1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_connection.h"
7 #include "base/basictypes.h"
9 #include "base/memory/scoped_ptr.h"
10 #include "base/stl_util.h"
11 #include "net/base/net_errors.h"
12 #include "net/quic/congestion_control/loss_detection_interface.h"
13 #include "net/quic/congestion_control/send_algorithm_interface.h"
14 #include "net/quic/crypto/null_encrypter.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_ack_notifier.h"
18 #include "net/quic/quic_flags.h"
19 #include "net/quic/quic_protocol.h"
20 #include "net/quic/quic_utils.h"
21 #include "net/quic/test_tools/mock_clock.h"
22 #include "net/quic/test_tools/mock_random.h"
23 #include "net/quic/test_tools/quic_config_peer.h"
24 #include "net/quic/test_tools/quic_connection_peer.h"
25 #include "net/quic/test_tools/quic_framer_peer.h"
26 #include "net/quic/test_tools/quic_packet_creator_peer.h"
27 #include "net/quic/test_tools/quic_packet_generator_peer.h"
28 #include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
29 #include "net/quic/test_tools/quic_test_utils.h"
30 #include "net/quic/test_tools/simple_quic_framer.h"
31 #include "net/test/gtest_util.h"
32 #include "testing/gmock/include/gmock/gmock.h"
33 #include "testing/gtest/include/gtest/gtest.h"
35 using base::StringPiece
;
39 using testing::AnyNumber
;
40 using testing::AtLeast
;
41 using testing::ContainerEq
;
42 using testing::Contains
;
44 using testing::InSequence
;
45 using testing::InvokeWithoutArgs
;
46 using testing::NiceMock
;
48 using testing::Return
;
49 using testing::SaveArg
;
50 using testing::StrictMock
;
57 const char data1
[] = "foo";
58 const char data2
[] = "bar";
60 const bool kFin
= true;
61 const bool kEntropyFlag
= true;
63 const QuicPacketEntropyHash kTestEntropyHash
= 76;
65 const int kDefaultRetransmissionTimeMs
= 500;
67 // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
68 class TaggingEncrypter
: public QuicEncrypter
{
70 explicit TaggingEncrypter(uint8 tag
)
74 ~TaggingEncrypter() override
{}
76 // QuicEncrypter interface.
77 bool SetKey(StringPiece key
) override
{ return true; }
79 bool SetNoncePrefix(StringPiece nonce_prefix
) override
{ return true; }
81 bool EncryptPacket(QuicPacketSequenceNumber sequence_number
,
82 StringPiece associated_data
,
83 StringPiece plaintext
,
85 size_t* output_length
,
86 size_t max_output_length
) override
{
87 const size_t len
= plaintext
.size() + kTagSize
;
88 if (max_output_length
< len
) {
91 memcpy(output
, plaintext
.data(), plaintext
.size());
92 output
+= plaintext
.size();
93 memset(output
, tag_
, kTagSize
);
98 size_t GetKeySize() const override
{ return 0; }
99 size_t GetNoncePrefixSize() const override
{ return 0; }
101 size_t GetMaxPlaintextSize(size_t ciphertext_size
) const override
{
102 return ciphertext_size
- kTagSize
;
105 size_t GetCiphertextSize(size_t plaintext_size
) const override
{
106 return plaintext_size
+ kTagSize
;
109 StringPiece
GetKey() const override
{ return StringPiece(); }
111 StringPiece
GetNoncePrefix() const override
{ return StringPiece(); }
120 DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter
);
123 // TaggingDecrypter ensures that the final kTagSize bytes of the message all
124 // have the same value and then removes them.
125 class TaggingDecrypter
: public QuicDecrypter
{
127 ~TaggingDecrypter() override
{}
129 // QuicDecrypter interface
130 bool SetKey(StringPiece key
) override
{ return true; }
132 bool SetNoncePrefix(StringPiece nonce_prefix
) override
{ return true; }
134 bool DecryptPacket(QuicPacketSequenceNumber sequence_number
,
135 const StringPiece
& associated_data
,
136 const StringPiece
& ciphertext
,
138 size_t* output_length
,
139 size_t max_output_length
) override
{
140 if (ciphertext
.size() < kTagSize
) {
143 if (!CheckTag(ciphertext
, GetTag(ciphertext
))) {
146 *output_length
= ciphertext
.size() - kTagSize
;
147 memcpy(output
, ciphertext
.data(), *output_length
);
151 StringPiece
GetKey() const override
{ return StringPiece(); }
152 StringPiece
GetNoncePrefix() const override
{ return StringPiece(); }
155 virtual uint8
GetTag(StringPiece ciphertext
) {
156 return ciphertext
.data()[ciphertext
.size()-1];
164 bool CheckTag(StringPiece ciphertext
, uint8 tag
) {
165 for (size_t i
= ciphertext
.size() - kTagSize
; i
< ciphertext
.size(); i
++) {
166 if (ciphertext
.data()[i
] != tag
) {
175 // StringTaggingDecrypter ensures that the final kTagSize bytes of the message
176 // match the expected value.
