[Drive] Handle error cases earlier in FakeDriveService
[chromium-blink-merge.git] / base / message_loop / message_loop_unittest.cc
blob1b09eb070fa32d1ffeed9555e24aae673f795463
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <vector>
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/compiler_specific.h"
10 #include "base/logging.h"
11 #include "base/memory/ref_counted.h"
12 #include "base/message_loop/message_loop.h"
13 #include "base/message_loop/message_loop_proxy_impl.h"
14 #include "base/message_loop/message_loop_test.h"
15 #include "base/pending_task.h"
16 #include "base/posix/eintr_wrapper.h"
17 #include "base/run_loop.h"
18 #include "base/synchronization/waitable_event.h"
19 #include "base/thread_task_runner_handle.h"
20 #include "base/threading/platform_thread.h"
21 #include "base/threading/thread.h"
22 #include "testing/gtest/include/gtest/gtest.h"
24 #if defined(OS_WIN)
25 #include "base/message_loop/message_pump_dispatcher.h"
26 #include "base/message_loop/message_pump_win.h"
27 #include "base/process/memory.h"
28 #include "base/strings/string16.h"
29 #include "base/win/scoped_handle.h"
30 #endif
32 namespace base {
34 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
35 // to avoid chopping this file up with so many #ifdefs.
37 namespace {
39 scoped_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
40 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
43 scoped_ptr<MessagePump> TypeIOMessagePumpFactory() {
44 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
47 scoped_ptr<MessagePump> TypeUIMessagePumpFactory() {
48 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
51 class Foo : public RefCounted<Foo> {
52 public:
53 Foo() : test_count_(0) {
56 void Test1ConstRef(const std::string& a) {
57 ++test_count_;
58 result_.append(a);
61 int test_count() const { return test_count_; }
62 const std::string& result() const { return result_; }
64 private:
65 friend class RefCounted<Foo>;
67 ~Foo() {}
69 int test_count_;
70 std::string result_;
73 #if defined(OS_WIN)
75 // This function runs slowly to simulate a large amount of work being done.
76 static void SlowFunc(TimeDelta pause, int* quit_counter) {
77 PlatformThread::Sleep(pause);
78 if (--(*quit_counter) == 0)
79 MessageLoop::current()->QuitWhenIdle();
82 // This function records the time when Run was called in a Time object, which is
83 // useful for building a variety of MessageLoop tests.
84 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
85 *run_time = Time::Now();
87 // Cause our Run function to take some time to execute. As a result we can
88 // count on subsequent RecordRunTimeFunc()s running at a future time,
89 // without worry about the resolution of our system clock being an issue.
90 SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
93 void SubPumpFunc() {
94 MessageLoop::current()->SetNestableTasksAllowed(true);
95 MSG msg;
96 while (GetMessage(&msg, NULL, 0, 0)) {
97 TranslateMessage(&msg);
98 DispatchMessage(&msg);
100 MessageLoop::current()->QuitWhenIdle();
103 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
104 MessageLoop loop(MessageLoop::TYPE_UI);
106 // Test that the interval of the timer, used to run the next delayed task, is
107 // set to a value corresponding to when the next delayed task should run.
109 // By setting num_tasks to 1, we ensure that the first task to run causes the
110 // run loop to exit.
111 int num_tasks = 1;
112 Time run_time;
114 loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
116 // This very delayed task should never run.
117 loop.PostDelayedTask(
118 FROM_HERE,
119 Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
120 TimeDelta::FromSeconds(1000));
122 // This slightly delayed task should run from within SubPumpFunc).
123 loop.PostDelayedTask(
124 FROM_HERE,
125 Bind(&PostQuitMessage, 0),
126 TimeDelta::FromMilliseconds(10));
128 Time start_time = Time::Now();
130 loop.Run();
131 EXPECT_EQ(1, num_tasks);
133 // Ensure that we ran in far less time than the slower timer.
134 TimeDelta total_time = Time::Now() - start_time;
135 EXPECT_GT(5000, total_time.InMilliseconds());
137 // In case both timers somehow run at nearly the same time, sleep a little
138 // and then run all pending to force them both to have run. This is just
139 // encouraging flakiness if there is any.
