1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
6 // and r4_ will move after the first load):
8 // |----------------|-----------------------------------------|----------------|
11 // <--------------------------------------------------------->
12 // r0_ (during first load)
14 // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
15 // <---------------> <---------------> <---------------> <--------------->
18 // block_size_ == r4_ - r2_
19 // <--------------------------------------->
22 // <------------------ ... ----------------->
23 // r0_ (during second load)
25 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
26 // and block_size_ are reinitialized via step (3) in the algorithm below.
28 // These new regions remain constant until a Flush() occurs. While complicated,
29 // this allows us to reduce jitter by always requesting the same amount from the
34 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
35 // there's enough room to read request_frames_ from the callback into region
36 // r0_ (which will move between the first and subsequent passes).
38 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
40 // r0_ = input_buffer_ + kKernelSize / 2
41 // r1_ = input_buffer_
44 // r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in
45 // size. r1_ must be zero initialized to avoid convolution with garbage (see
48 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
49 // r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
51 // r3_ = r0_ + request_frames_ - kKernelSize
52 // r4_ = r0_ + request_frames_ - kKernelSize / 2
53 // block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
55 // 4) Consume request_frames_ frames into r0_.
57 // 5) Position kernel centered at start of r2_ and generate output frames until
58 // the kernel is centered at the start of r4_ or we've finished generating
59 // all the output frames.
61 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
63 // 7) If we're on the second load, in order to avoid overwriting the frames we
64 // just wrapped from r4_ we need to slide r0_ to the right by the size of
65 // r4_, which is kKernelSize / 2:
67 // r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
69 // r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
71 // 8) Else, if we're not on the second load, goto (4).
73 // Note: we're glossing over how the sub-sample handling works with
74 // |virtual_source_idx_|, etc.
76 // MSVC++ requires this to be set before any other includes to get M_PI.
77 #define _USE_MATH_DEFINES
79 #include "media/base/sinc_resampler.h"
84 #include "base/logging.h"
86 #if defined(ARCH_CPU_X86_FAMILY)
87 #include <xmmintrin.h>
88 #define CONVOLVE_FUNC Convolve_SSE
89 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
91 #define CONVOLVE_FUNC Convolve_NEON
93 #define CONVOLVE_FUNC Convolve_C
98 static double SincScaleFactor(double io_ratio
) {
99 // |sinc_scale_factor| is basically the normalized cutoff frequency of the
101 double sinc_scale_factor
= io_ratio
> 1.0 ? 1.0 / io_ratio
: 1.0;
103 // The sinc function is an idealized brick-wall filter, but since we're
104 // windowing it the transition from pass to stop does not happen right away.
105 // So we should adjust the low pass filter cutoff slightly downward to avoid
106 // some aliasing at the very high-end.
107 // TODO(crogers): this value is empirical and to be more exact should vary
108 // depending on kKernelSize.
109 sinc_scale_factor
*= 0.9;
111 return sinc_scale_factor
;
114 static int CalculateChunkSize(int block_size_
, double io_ratio
) {
115 return block_size_
/ io_ratio
;
118 SincResampler::SincResampler(double io_sample_rate_ratio
,
120 const ReadCB
& read_cb
)
121 : io_sample_rate_ratio_(io_sample_rate_ratio
),
123 request_frames_(request_frames
),
124 input_buffer_size_(request_frames_
+ kKernelSize
),
125 // Create input buffers with a 16-byte alignment for SSE optimizations.