177 class StrictTaggingDecrypter
: public TaggingDecrypter
{
179 explicit StrictTaggingDecrypter(uint8 tag
) : tag_(tag
) {}
180 ~StrictTaggingDecrypter() override
{}
182 // TaggingQuicDecrypter
183 uint8
GetTag(StringPiece ciphertext
) override
{ return tag_
; }
189 class TestConnectionHelper
: public QuicConnectionHelperInterface
{
191 class TestAlarm
: public QuicAlarm
{
193 explicit TestAlarm(QuicAlarm::Delegate
* delegate
)
194 : QuicAlarm(delegate
) {
197 void SetImpl() override
{}
198 void CancelImpl() override
{}
199 using QuicAlarm::Fire
;
202 TestConnectionHelper(MockClock
* clock
, MockRandom
* random_generator
)
204 random_generator_(random_generator
) {
205 clock_
->AdvanceTime(QuicTime::Delta::FromSeconds(1));
208 // QuicConnectionHelperInterface
209 const QuicClock
* GetClock() const override
{ return clock_
; }
211 QuicRandom
* GetRandomGenerator() override
{ return random_generator_
; }
213 QuicAlarm
* CreateAlarm(QuicAlarm::Delegate
* delegate
) override
{
214 return new TestAlarm(delegate
);
219 MockRandom
* random_generator_
;
221 DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper
);
224 class TestPacketWriter
: public QuicPacketWriter
{
226 TestPacketWriter(QuicVersion version
, MockClock
*clock
)
228 framer_(SupportedVersions(version_
)),
229 last_packet_size_(0),
230 write_blocked_(false),
231 block_on_next_write_(false),
232 is_write_blocked_data_buffered_(false),
233 final_bytes_of_last_packet_(0),
234 final_bytes_of_previous_packet_(0),
235 use_tagging_decrypter_(false),
236 packets_write_attempts_(0),
238 write_pause_time_delta_(QuicTime::Delta::Zero()) {
241 // QuicPacketWriter interface
242 WriteResult
WritePacket(const char* buffer
,
244 const IPAddressNumber
& self_address
,
245 const IPEndPoint
& peer_address
) override
{
246 QuicEncryptedPacket
packet(buffer
, buf_len
);
247 ++packets_write_attempts_
;
249 if (packet
.length() >= sizeof(final_bytes_of_last_packet_
)) {
250 final_bytes_of_previous_packet_
= final_bytes_of_last_packet_
;
251 memcpy(&final_bytes_of_last_packet_
, packet
.data() + packet
.length() - 4,
252 sizeof(final_bytes_of_last_packet_
));
255 if (use_tagging_decrypter_
) {
256 framer_
.framer()->SetDecrypter(new TaggingDecrypter
, ENCRYPTION_NONE
);
258 EXPECT_TRUE(framer_
.ProcessPacket(packet
));
259 if (block_on_next_write_
) {
260 write_blocked_
= true;
261 block_on_next_write_
= false;
263 if (IsWriteBlocked()) {
264 return WriteResult(WRITE_STATUS_BLOCKED
, -1);
266 last_packet_size_
= packet
.length();
268 if (!write_pause_time_delta_
.IsZero()) {
269 clock_
->AdvanceTime(write_pause_time_delta_
);
271 return WriteResult(WRITE_STATUS_OK
, last_packet_size_
);
274 bool IsWriteBlockedDataBuffered() const override
{
275 return is_write_blocked_data_buffered_
;
278 bool IsWriteBlocked() const override
{ return write_blocked_
; }
280 void SetWritable() override
{ write_blocked_
= false; }
282 void BlockOnNextWrite() { block_on_next_write_
= true; }
284 // Sets the amount of time that the writer should before the actual write.
285 void SetWritePauseTimeDelta(QuicTime::Delta delta
) {
286 write_pause_time_delta_
= delta
;
289 const QuicPacketHeader
& header() { return framer_
.header(); }
291 size_t frame_count() const { return framer_
.num_frames(); }
293 const vector
<QuicAckFrame
>& ack_frames() const {
294 return framer_
.ack_frames();
297 const vector
<QuicStopWaitingFrame
>& stop_waiting_frames() const {
298 return framer_
.stop_waiting_frames();
301 const vector
<QuicConnectionCloseFrame
>& connection_close_frames() const {
302 return framer_
.connection_close_frames();
305 const vector
<QuicRstStreamFrame
>& rst_stream_frames() const {
306 return framer_
.rst_stream_frames();
309 const vector
<QuicStreamFrame
>& stream_frames() const {
310 return framer_
.stream_frames();
313 const vector
<QuicPingFrame
>& ping_frames() const {
314 return framer_
.ping_frames();
317 size_t last_packet_size() {
318 return last_packet_size_
;
321 const QuicVersionNegotiationPacket
* version_negotiation_packet() {
322 return framer_
.version_negotiation_packet();
325 void set_is_write_blocked_data_buffered(bool buffered
) {
326 is_write_blocked_data_buffered_
= buffered
;
329 void set_perspective(Perspective perspective
) {
330 // We invert perspective here, because the framer needs to parse packets
332 perspective
= perspective
== Perspective::IS_CLIENT
333 ? Perspective::IS_SERVER
334 : Perspective::IS_CLIENT
;
335 QuicFramerPeer::SetPerspective(framer_
.framer(), perspective
);
338 // final_bytes_of_last_packet_ returns the last four bytes of the previous
339 // packet as a little-endian, uint32. This is intended to be used with a
340 // TaggingEncrypter so that tests can determine which encrypter was used for
342 uint32
final_bytes_of_last_packet() { return final_bytes_of_last_packet_
; }
344 // Returns the final bytes of the second to last packet.
