1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/playback/picture_pile.h"
11 #include "cc/base/histograms.h"
12 #include "cc/base/region.h"
13 #include "cc/playback/picture_pile_impl.h"
14 #include "skia/ext/analysis_canvas.h"
17 // Layout pixel buffer around the visible layer rect to record. Any base
18 // picture that intersects the visible layer rect expanded by this distance
20 const int kPixelDistanceToRecord
= 8000;
21 // We don't perform solid color analysis on images that have more than 10 skia
23 const int kOpCountThatIsOkToAnalyze
= 10;
25 // Dimensions of the tiles in this picture pile as well as the dimensions of
26 // the base picture in each tile.
27 const int kBasePictureSize
= 512;
29 // TODO(humper): The density threshold here is somewhat arbitrary; need a
30 // way to set // this from the command line so we can write a benchmark
31 // script and find a sweet spot.
32 const float kDensityThreshold
= 0.5f
;
34 bool rect_sort_y(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
35 return r1
.y() < r2
.y() || (r1
.y() == r2
.y() && r1
.x() < r2
.x());
38 bool rect_sort_x(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
39 return r1
.x() < r2
.x() || (r1
.x() == r2
.x() && r1
.y() < r2
.y());
42 float PerformClustering(const std::vector
<gfx::Rect
>& tiles
,
43 std::vector
<gfx::Rect
>* clustered_rects
) {
44 // These variables track the record area and invalid area
45 // for the entire clustering
46 int total_record_area
= 0;
47 int total_invalid_area
= 0;
49 // These variables track the record area and invalid area
50 // for the current cluster being constructed.
51 gfx::Rect cur_record_rect
;
52 int cluster_record_area
= 0, cluster_invalid_area
= 0;
54 for (std::vector
<gfx::Rect
>::const_iterator it
= tiles
.begin();
57 gfx::Rect invalid_tile
= *it
;
59 // For each tile, we consider adding the invalid tile to the
60 // current record rectangle. Only add it if the amount of empty
61 // space created is below a density threshold.
62 int tile_area
= invalid_tile
.width() * invalid_tile
.height();
64 gfx::Rect proposed_union
= cur_record_rect
;
65 proposed_union
.Union(invalid_tile
);
66 int proposed_area
= proposed_union
.width() * proposed_union
.height();
67 float proposed_density
=
68 static_cast<float>(cluster_invalid_area
+ tile_area
) /
69 static_cast<float>(proposed_area
);
71 if (proposed_density
>= kDensityThreshold
) {
72 // It's okay to add this invalid tile to the
73 // current recording rectangle.
74 cur_record_rect
= proposed_union
;
75 cluster_record_area
= proposed_area
;
76 cluster_invalid_area
+= tile_area
;
77 total_invalid_area
+= tile_area
;
79 // Adding this invalid tile to the current recording rectangle
80 // would exceed our badness threshold, so put the current rectangle
81 // in the list of recording rects, and start a new one.
82 clustered_rects
->push_back(cur_record_rect
);
83 total_record_area
+= cluster_record_area
;
84 cur_record_rect
= invalid_tile
;
85 cluster_invalid_area
= tile_area
;
86 cluster_record_area
= tile_area
;
90 DCHECK(!cur_record_rect
.IsEmpty());
91 clustered_rects
->push_back(cur_record_rect
);
92 total_record_area
+= cluster_record_area
;;
94 DCHECK_NE(total_record_area
, 0);
96 return static_cast<float>(total_invalid_area
) /
97 static_cast<float>(total_record_area
);
100 void ClusterTiles(const std::vector
<gfx::Rect
>& invalid_tiles
,
101 std::vector
<gfx::Rect
>* record_rects
) {
102 TRACE_EVENT1("cc", "ClusterTiles",
104 invalid_tiles
.size());
105 if (invalid_tiles
.size() <= 1) {
106 // Quickly handle the special case for common
107 // single-invalidation update, and also the less common
108 // case of no tiles passed in.
109 *record_rects
= invalid_tiles
;
113 // Sort the invalid tiles by y coordinate.
114 std::vector
<gfx::Rect
> invalid_tiles_vertical
= invalid_tiles
;
115 std::sort(invalid_tiles_vertical
.begin(),
116 invalid_tiles_vertical
.end(),
119 std::vector
<gfx::Rect
> vertical_clustering
;
120 float vertical_density
=
121 PerformClustering(invalid_tiles_vertical
, &vertical_clustering
);
123 // If vertical density is optimal, then we can return early.
