1 /*************************************************************************
5 * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
12 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
13 * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
14 * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
16 ************************************************************************
18 * Functions to handle special quantities in floating-point numbers
19 * (that is, NaNs and infinity). They provide the capability to detect
20 * and fabricate special quantities.
22 * Although written to be as portable as possible, it can never be
23 * guaranteed to work on all platforms, as not all hardware supports
26 * The approach used here (approximately) is to:
28 * 1. Use C99 functionality when available.
29 * 2. Use IEEE 754 bit-patterns if possible.
30 * 3. Use platform-specific techniques.
32 ************************************************************************/
36 * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
40 /*************************************************************************
50 #if defined(TRIO_PLATFORM_UNIX)
53 #if defined(TRIO_COMPILER_DECC)
54 # if defined(__linux__)
57 # include <fp_class.h>
62 #if defined(TRIO_DOCUMENTATION)
63 # include "doc/doc_nan.h"
65 /** @addtogroup SpecialQuantities
69 /*************************************************************************
73 #define TRIO_TRUE (1 == 1)
74 #define TRIO_FALSE (0 == 1)
77 * We must enable IEEE floating-point on Alpha
79 #if defined(__alpha) && !defined(_IEEE_FP)
80 # if defined(TRIO_COMPILER_DECC)
81 # if defined(TRIO_PLATFORM_VMS)
82 # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
85 # error "Must be compiled with option -ieee"
88 # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
89 # error "Must be compiled with option -mieee"
91 #endif /* __alpha && ! _IEEE_FP */
94 * In ANSI/IEEE 754-1985 64-bits double format numbers have the
95 * following properties (amoungst others)
97 * o FLT_RADIX == 2: binary encoding
98 * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
99 * to indicate special numbers (e.g. NaN and Infinity), so the
100 * maximum exponent is 10 bits wide (2^10 == 1024).
101 * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
102 * numbers are normalized the initial binary 1 is represented
103 * implicitly (the so-called "hidden bit"), which leaves us with
104 * the ability to represent 53 bits wide mantissa.
106 #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
107 # define USE_IEEE_754
111 /*************************************************************************
115 static TRIO_CONST
char rcsid
[] = "@(#)$Id$";
117 #if defined(USE_IEEE_754)
120 * Endian-agnostic indexing macro.
122 * The value of internalEndianMagic, when converted into a 64-bit
123 * integer, becomes 0x0706050403020100 (we could have used a 64-bit
124 * integer value instead of a double, but not all platforms supports
125 * that type). The value is automatically encoded with the correct
126 * endianess by the compiler, which means that we can support any
127 * kind of endianess. The individual bytes are then used as an index
128 * for the IEEE 754 bit-patterns and masks.
130 #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
132 #if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
133 static TRIO_CONST
double internalEndianMagic
= 7.949928895127362e-275;
135 static TRIO_CONST
double internalEndianMagic
= 7.949928895127363e-275;
138 /* Mask for the exponent */
139 static TRIO_CONST
unsigned char ieee_754_exponent_mask
[] = {
140 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
143 /* Mask for the mantissa */
144 static TRIO_CONST
unsigned char ieee_754_mantissa_mask
[] = {
145 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
148 /* Mask for the sign bit */
149 static TRIO_CONST
unsigned char ieee_754_sign_mask
[] = {
150 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
153 /* Bit-pattern for negative zero */
154 static TRIO_CONST
unsigned char ieee_754_negzero_array
[] = {
155 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 /* Bit-pattern for infinity */
159 static TRIO_CONST
unsigned char ieee_754_infinity_array
[] = {
160 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
163 /* Bit-pattern for quiet NaN */
164 static TRIO_CONST
unsigned char ieee_754_qnan_array
[] = {
165 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
169 /*************************************************************************
179 TRIO_CONST
unsigned char *values
)
181 TRIO_VOLATILE
double result
;
184 for (i
= 0; i
< (int)sizeof(double); i
++) {
185 ((TRIO_VOLATILE
unsigned char *)&result
)[TRIO_DOUBLE_INDEX(i
)] = values
[i
];
191 * trio_is_special_quantity
194 trio_is_special_quantity
195 TRIO_ARGS2((number
, has_mantissa
),
200 unsigned char current
;
201 int is_special_quantity
= TRIO_TRUE
;
205 for (i
= 0; i
< (unsigned int)sizeof(double); i
++) {
206 current
= ((unsigned char *)&number
)[TRIO_DOUBLE_INDEX(i
)];
208 &= ((current
& ieee_754_exponent_mask
[i
]) == ieee_754_exponent_mask
[i
]);
209 *has_mantissa
|= (current
& ieee_754_mantissa_mask
[i
]);
211 return is_special_quantity
;
223 int is_negative
= TRIO_FALSE
;
225 for (i
= 0; i
< (unsigned int)sizeof(double); i
++) {
226 is_negative
|= (((unsigned char *)&number
)[TRIO_DOUBLE_INDEX(i
)]
227 & ieee_754_sign_mask
[i
]);