345 uint32
final_bytes_of_previous_packet() {
346 return final_bytes_of_previous_packet_
;
349 void use_tagging_decrypter() {
350 use_tagging_decrypter_
= true;
353 uint32
packets_write_attempts() { return packets_write_attempts_
; }
355 void Reset() { framer_
.Reset(); }
357 void SetSupportedVersions(const QuicVersionVector
& versions
) {
358 framer_
.SetSupportedVersions(versions
);
362 QuicVersion version_
;
363 SimpleQuicFramer framer_
;
364 size_t last_packet_size_
;
366 bool block_on_next_write_
;
367 bool is_write_blocked_data_buffered_
;
368 uint32 final_bytes_of_last_packet_
;
369 uint32 final_bytes_of_previous_packet_
;
370 bool use_tagging_decrypter_
;
371 uint32 packets_write_attempts_
;
373 // If non-zero, the clock will pause during WritePacket for this amount of
375 QuicTime::Delta write_pause_time_delta_
;
377 DISALLOW_COPY_AND_ASSIGN(TestPacketWriter
);
380 class TestConnection
: public QuicConnection
{
382 TestConnection(QuicConnectionId connection_id
,
384 TestConnectionHelper
* helper
,
385 const PacketWriterFactory
& factory
,
386 Perspective perspective
,
388 : QuicConnection(connection_id
,
392 /* owns_writer= */ false,
394 /* is_secure= */ false,
395 SupportedVersions(version
)) {
396 // Disable tail loss probes for most tests.
397 QuicSentPacketManagerPeer::SetMaxTailLossProbes(
398 QuicConnectionPeer::GetSentPacketManager(this), 0);
399 writer()->set_perspective(perspective
);
403 QuicConnectionPeer::SendAck(this);
406 void SetSendAlgorithm(SendAlgorithmInterface
* send_algorithm
) {
407 QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm
);
410 void SetLossAlgorithm(LossDetectionInterface
* loss_algorithm
) {
411 QuicSentPacketManagerPeer::SetLossAlgorithm(
412 QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm
);
415 void SendPacket(EncryptionLevel level
,
416 QuicPacketSequenceNumber sequence_number
,
418 QuicPacketEntropyHash entropy_hash
,
419 HasRetransmittableData retransmittable
) {
420 RetransmittableFrames
* retransmittable_frames
=
421 retransmittable
== HAS_RETRANSMITTABLE_DATA
422 ? new RetransmittableFrames(ENCRYPTION_NONE
)
424 char buffer
[kMaxPacketSize
];
425 QuicEncryptedPacket
* encrypted
=
426 QuicConnectionPeer::GetFramer(this)->EncryptPacket(
427 ENCRYPTION_NONE
, sequence_number
, *packet
, buffer
, kMaxPacketSize
);
429 OnSerializedPacket(SerializedPacket(sequence_number
,
430 PACKET_6BYTE_SEQUENCE_NUMBER
, encrypted
,
431 entropy_hash
, retransmittable_frames
));
434 QuicConsumedData
SendStreamDataWithString(
437 QuicStreamOffset offset
,
439 QuicAckNotifier::DelegateInterface
* delegate
) {
440 return SendStreamDataWithStringHelper(id
, data
, offset
, fin
,
441 MAY_FEC_PROTECT
, delegate
);
444 QuicConsumedData
SendStreamDataWithStringWithFec(
447 QuicStreamOffset offset
,
449 QuicAckNotifier::DelegateInterface
* delegate
) {
450 return SendStreamDataWithStringHelper(id
, data
, offset
, fin
,
451 MUST_FEC_PROTECT
, delegate
);
454 QuicConsumedData
SendStreamDataWithStringHelper(
457 QuicStreamOffset offset
,
459 FecProtection fec_protection
,
460 QuicAckNotifier::DelegateInterface
* delegate
) {
463 data_iov
.Append(const_cast<char*>(data
.data()), data
.size());
465 return QuicConnection::SendStreamData(id
, data_iov
, offset
, fin
,
466 fec_protection
, delegate
);
469 QuicConsumedData
SendStreamData3() {
470 return SendStreamDataWithString(kClientDataStreamId1
, "food", 0, !kFin
,
474 QuicConsumedData
SendStreamData3WithFec() {
475 return SendStreamDataWithStringWithFec(kClientDataStreamId1
, "food", 0,
479 QuicConsumedData
SendStreamData5() {
480 return SendStreamDataWithString(kClientDataStreamId2
, "food2", 0, !kFin
,
484 QuicConsumedData
SendStreamData5WithFec() {
485 return SendStreamDataWithStringWithFec(kClientDataStreamId2
, "food2", 0,
488 // Ensures the connection can write stream data before writing.
489 QuicConsumedData
EnsureWritableAndSendStreamData5() {
490 EXPECT_TRUE(CanWriteStreamData());
491 return SendStreamData5();
494 // The crypto stream has special semantics so that it is not blocked by a
495 // congestion window limitation, and also so that it gets put into a separate
496 // packet (so that it is easier to reason about a crypto frame not being
497 // split needlessly across packet boundaries). As a result, we have separate
498 // tests for some cases for this stream.
499 QuicConsumedData
SendCryptoStreamData() {
500 return SendStreamDataWithString(kCryptoStreamId
, "chlo", 0, !kFin
, nullptr);
503 void set_version(QuicVersion version
) {
504 QuicConnectionPeer::GetFramer(this)->set_version(version
);
507 void SetSupportedVersions(const QuicVersionVector
& versions
) {
508 QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions
);
509 writer()->SetSupportedVersions(versions
);
512 void set_perspective(Perspective perspective
) {
513 writer()->set_perspective(perspective
);
514 QuicConnectionPeer::SetPerspective(this, perspective
);
517 TestConnectionHelper::TestAlarm
* GetAckAlarm() {
518 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
519 QuicConnectionPeer::GetAckAlarm(this));
522 TestConnectionHelper::TestAlarm
* GetPingAlarm() {
523 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
524 QuicConnectionPeer::GetPingAlarm(this));
527 TestConnectionHelper::TestAlarm
* GetFecAlarm() {
528 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
529 QuicConnectionPeer::GetFecAlarm(this));
532 TestConnectionHelper::TestAlarm
* GetResumeWritesAlarm() {
533 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
534 QuicConnectionPeer::GetResumeWritesAlarm(this));
537 TestConnectionHelper::TestAlarm
* GetRetransmissionAlarm() {
538 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
539 QuicConnectionPeer::GetRetransmissionAlarm(this));
542 TestConnectionHelper::TestAlarm
* GetSendAlarm() {
543 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
544 QuicConnectionPeer::GetSendAlarm(this));
547 TestConnectionHelper::TestAlarm
* GetTimeoutAlarm() {
548 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
549 QuicConnectionPeer::GetTimeoutAlarm(this));
552 using QuicConnection::SelectMutualVersion
;
555 TestPacketWriter
* writer() {
556 return static_cast<TestPacketWriter
*>(QuicConnection::writer());
559 DISALLOW_COPY_AND_ASSIGN(TestConnection
);
562 // Used for testing packets revived from FEC packets.