140 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
141 RunLoop().RunUntilIdle();
143 EXPECT_TRUE(run_time.is_null());
146 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
148 enum TaskType {
149 MESSAGEBOX,
150 ENDDIALOG,
151 RECURSIVE,
152 TIMEDMESSAGELOOP,
153 QUITMESSAGELOOP,
154 ORDERED,
155 PUMPS,
156 SLEEP,
157 RUNS,
160 // Saves the order in which the tasks executed.
161 struct TaskItem {
162 TaskItem(TaskType t, int c, bool s)
163 : type(t),
164 cookie(c),
165 start(s) {
168 TaskType type;
169 int cookie;
170 bool start;
172 bool operator == (const TaskItem& other) const {
173 return type == other.type && cookie == other.cookie && start == other.start;
177 std::ostream& operator <<(std::ostream& os, TaskType type) {
178 switch (type) {
179 case MESSAGEBOX: os << "MESSAGEBOX"; break;
180 case ENDDIALOG: os << "ENDDIALOG"; break;
181 case RECURSIVE: os << "RECURSIVE"; break;
182 case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
183 case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
184 case ORDERED: os << "ORDERED"; break;
185 case PUMPS: os << "PUMPS"; break;
186 case SLEEP: os << "SLEEP"; break;
187 default:
188 NOTREACHED();
189 os << "Unknown TaskType";
190 break;
192 return os;
195 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
196 if (item.start)
197 return os << item.type << " " << item.cookie << " starts";
198 else
199 return os << item.type << " " << item.cookie << " ends";
202 class TaskList {
203 public:
204 void RecordStart(TaskType type, int cookie) {
205 TaskItem item(type, cookie, true);
206 DVLOG(1) << item;
207 task_list_.push_back(item);
210 void RecordEnd(TaskType type, int cookie) {
211 TaskItem item(type, cookie, false);
212 DVLOG(1) << item;
213 task_list_.push_back(item);
216 size_t Size() {
217 return task_list_.size();
220 TaskItem Get(int n) {
221 return task_list_[n];
224 private:
225 std::vector<TaskItem> task_list_;
228 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
229 // common controls (like OpenFile) and StartDoc printing function can cause
230 // implicit message loops.
231 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
232 order->RecordStart(MESSAGEBOX, cookie);
233 if (is_reentrant)
234 MessageLoop::current()->SetNestableTasksAllowed(true);
235 MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
236 order->RecordEnd(MESSAGEBOX, cookie);
239 // Will end the MessageBox.
240 void EndDialogFunc(TaskList* order, int cookie) {
241 order->RecordStart(ENDDIALOG, cookie);
242 HWND window = GetActiveWindow();
243 if (window != NULL) {
244 EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
245 // Cheap way to signal that the window wasn't found if RunEnd() isn't
246 // called.
247 order->RecordEnd(ENDDIALOG, cookie);
251 void RecursiveFunc(TaskList* order, int cookie, int depth,
252 bool is_reentrant) {
253 order->RecordStart(RECURSIVE, cookie);
254 if (depth > 0) {
255 if (is_reentrant)
256 MessageLoop::current()->SetNestableTasksAllowed(true);
257 MessageLoop::current()->PostTask(
258 FROM_HERE,
259 Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
261 order->RecordEnd(RECURSIVE, cookie);
264 void QuitFunc(TaskList* order, int cookie) {
265 order->RecordStart(QUITMESSAGELOOP, cookie);
266 MessageLoop::current()->QuitWhenIdle();
267 order->RecordEnd(QUITMESSAGELOOP, cookie);
270 void RecursiveFuncWin(MessageLoop* target,
271 HANDLE event,
272 bool expect_window,
273 TaskList* order,
274 bool is_reentrant) {
275 target->PostTask(FROM_HERE,
276 Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
277 target->PostTask(FROM_HERE,
278 Bind(&MessageBoxFunc, order, 2, is_reentrant));
279 target->PostTask(FROM_HERE,
280 Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
281 // The trick here is that for recursive task processing, this task will be
282 // ran _inside_ the MessageBox message loop, dismissing the MessageBox
283 // without a chance.
284 // For non-recursive task processing, this will be executed _after_ the
285 // MessageBox will have been dismissed by the code below, where
286 // expect_window_ is true.
287 target->PostTask(FROM_HERE,
288 Bind(&EndDialogFunc, order, 4));
289 target->PostTask(FROM_HERE,
290 Bind(&QuitFunc, order, 5));
292 // Enforce that every tasks are sent before starting to run the main thread
293 // message loop.