232 #endif /* USE_IEEE_754 */
236 Generate negative zero.
238 @return Floating-point representation of negative zero.
241 trio_nzero(TRIO_NOARGS
)
243 #if defined(USE_IEEE_754)
244 return trio_make_double(ieee_754_negzero_array
);
246 TRIO_VOLATILE
double zero
= 0.0;
253 Generate positive infinity.
255 @return Floating-point representation of positive infinity.
258 trio_pinf(TRIO_NOARGS
)
260 /* Cache the result */
261 static double result
= 0.0;
265 #if defined(INFINITY) && defined(__STDC_IEC_559__)
266 result
= (double)INFINITY
;
268 #elif defined(USE_IEEE_754)
269 result
= trio_make_double(ieee_754_infinity_array
);
273 * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
274 * as infinity. Otherwise we have to resort to an overflow
275 * operation to generate infinity.
277 # if defined(TRIO_PLATFORM_UNIX)
278 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
282 if (HUGE_VAL
== DBL_MAX
) {
287 # if defined(TRIO_PLATFORM_UNIX)
288 signal(SIGFPE
, signal_handler
);
297 Generate negative infinity.
299 @return Floating-point value of negative infinity.
302 trio_ninf(TRIO_NOARGS
)
304 static double result
= 0.0;
308 * Negative infinity is calculated by negating positive infinity,
309 * which can be done because it is legal to do calculations on
310 * infinity (for example, 1 / infinity == 0).
312 result
= -trio_pinf();
320 @return Floating-point representation of NaN.
323 trio_nan(TRIO_NOARGS
)
325 /* Cache the result */
326 static double result
= 0.0;
330 #if defined(TRIO_COMPILER_SUPPORTS_C99)
333 #elif defined(NAN) && defined(__STDC_IEC_559__)
334 result
= (double)NAN
;
336 #elif defined(USE_IEEE_754)
337 result
= trio_make_double(ieee_754_qnan_array
);
341 * There are several ways to generate NaN. The one used here is
342 * to divide infinity by infinity. I would have preferred to add
343 * negative infinity to positive infinity, but that yields wrong
344 * result (infinity) on FreeBSD.
346 * This may fail if the hardware does not support NaN, or if
347 * the Invalid Operation floating-point exception is unmasked.
349 # if defined(TRIO_PLATFORM_UNIX)
350 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
353 result
= trio_pinf() / trio_pinf();
355 # if defined(TRIO_PLATFORM_UNIX)
356 signal(SIGFPE
, signal_handler
);
367 @param number An arbitrary floating-point number.
368 @return Boolean value indicating whether or not the number is a NaN.
375 #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
376 || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
378 * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
379 * function. This function was already present in XPG4, but this
380 * is a bit tricky to detect with compiler defines, so we choose
381 * the conservative approach and only use it for UNIX95.
383 return isnan(number
);
385 #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
387 * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
390 return _isnan(number
) ? TRIO_TRUE
: TRIO_FALSE
;
392 #elif defined(USE_IEEE_754)
394 * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
395 * pattern, and a non-empty mantissa.
398 int is_special_quantity
;
400 is_special_quantity
= trio_is_special_quantity(number
, &has_mantissa
);
402 return (is_special_quantity
&& has_mantissa
);
409 double integral
, fraction
;
411 # if defined(TRIO_PLATFORM_UNIX)
412 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
416 * NaN is the only number which does not compare to itself
418 ((TRIO_VOLATILE
double)number
!= (TRIO_VOLATILE
double)number
) ||
420 * Fallback solution if NaN compares to NaN
423 (fraction
= modf(number
, &integral
),
424 integral
== fraction
)));
426 # if defined(TRIO_PLATFORM_UNIX)
427 signal(SIGFPE
, signal_handler
);
438 @param number An arbitrary floating-point number.
