored in.
1005 static int64_t large_alloc_threshold =
1006 (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
1007 ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
1009 static void ReportLargeAlloc(Length num_pages, void* result) {
1010 StackTrace stack;
1011 stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
1013 static const int N = 1000;
1014 char buffer[N];
1015 TCMalloc_Printer printer(buffer, N);
1016 printer.printf("tcmalloc: large alloc %"PRIu64" bytes == %p @ ",
1017 static_cast<uint64>(num_pages) << kPageShift,
1018 result);
1019 for (int i = 0; i < stack.depth; i++) {
1020 printer.printf(" %p", stack.stack[i]);
1022 printer.printf("\n");
1023 write(STDERR_FILENO, buffer, strlen(buffer));
1026 inline void* cpp_alloc(size_t size, bool nothrow);
1027 inline void* do_malloc(size_t size);
1029 // TODO(willchan): Investigate whether or not inlining this much is harmful to
1030 // performance.
1031 // This is equivalent to do_malloc() except when tc_new_mode is set to true.
1032 // Otherwise, it will run the std::new_handler if set.
1033 inline void* do_malloc_or_cpp_alloc(size_t size) {
1034 return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size);
1037 void* cpp_memalign(size_t align, size_t size);
1038 void* do_memalign(size_t align, size_t size);
1040 inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) {
1041 return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size);
1044 // Must be called with the page lock held.
1045 inline bool should_report_large(Length num_pages) {
1046 const int64 threshold = large_alloc_threshold;
1047 if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
1048 // Increase the threshold by 1/8 every time we generate a report.
1049 // We cap the threshold at 8GiB to avoid overflow problems.
1050 large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
1051 ? threshold + threshold/8 : 8ll<<30);
1052 return true;
1054 return false;
1057 // Helper for do_malloc().
1058 inline void* do_malloc_pages(ThreadCache* heap, size_t size) {
1059 void* result;
1060 bool report_large;
1062 Length num_pages = tcmalloc::pages(size);
1063 size = num_pages << kPageShift;
1065 // Chromium profiling. Measurements in March 2013 suggest this
1066 // imposes a small enough runtime cost that there's no reason to
1067 // try to optimize it.
1068 heap->AddToByteAllocatedTotal(size);
1070 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
1071 result = DoSampledAllocation(size);
1073 SpinLockHolder h(Static::pageheap_lock());
1074 report_large = should_report_large(num_pages);
1075 } else {
1076 SpinLockHolder h(Static::pageheap_lock());
1077 Span* span = Static::pageheap()->New(num_pages);
1078 result = (span == NULL ? NULL : SpanToMallocResult(span));
1079 report_large = should_report_large(num_pages);
1082 if (report_large) {
1083 ReportLargeAlloc(num_pages, result);
1085 return result;
1088 inline void* do_malloc(size_t size) {
1089 AddRoomForMark(&size);
1091 void* ret = NULL;
1093 // The following call forces module initialization
1094 ThreadCache* heap = ThreadCache::GetCache();
1095 if (size <= kMaxSize && IsAllocSizePermitted(size)) {
1096 size_t cl = Static::sizemap()->SizeClass(size);
1097 size = Static::sizemap()->class_to_size(cl);
1099 // Chromium profiling. Measurements in March 2013 suggest this
1100 // imposes a small enough runtime cost that there's no reason to
1101 // try to optimize it.
1102 heap->AddToByteAllocatedTotal(size);
1104 if ((FLAGS_tcmalloc_sample_parameter > 0) &&
1105 heap->SampleAllocation(size)) {
1106 ret = DoSampledAllocation(size);
1107 MarkAllocatedRegion(ret);
1108 } else {
1109 // The common case, and also the simplest. This just pops the
1110 // size-appropriate freelist, after replenishing it if it's empty.