126 kernel_storage_(static_cast<float*>(
127 base::AlignedAlloc(sizeof(float) * kKernelStorageSize
, 16))),
128 kernel_pre_sinc_storage_(static_cast<float*>(
129 base::AlignedAlloc(sizeof(float) * kKernelStorageSize
, 16))),
130 kernel_window_storage_(static_cast<float*>(
131 base::AlignedAlloc(sizeof(float) * kKernelStorageSize
, 16))),
132 input_buffer_(static_cast<float*>(
133 base::AlignedAlloc(sizeof(float) * input_buffer_size_
, 16))),
134 r1_(input_buffer_
.get()),
135 r2_(input_buffer_
.get() + kKernelSize
/ 2) {
136 CHECK_GT(request_frames_
, 0);
138 CHECK_GT(block_size_
, kKernelSize
)
139 << "block_size must be greater than kKernelSize!";
141 memset(kernel_storage_
.get(), 0,
142 sizeof(*kernel_storage_
.get()) * kKernelStorageSize
);
143 memset(kernel_pre_sinc_storage_
.get(), 0,
144 sizeof(*kernel_pre_sinc_storage_
.get()) * kKernelStorageSize
);
145 memset(kernel_window_storage_
.get(), 0,
146 sizeof(*kernel_window_storage_
.get()) * kKernelStorageSize
);
151 SincResampler::~SincResampler() {}
153 void SincResampler::UpdateRegions(bool second_load
) {
154 // Setup various region pointers in the buffer (see diagram above). If we're
155 // on the second load we need to slide r0_ to the right by kKernelSize / 2.
156 r0_
= input_buffer_
.get() + (second_load
? kKernelSize
: kKernelSize
/ 2);
157 r3_
= r0_
+ request_frames_
- kKernelSize
;
158 r4_
= r0_
+ request_frames_
- kKernelSize
/ 2;
159 block_size_
= r4_
- r2_
;
160 chunk_size_
= CalculateChunkSize(block_size_
, io_sample_rate_ratio_
);
162 // r1_ at the beginning of the buffer.
163 CHECK_EQ(r1_
, input_buffer_
.get());
164 // r1_ left of r2_, r4_ left of r3_ and size correct.
165 CHECK_EQ(r2_
- r1_
, r4_
- r3_
);
170 void SincResampler::InitializeKernel() {
171 // Blackman window parameters.
172 static const double kAlpha
= 0.16;
173 static const double kA0
= 0.5 * (1.0 - kAlpha
);
174 static const double kA1
= 0.5;
175 static const double kA2
= 0.5 * kAlpha
;
177 // Generates a set of windowed sinc() kernels.
178 // We generate a range of sub-sample offsets from 0.0 to 1.0.
179 const double sinc_scale_factor
= SincScaleFactor(io_sample_rate_ratio_
);
180 for (int offset_idx
= 0; offset_idx
<= kKernelOffsetCount
; ++offset_idx
) {
181 const float subsample_offset
=
182 static_cast<float>(offset_idx
) / kKernelOffsetCount
;
184 for (int i
= 0; i
< kKernelSize
; ++i
) {
185 const int idx
= i
+ offset_idx
* kKernelSize
;
186 const float pre_sinc
=
187 static_cast<float>(M_PI
* (i
- kKernelSize
/ 2 - subsample_offset
));
188 kernel_pre_sinc_storage_
[idx
] = pre_sinc
;
190 // Compute Blackman window, matching the offset of the sinc().
191 const float x
= (i
- subsample_offset
) / kKernelSize
;
192 const float window
= static_cast<float>(kA0
- kA1
* cos(2.0 * M_PI
* x
) +
193 kA2
* cos(4.0 * M_PI
* x
));
194 kernel_window_storage_
[idx
] = window
;
196 // Compute the sinc with offset, then window the sinc() function and store
197 // at the correct offset.
198 kernel_storage_
[idx
] = static_cast<float>(window
*
201 (sin(sinc_scale_factor
* pre_sinc
) / pre_sinc
)));
206 void SincResampler::SetRatio(double io_sample_rate_ratio
) {
207 if (fabs(io_sample_rate_ratio_
- io_sample_rate_ratio
) <
208 std::numeric_limits
<double>::epsilon()) {
212 io_sample_rate_ratio_
= io_sample_rate_ratio
;
213 chunk_size_
= CalculateChunkSize(block_size_
, io_sample_rate_ratio_
);
215 // Optimize reinitialization by reusing values which are independent of
216 // |sinc_scale_factor|. Provides a 3x speedup.