439 @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
446 #if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
448 * DECC has an isinf() macro, but it works differently than that
449 * of C99, so we use the fp_class() function instead.
451 return ((fp_class(number
) == FP_POS_INF
)
453 : ((fp_class(number
) == FP_NEG_INF
) ? -1 : 0));
457 * C99 defines isinf() as a macro.
460 ? ((number
> 0.0) ? 1 : -1)
463 #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
465 * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
466 * function that can be used to detect infinity.
468 return ((_fpclass(number
) == _FPCLASS_PINF
)
470 : ((_fpclass(number
) == _FPCLASS_NINF
) ? -1 : 0));
472 #elif defined(USE_IEEE_754)
474 * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
475 * pattern, and an empty mantissa.
478 int is_special_quantity
;
480 is_special_quantity
= trio_is_special_quantity(number
, &has_mantissa
);
482 return (is_special_quantity
&& !has_mantissa
)
483 ? ((number
< 0.0) ? -1 : 1)
492 # if defined(TRIO_PLATFORM_UNIX)
493 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
496 double infinity
= trio_pinf();
498 status
= ((number
== infinity
)
500 : ((number
== -infinity
) ? -1 : 0));
502 # if defined(TRIO_PLATFORM_UNIX)
503 signal(SIGFPE
, signal_handler
);
512 /* Temporary fix - this routine is not used anywhere */
516 @param number An arbitrary floating-point number.
517 @return Boolean value indicating whether or not the number is a finite.
524 #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
526 * C99 defines isfinite() as a macro.
528 return isfinite(number
);
530 #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
532 * Microsoft Visual C++ and Borland C++ Builder use _finite().
534 return _finite(number
);
536 #elif defined(USE_IEEE_754)
538 * Examine IEEE 754 bit-pattern. For finity we do not care about the
543 return (! trio_is_special_quantity(number
, &dummy
));
549 return ((trio_isinf(number
) == 0) && (trio_isnan(number
) == 0));
557 * The sign of NaN is always false
560 trio_fpclassify_and_signbit
561 TRIO_ARGS2((number
, is_negative
),
565 #if defined(fpclassify) && defined(signbit)
567 * C99 defines fpclassify() and signbit() as a macros
569 *is_negative
= signbit(number
);
570 switch (fpclassify(number
)) {
574 return TRIO_FP_INFINITE
;
576 return TRIO_FP_SUBNORMAL
;
580 return TRIO_FP_NORMAL
;
584 # if defined(TRIO_COMPILER_DECC)
586 * DECC has an fp_class() function.
588 # define TRIO_FPCLASSIFY(n) fp_class(n)
589 # define TRIO_QUIET_NAN FP_QNAN
590 # define TRIO_SIGNALLING_NAN FP_SNAN
591 # define TRIO_POSITIVE_INFINITY FP_POS_INF
592 # define TRIO_NEGATIVE_INFINITY FP_NEG_INF
593 # define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
594 # define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
595 # define TRIO_POSITIVE_ZERO FP_POS_ZERO
596 # define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
597 # define TRIO_POSITIVE_NORMAL FP_POS_NORM
598 # define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
600 # elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
602 * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
605 # define TRIO_FPCLASSIFY(n) _fpclass(n)
606 # define TRIO_QUIET_NAN _FPCLASS_QNAN
607 # define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
608 # define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
609 # define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
610 # define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
611 # define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
612 # define TRIO_POSITIVE_ZERO _FPCLASS_PZ
613 # define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
614 # define TRIO_POSITIVE_NORMAL _FPCLASS_PN
615 # define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
617 # elif defined(FP_PLUS_NORM)
619 * HP-UX 9.x and 10.x have an fpclassify() function, that is different
620 * from the C99 fpclassify() macro supported on HP-UX 11.x.
622 * AIX has class() for C, and _class() for C++, which returns the
623 * same values as the HP-UX fpclassify() function.