1111 ret = CheckMallocResult(heap->Allocate(size, cl));
1113 } else if (IsAllocSizePermitted(size)) {
1114 ret = do_malloc_pages(heap, size);
1115 MarkAllocatedRegion(ret);
1117 if (ret == NULL) errno = ENOMEM;
1118 ASSERT(IsAllocSizePermitted(size) || ret == NULL);
1119 return ret;
1122 inline void* do_calloc(size_t n, size_t elem_size) {
1123 // Overflow check
1124 const size_t size = n * elem_size;
1125 if (elem_size != 0 && size / elem_size != n) return NULL;
1127 void* result = do_malloc_or_cpp_alloc(size);
1128 if (result != NULL) {
1129 memset(result, 0, size);
1131 return result;
1134 static inline ThreadCache* GetCacheIfPresent() {
1135 void* const p = ThreadCache::GetCacheIfPresent();
1136 return reinterpret_cast<ThreadCache*>(p);
1139 // This lets you call back to a given function pointer if ptr is invalid.
1140 // It is used primarily by windows code which wants a specialized callback.
1141 inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
1142 if (ptr == NULL) return;
1143 if (Static::pageheap() == NULL) {
1144 // We called free() before malloc(). This can occur if the
1145 // (system) malloc() is called before tcmalloc is loaded, and then
1146 // free() is called after tcmalloc is loaded (and tc_free has
1147 // replaced free), but before the global constructor has run that
1148 // sets up the tcmalloc data structures.
1149 (*invalid_free_fn)(ptr); // Decide how to handle the bad free request
1150 return;
1152 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1153 Span* span = NULL;
1154 size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
1156 if (cl == 0) {
1157 span = Static::pageheap()->GetDescriptor(p);
1158 if (!span) {
1159 // span can be NULL because the pointer passed in is invalid
1160 // (not something returned by malloc or friends), or because the
1161 // pointer was allocated with some other allocator besides
1162 // tcmalloc. The latter can happen if tcmalloc is linked in via
1163 // a dynamic library, but is not listed last on the link line.
1164 // In that case, libraries after it on the link line will
1165 // allocate with libc malloc, but free with tcmalloc's free.
1166 (*invalid_free_fn)(ptr); // Decide how to handle the bad free request
1167 return;
1169 cl = span->sizeclass;
1170 Static::pageheap()->CacheSizeClass(p, cl);
1172 if (cl == 0) {
1173 // Check to see if the object is in use.
1174 CHECK_CONDITION_PRINT(span->location == Span::IN_USE,
1175 "Object was not in-use");
1177 CHECK_CONDITION_PRINT(
1178 span->start << kPageShift == reinterpret_cast<uintptr_t>(ptr),
1179 "Pointer is not pointing to the start of a span");
1181 ValidateAllocatedRegion(ptr, cl);
1183 if (cl != 0) {
1184 ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
1185 ThreadCache* heap = GetCacheIfPresent();
1186 if (heap != NULL) {
1187 heap->Deallocate(ptr, cl);
1188 } else {
1189 // Delete directly into central cache
1190 tcmalloc::FL_Init(ptr);
1191 Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
1193 } else {
1194 SpinLockHolder h(Static::pageheap_lock());
1195 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
1196 ASSERT(span != NULL && span->start == p);
1197 if (span->sample) {
1198 StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
1199 tcmalloc::DLL_Remove(span);
1200 Static::stacktrace_allocator()->Delete(st);
1201 span->objects = NULL;
1203 Static::pageheap()->Delete(span);
1207 // The default "do_free" that uses the default callback.
1208 inline void do_free(void* ptr) {
1209 return do_free_with_callback(ptr, &InvalidFree);
1212 // NOTE: some logic here is duplicated in GetOwnership (above), for
1213 // speed. If you change this function, look at that one too.