124 if (vertical_density
== 1.f
) {
125 *record_rects
= vertical_clustering
;
129 // Now try again with a horizontal sort, see which one is best
130 std::vector
<gfx::Rect
> invalid_tiles_horizontal
= invalid_tiles
;
131 std::sort(invalid_tiles_horizontal
.begin(),
132 invalid_tiles_horizontal
.end(),
135 std::vector
<gfx::Rect
> horizontal_clustering
;
136 float horizontal_density
=
137 PerformClustering(invalid_tiles_horizontal
, &horizontal_clustering
);
139 if (vertical_density
< horizontal_density
) {
140 *record_rects
= horizontal_clustering
;
144 *record_rects
= vertical_clustering
;
148 const bool kDefaultClearCanvasSetting
= false;
150 const bool kDefaultClearCanvasSetting
= true;
153 DEFINE_SCOPED_UMA_HISTOGRAM_AREA_TIMER(
154 ScopedPicturePileUpdateTimer
,
155 "Compositing.PicturePile.UpdateUs",
156 "Compositing.PicturePile.UpdateInvalidatedAreaPerMs");
162 PicturePile::PicturePile(float min_contents_scale
,
163 const gfx::Size
& tile_grid_size
)
164 : min_contents_scale_(0),
165 slow_down_raster_scale_factor_for_debug_(0),
166 gather_pixel_refs_(false),
167 has_any_recordings_(false),
168 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting
),
169 requires_clear_(true),
170 is_solid_color_(false),
171 solid_color_(SK_ColorTRANSPARENT
),
172 background_color_(SK_ColorTRANSPARENT
),
173 pixel_record_distance_(kPixelDistanceToRecord
),
174 is_suitable_for_gpu_rasterization_(true) {
175 tiling_
.SetMaxTextureSize(gfx::Size(kBasePictureSize
, kBasePictureSize
));
176 SetMinContentsScale(min_contents_scale
);
177 SetTileGridSize(tile_grid_size
);
180 PicturePile::~PicturePile() {
183 bool PicturePile::UpdateAndExpandInvalidation(
184 ContentLayerClient
* painter
,
185 Region
* invalidation
,
186 const gfx::Size
& layer_size
,
187 const gfx::Rect
& visible_layer_rect
,
189 RecordingSource::RecordingMode recording_mode
) {
190 ScopedPicturePileUpdateTimer timer
;
192 gfx::Rect interest_rect
= visible_layer_rect
;
193 interest_rect
.Inset(-pixel_record_distance_
, -pixel_record_distance_
);
194 recorded_viewport_
= interest_rect
;
195 recorded_viewport_
.Intersect(gfx::Rect(layer_size
));
197 bool updated
= ApplyInvalidationAndResize(interest_rect
, invalidation
,
198 layer_size
, frame_number
);
200 // Count the area that is being invalidated.
201 Region
recorded_invalidation(*invalidation
);
202 recorded_invalidation
.Intersect(recorded_viewport_
);
203 for (Region::Iterator
it(recorded_invalidation
); it
.has_rect(); it
.next())
204 timer
.AddArea(it
.rect().size().GetArea());
206 std::vector
<gfx::Rect
> invalid_tiles
;
207 GetInvalidTileRects(interest_rect
, &invalid_tiles
);
208 std::vector
<gfx::Rect
> record_rects
;
209 ClusterTiles(invalid_tiles
, &record_rects
);
211 if (record_rects
.empty())
214 CreatePictures(painter
, recording_mode
, record_rects
);
216 DetermineIfSolidColor();
218 has_any_recordings_
= true;
219 DCHECK(CanRasterSlowTileCheck(recorded_viewport_
));
223 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect
& interest_rect
,
224 Region
* invalidation
,
225 const gfx::Size
& layer_size
,
227 bool updated
= false;
229 Region synthetic_invalidation
;
230 gfx::Size old_tiling_size
= GetSize();
231 if (old_tiling_size
!= layer_size
) {
232 tiling_
.SetTilingSize(layer_size
);
236 gfx::Rect interest_rect_over_tiles
=
237 tiling_
.ExpandRectToTileBounds(interest_rect
);
239 if (old_tiling_size
!= layer_size
) {
240 gfx::Size
min_tiling_size(
241 std::min(GetSize().width(), old_tiling_size
.width()),
242 std::min(GetSize().height(), old_tiling_size
.height()));
243 gfx::Size
max_tiling_size(
244 std::max(GetSize().width(), old_tiling_size
.width()),
245 std::max(GetSize().height(), old_tiling_size
.height()));
247 has_any_recordings_
= false;
249 // Drop recordings that are outside the new or old layer bounds or that
250 // changed size. Newly exposed areas are considered invalidated.