294 ASSERT_TRUE(SetEvent(event));
296 // Poll for the MessageBox. Don't do this at home! At the speed we do it,
297 // you will never realize one MessageBox was shown.
298 for (; expect_window;) {
299 HWND window = FindWindow(L"#32770", kMessageBoxTitle);
300 if (window) {
301 // Dismiss it.
302 for (;;) {
303 HWND button = FindWindowEx(window, NULL, L"Button", NULL);
304 if (button != NULL) {
305 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
306 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
307 break;
310 break;
315 // TODO(darin): These tests need to be ported since they test critical
316 // message loop functionality.
318 // A side effect of this test is the generation a beep. Sorry.
319 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
320 MessageLoop loop(message_loop_type);
322 Thread worker("RecursiveDenial2_worker");
323 Thread::Options options;
324 options.message_loop_type = message_loop_type;
325 ASSERT_EQ(true, worker.StartWithOptions(options));
326 TaskList order;
327 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
328 worker.message_loop()->PostTask(FROM_HERE,
329 Bind(&RecursiveFuncWin,
330 MessageLoop::current(),
331 event.Get(),
332 true,
333 &order,
334 false));
335 // Let the other thread execute.
336 WaitForSingleObject(event, INFINITE);
337 MessageLoop::current()->Run();
339 ASSERT_EQ(order.Size(), 17);
340 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
341 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
342 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
343 EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
344 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
345 EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
346 // When EndDialogFunc is processed, the window is already dismissed, hence no
347 // "end" entry.
348 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
349 EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
350 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
351 EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
352 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
353 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
354 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
355 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
356 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
357 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
358 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
361 // A side effect of this test is the generation a beep. Sorry. This test also
362 // needs to process windows messages on the current thread.
363 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
364 MessageLoop loop(message_loop_type);
366 Thread worker("RecursiveSupport2_worker");
367 Thread::Options options;
368 options.message_loop_type = message_loop_type;
369 ASSERT_EQ(true, worker.StartWithOptions(options));
370 TaskList order;
371 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
372 worker.message_loop()->PostTask(FROM_HERE,
373 Bind(&RecursiveFuncWin,
374 MessageLoop::current(),
375 event.Get(),
376 false,
377 &order,
378 true));
379 // Let the other thread execute.
380 WaitForSingleObject(event, INFINITE);
381 MessageLoop::current()->Run();
383 ASSERT_EQ(order.Size(), 18);
384 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
385 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
386 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
387 // Note that this executes in the MessageBox modal loop.
388 EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
389 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
390 EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
391 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
392 EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
393 /* The order can subtly change here. The reason is that when RecursiveFunc(1)
394 is called in the main thread, if it is faster than getting to the
395 PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
396 execution can change. We don't care anyway that the order isn't correct.
397 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
398 EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
399 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
400 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
402 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
403 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
404 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
405 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
406 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
407 EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
410 #endif // defined(OS_WIN)
412 void PostNTasksThenQuit(int posts_remaining) {
413 if (posts_remaining > 1) {
414 MessageLoop::current()->PostTask(
415 FROM_HERE,
416 Bind(&PostNTasksThenQuit, posts_remaining - 1));
417 } else {
418 MessageLoop::current()->QuitWhenIdle();
422 #if defined(OS_WIN)
424 class DispatcherImpl : public MessagePumpDispatcher {
425 public:
426 DispatcherImpl() : dispatch_count_(0) {}
428 virtual uint32_t Dispatch(const NativeEvent& msg) OVERRIDE {
429 ::TranslateMessage(&msg);
430 ::DispatchMessage(&msg);
431 // Do not count WM_TIMER since it is not what we post and it will cause
432 // flakiness.
433 if (msg.message != WM_TIMER)
434 ++dispatch_count_;
435 // We treat WM_LBUTTONUP as the last message.