1214 inline size_t GetSizeWithCallback(const void* ptr,
1215 size_t (*invalid_getsize_fn)(const void*)) {
1216 if (ptr == NULL)
1217 return 0;
1218 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1219 size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
1220 if (cl != 0) {
1221 return Static::sizemap()->ByteSizeForClass(cl);
1222 } else {
1223 const Span *span = Static::pageheap()->GetDescriptor(p);
1224 if (span == NULL) { // means we do not own this memory
1225 return (*invalid_getsize_fn)(ptr);
1226 } else if (span->sizeclass != 0) {
1227 Static::pageheap()->CacheSizeClass(p, span->sizeclass);
1228 return Static::sizemap()->ByteSizeForClass(span->sizeclass);
1229 } else {
1230 return span->length << kPageShift;
1235 // This lets you call back to a given function pointer if ptr is invalid.
1236 // It is used primarily by windows code which wants a specialized callback.
1237 inline void* do_realloc_with_callback(
1238 void* old_ptr, size_t new_size,
1239 void (*invalid_free_fn)(void*),
1240 size_t (*invalid_get_size_fn)(const void*)) {
1241 AddRoomForMark(&new_size);
1242 // Get the size of the old entry
1243 const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
1245 // Reallocate if the new size is larger than the old size,
1246 // or if the new size is significantly smaller than the old size.
1247 // We do hysteresis to avoid resizing ping-pongs:
1248 // . If we need to grow, grow to max(new_size, old_size * 1.X)
1249 // . Don't shrink unless new_size < old_size * 0.Y
1250 // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5.
1251 const size_t min_growth = min(old_size / 4,
1252 (std::numeric_limits<size_t>::max)() - old_size); // Avoid overflow.
1253 const size_t lower_bound_to_grow = old_size + min_growth;
1254 const size_t upper_bound_to_shrink = old_size / 2;
1255 if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
1256 // Need to reallocate.
1257 void* new_ptr = NULL;
1259 if (new_size > old_size && new_size < lower_bound_to_grow) {
1260 new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
1262 ExcludeMarkFromSize(&new_size); // do_malloc will add space if needed.
1263 if (new_ptr == NULL) {
1264 // Either new_size is not a tiny increment, or last do_malloc failed.
1265 new_ptr = do_malloc_or_cpp_alloc(new_size);
1267 if (new_ptr == NULL) {
1268 return NULL;
1270 MallocHook::InvokeNewHook(new_ptr, new_size);
1271 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
1272 MallocHook::InvokeDeleteHook(old_ptr);
1273 // We could use a variant of do_free() that leverages the fact
1274 // that we already know the sizeclass of old_ptr. The benefit
1275 // would be small, so don't bother.
1276 do_free_with_callback(old_ptr, invalid_free_fn);
1277 return new_ptr;
1278 } else {
1279 // We still need to call hooks to report the updated size:
1280 MallocHook::InvokeDeleteHook(old_ptr);
1281 ExcludeMarkFromSize(&new_size);
1282 MallocHook::InvokeNewHook(old_ptr, new_size);
1283 return old_ptr;
1287 inline void* do_realloc(void* old_ptr, size_t new_size) {
1288 return do_realloc_with_callback(old_ptr, new_size,
1289 &InvalidFree, &InvalidGetSizeForRealloc);
1292 // For use by exported routines below that want specific alignments
1294 // Note: this code can be slow for alignments > 16, and can
1295 // significantly fragment memory. The expectation is that
1296 // memalign/posix_memalign/valloc/pvalloc will not be invoked very
1297 // often. This requirement simplifies our implementation and allows
1298 // us to tune for expected allocation patterns.
1299 void* do_memalign(size_t align, size_t size) {
1300 ASSERT((align & (align - 1)) == 0);
1301 ASSERT(align > 0);
1302 // Marked in CheckMallocResult(), which is also inside SpanToMallocResult().
1303 AddRoomForMark(&size);
1304 if (size + align < size) return NULL; // Overflow
1306 // Fall back to malloc if we would already align this memory access properly.
1307 if (align <= AlignmentForSize(size)) {
1308 void* p = do_malloc(size);
1309 ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0);
1310 return p;
1313 if (Static::pageheap() == NULL) ThreadCache::InitModule();
1315 // Allocate at least one byte to avoid boundary conditions below
1316 if (size == 0) size = 1;
1318 if (size <= kMaxSize && align < kPageSize) {
1319 // Search through acceptable size classes looking for one with
1320 // enough alignment. This depends on the fact that
1321 // InitSizeClasses() currently produces several size classes that
1322 // are aligned at powers of two. We will waste time and space if
1323 // we miss in the size class array, but that is deemed acceptable
1324 // since memalign() should be used rarely.