217 const double sinc_scale_factor
= SincScaleFactor(io_sample_rate_ratio_
);
218 for (int offset_idx
= 0; offset_idx
<= kKernelOffsetCount
; ++offset_idx
) {
219 for (int i
= 0; i
< kKernelSize
; ++i
) {
220 const int idx
= i
+ offset_idx
* kKernelSize
;
221 const float window
= kernel_window_storage_
[idx
];
222 const float pre_sinc
= kernel_pre_sinc_storage_
[idx
];
224 kernel_storage_
[idx
] = static_cast<float>(window
*
227 (sin(sinc_scale_factor
* pre_sinc
) / pre_sinc
)));
232 void SincResampler::Resample(int frames
, float* destination
) {
233 int remaining_frames
= frames
;
235 // Step (1) -- Prime the input buffer at the start of the input stream.
236 if (!buffer_primed_
&& remaining_frames
) {
237 read_cb_
.Run(request_frames_
, r0_
);
238 buffer_primed_
= true;
241 // Step (2) -- Resample! const what we can outside of the loop for speed. It
242 // actually has an impact on ARM performance. See inner loop comment below.
243 const double current_io_ratio
= io_sample_rate_ratio_
;
244 const float* const kernel_ptr
= kernel_storage_
.get();
245 while (remaining_frames
) {
246 // Note: The loop construct here can severely impact performance on ARM
247 // or when built with clang. See https://codereview.chromium.org/18566009/
248 int source_idx
= static_cast<int>(virtual_source_idx_
);
249 while (source_idx
< block_size_
) {
250 // |virtual_source_idx_| lies in between two kernel offsets so figure out
252 const double subsample_remainder
= virtual_source_idx_
- source_idx
;
254 const double virtual_offset_idx
=
255 subsample_remainder
* kKernelOffsetCount
;
256 const int offset_idx
= static_cast<int>(virtual_offset_idx
);
258 // We'll compute "convolutions" for the two kernels which straddle
259 // |virtual_source_idx_|.
260 const float* const k1
= kernel_ptr
+ offset_idx
* kKernelSize
;
261 const float* const k2
= k1
+ kKernelSize
;
263 // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be
264 // true so long as kKernelSize is a multiple of 16.
265 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1
) & 0x0F);
266 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2
) & 0x0F);
268 // Initialize input pointer based on quantized |virtual_source_idx_|.
269 const float* const input_ptr
= r1_
+ source_idx
;
271 // Figure out how much to weight each kernel's "convolution".
272 const double kernel_interpolation_factor
=
273 virtual_offset_idx
- offset_idx
;
274 *destination
++ = CONVOLVE_FUNC(
275 input_ptr
, k1
, k2
, kernel_interpolation_factor
);
277 // Advance the virtual index.
278 virtual_source_idx_
+= current_io_ratio
;
279 source_idx
= static_cast<int>(virtual_source_idx_
);
281 if (!--remaining_frames
)
285 // Wrap back around to the start.
286 DCHECK_GE(virtual_source_idx_
, block_size_
);
287 virtual_source_idx_
-= block_size_
;
289 // Step (3) -- Copy r3_, r4_ to r1_, r2_.
290 // This wraps the last input frames back to the start of the buffer.
291 memcpy(r1_
, r3_
, sizeof(*input_buffer_
.get()) * kKernelSize
);
293 // Step (4) -- Reinitialize regions if necessary.
297 // Step (5) -- Refresh the buffer with more input.
298 read_cb_
.Run(request_frames_
, r0_
);
302 void SincResampler::PrimeWithSilence() {
303 // By enforcing the buffer hasn't been primed, we ensure the input buffer has
304 // already been zeroed during construction or by a previous Flush() call.