563 class FecQuicConnectionDebugVisitor
564 : public QuicConnectionDebugVisitor
{
566 void OnRevivedPacket(const QuicPacketHeader
& header
,
567 StringPiece data
) override
{
568 revived_header_
= header
;
571 // Public accessor method.
572 QuicPacketHeader
revived_header() const {
573 return revived_header_
;
577 QuicPacketHeader revived_header_
;
580 class MockPacketWriterFactory
: public QuicConnection::PacketWriterFactory
{
582 explicit MockPacketWriterFactory(QuicPacketWriter
* writer
) {
583 ON_CALL(*this, Create(_
)).WillByDefault(Return(writer
));
585 ~MockPacketWriterFactory() override
{}
587 MOCK_CONST_METHOD1(Create
, QuicPacketWriter
*(QuicConnection
* connection
));
590 class QuicConnectionTest
: public ::testing::TestWithParam
<QuicVersion
> {
593 : connection_id_(42),
594 framer_(SupportedVersions(version()),
596 Perspective::IS_CLIENT
),
597 peer_creator_(connection_id_
, &framer_
, &random_generator_
),
598 send_algorithm_(new StrictMock
<MockSendAlgorithm
>),
599 loss_algorithm_(new MockLossAlgorithm()),
600 helper_(new TestConnectionHelper(&clock_
, &random_generator_
)),
601 writer_(new TestPacketWriter(version(), &clock_
)),
602 factory_(writer_
.get()),
603 connection_(connection_id_
,
607 Perspective::IS_CLIENT
,
609 creator_(QuicConnectionPeer::GetPacketCreator(&connection_
)),
610 generator_(QuicConnectionPeer::GetPacketGenerator(&connection_
)),
611 manager_(QuicConnectionPeer::GetSentPacketManager(&connection_
)),
612 frame1_(1, false, 0, StringPiece(data1
)),
613 frame2_(1, false, 3, StringPiece(data2
)),
614 sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER
),
615 connection_id_length_(PACKET_8BYTE_CONNECTION_ID
) {
616 connection_
.set_visitor(&visitor_
);
617 connection_
.SetSendAlgorithm(send_algorithm_
);
618 connection_
.SetLossAlgorithm(loss_algorithm_
);
619 framer_
.set_received_entropy_calculator(&entropy_calculator_
);
621 *send_algorithm_
, TimeUntilSend(_
, _
, _
)).WillRepeatedly(Return(
622 QuicTime::Delta::Zero()));
623 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
625 EXPECT_CALL(*send_algorithm_
, RetransmissionDelay()).WillRepeatedly(
626 Return(QuicTime::Delta::Zero()));
627 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
628 Return(kMaxPacketSize
));
629 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
630 .WillByDefault(Return(true));
631 EXPECT_CALL(*send_algorithm_
, HasReliableBandwidthEstimate())
633 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate())
635 .WillRepeatedly(Return(QuicBandwidth::Zero()));
636 EXPECT_CALL(*send_algorithm_
, InSlowStart()).Times(AnyNumber());
637 EXPECT_CALL(*send_algorithm_
, InRecovery()).Times(AnyNumber());
638 EXPECT_CALL(visitor_
, WillingAndAbleToWrite()).Times(AnyNumber());
639 EXPECT_CALL(visitor_
, HasPendingHandshake()).Times(AnyNumber());
640 EXPECT_CALL(visitor_
, OnCanWrite()).Times(AnyNumber());
641 EXPECT_CALL(visitor_
, HasOpenDataStreams()).WillRepeatedly(Return(false));
642 EXPECT_CALL(visitor_
, OnCongestionWindowChange(_
)).Times(AnyNumber());
644 EXPECT_CALL(*loss_algorithm_
, GetLossTimeout())
645 .WillRepeatedly(Return(QuicTime::Zero()));
646 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
647 .WillRepeatedly(Return(SequenceNumberSet()));
650 QuicVersion
version() {
654 QuicAckFrame
* outgoing_ack() {
655 QuicConnectionPeer::PopulateAckFrame(&connection_
, &ack_
);
659 QuicStopWaitingFrame
* stop_waiting() {
660 QuicConnectionPeer::PopulateStopWaitingFrame(&connection_
, &stop_waiting_
);
661 return &stop_waiting_
;
664 QuicPacketSequenceNumber
least_unacked() {
665 if (writer_
->stop_waiting_frames().empty()) {
668 return writer_
->stop_waiting_frames()[0].least_unacked
;
671 void use_tagging_decrypter() {
672 writer_
->use_tagging_decrypter();
675 void ProcessPacket(QuicPacketSequenceNumber number
) {
676 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
677 ProcessDataPacket(number
, 0, !kEntropyFlag
);
680 QuicPacketEntropyHash
ProcessFramePacket(QuicFrame frame
) {
682 frames
.push_back(QuicFrame(frame
));
683 QuicPacketCreatorPeer::SetSendVersionInPacket(
684 &peer_creator_
, connection_
.perspective() == Perspective::IS_SERVER
);
686 char buffer
[kMaxPacketSize
];
687 SerializedPacket serialized_packet
=
688 peer_creator_
.SerializeAllFrames(frames
, buffer
, kMaxPacketSize
);
689 scoped_ptr
<QuicEncryptedPacket
> encrypted(serialized_packet
.packet
);
690 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
691 return serialized_packet
.entropy_hash
;
694 size_t ProcessDataPacket(QuicPacketSequenceNumber number
,
695 QuicFecGroupNumber fec_group
,
697 return ProcessDataPacketAtLevel(number
, fec_group
, entropy_flag
,
701 size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number
,
702 QuicFecGroupNumber fec_group
,
704 EncryptionLevel level
) {
705 scoped_ptr
<QuicPacket
> packet(ConstructDataPacket(number
, fec_group
,
707 char buffer
[kMaxPacketSize
];
708 scoped_ptr
<QuicEncryptedPacket
> encrypted(
709 framer_
.EncryptPacket(level
, number
, *packet
, buffer
, kMaxPacketSize
));
710 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
711 return encrypted
->length();
714 void ProcessClosePacket(QuicPacketSequenceNumber number
,
715 QuicFecGroupNumber fec_group
) {
716 scoped_ptr
<QuicPacket
> packet(ConstructClosePacket(number
, fec_group
));
717 char buffer
[kMaxPacketSize
];
718 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
719 ENCRYPTION_NONE
, number
, *packet
, buffer
, kMaxPacketSize
));
720 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
723 size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number
,
724 bool expect_revival
, bool entropy_flag
) {
725 if (expect_revival
) {
726 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
728 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1).