1325 int cl = Static::sizemap()->SizeClass(size);
1326 while (cl < kNumClasses &&
1327 ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
1328 cl++;
1330 if (cl < kNumClasses) {
1331 ThreadCache* heap = ThreadCache::GetCache();
1332 size = Static::sizemap()->class_to_size(cl);
1333 return CheckMallocResult(heap->Allocate(size, cl));
1337 // We will allocate directly from the page heap
1338 SpinLockHolder h(Static::pageheap_lock());
1340 if (align <= kPageSize) {
1341 // Any page-level allocation will be fine
1342 // TODO: We could put the rest of this page in the appropriate
1343 // TODO: cache but it does not seem worth it.
1344 Span* span = Static::pageheap()->New(tcmalloc::pages(size));
1345 return span == NULL ? NULL : SpanToMallocResult(span);
1348 // Allocate extra pages and carve off an aligned portion
1349 const Length alloc = tcmalloc::pages(size + align);
1350 Span* span = Static::pageheap()->New(alloc);
1351 if (span == NULL) return NULL;
1353 // Skip starting portion so that we end up aligned
1354 Length skip = 0;
1355 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
1356 skip++;
1358 ASSERT(skip < alloc);
1359 if (skip > 0) {
1360 Span* rest = Static::pageheap()->Split(span, skip);
1361 Static::pageheap()->Delete(span);
1362 span = rest;
1365 // Skip trailing portion that we do not need to return
1366 const Length needed = tcmalloc::pages(size);
1367 ASSERT(span->length >= needed);
1368 if (span->length > needed) {
1369 Span* trailer = Static::pageheap()->Split(span, needed);
1370 Static::pageheap()->Delete(trailer);
1372 return SpanToMallocResult(span);
1375 // Helpers for use by exported routines below:
1377 inline void do_malloc_stats() {
1378 PrintStats(1);
1381 inline int do_mallopt(int cmd, int value) {
1382 return 1; // Indicates error
1385 #ifdef HAVE_STRUCT_MALLINFO
1386 inline struct mallinfo do_mallinfo() {
1387 TCMallocStats stats;
1388 ExtractStats(&stats, NULL, NULL, NULL);
1390 // Just some of the fields are filled in.
1391 struct mallinfo info;
1392 memset(&info, 0, sizeof(info));
1394 // Unfortunately, the struct contains "int" field, so some of the
1395 // size values will be truncated.
1396 info.arena = static_cast<int>(stats.pageheap.system_bytes);
1397 info.fsmblks = static_cast<int>(stats.thread_bytes
1398 + stats.central_bytes
1399 + stats.transfer_bytes);
1400 info.fordblks = static_cast<int>(stats.pageheap.free_bytes +
1401 stats.pageheap.unmapped_bytes);
1402 info.uordblks = static_cast<int>(stats.pageheap.system_bytes
1403 - stats.thread_bytes
1404 - stats.central_bytes
1405 - stats.transfer_bytes
1406 - stats.pageheap.free_bytes
1407 - stats.pageheap.unmapped_bytes);
1409 return info;
1411 #endif // HAVE_STRUCT_MALLINFO
1413 static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
1415 inline void* cpp_alloc(size_t size, bool nothrow) {
1416 for (;;) {
1417 void* p = do_malloc(size);
1418 #ifdef PREANSINEW
1419 return p;
1420 #else
1421 if (p == NULL) { // allocation failed
1422 // Get the current new handler. NB: this function is not
1423 // thread-safe. We make a feeble stab at making it so here, but
1424 // this lock only protects against tcmalloc interfering with
1425 // itself, not with other libraries calling set_new_handler.