436 return msg.message == WM_LBUTTONUP ? POST_DISPATCH_QUIT_LOOP
437 : POST_DISPATCH_NONE;
440 int dispatch_count_;
443 void MouseDownUp() {
444 PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
445 PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
448 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
449 MessageLoop loop(message_loop_type);
451 MessageLoop::current()->PostDelayedTask(
452 FROM_HERE,
453 Bind(&MouseDownUp),
454 TimeDelta::FromMilliseconds(100));
455 DispatcherImpl dispatcher;
456 RunLoop run_loop(&dispatcher);
457 run_loop.Run();
458 ASSERT_EQ(2, dispatcher.dispatch_count_);
461 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
462 if (code == MessagePumpForUI::kMessageFilterCode) {
463 MSG* msg = reinterpret_cast<MSG*>(lparam);
464 if (msg->message == WM_LBUTTONDOWN)
465 return TRUE;
467 return FALSE;
470 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
471 MessageLoop loop(message_loop_type);
473 MessageLoop::current()->PostDelayedTask(
474 FROM_HERE,
475 Bind(&MouseDownUp),
476 TimeDelta::FromMilliseconds(100));
477 HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
478 MsgFilterProc,
479 NULL,
480 GetCurrentThreadId());
481 DispatcherImpl dispatcher;
482 RunLoop run_loop(&dispatcher);
483 run_loop.Run();
484 ASSERT_EQ(1, dispatcher.dispatch_count_);
485 UnhookWindowsHookEx(msg_hook);
488 class TestIOHandler : public MessageLoopForIO::IOHandler {
489 public:
490 TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
492 virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
493 DWORD bytes_transfered, DWORD error);
495 void Init();
496 void WaitForIO();
497 OVERLAPPED* context() { return &context_.overlapped; }
498 DWORD size() { return sizeof(buffer_); }
500 private:
501 char buffer_[48];
502 MessageLoopForIO::IOContext context_;
503 HANDLE signal_;
504 win::ScopedHandle file_;
505 bool wait_;
508 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
509 : signal_(signal), wait_(wait) {
510 memset(buffer_, 0, sizeof(buffer_));
511 memset(&context_, 0, sizeof(context_));
512 context_.handler = this;
514 file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
515 FILE_FLAG_OVERLAPPED, NULL));
516 EXPECT_TRUE(file_.IsValid());
519 void TestIOHandler::Init() {
520 MessageLoopForIO::current()->RegisterIOHandler(file_, this);
522 DWORD read;
523 EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
524 EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
525 if (wait_)
526 WaitForIO();
529 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
530 DWORD bytes_transfered, DWORD error) {
531 ASSERT_TRUE(context == &context_);
532 ASSERT_TRUE(SetEvent(signal_));
535 void TestIOHandler::WaitForIO() {
536 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
537 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
540 void RunTest_IOHandler() {
541 win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
542 ASSERT_TRUE(callback_called.IsValid());
544 const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
545 win::ScopedHandle server(
546 CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
547 ASSERT_TRUE(server.IsValid());
549 Thread thread("IOHandler test");
550 Thread::Options options;
551 options.message_loop_type = MessageLoop::TYPE_IO;
552 ASSERT_TRUE(thread.StartWithOptions(options));
554 MessageLoop* thread_loop = thread.message_loop();
555 ASSERT_TRUE(NULL != thread_loop);
557 TestIOHandler handler(kPipeName, callback_called, false);
558 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
559 Unretained(&handler)));
560 // Make sure the thread runs and sleeps for lack of work.
561 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
563 const char buffer[] = "Hello there!";
564 DWORD written;
565 EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
567 DWORD result = WaitForSingleObject(callback_called, 1000);
568 EXPECT_EQ(WAIT_OBJECT_0, result);
570 thread.Stop();
573 void RunTest_WaitForIO() {
574 win::ScopedHandle callback1_called(
575 CreateEvent(NULL, TRUE, FALSE, NULL));
576 win::ScopedHandle callback2_called(
577 CreateEvent(NULL, TRUE, FALSE, NULL));
578 ASSERT_TRUE(callback1_called.IsValid());
579 ASSERT_TRUE(callback2_called.IsValid());
581 const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
582 const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
583 win::ScopedHandle server1(
584 CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
585 win::ScopedHandle server2(
586 CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
587 ASSERT_TRUE(server1.IsValid());
588 ASSERT_TRUE(server2.IsValid());
590 Thread thread("IOHandler test");
591 Thread::Options options;
592 options.message_loop_type = MessageLoop::TYPE_IO;
593 ASSERT_TRUE(thread.StartWithOptions(options));
595 MessageLoop* thread_loop = thread.message_loop();
596 ASSERT_TRUE(NULL != thread_loop);
598 TestIOHandler handler1(kPipeName1, callback1_called, false);
599 TestIOHandler handler2(kPipeName2, callback2_called, true);
600 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
601 Unretained(&handler1)));
602 // TODO(ajwong): Do we really need such long Sleeps in ths function?