729 RetiresOnSaturation();
730 return ProcessDataPacket(number
, 1, entropy_flag
);
733 // Processes an FEC packet that covers the packets that would have been
735 size_t ProcessFecPacket(QuicPacketSequenceNumber number
,
736 QuicPacketSequenceNumber min_protected_packet
,
739 QuicPacket
* packet
) {
740 if (expect_revival
) {
741 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
744 // Construct the decrypted data packet so we can compute the correct
745 // redundancy. If |packet| has been provided then use that, otherwise
746 // construct a default data packet.
747 scoped_ptr
<QuicPacket
> data_packet
;
749 data_packet
.reset(packet
);
751 data_packet
.reset(ConstructDataPacket(number
, 1, !kEntropyFlag
));
754 QuicPacketHeader header
;
755 header
.public_header
.connection_id
= connection_id_
;
756 header
.public_header
.sequence_number_length
= sequence_number_length_
;
757 header
.public_header
.connection_id_length
= connection_id_length_
;
758 header
.packet_sequence_number
= number
;
759 header
.entropy_flag
= entropy_flag
;
760 header
.fec_flag
= true;
761 header
.is_in_fec_group
= IN_FEC_GROUP
;
762 header
.fec_group
= min_protected_packet
;
763 QuicFecData fec_data
;
764 fec_data
.fec_group
= header
.fec_group
;
766 // Since all data packets in this test have the same payload, the
767 // redundancy is either equal to that payload or the xor of that payload
768 // with itself, depending on the number of packets.
769 if (((number
- min_protected_packet
) % 2) == 0) {
770 for (size_t i
= GetStartOfFecProtectedData(
771 header
.public_header
.connection_id_length
,
772 header
.public_header
.version_flag
,
773 header
.public_header
.sequence_number_length
);
774 i
< data_packet
->length(); ++i
) {
775 data_packet
->mutable_data()[i
] ^= data_packet
->data()[i
];
778 fec_data
.redundancy
= data_packet
->FecProtectedData();
780 scoped_ptr
<QuicPacket
> fec_packet(framer_
.BuildFecPacket(header
, fec_data
));
781 char buffer
[kMaxPacketSize
];
782 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
783 ENCRYPTION_NONE
, number
, *fec_packet
, buffer
, kMaxPacketSize
));
785 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
786 return encrypted
->length();
789 QuicByteCount
SendStreamDataToPeer(QuicStreamId id
,
791 QuicStreamOffset offset
,
793 QuicPacketSequenceNumber
* last_packet
) {
794 QuicByteCount packet_size
;
795 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
796 .WillOnce(DoAll(SaveArg
<3>(&packet_size
), Return(true)));
797 connection_
.SendStreamDataWithString(id
, data
, offset
, fin
, nullptr);
798 if (last_packet
!= nullptr) {
799 *last_packet
= creator_
->sequence_number();
801 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
806 void SendAckPacketToPeer() {
807 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
808 connection_
.SendAck();
809 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
813 QuicPacketEntropyHash
ProcessAckPacket(QuicAckFrame
* frame
) {
814 return ProcessFramePacket(QuicFrame(frame
));
817 QuicPacketEntropyHash
ProcessStopWaitingPacket(QuicStopWaitingFrame
* frame
) {
818 return ProcessFramePacket(QuicFrame(frame
));
821 QuicPacketEntropyHash
ProcessGoAwayPacket(QuicGoAwayFrame
* frame
) {
822 return ProcessFramePacket(QuicFrame(frame
));
825 bool IsMissing(QuicPacketSequenceNumber number
) {
826 return IsAwaitingPacket(*outgoing_ack(), number
);
829 QuicPacket
* ConstructPacket(QuicPacketHeader header
, QuicFrames frames
) {
830 QuicPacket
* packet
= BuildUnsizedDataPacket(&framer_
, header
, frames
);
831 EXPECT_NE(nullptr, packet
);
835 QuicPacket
* ConstructDataPacket(QuicPacketSequenceNumber number
,
836 QuicFecGroupNumber fec_group
,
838 QuicPacketHeader header
;
839 header
.public_header
.connection_id
= connection_id_
;
840 header
.public_header
.sequence_number_length
= sequence_number_length_
;
841 header
.public_header
.connection_id_length
= connection_id_length_
;
842 header
.entropy_flag
= entropy_flag
;
843 header
.packet_sequence_number
= number
;
844 header
.is_in_fec_group
= fec_group
== 0u ? NOT_IN_FEC_GROUP
: IN_FEC_GROUP
;
845 header
.fec_group
= fec_group
;
848 frames
.push_back(QuicFrame(&frame1_
));
849 return ConstructPacket(header
, frames
);
852 QuicPacket
* ConstructClosePacket(QuicPacketSequenceNumber number
,
853 QuicFecGroupNumber fec_group
) {
854 QuicPacketHeader header
;
855 header
.public_header
.connection_id
= connection_id_
;
856 header
.packet_sequence_number
= number
;
857 header
.is_in_fec_group
= fec_group
== 0u ? NOT_IN_FEC_GROUP
: IN_FEC_GROUP
;
858 header
.fec_group
= fec_group
;
860 QuicConnectionCloseFrame qccf
;
861 qccf
.error_code
= QUIC_PEER_GOING_AWAY
;
864 frames
.push_back(QuicFrame(&qccf
));
865 return ConstructPacket(header
, frames
);
868 QuicTime::Delta
DefaultRetransmissionTime() {
869 return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs
);
872 QuicTime::Delta
DefaultDelayedAckTime() {
873 return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs
);
876 // Initialize a frame acknowledging all packets up to largest_observed.