1426 std::new_handler nh;
1428 SpinLockHolder h(&set_new_handler_lock);
1429 nh = std::set_new_handler(0);
1430 (void) std::set_new_handler(nh);
1432 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1433 if (nh) {
1434 // Since exceptions are disabled, we don't really know if new_handler
1435 // failed. Assume it will abort if it fails.
1436 (*nh)();
1437 continue;
1439 return 0;
1440 #else
1441 // If no new_handler is established, the allocation failed.
1442 if (!nh) {
1443 if (nothrow) return 0;
1444 throw std::bad_alloc();
1446 // Otherwise, try the new_handler. If it returns, retry the
1447 // allocation. If it throws std::bad_alloc, fail the allocation.
1448 // if it throws something else, don't interfere.
1449 try {
1450 (*nh)();
1451 } catch (const std::bad_alloc&) {
1452 if (!nothrow) throw;
1453 return p;
1455 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1456 } else { // allocation success
1457 return p;
1459 #endif // PREANSINEW
1463 void* cpp_memalign(size_t align, size_t size) {
1464 for (;;) {
1465 void* p = do_memalign(align, size);
1466 #ifdef PREANSINEW
1467 return p;
1468 #else
1469 if (p == NULL) { // allocation failed
1470 // Get the current new handler. NB: this function is not
1471 // thread-safe. We make a feeble stab at making it so here, but
1472 // this lock only protects against tcmalloc interfering with
1473 // itself, not with other libraries calling set_new_handler.
1474 std::new_handler nh;
1476 SpinLockHolder h(&set_new_handler_lock);
1477 nh = std::set_new_handler(0);
1478 (void) std::set_new_handler(nh);
1480 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1481 if (nh) {
1482 // Since exceptions are disabled, we don't really know if new_handler
1483 // failed. Assume it will abort if it fails.
1484 (*nh)();
1485 continue;
1487 return 0;
1488 #else
1489 // If no new_handler is established, the allocation failed.
1490 if (!nh)
1491 return 0;
1493 // Otherwise, try the new_handler. If it returns, retry the
1494 // allocation. If it throws std::bad_alloc, fail the allocation.
1495 // if it throws something else, don't interfere.
1496 try {
1497 (*nh)();
1498 } catch (const std::bad_alloc&) {
1499 return p;
1501 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1502 } else { // allocation success
1503 return p;
1505 #endif // PREANSINEW
1509 } // end unnamed namespace
1511 // As promised, the definition of this function, declared above.
1512 size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
1513 // Chromium workaround for third-party code calling tc_malloc_size(NULL), see
1514 // http://code.google.com/p/chromium/issues/detail?id=118087
1515 // Note: this is consistent with GLIBC's implementation of
1516 // malloc_usable_size(NULL).
1517 if (ptr == NULL)
1518 return 0;
1519 ASSERT(TCMallocImplementation::GetOwnership(ptr)
1520 != TCMallocImplementation::kNotOwned);
1521 return ExcludeSpaceForMark(
1522 GetSizeWithCallback(ptr, &InvalidGetAllocatedSize));
1525 void TCMallocImplementation::MarkThreadBusy() {
1526 // Allocate to force the creation of a thread cache, but avoid
1527 // invoking any hooks.
1528 do_free(do_malloc(0));
1531 //-------------------------------------------------------------------
1532 // Exported routines
1533 //-------------------------------------------------------------------
1535 extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
1536 int* major, int* minor, const char** patch) __THROW {
1537 if (major) *major = TC_VERSION_MAJOR;
1538 if (minor) *minor = TC_VERSION_MINOR;
1539 if (patch) *patch = TC_VERSION_PATCH;
1540 return TC_VERSION_STRING;
1543 // This function behaves similarly to MSVC's _set_new_mode.
1544 // If flag is 0 (default), calls to malloc will behave normally.
1545 // If flag is 1, calls to malloc will behave like calls to new,
1546 // and the std_new_handler will be invoked on failure.
1547 // Returns the previous mode.