251 // Previously exposed areas that are now outside of bounds also need to
252 // be invalidated, as they may become part of raster when scale < 1.
253 std::vector
<PictureMapKey
> to_erase
;
254 int min_toss_x
= tiling_
.num_tiles_x();
255 if (max_tiling_size
.width() > min_tiling_size
.width()) {
257 tiling_
.FirstBorderTileXIndexFromSrcCoord(min_tiling_size
.width());
259 int min_toss_y
= tiling_
.num_tiles_y();
260 if (max_tiling_size
.height() > min_tiling_size
.height()) {
262 tiling_
.FirstBorderTileYIndexFromSrcCoord(min_tiling_size
.height());
264 for (const auto& key_picture_pair
: picture_map_
) {
265 const PictureMapKey
& key
= key_picture_pair
.first
;
266 if (key
.first
< min_toss_x
&& key
.second
< min_toss_y
) {
267 has_any_recordings_
= true;
270 to_erase
.push_back(key
);
273 for (size_t i
= 0; i
< to_erase
.size(); ++i
)
274 picture_map_
.erase(to_erase
[i
]);
276 // If a recording is dropped and not re-recorded below, invalidate that
277 // full recording to cause any raster tiles that would use it to be
279 // If the recording will be replaced below, invalidate newly exposed
280 // areas and previously exposed areas to force raster tiles that include the
281 // old recording to know there is new recording to display.
282 gfx::Rect min_tiling_rect_over_tiles
=
283 tiling_
.ExpandRectToTileBounds(gfx::Rect(min_tiling_size
));
284 if (min_toss_x
< tiling_
.num_tiles_x()) {
285 // The bounds which we want to invalidate are the tiles along the old
286 // edge of the pile when expanding, or the new edge of the pile when
287 // shrinking. In either case, it's the difference of the two, so we'll
288 // call this bounding box the DELTA EDGE RECT.
290 // In the picture below, the delta edge rect would be the bounding box of
291 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
294 // min pile edge-v max pile edge-v
295 // ---------------+ - - - - - - - -+
296 // mmppssvvyybbeeh|h .
297 // mmppssvvyybbeeh|h .
298 // nnqqttwwzzccffi|i .
299 // nnqqttwwzzccffi|i .
300 // oorruuxxaaddggj|j .
301 // oorruuxxaaddggj|j .
302 // ---------------+ - - - - - - - -+ <- min pile edge
304 // - - - - - - - - - - - - - - - -+ <- max pile edge
306 // If you were to slide a vertical beam from the left edge of the
307 // delta edge rect toward the right, it would either hit the right edge
308 // of the delta edge rect, or the interest rect (expanded to the bounds
309 // of the tiles it touches). The same is true for a beam parallel to
310 // any of the four edges, sliding across the delta edge rect. We use
311 // the union of these four rectangles generated by these beams to
312 // determine which part of the delta edge rect is outside of the expanded
315 // Case 1: Intersect rect is outside the delta edge rect. It can be
316 // either on the left or the right. The |left_rect| and |right_rect|,
317 // cover this case, one will be empty and one will cover the full
318 // delta edge rect. In the picture below, |left_rect| would cover the
319 // delta edge rect, and |right_rect| would be empty.
320 // +----------------------+ |^^^^^^^^^^^^^^^|
321 // |===> DELTA EDGE RECT | | |
322 // |===> | | INTEREST RECT |
325 // +----------------------+ |vvvvvvvvvvvvvvv|
327 // Case 2: Interest rect is inside the delta edge rect. It will always
328 // fill the entire delta edge rect horizontally since the old edge rect
329 // is a single tile wide, and the interest rect has been expanded to the
330 // bounds of the tiles it touches. In this case the |left_rect| and
331 // |right_rect| will be empty, but the case is handled by the |top_rect|
332 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
333 // |bottom_rect| would empty, they would each cover the area of the old
334 // edge rect outside the expanded interest rect.