625 # if defined(TRIO_PLATFORM_AIX)
626 # if defined(__cplusplus)
627 # define TRIO_FPCLASSIFY(n) _class(n)
629 # define TRIO_FPCLASSIFY(n) class(n)
632 # define TRIO_FPCLASSIFY(n) fpclassify(n)
634 # define TRIO_QUIET_NAN FP_QNAN
635 # define TRIO_SIGNALLING_NAN FP_SNAN
636 # define TRIO_POSITIVE_INFINITY FP_PLUS_INF
637 # define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
638 # define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
639 # define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
640 # define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
641 # define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
642 # define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
643 # define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
646 # if defined(TRIO_FPCLASSIFY)
647 switch (TRIO_FPCLASSIFY(number
)) {
649 case TRIO_SIGNALLING_NAN
:
650 *is_negative
= TRIO_FALSE
; /* NaN has no sign */
652 case TRIO_POSITIVE_INFINITY
:
653 *is_negative
= TRIO_FALSE
;
654 return TRIO_FP_INFINITE
;
655 case TRIO_NEGATIVE_INFINITY
:
656 *is_negative
= TRIO_TRUE
;
657 return TRIO_FP_INFINITE
;
658 case TRIO_POSITIVE_SUBNORMAL
:
659 *is_negative
= TRIO_FALSE
;
660 return TRIO_FP_SUBNORMAL
;
661 case TRIO_NEGATIVE_SUBNORMAL
:
662 *is_negative
= TRIO_TRUE
;
663 return TRIO_FP_SUBNORMAL
;
664 case TRIO_POSITIVE_ZERO
:
665 *is_negative
= TRIO_FALSE
;
667 case TRIO_NEGATIVE_ZERO
:
668 *is_negative
= TRIO_TRUE
;
670 case TRIO_POSITIVE_NORMAL
:
671 *is_negative
= TRIO_FALSE
;
672 return TRIO_FP_NORMAL
;
673 case TRIO_NEGATIVE_NORMAL
:
674 *is_negative
= TRIO_TRUE
;
675 return TRIO_FP_NORMAL
;
677 /* Just in case... */
678 *is_negative
= (number
< 0.0);
679 return TRIO_FP_NORMAL
;
690 * In IEEE 754 the sign of zero is ignored in comparisons, so we
691 * have to handle this as a special case by examining the sign bit
694 # if defined(USE_IEEE_754)
695 *is_negative
= trio_is_negative(number
);
697 *is_negative
= TRIO_FALSE
; /* FIXME */
701 if (trio_isnan(number
)) {
702 *is_negative
= TRIO_FALSE
;
705 if ((rc
= trio_isinf(number
))) {
706 *is_negative
= (rc
== -1);
707 return TRIO_FP_INFINITE
;
709 if ((number
> 0.0) && (number
< DBL_MIN
)) {
710 *is_negative
= TRIO_FALSE
;
711 return TRIO_FP_SUBNORMAL
;
713 if ((number
< 0.0) && (number
> -DBL_MIN
)) {
714 *is_negative
= TRIO_TRUE
;
715 return TRIO_FP_SUBNORMAL
;
717 *is_negative
= (number
< 0.0);
718 return TRIO_FP_NORMAL
;
725 Examine the sign of a number.
727 @param number An arbitrary floating-point number.
728 @return Boolean value indicating whether or not the number has the
729 sign bit set (i.e. is negative).
738 (void)trio_fpclassify_and_signbit(number
, &is_negative
);
743 /* Temporary fix - this routine is not used in libxml */
745 Examine the class of a number.
747 @param number An arbitrary floating-point number.
748 @return Enumerable value indicating the class of @p number
757 return trio_fpclassify_and_signbit(number
, &dummy
);
762 /** @} SpecialQuantities */
764 /*************************************************************************
767 * Add the following compiler option to include this test code.