1548 extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW {
1549 int old_mode = tc_new_mode;
1550 tc_new_mode = flag;
1551 return old_mode;
1554 #ifndef TCMALLOC_USING_DEBUGALLOCATION // debugallocation.cc defines its own
1556 // CAVEAT: The code structure below ensures that MallocHook methods are always
1557 // called from the stack frame of the invoked allocation function.
1558 // heap-checker.cc depends on this to start a stack trace from
1559 // the call to the (de)allocation function.
1561 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
1562 void* result = do_malloc_or_cpp_alloc(size);
1563 MallocHook::InvokeNewHook(result, size);
1564 return result;
1567 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
1568 MallocHook::InvokeDeleteHook(ptr);
1569 do_free(ptr);
1572 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
1573 size_t elem_size) __THROW {
1574 void* result = do_calloc(n, elem_size);
1575 MallocHook::InvokeNewHook(result, n * elem_size);
1576 return result;
1579 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
1580 MallocHook::InvokeDeleteHook(ptr);
1581 do_free(ptr);
1584 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
1585 size_t new_size) __THROW {
1586 if (old_ptr == NULL) {
1587 void* result = do_malloc_or_cpp_alloc(new_size);
1588 MallocHook::InvokeNewHook(result, new_size);
1589 return result;
1591 if (new_size == 0) {
1592 MallocHook::InvokeDeleteHook(old_ptr);
1593 do_free(old_ptr);
1594 return NULL;
1596 return do_realloc(old_ptr, new_size);
1599 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
1600 void* p = cpp_alloc(size, false);
1601 // We keep this next instruction out of cpp_alloc for a reason: when
1602 // it's in, and new just calls cpp_alloc, the optimizer may fold the
1603 // new call into cpp_alloc, which messes up our whole section-based
1604 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
1605 // isn't the last thing this fn calls, and prevents the folding.
1606 MallocHook::InvokeNewHook(p, size);
1607 return p;
1610 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
1611 void* p = cpp_alloc(size, true);
1612 MallocHook::InvokeNewHook(p, size);
1613 return p;
1616 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
1617 MallocHook::InvokeDeleteHook(p);
1618 do_free(p);
1621 // Standard C++ library implementations define and use this
1622 // (via ::operator delete(ptr, nothrow)).
1623 // But it's really the same as normal delete, so we just do the same thing.
1624 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
1625 MallocHook::InvokeDeleteHook(p);
1626 do_free(p);
1629 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
1630 void* p = cpp_alloc(size, false);
1631 // We keep this next instruction out of cpp_alloc for a reason: when
1632 // it's in, and new just calls cpp_alloc, the optimizer may fold the
1633 // new call into cpp_alloc, which messes up our whole section-based
1634 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
1635 // isn't the last thing this fn calls, and prevents the folding.
1636 MallocHook::InvokeNewHook(p, size);
1637 return p;
1640 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
1641 __THROW {
1642 void* p = cpp_alloc(size, true);
1643 MallocHook::InvokeNewHook(p, size);
1644 return p;
1647 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
1648 MallocHook::InvokeDeleteHook(p);
1649 do_free(p);
1652 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
1653 MallocHook::InvokeDeleteHook(p);
1654 do_free(p);
1657 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align,
1658 size_t size) __THROW {
1659 void* result = do_memalign_or_cpp_memalign(align, size);
1660 MallocHook::InvokeNewHook(result, size);
1661 return result;
1664 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
1665 void** result_ptr, size_t align, size_t size) __THROW {
1666 if (((align % sizeof(void*)) != 0) ||
1667 ((align & (align - 1)) != 0) ||
1668 (align == 0)) {
1669 return EINVAL;
1672 void* result = do_memalign_or_cpp_memalign(align, size);
1673 MallocHook::InvokeNewHook(result, size);
1674 if (result == NULL) {
1675 return ENOMEM;
1676 } else {
1677 *result_ptr = result;
1678 return 0;
1682 static size_t pagesize = 0;
1684 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
1685 // Allocate page-aligned object of length >= size bytes