603 // Make sure the thread runs and sleeps for lack of work.
604 TimeDelta delay = TimeDelta::FromMilliseconds(100);
605 PlatformThread::Sleep(delay);
606 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
607 Unretained(&handler2)));
608 PlatformThread::Sleep(delay);
610 // At this time handler1 is waiting to be called, and the thread is waiting
611 // on the Init method of handler2, filtering only handler2 callbacks.
613 const char buffer[] = "Hello there!";
614 DWORD written;
615 EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
616 PlatformThread::Sleep(2 * delay);
617 EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
618 "handler1 has not been called";
620 EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
622 HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
623 DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
624 EXPECT_EQ(WAIT_OBJECT_0, result);
626 thread.Stop();
629 #endif // defined(OS_WIN)
631 } // namespace
633 //-----------------------------------------------------------------------------
634 // Each test is run against each type of MessageLoop. That way we are sure
635 // that message loops work properly in all configurations. Of course, in some
636 // cases, a unit test may only be for a particular type of loop.
638 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
639 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
640 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
642 #if defined(OS_WIN)
643 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
644 RunTest_PostDelayedTask_SharedTimer_SubPump();
647 // This test occasionally hangs http://crbug.com/44567
648 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
649 RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
650 RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
651 RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
654 TEST(MessageLoopTest, RecursiveSupport2) {
655 // This test requires a UI loop
656 RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
658 #endif // defined(OS_WIN)
660 class DummyTaskObserver : public MessageLoop::TaskObserver {
661 public:
662 explicit DummyTaskObserver(int num_tasks)
663 : num_tasks_started_(0),
664 num_tasks_processed_(0),
665 num_tasks_(num_tasks) {}
667 virtual ~DummyTaskObserver() {}
669 virtual void WillProcessTask(const PendingTask& pending_task) OVERRIDE {
670 num_tasks_started_++;
671 EXPECT_TRUE(pending_task.time_posted != TimeTicks());
672 EXPECT_LE(num_tasks_started_, num_tasks_);
673 EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
676 virtual void DidProcessTask(const PendingTask& pending_task) OVERRIDE {
677 num_tasks_processed_++;
678 EXPECT_TRUE(pending_task.time_posted != TimeTicks());
679 EXPECT_LE(num_tasks_started_, num_tasks_);
680 EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
683 int num_tasks_started() const { return num_tasks_started_; }
684 int num_tasks_processed() const { return num_tasks_processed_; }
686 private:
687 int num_tasks_started_;
688 int num_tasks_processed_;
689 const int num_tasks_;
691 DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
694 TEST(MessageLoopTest, TaskObserver) {
695 const int kNumPosts = 6;
696 DummyTaskObserver observer(kNumPosts);
698 MessageLoop loop;
699 loop.AddTaskObserver(&observer);
700 loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
701 loop.Run();
702 loop.RemoveTaskObserver(&observer);
704 EXPECT_EQ(kNumPosts, observer.num_tasks_started());
705 EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
708 #if defined(OS_WIN)
709 TEST(MessageLoopTest, Dispatcher) {
710 // This test requires a UI loop
711 RunTest_Dispatcher(MessageLoop::TYPE_UI);
714 TEST(MessageLoopTest, DispatcherWithMessageHook) {
715 // This test requires a UI loop
716 RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
719 TEST(MessageLoopTest, IOHandler) {
720 RunTest_IOHandler();
723 TEST(MessageLoopTest, WaitForIO) {
724 RunTest_WaitForIO();
727 TEST(MessageLoopTest, HighResolutionTimer) {
728 MessageLoop loop;
730 const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
731 const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
733 EXPECT_FALSE(loop.IsHighResolutionTimerEnabledForTesting());
735 // Post a fast task to enable the high resolution timers.
736 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
737 kFastTimer);
738 loop.Run();
739 EXPECT_TRUE(loop.IsHighResolutionTimerEnabledForTesting());
741 // Post a slow task and verify high resolution timers
742 // are still enabled.
743 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
744 kSlowTimer);
745 loop.Run();
746 EXPECT_TRUE(loop.IsHighResolutionTimerEnabledForTesting());
748 // Wait for a while so that high-resolution mode elapses.
749 PlatformThread::Sleep(TimeDelta::FromMilliseconds(
750 MessageLoop::kHighResolutionTimerModeLeaseTimeMs));
752 // Post a slow task to disable the high resolution timers.