305 DCHECK(!buffer_primed_
);
306 DCHECK_EQ(input_buffer_
[0], 0.0f
);
310 void SincResampler::Flush() {
311 virtual_source_idx_
= 0;
312 buffer_primed_
= false;
313 memset(input_buffer_
.get(), 0,
314 sizeof(*input_buffer_
.get()) * input_buffer_size_
);
315 UpdateRegions(false);
318 float SincResampler::Convolve_C(const float* input_ptr
, const float* k1
,
320 double kernel_interpolation_factor
) {
324 // Generate a single output sample. Unrolling this loop hurt performance in
328 sum1
+= *input_ptr
* *k1
++;
329 sum2
+= *input_ptr
++ * *k2
++;
332 // Linearly interpolate the two "convolutions".
333 return static_cast<float>((1.0 - kernel_interpolation_factor
) * sum1
+
334 kernel_interpolation_factor
* sum2
);
337 #if defined(ARCH_CPU_X86_FAMILY)
338 float SincResampler::Convolve_SSE(const float* input_ptr
, const float* k1
,
340 double kernel_interpolation_factor
) {
342 __m128 m_sums1
= _mm_setzero_ps();
343 __m128 m_sums2
= _mm_setzero_ps();
345 // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
346 // these loops hurt performance in local testing.
347 if (reinterpret_cast<uintptr_t>(input_ptr
) & 0x0F) {
348 for (int i
= 0; i
< kKernelSize
; i
+= 4) {
349 m_input
= _mm_loadu_ps(input_ptr
+ i
);
350 m_sums1
= _mm_add_ps(m_sums1
, _mm_mul_ps(m_input
, _mm_load_ps(k1
+ i
)));
351 m_sums2
= _mm_add_ps(m_sums2
, _mm_mul_ps(m_input
, _mm_load_ps(k2
+ i
)));
354 for (int i
= 0; i
< kKernelSize
; i
+= 4) {
355 m_input
= _mm_load_ps(input_ptr
+ i
);
356 m_sums1
= _mm_add_ps(m_sums1
, _mm_mul_ps(m_input
, _mm_load_ps(k1
+ i
)));
357 m_sums2
= _mm_add_ps(m_sums2
, _mm_mul_ps(m_input
, _mm_load_ps(k2
+ i
)));
361 // Linearly interpolate the two "convolutions".
362 m_sums1
= _mm_mul_ps(m_sums1
, _mm_set_ps1(
363 static_cast<float>(1.0 - kernel_interpolation_factor
)));
364 m_sums2
= _mm_mul_ps(m_sums2
, _mm_set_ps1(
365 static_cast<float>(kernel_interpolation_factor
)));
366 m_sums1
= _mm_add_ps(m_sums1
, m_sums2
);
368 // Sum components together.
370 m_sums2
= _mm_add_ps(_mm_movehl_ps(m_sums1
, m_sums1
), m_sums1
);
371 _mm_store_ss(&result
, _mm_add_ss(m_sums2
, _mm_shuffle_ps(
372 m_sums2
, m_sums2
, 1)));
376 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
377 float SincResampler::Convolve_NEON(const float* input_ptr
, const float* k1
,
379 double kernel_interpolation_factor
) {
381 float32x4_t m_sums1
= vmovq_n_f32(0);
382 float32x4_t m_sums2
= vmovq_n_f32(0);
384 const float* upper
= input_ptr
+ kKernelSize
;
385 for (; input_ptr
< upper
; ) {
386 m_input
= vld1q_f32(input_ptr
);
388 m_sums1
= vmlaq_f32(m_sums1
, m_input
, vld1q_f32(k1
));
390 m_sums2
= vmlaq_f32(m_sums2
, m_input
, vld1q_f32(k2
));
394 // Linearly interpolate the two "convolutions".
396 vmulq_f32(m_sums1
, vmovq_n_f32(1.0 - kernel_interpolation_factor
)),
397 m_sums2
, vmovq_n_f32(kernel_interpolation_factor
));
399 // Sum components together.
400 float32x2_t m_half
= vadd_f32(vget_high_f32(m_sums1
), vget_low_f32(m_sums1
));
401 return vget_lane_f32(vpadd_f32(m_half
, m_half
), 0);