769 * Unix : -DSTANDALONE
770 * VMS : /DEFINE=(STANDALONE)
772 #if defined(STANDALONE)
775 static TRIO_CONST
char *
781 case TRIO_FP_INFINITE
:
782 return "FP_INFINITE";
787 case TRIO_FP_SUBNORMAL
:
788 return "FP_SUBNORMAL";
798 TRIO_ARGS2((prefix
, number
),
799 TRIO_CONST
char *prefix
,
802 printf("%-6s: %s %-15s %g\n",
804 trio_signbit(number
) ? "-" : "+",
805 getClassification(TRIO_FPCLASSIFY(number
)),
809 int main(TRIO_NOARGS
)
814 # if defined(TRIO_PLATFORM_UNIX)
815 void (*signal_handler
) TRIO_PROTO((int));
819 my_pinf
= trio_pinf();
820 my_ninf
= trio_ninf();
822 print_class("Nan", my_nan
);
823 print_class("PInf", my_pinf
);
824 print_class("NInf", my_ninf
);
825 print_class("PZero", 0.0);
826 print_class("NZero", -0.0);
827 print_class("PNorm", 1.0);
828 print_class("NNorm", -1.0);
829 print_class("PSub", 1.01e-307 - 1.00e-307);
830 print_class("NSub", 1.00e-307 - 1.01e-307);
832 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
834 ((unsigned char *)&my_nan
)[0],
835 ((unsigned char *)&my_nan
)[1],
836 ((unsigned char *)&my_nan
)[2],
837 ((unsigned char *)&my_nan
)[3],
838 ((unsigned char *)&my_nan
)[4],
839 ((unsigned char *)&my_nan
)[5],
840 ((unsigned char *)&my_nan
)[6],
841 ((unsigned char *)&my_nan
)[7],
842 trio_isnan(my_nan
), trio_isinf(my_nan
));
843 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
845 ((unsigned char *)&my_pinf
)[0],
846 ((unsigned char *)&my_pinf
)[1],
847 ((unsigned char *)&my_pinf
)[2],
848 ((unsigned char *)&my_pinf
)[3],
849 ((unsigned char *)&my_pinf
)[4],
850 ((unsigned char *)&my_pinf
)[5],
851 ((unsigned char *)&my_pinf
)[6],
852 ((unsigned char *)&my_pinf
)[7],
853 trio_isnan(my_pinf
), trio_isinf(my_pinf
));
854 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
856 ((unsigned char *)&my_ninf
)[0],
857 ((unsigned char *)&my_ninf
)[1],
858 ((unsigned char *)&my_ninf
)[2],
859 ((unsigned char *)&my_ninf
)[3],
860 ((unsigned char *)&my_ninf
)[4],
861 ((unsigned char *)&my_ninf
)[5],
862 ((unsigned char *)&my_ninf
)[6],
863 ((unsigned char *)&my_ninf
)[7],
864 trio_isnan(my_ninf
), trio_isinf(my_ninf
));
866 # if defined(TRIO_PLATFORM_UNIX)
867 signal_handler
= signal(SIGFPE
, SIG_IGN
);
870 my_pinf
= DBL_MAX
+ DBL_MAX
;
872 my_nan
= my_pinf
/ my_pinf
;
874 # if defined(TRIO_PLATFORM_UNIX)
875 signal(SIGFPE
, signal_handler
);
878 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
880 ((unsigned char *)&my_nan
)[0],
881 ((unsigned char *)&my_nan
)[1],
882 ((unsigned char *)&my_nan
)[2],
883 ((unsigned char *)&my_nan
)[3],
884 ((unsigned char *)&my_nan
)[4],
885 ((unsigned char *)&my_nan
)[5],
886 ((unsigned char *)&my_nan
)[6],
887 ((unsigned char *)&my_nan
)[7],
888 trio_isnan(my_nan
), trio_isinf(my_nan
));
889 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
891 ((unsigned char *)&my_pinf
)[0],
892 ((unsigned char *)&my_pinf
)[1],
893 ((unsigned char *)&my_pinf
)[2],
894 ((unsigned char *)&my_pinf
)[3],
895 ((unsigned char *)&my_pinf
)[4],
896 ((unsigned char *)&my_pinf
)[5],
897 ((unsigned char *)&my_pinf
)[6],
898 ((unsigned char *)&my_pinf
)[7],
899 trio_isnan(my_pinf
), trio_isinf(my_pinf
));
900 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
902 ((unsigned char *)&my_ninf
)[0],
903 ((unsigned char *)&my_ninf
)[1],
904 ((unsigned char *)&my_ninf
)[2],
905 ((unsigned char *)&my_ninf
)[3],
906 ((unsigned char *)&my_ninf
)[4],
907 ((unsigned char *)&my_ninf
)[5],
908 ((unsigned char *)&my_ninf
)[6],
909 ((unsigned char *)&my_ninf
)[7],
910 trio_isnan(my_ninf
), trio_isinf(my_ninf
));