753 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
754 kSlowTimer);
755 loop.Run();
756 EXPECT_FALSE(loop.IsHighResolutionTimerEnabledForTesting());
759 #endif // defined(OS_WIN)
761 #if defined(OS_POSIX) && !defined(OS_NACL)
763 namespace {
765 class QuitDelegate : public MessageLoopForIO::Watcher {
766 public:
767 virtual void OnFileCanWriteWithoutBlocking(int fd) OVERRIDE {
768 MessageLoop::current()->QuitWhenIdle();
770 virtual void OnFileCanReadWithoutBlocking(int fd) OVERRIDE {
771 MessageLoop::current()->QuitWhenIdle();
775 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
776 // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
777 // This could happen when people use the Singleton pattern or atexit.
779 // Create a file descriptor. Doesn't need to be readable or writable,
780 // as we don't need to actually get any notifications.
781 // pipe() is just the easiest way to do it.
782 int pipefds[2];
783 int err = pipe(pipefds);
784 ASSERT_EQ(0, err);
785 int fd = pipefds[1];
787 // Arrange for controller to live longer than message loop.
788 MessageLoopForIO::FileDescriptorWatcher controller;
790 MessageLoopForIO message_loop;
792 QuitDelegate delegate;
793 message_loop.WatchFileDescriptor(fd,
794 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
795 // and don't run the message loop, just destroy it.
798 if (IGNORE_EINTR(close(pipefds[0])) < 0)
799 PLOG(ERROR) << "close";
800 if (IGNORE_EINTR(close(pipefds[1])) < 0)
801 PLOG(ERROR) << "close";
804 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
805 // Verify that it's ok to call StopWatchingFileDescriptor().
806 // (Errors only showed up in valgrind.)
807 int pipefds[2];
808 int err = pipe(pipefds);
809 ASSERT_EQ(0, err);
810 int fd = pipefds[1];
812 // Arrange for message loop to live longer than controller.
813 MessageLoopForIO message_loop;
815 MessageLoopForIO::FileDescriptorWatcher controller;
817 QuitDelegate delegate;
818 message_loop.WatchFileDescriptor(fd,
819 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
820 controller.StopWatchingFileDescriptor();
823 if (IGNORE_EINTR(close(pipefds[0])) < 0)
824 PLOG(ERROR) << "close";
825 if (IGNORE_EINTR(close(pipefds[1])) < 0)
826 PLOG(ERROR) << "close";
829 } // namespace
831 #endif // defined(OS_POSIX) && !defined(OS_NACL)
833 namespace {
834 // Inject a test point for recording the destructor calls for Closure objects
835 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
836 // hook the actual destruction, which is not a common operation.
837 class DestructionObserverProbe :
838 public RefCounted<DestructionObserverProbe> {
839 public:
840 DestructionObserverProbe(bool* task_destroyed,
841 bool* destruction_observer_called)
842 : task_destroyed_(task_destroyed),
843 destruction_observer_called_(destruction_observer_called) {
845 virtual void Run() {
846 // This task should never run.
847 ADD_FAILURE();
849 private:
850 friend class RefCounted<DestructionObserverProbe>;
852 virtual ~DestructionObserverProbe() {
853 EXPECT_FALSE(*destruction_observer_called_);
854 *task_destroyed_ = true;
857 bool* task_destroyed_;
858 bool* destruction_observer_called_;
861 class MLDestructionObserver : public MessageLoop::DestructionObserver {
862 public:
863 MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
864 : task_destroyed_(task_destroyed),
865 destruction_observer_called_(destruction_observer_called),
866 task_destroyed_before_message_loop_(false) {
868 virtual void WillDestroyCurrentMessageLoop() OVERRIDE {
869 task_destroyed_before_message_loop_ = *task_destroyed_;
870 *destruction_observer_called_ = true;
872 bool task_destroyed_before_message_loop() const {
873 return task_destroyed_before_message_loop_;
875 private:
876 bool* task_destroyed_;
877 bool* destruction_observer_called_;
878 bool task_destroyed_before_message_loop_;
881 } // namespace
883 TEST(MessageLoopTest, DestructionObserverTest) {
884 // Verify that the destruction observer gets called at the very end (after
885 // all the pending tasks have been destroyed).