1686 if (pagesize == 0) pagesize = getpagesize();
1687 void* result = do_memalign_or_cpp_memalign(pagesize, size);
1688 MallocHook::InvokeNewHook(result, size);
1689 return result;
1692 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
1693 // Round up size to a multiple of pagesize
1694 if (pagesize == 0) pagesize = getpagesize();
1695 if (size == 0) { // pvalloc(0) should allocate one page, according to
1696 size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html
1698 size = (size + pagesize - 1) & ~(pagesize - 1);
1699 void* result = do_memalign_or_cpp_memalign(pagesize, size);
1700 MallocHook::InvokeNewHook(result, size);
1701 return result;
1704 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
1705 do_malloc_stats();
1708 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
1709 return do_mallopt(cmd, value);
1712 #ifdef HAVE_STRUCT_MALLINFO
1713 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
1714 return do_mallinfo();
1716 #endif
1718 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
1719 return MallocExtension::instance()->GetAllocatedSize(ptr);
1722 #endif // TCMALLOC_USING_DEBUGALLOCATION
1724 // --- Validation implementation with an extra mark ----------------------------
1725 // We will put a mark at the extreme end of each allocation block. We make
1726 // sure that we always allocate enough "extra memory" that we can fit in the
1727 // mark, and still provide the requested usable region. If ever that mark is
1728 // not as expected, then we know that the user is corrupting memory beyond their
1729 // request size, or that they have called free a second time without having
1730 // the memory allocated (again). This allows us to spot most double free()s,
1731 // but some can "slip by" or confuse our logic if the caller reallocates memory
1732 // (for a second use) before performing an evil double-free of a first
1733 // allocation
1735 // This code can be optimized, but for now, it is written to be most easily
1736 // understood, and flexible (since it is evolving a bit). Potential
1737 // optimizations include using other calculated data, such as class size, or
1738 // allocation size, which is known in the code above, but then is recalculated
1739 // below. Another potential optimization would be careful manual inlining of
1740 // code, but I *think* that the compile will probably do this for me, and I've
1741 // been careful to avoid aliasing issues that might make a compiler back-off.
1743 // Evolution includes experimenting with different marks, to minimize the chance
1744 // that a mark would be misunderstood (missed corruption). The marks are meant
1745 // to be hashed encoding of the location, so that they can't be copied over a
1746 // different region (by accident) without being detected (most of the time).
1748 // Enable the following define to turn on all the TCMalloc checking.
1749 // It will cost about 2% in performance, but it will catch double frees (most of
1750 // the time), and will often catch allocated-buffer overrun errors. This
1751 // validation is only active when TCMalloc is used as the allocator.
1752 #ifndef NDEBUG
1753 #define TCMALLOC_VALIDATION
1754 #endif
1756 #if !defined(TCMALLOC_VALIDATION)
1758 static size_t ExcludeSpaceForMark(size_t size) { return size; }
1759 static void AddRoomForMark(size_t* size) {}
1760 static void ExcludeMarkFromSize(size_t* new_size) {}
1761 static void MarkAllocatedRegion(void* ptr) {}
1762 static void ValidateAllocatedRegion(void* ptr, size_t cl) {}
1764 #else // TCMALLOC_VALIDATION
1766 static void DieFromDoubleFree() {
1767 Log(kCrash, __FILE__, __LINE__, "Attempt to double free");
1770 static void DieFromMemoryCorruption() {
1771 Log(kCrash, __FILE__, __LINE__, "Memory corrupted");
1774 // We can either do byte marking, or whole word marking based on the following
1775 // define. char is as small as we can get, and word marking probably provides
1776 // more than enough bits that we won't miss a corruption. Any sized integral
1777 // type can be used, but we just define two examples.
1779 // #define TCMALLOC_SMALL_VALIDATION
1780 #if defined (TCMALLOC_SMALL_VALIDATION)
1782 typedef char MarkType; // char saves memory... int is more complete.
1783 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36);
1785 #else
1787 typedef int MarkType; // char saves memory... int is more complete.