877 const QuicAckFrame
InitAckFrame(QuicPacketSequenceNumber largest_observed
) {
878 QuicAckFrame
frame(MakeAckFrame(largest_observed
));
879 if (largest_observed
> 0) {
881 QuicConnectionPeer::GetSentEntropyHash(&connection_
,
887 const QuicStopWaitingFrame
InitStopWaitingFrame(
888 QuicPacketSequenceNumber least_unacked
) {
889 QuicStopWaitingFrame frame
;
890 frame
.least_unacked
= least_unacked
;
894 // Explicitly nack a packet.
895 void NackPacket(QuicPacketSequenceNumber missing
, QuicAckFrame
* frame
) {
896 frame
->missing_packets
.insert(missing
);
897 frame
->entropy_hash
^=
898 QuicConnectionPeer::PacketEntropy(&connection_
, missing
);
901 // Undo nacking a packet within the frame.
902 void AckPacket(QuicPacketSequenceNumber arrived
, QuicAckFrame
* frame
) {
903 EXPECT_THAT(frame
->missing_packets
, Contains(arrived
));
904 frame
->missing_packets
.erase(arrived
);
905 frame
->entropy_hash
^=
906 QuicConnectionPeer::PacketEntropy(&connection_
, arrived
);
909 void TriggerConnectionClose() {
910 // Send an erroneous packet to close the connection.
911 EXPECT_CALL(visitor_
,
912 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER
, false));
913 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
914 // packet call to the visitor.
915 ProcessDataPacket(6000, 0, !kEntropyFlag
);
916 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
920 void BlockOnNextWrite() {
921 writer_
->BlockOnNextWrite();
922 EXPECT_CALL(visitor_
, OnWriteBlocked()).Times(AtLeast(1));
925 void SetWritePauseTimeDelta(QuicTime::Delta delta
) {
926 writer_
->SetWritePauseTimeDelta(delta
);
929 void CongestionBlockWrites() {
930 EXPECT_CALL(*send_algorithm_
,
931 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
932 testing::Return(QuicTime::Delta::FromSeconds(1)));
935 void CongestionUnblockWrites() {
936 EXPECT_CALL(*send_algorithm_
,
937 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
938 testing::Return(QuicTime::Delta::Zero()));
941 QuicConnectionId connection_id_
;
943 QuicPacketCreator peer_creator_
;
944 MockEntropyCalculator entropy_calculator_
;
946 MockSendAlgorithm
* send_algorithm_
;
947 MockLossAlgorithm
* loss_algorithm_
;
949 MockRandom random_generator_
;
950 scoped_ptr
<TestConnectionHelper
> helper_
;
951 scoped_ptr
<TestPacketWriter
> writer_
;
952 NiceMock
<MockPacketWriterFactory
> factory_
;
953 TestConnection connection_
;
954 QuicPacketCreator
* creator_
;
955 QuicPacketGenerator
* generator_
;
956 QuicSentPacketManager
* manager_
;
957 StrictMock
<MockConnectionVisitor
> visitor_
;
959 QuicStreamFrame frame1_
;
960 QuicStreamFrame frame2_
;
962 QuicStopWaitingFrame stop_waiting_
;
963 QuicSequenceNumberLength sequence_number_length_
;
964 QuicConnectionIdLength connection_id_length_
;
967 DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest
);
970 // Run all end to end tests with all supported versions.