335 // +-----------------+
336 // |:::::::::::::::::|
337 // |:::::::::::::::::|
338 // |vvvvvvvvvvvvvvvvv|
340 // +-----------------+
343 // +-----------------+
345 // | DELTA EDGE RECT |
346 // +-----------------+
348 // Lastly, we need to consider tiles inside the expanded interest rect.
349 // For those tiles, we want to invalidate exactly the newly exposed
350 // pixels. In the picture below the tiles in the delta edge rect have
351 // been resized and the area covered by periods must be invalidated. The
352 // |exposed_rect| will cover exactly that area.
354 // +---------+-------+
357 // | DELTA EDGE.RECT.|
364 // +---------+-------+
366 int left
= tiling_
.TilePositionX(min_toss_x
);
367 int right
= left
+ tiling_
.TileSizeX(min_toss_x
);
368 int top
= min_tiling_rect_over_tiles
.y();
369 int bottom
= min_tiling_rect_over_tiles
.bottom();
371 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
372 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
373 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
374 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
376 int exposed_left
= min_tiling_size
.width();
377 int exposed_left_until
= max_tiling_size
.width();
378 int exposed_top
= top
;
379 int exposed_bottom
= max_tiling_size
.height();
380 DCHECK_GE(exposed_left
, left
);
382 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
383 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
384 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
385 gfx::Rect
bottom_rect(
386 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
387 gfx::Rect
exposed_rect(exposed_left
,
389 exposed_left_until
- exposed_left
,
390 exposed_bottom
- exposed_top
);
391 synthetic_invalidation
.Union(left_rect
);
392 synthetic_invalidation
.Union(right_rect
);
393 synthetic_invalidation
.Union(top_rect
);
394 synthetic_invalidation
.Union(bottom_rect
);
395 synthetic_invalidation
.Union(exposed_rect
);
397 if (min_toss_y
< tiling_
.num_tiles_y()) {
398 // The same thing occurs here as in the case above, but the invalidation
399 // rect is the bounding box around the bottom row of tiles in the min
400 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
402 int top
= tiling_
.TilePositionY(min_toss_y
);
403 int bottom
= top
+ tiling_
.TileSizeY(min_toss_y
);
404 int left
= min_tiling_rect_over_tiles
.x();
405 int right
= min_tiling_rect_over_tiles
.right();
407 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
408 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
409 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
410 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
412 int exposed_top
= min_tiling_size
.height();
413 int exposed_top_until
= max_tiling_size
.height();
414 int exposed_left
= left
;
415 int exposed_right
= max_tiling_size
.width();
416 DCHECK_GE(exposed_top
, top
);
418 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
419 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
420 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
421 gfx::Rect
bottom_rect(
422 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
423 gfx::Rect
exposed_rect(exposed_left
,
425 exposed_right
- exposed_left
,
426 exposed_top_until
- exposed_top
);
427 synthetic_invalidation
.Union(left_rect
);
428 synthetic_invalidation
.Union(right_rect
);
429 synthetic_invalidation
.Union(top_rect
);
430 synthetic_invalidation
.Union(bottom_rect
);
431 synthetic_invalidation
.Union(exposed_rect
);
435 // Detect cases where the full pile is invalidated, in this situation we
436 // can just drop/invalidate everything.
437 if (invalidation
->Contains(gfx::Rect(old_tiling_size
)) ||
438 invalidation
->Contains(gfx::Rect(GetSize()))) {
439 updated
= !picture_map_
.empty();
440 picture_map_
.clear();
442 // Expand invalidation that is on tiles that aren't in the interest rect and
443 // will not be re-recorded below. These tiles are no longer valid and should
444 // be considerered fully invalid, so we can know to not keep around raster
445 // tiles that intersect with these recording tiles.
446 Region invalidation_expanded_to_full_tiles
;
448 for (Region::Iterator
i(*invalidation
); i
.has_rect(); i
.next()) {
449 gfx::Rect invalid_rect
= i
.rect();
451 // This rect covers the bounds (excluding borders) of all tiles whose
452 // bounds (including borders) touch the |interest_rect|. This matches
453 // the iteration of the |invalid_rect| below which includes borders when
454 // calling Invalidate() on pictures.