1788 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536);
1790 #endif
1792 // TODO(jar): See if use of reference rather than pointer gets better inlining,
1793 // or if macro is needed. My fear is that taking address map preclude register
1794 // allocation :-(.
1795 inline static void AddRoomForMark(size_t* size) {
1796 *size += sizeof(kAllocationMarkMask);
1799 inline static void ExcludeMarkFromSize(size_t* new_size) {
1800 *new_size -= sizeof(kAllocationMarkMask);
1803 inline static size_t ExcludeSpaceForMark(size_t size) {
1804 return size - sizeof(kAllocationMarkMask); // Lie about size when asked.
1807 inline static MarkType* GetMarkLocation(void* ptr) {
1808 size_t size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
1809 ASSERT(size % sizeof(kAllocationMarkMask) == 0);
1810 size_t last_index = (size / sizeof(kAllocationMarkMask)) - 1;
1811 return static_cast<MarkType*>(ptr) + last_index;
1814 // We hash in the mark location plus the pointer so that we effectively mix in
1815 // the size of the block. This means that if a span is used for different sizes
1816 // that the mark will be different. It would be good to hash in the size (which
1817 // we effectively get by using both mark location and pointer), but even better
1818 // would be to also include the class, as it concisely contains the entropy
1819 // found in the size (when we don't have large allocation), and there is less
1820 // risk of losing those bits to truncation. It would probably be good to combine
1821 // the high bits of size (capturing info about large blocks) with the class
1822 // (which is a 6 bit number).
1823 inline static MarkType GetMarkValue(void* ptr, MarkType* mark) {
1824 void* ptr2 = static_cast<void*>(mark);
1825 size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL);
1826 size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL);
1827 static const int kInvariantBits = 2;
1828 ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1);
1829 // Note: low bits of both offsets are invariants due to alignment. High bits
1830 // of both offsets are the same (unless we have a large allocation). Avoid
1831 // XORing high bits together, as they will cancel for most small allocations.
1833 MarkType ret = kAllocationMarkMask;
1834 // Using a little shift, we can safely XOR together both offsets.
1835 ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^
1836 static_cast<MarkType>(offset2);
1837 if (sizeof(ret) == 1) {
1838 // Try to bring some high level bits into the mix.
1839 ret += static_cast<MarkType>(offset1 >> 8) ^
1840 static_cast<MarkType>(offset1 >> 16) ^
1841 static_cast<MarkType>(offset1 >> 24) ;
1843 // Hash in high bits on a 64 bit architecture.
1844 if (sizeof(size_t) == 8 && sizeof(ret) == 4)
1845 ret += offset1 >> 16;
1846 if (ret == 0)
1847 ret = kAllocationMarkMask; // Avoid common pattern of all zeros.
1848 return ret;
1851 // TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location
1852 // faster. The current implementation calls general functions, which have to
1853 // recalculate this in order to get the Class Size. This is a slow and wasteful
1854 // recomputation... but it is much more readable this way (for now).
1855 static void ValidateAllocatedRegion(void* ptr, size_t cl) {
1856 if (ptr == NULL) return;
1857 MarkType* mark = GetMarkLocation(ptr);
1858 MarkType allocated_mark = GetMarkValue(ptr, mark);
1859 MarkType current_mark = *mark;
1861 if (current_mark == ~allocated_mark)
1862 DieFromDoubleFree();
1863 if (current_mark != allocated_mark)
1864 DieFromMemoryCorruption();
1865 #ifndef NDEBUG
1866 // In debug mode, copy the mark into all the free'd region.
1867 size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) -
1868 reinterpret_cast<char*>(ptr));
1869 memset(ptr, static_cast<char>(0x36), class_size);
1870 #endif
1871 *mark = ~allocated_mark; // Distinctively not allocated.
1874 static void MarkAllocatedRegion(void* ptr) {
1875 if (ptr == NULL) return;
1876 MarkType* mark = GetMarkLocation(ptr);
1877 *mark = GetMarkValue(ptr, mark);
1880 #endif // TCMALLOC_VALIDATION