971 INSTANTIATE_TEST_CASE_P(SupportedVersion
,
973 ::testing::ValuesIn(QuicSupportedVersions()));
975 TEST_P(QuicConnectionTest
, MaxPacketSize
) {
976 EXPECT_EQ(Perspective::IS_CLIENT
, connection_
.perspective());
977 EXPECT_EQ(1350u, connection_
.max_packet_length());
980 TEST_P(QuicConnectionTest
, SmallerServerMaxPacketSize
) {
981 QuicConnectionId connection_id
= 42;
982 TestConnection
connection(connection_id
, IPEndPoint(), helper_
.get(),
983 factory_
, Perspective::IS_SERVER
, version());
984 EXPECT_EQ(Perspective::IS_SERVER
, connection
.perspective());
985 EXPECT_EQ(1000u, connection
.max_packet_length());
988 TEST_P(QuicConnectionTest
, IncreaseServerMaxPacketSize
) {
989 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
991 connection_
.set_perspective(Perspective::IS_SERVER
);
992 connection_
.set_max_packet_length(1000);
994 QuicPacketHeader header
;
995 header
.public_header
.connection_id
= connection_id_
;
996 header
.public_header
.version_flag
= true;
997 header
.packet_sequence_number
= 1;
1000 QuicPaddingFrame padding
;
1001 frames
.push_back(QuicFrame(&frame1_
));
1002 frames
.push_back(QuicFrame(&padding
));
1003 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
1004 char buffer
[kMaxPacketSize
];
1005 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
1006 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
1007 EXPECT_EQ(kMaxPacketSize
, encrypted
->length());
1009 framer_
.set_version(version());
1010 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
1011 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
1013 EXPECT_EQ(kMaxPacketSize
, connection_
.max_packet_length());
1016 TEST_P(QuicConnectionTest
, PacketsInOrder
) {
1017 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1020 EXPECT_EQ(1u, outgoing_ack()->largest_observed
);
1021 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1024 EXPECT_EQ(2u, outgoing_ack()->largest_observed
);
1025 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1028 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1029 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1032 TEST_P(QuicConnectionTest
, PacketsOutOfOrder
) {
1033 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1036 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1037 EXPECT_TRUE(IsMissing(2));
1038 EXPECT_TRUE(IsMissing(1));
1041 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1042 EXPECT_FALSE(IsMissing(2));
1043 EXPECT_TRUE(IsMissing(1));
1046 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1047 EXPECT_FALSE(IsMissing(2));
1048 EXPECT_FALSE(IsMissing(1));
1051 TEST_P(QuicConnectionTest
, DuplicatePacket
) {
1052 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1055 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1056 EXPECT_TRUE(IsMissing(2));
1057 EXPECT_TRUE(IsMissing(1));
1059 // Send packet 3 again, but do not set the expectation that
1060 // the visitor OnStreamFrames() will be called.
1061 ProcessDataPacket(3, 0, !kEntropyFlag
);
1062 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1063 EXPECT_TRUE(IsMissing(2));
1064 EXPECT_TRUE(IsMissing(1));
1067 TEST_P(QuicConnectionTest
, PacketsOutOfOrderWithAdditionsAndLeastAwaiting
) {
1068 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1071 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1072 EXPECT_TRUE(IsMissing(2));
1073 EXPECT_TRUE(IsMissing(1));
1076 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1077 EXPECT_TRUE(IsMissing(1));
1080 EXPECT_EQ(5u, outgoing_ack()->largest_observed
);
1081 EXPECT_TRUE(IsMissing(1));
1082 EXPECT_TRUE(IsMissing(4));
1084 // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
1085 // packet the peer will not retransmit. It indicates this by sending 'least
1086 // awaiting' is 4. The connection should then realize 1 will not be
1087 // retransmitted, and will remove it from the missing list.
1088 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 5);
1089 QuicAckFrame frame
= InitAckFrame(1);
1090 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(_
, _
, _
, _
));
1091 ProcessAckPacket(&frame
);
1093 // Force an ack to be sent.
1094 SendAckPacketToPeer();
1095 EXPECT_TRUE(IsMissing(4));
1098 TEST_P(QuicConnectionTest
, RejectPacketTooFarOut
) {
1099 EXPECT_CALL(visitor_
,
1100 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER
, false));
1101 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
1102 // packet call to the visitor.
1103 ProcessDataPacket(6000, 0, !kEntropyFlag
);
1104 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
1108 TEST_P(QuicConnectionTest
, RejectUnencryptedStreamData
) {
1109 // Process an unencrypted packet from the non-crypto stream.
1110 frame1_
.stream_id
= 3;
1111 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1112 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA
,
1114 ProcessDataPacket(1, 0, !kEntropyFlag
);
1115 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
1117 const vector
<QuicConnectionCloseFrame
>& connection_close_frames
=
1118 writer_
->connection_close_frames();
1119 EXPECT_EQ(1u, connection_close_frames
.size());
1120 EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA
,
1121 connection_close_frames
[0].error_code
);
1124 TEST_P(QuicConnectionTest
, TruncatedAck
) {
1125 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1126 QuicPacketSequenceNumber num_packets
= 256 * 2 + 1;
1127 for (QuicPacketSequenceNumber i
= 0; i
< num_packets
; ++i
) {
1128 SendStreamDataToPeer(3, "foo", i
* 3, !kFin
, nullptr);
1131 QuicAckFrame frame
= InitAckFrame(num_packets
);
1132 SequenceNumberSet lost_packets
;
1133 // Create an ack with 256 nacks, none adjacent to one another.
1134 for (QuicPacketSequenceNumber i
= 1; i
<= 256; ++i
) {
1135 NackPacket(i
* 2, &frame
);
1136 if (i
< 256) { // Last packet is nacked, but not lost.
1137 lost_packets
.insert(i
* 2);
1140 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1141 .WillOnce(Return(lost_packets
));
1142 EXPECT_CALL(entropy_calculator_
, EntropyHash(511))
1143 .WillOnce(Return(static_cast<QuicPacketEntropyHash
>(0)));
1144 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1145 ProcessAckPacket(&frame
);
1147 // A truncated ack will not have the true largest observed.
1148 EXPECT_GT(num_packets
, manager_
->largest_observed());
1150 AckPacket(192, &frame
);
1152 // Removing one missing packet allows us to ack 192 and one more range, but
1153 // 192 has already been declared lost, so it doesn't register as an ack.
1154 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1155 .WillOnce(Return(SequenceNumberSet()));
1156 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1157 ProcessAckPacket(&frame
);
1158 EXPECT_EQ(num_packets
, manager_
->largest_observed());
1161 TEST_P(QuicConnectionTest
, AckReceiptCausesAckSendBadEntropy
) {
1162 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1165 // Delay sending, then queue up an ack.