455 gfx::Rect invalid_rect_outside_interest_rect_tiles
=
456 tiling_
.ExpandRectToTileBounds(invalid_rect
);
457 // We subtract the |interest_rect_over_tiles| which represents the bounds
458 // of tiles that will be re-recorded below. This matches the iteration of
459 // |interest_rect| below which includes borders.
460 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
461 // instead of using Rect::Subtract which gives you the bounding box of the
463 invalid_rect_outside_interest_rect_tiles
.Subtract(
464 interest_rect_over_tiles
);
465 invalidation_expanded_to_full_tiles
.Union(
466 invalid_rect_outside_interest_rect_tiles
);
468 // Split this inflated invalidation across tile boundaries and apply it
469 // to all tiles that it touches.
470 bool include_borders
= true;
471 for (TilingData::Iterator
iter(&tiling_
, invalid_rect
, include_borders
);
474 const PictureMapKey
& key
= iter
.index();
476 PictureMap::iterator picture_it
= picture_map_
.find(key
);
477 if (picture_it
== picture_map_
.end())
481 picture_map_
.erase(key
);
483 // Invalidate drops the picture so the whole tile better be invalidated
484 // if it won't be re-recorded below.
485 DCHECK_IMPLIES(!tiling_
.TileBounds(key
.first
, key
.second
)
486 .Intersects(interest_rect_over_tiles
),
487 invalidation_expanded_to_full_tiles
.Contains(
488 tiling_
.TileBounds(key
.first
, key
.second
)));
491 invalidation
->Union(invalidation_expanded_to_full_tiles
);
494 invalidation
->Union(synthetic_invalidation
);
498 void PicturePile::GetInvalidTileRects(const gfx::Rect
& interest_rect
,
499 std::vector
<gfx::Rect
>* invalid_tiles
) {
500 // Make a list of all invalid tiles; we will attempt to
501 // cluster these into multiple invalidation regions.
502 bool include_borders
= true;
503 for (TilingData::Iterator
it(&tiling_
, interest_rect
, include_borders
); it
;
505 const PictureMapKey
& key
= it
.index();
506 if (picture_map_
.find(key
) == picture_map_
.end())
507 invalid_tiles
->push_back(tiling_
.TileBounds(key
.first
, key
.second
));
511 void PicturePile::CreatePictures(ContentLayerClient
* painter
,
512 RecordingSource::RecordingMode recording_mode
,
513 const std::vector
<gfx::Rect
>& record_rects
) {
514 for (const auto& record_rect
: record_rects
) {
515 gfx::Rect padded_record_rect
= PadRect(record_rect
);
517 // TODO(vmpstr): Add a slow_down_recording_scale_factor_for_debug_ to be
518 // able to slow down recording.
519 scoped_refptr
<Picture
> picture
=
520 Picture::Create(padded_record_rect
, painter
, tile_grid_size_
,
521 gather_pixel_refs_
, recording_mode
);
522 // Note the '&&' with previous is-suitable state.
523 // This means that once a picture-pile becomes unsuitable for gpu
524 // rasterization due to some content, it will continue to be unsuitable even
525 // if that content is replaced by gpu-friendly content. This is an
526 // optimization to avoid iterating though all pictures in the pile after
527 // each invalidation.
528 if (is_suitable_for_gpu_rasterization_
) {
529 const char* reason
= nullptr;
530 is_suitable_for_gpu_rasterization_
&=
531 picture
->IsSuitableForGpuRasterization(&reason
);
533 if (!is_suitable_for_gpu_rasterization_
) {
534 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
535 TRACE_EVENT_SCOPE_THREAD
, "reason", reason
);
539 bool found_tile_for_recorded_picture
= false;
541 bool include_borders
= true;
542 for (TilingData::Iterator
it(&tiling_
, padded_record_rect
, include_borders
);
544 const PictureMapKey
& key
= it
.index();
545 gfx::Rect tile
= PaddedRect(key
);
546 if (padded_record_rect
.Contains(tile
)) {
547 picture_map_
[key
] = picture
;
548 found_tile_for_recorded_picture
= true;
551 DCHECK(found_tile_for_recorded_picture
);
555 scoped_refptr
<RasterSource
> PicturePile::CreateRasterSource(
556 bool can_use_lcd_text
) const {
557 return scoped_refptr
<RasterSource
>(
558 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text
));
561 gfx::Size
PicturePile::GetSize() const {
562 return tiling_
.tiling_size();
565 void PicturePile::SetEmptyBounds() {
566 tiling_
.SetTilingSize(gfx::Size());
570 void PicturePile::SetMinContentsScale(float min_contents_scale
) {
571 DCHECK(min_contents_scale
);
572 if (min_contents_scale_
== min_contents_scale
)
575 // Picture contents are played back scaled. When the final contents scale is
576 // less than 1 (i.e. low res), then multiple recorded pixels will be used
577 // to raster one final pixel. To avoid splitting a final pixel across
578 // pictures (which would result in incorrect rasterization due to blending), a
579 // buffer margin is added so that any picture can be snapped to integral
582 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
583 // pixels, since that's the minimum number of pixels to add so that resulting
584 // content can be snapped to a four pixel aligned grid.