886 MessageLoop* loop = new MessageLoop;
887 const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
889 bool task_destroyed = false;
890 bool destruction_observer_called = false;
892 MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
893 loop->AddDestructionObserver(&observer);
894 loop->PostDelayedTask(
895 FROM_HERE,
896 Bind(&DestructionObserverProbe::Run,
897 new DestructionObserverProbe(&task_destroyed,
898 &destruction_observer_called)),
899 kDelay);
900 delete loop;
901 EXPECT_TRUE(observer.task_destroyed_before_message_loop());
902 // The task should have been destroyed when we deleted the loop.
903 EXPECT_TRUE(task_destroyed);
904 EXPECT_TRUE(destruction_observer_called);
908 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
909 // posts tasks on that message loop.
910 TEST(MessageLoopTest, ThreadMainTaskRunner) {
911 MessageLoop loop;
913 scoped_refptr<Foo> foo(new Foo());
914 std::string a("a");
915 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
916 &Foo::Test1ConstRef, foo.get(), a));
918 // Post quit task;
919 MessageLoop::current()->PostTask(FROM_HERE, Bind(
920 &MessageLoop::Quit, Unretained(MessageLoop::current())));
922 // Now kick things off
923 MessageLoop::current()->Run();
925 EXPECT_EQ(foo->test_count(), 1);
926 EXPECT_EQ(foo->result(), "a");
929 TEST(MessageLoopTest, IsType) {
930 MessageLoop loop(MessageLoop::TYPE_UI);
931 EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
932 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
933 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
936 #if defined(OS_WIN)
937 void EmptyFunction() {}
939 void PostMultipleTasks() {
940 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
941 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
944 static const int kSignalMsg = WM_USER + 2;
946 void PostWindowsMessage(HWND message_hwnd) {
947 PostMessage(message_hwnd, kSignalMsg, 0, 2);
950 void EndTest(bool* did_run, HWND hwnd) {
951 *did_run = true;
952 PostMessage(hwnd, WM_CLOSE, 0, 0);
955 int kMyMessageFilterCode = 0x5002;
957 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
958 WPARAM wparam, LPARAM lparam) {
959 if (message == WM_CLOSE)
960 EXPECT_TRUE(DestroyWindow(hwnd));
961 if (message != kSignalMsg)
962 return DefWindowProc(hwnd, message, wparam, lparam);
964 switch (lparam) {
965 case 1:
966 // First, we post a task that will post multiple no-op tasks to make sure
967 // that the pump's incoming task queue does not become empty during the
968 // test.
969 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
970 // Next, we post a task that posts a windows message to trigger the second
971 // stage of the test.
972 MessageLoop::current()->PostTask(FROM_HERE,
973 base::Bind(&PostWindowsMessage, hwnd));
974 break;
975 case 2:
976 // Since we're about to enter a modal loop, tell the message loop that we
977 // intend to nest tasks.
978 MessageLoop::current()->SetNestableTasksAllowed(true);
979 bool did_run = false;
980 MessageLoop::current()->PostTask(FROM_HERE,
981 base::Bind(&EndTest, &did_run, hwnd));
982 // Run a nested windows-style message loop and verify that our task runs. If
983 // it doesn't, then we'll loop here until the test times out.
984 MSG msg;
985 while (GetMessage(&msg, 0, 0, 0)) {
986 if (!CallMsgFilter(&msg, kMyMessageFilterCode))
987 DispatchMessage(&msg);
988 // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
989 // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
990 // WM_QUIT messages even when running inside a modal loop.
991 if (msg.message == WM_CLOSE)
992 break;
994 EXPECT_TRUE(did_run);
995 MessageLoop::current()->Quit();
996 break;
998 return 0;
1001 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
1002 MessageLoop loop(MessageLoop::TYPE_UI);
1003 HINSTANCE instance = GetModuleFromAddress(&TestWndProcThunk);
1004 WNDCLASSEX wc = {0};
1005 wc.cbSize = sizeof(wc);
1006 wc.lpfnWndProc = TestWndProcThunk;
1007 wc.hInstance = instance;
1008 wc.lpszClassName = L"MessageLoopTest_HWND";
1009 ATOM atom = RegisterClassEx(&wc);
1010 ASSERT_TRUE(atom);
1012 HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
1013 HWND_MESSAGE, 0, instance, 0);
1014 ASSERT_TRUE(message_hwnd) << GetLastError();
1016 ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
1018 loop.Run();
1020 ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
1022 #endif // defined(OS_WIN)
1024 } // namespace base