585 int buffer_pixels
= static_cast<int>(ceil(1 / min_contents_scale
) - 1);
586 buffer_pixels
= std::max(0, buffer_pixels
);
587 SetBufferPixels(buffer_pixels
);
588 min_contents_scale_
= min_contents_scale
;
591 void PicturePile::SetSlowdownRasterScaleFactor(int factor
) {
592 slow_down_raster_scale_factor_for_debug_
= factor
;
595 void PicturePile::SetGatherPixelRefs(bool gather_pixel_refs
) {
596 gather_pixel_refs_
= gather_pixel_refs
;
599 void PicturePile::SetBackgroundColor(SkColor background_color
) {
600 background_color_
= background_color
;
603 void PicturePile::SetRequiresClear(bool requires_clear
) {
604 requires_clear_
= requires_clear
;
607 bool PicturePile::IsSuitableForGpuRasterization() const {
608 return is_suitable_for_gpu_rasterization_
;
611 void PicturePile::SetTileGridSize(const gfx::Size
& tile_grid_size
) {
612 DCHECK_GT(tile_grid_size
.width(), 0);
613 DCHECK_GT(tile_grid_size
.height(), 0);
615 tile_grid_size_
= tile_grid_size
;
618 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
619 is_suitable_for_gpu_rasterization_
= false;
622 gfx::Size
PicturePile::GetTileGridSizeForTesting() const {
623 return tile_grid_size_
;
626 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect
& layer_rect
) const {
627 bool include_borders
= false;
628 for (TilingData::Iterator
tile_iter(&tiling_
, layer_rect
, include_borders
);
629 tile_iter
; ++tile_iter
) {
630 PictureMap::const_iterator map_iter
= picture_map_
.find(tile_iter
.index());
631 if (map_iter
== picture_map_
.end())
637 void PicturePile::DetermineIfSolidColor() {
638 is_solid_color_
= false;
639 solid_color_
= SK_ColorTRANSPARENT
;
641 if (picture_map_
.empty()) {
645 PictureMap::const_iterator it
= picture_map_
.begin();
646 const Picture
* picture
= it
->second
.get();
648 // Missing recordings due to frequent invalidations or being too far away
649 // from the interest rect will cause the a null picture to exist.
653 // Don't bother doing more work if the first image is too complicated.
654 if (picture
->ApproximateOpCount() > kOpCountThatIsOkToAnalyze
)
657 // Make sure all of the mapped images point to the same picture.
658 for (++it
; it
!= picture_map_
.end(); ++it
) {
659 if (it
->second
.get() != picture
)
663 gfx::Size layer_size
= GetSize();
664 skia::AnalysisCanvas
canvas(layer_size
.width(), layer_size
.height());
666 picture
->Raster(&canvas
, nullptr, Region(), 1.0f
);
667 is_solid_color_
= canvas
.GetColorIfSolid(&solid_color_
);
670 gfx::Rect
PicturePile::PaddedRect(const PictureMapKey
& key
) const {
671 gfx::Rect tile
= tiling_
.TileBounds(key
.first
, key
.second
);
672 return PadRect(tile
);
675 gfx::Rect
PicturePile::PadRect(const gfx::Rect
& rect
) const {
676 gfx::Rect padded_rect
= rect
;
677 padded_rect
.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
682 void PicturePile::Clear() {
683 picture_map_
.clear();
684 recorded_viewport_
= gfx::Rect();
685 has_any_recordings_
= false;
686 is_solid_color_
= false;
689 void PicturePile::SetBufferPixels(int new_buffer_pixels
) {
690 if (new_buffer_pixels
== buffer_pixels())
694 tiling_
.SetBorderTexels(new_buffer_pixels
);