1166 EXPECT_CALL(*send_algorithm_
,
1167 TimeUntilSend(_
, _
, _
)).WillOnce(
1168 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
1169 QuicConnectionPeer::SendAck(&connection_
);
1171 // Process an ack with a least unacked of the received ack.
1172 // This causes an ack to be sent when TimeUntilSend returns 0.
1173 EXPECT_CALL(*send_algorithm_
,
1174 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
1175 testing::Return(QuicTime::Delta::Zero()));
1176 // Skip a packet and then record an ack.
1177 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 2);
1178 QuicAckFrame frame
= InitAckFrame(0);
1179 ProcessAckPacket(&frame
);
1182 TEST_P(QuicConnectionTest
, OutOfOrderReceiptCausesAckSend
) {
1183 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1186 // Should ack immediately since we have missing packets.
1187 EXPECT_EQ(1u, writer_
->packets_write_attempts());
1190 // Should ack immediately since we have missing packets.
1191 EXPECT_EQ(2u, writer_
->packets_write_attempts());
1194 // Should ack immediately, since this fills the last hole.
1195 EXPECT_EQ(3u, writer_
->packets_write_attempts());
1198 // Should not cause an ack.
1199 EXPECT_EQ(3u, writer_
->packets_write_attempts());
1202 TEST_P(QuicConnectionTest
, AckReceiptCausesAckSend
) {
1203 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1205 QuicPacketSequenceNumber original
;
1206 QuicByteCount packet_size
;
1207 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1208 .WillOnce(DoAll(SaveArg
<2>(&original
), SaveArg
<3>(&packet_size
),
1210 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
1211 QuicAckFrame frame
= InitAckFrame(original
);
1212 NackPacket(original
, &frame
);
1213 // First nack triggers early retransmit.
1214 SequenceNumberSet lost_packets
;
1215 lost_packets
.insert(1);
1216 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1217 .WillOnce(Return(lost_packets
));
1218 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1219 QuicPacketSequenceNumber retransmission
;
1220 EXPECT_CALL(*send_algorithm_
,
1221 OnPacketSent(_
, _
, _
, packet_size
- kQuicVersionSize
, _
))
1222 .WillOnce(DoAll(SaveArg
<2>(&retransmission
), Return(true)));
1224 ProcessAckPacket(&frame
);
1226 QuicAckFrame frame2
= InitAckFrame(retransmission
);
1227 NackPacket(original
, &frame2
);
1228 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1229 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1230 .WillOnce(Return(SequenceNumberSet()));
1231 ProcessAckPacket(&frame2
);
1233 // Now if the peer sends an ack which still reports the retransmitted packet
1234 // as missing, that will bundle an ack with data after two acks in a row
1235 // indicate the high water mark needs to be raised.
1236 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
,
1237 HAS_RETRANSMITTABLE_DATA
));
1238 connection_
.SendStreamDataWithString(3, "foo", 3, !kFin
, nullptr);
1240 EXPECT_EQ(1u, writer_
->frame_count());
1241 EXPECT_EQ(1u, writer_
->stream_frames().size());
1243 // No more packet loss for the rest of the test.
1244 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1245 .WillRepeatedly(Return(SequenceNumberSet()));
1246 ProcessAckPacket(&frame2
);
1247 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
,
1248 HAS_RETRANSMITTABLE_DATA
));
1249 connection_
.SendStreamDataWithString(3, "foo", 3, !kFin
, nullptr);
1251 EXPECT_EQ(3u, writer_
->frame_count());
1252 EXPECT_EQ(1u, writer_
->stream_frames().size());
1253 EXPECT_FALSE(writer_
->ack_frames().empty());
1255 // But an ack with no missing packets will not send an ack.
1256 AckPacket(original
, &frame2
);
1257 ProcessAckPacket(&frame2
);
1258 ProcessAckPacket(&frame2
);
1261 TEST_P(QuicConnectionTest
, 20AcksCausesAckSend
) {
1262 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1264 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1266 QuicAlarm
* ack_alarm
= QuicConnectionPeer::GetAckAlarm(&connection_
);
1267 // But an ack with no missing packets will not send an ack.
1268 QuicAckFrame frame
= InitAckFrame(1);
1269 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1270 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1271 .WillRepeatedly(Return(SequenceNumberSet()));
1272 for (int i
= 0; i
< 20; ++i
) {
1273 EXPECT_FALSE(ack_alarm
->IsSet());
1274 ProcessAckPacket(&frame
);
1276 EXPECT_TRUE(ack_alarm
->IsSet());
1279 TEST_P(QuicConnectionTest
, LeastUnackedLower
) {
1280 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1282 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1283 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1284 SendStreamDataToPeer(1, "eep", 6, !kFin
, nullptr);
1286 // Start out saying the least unacked is 2.
1287 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 5);
1288 QuicStopWaitingFrame frame
= InitStopWaitingFrame(2);
1289 ProcessStopWaitingPacket(&frame
);
1291 // Change it to 1, but lower the sequence number to fake out-of-order packets.
1292 // This should be fine.
1293 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 1);
1294 // The scheduler will not process out of order acks, but all packet processing
1295 // causes the connection to try to write.
1296 EXPECT_CALL(visitor_
, OnCanWrite());
1297 QuicStopWaitingFrame frame2
= InitStopWaitingFrame(1);
1298 ProcessStopWaitingPacket(&frame2
);
1300 // Now claim it's one, but set the ordering so it was sent "after" the first
1301 // one. This should cause a connection error.
1302 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
1303 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 7);
1304 EXPECT_CALL(visitor_
,
1305 OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA
, false));
1306 QuicStopWaitingFrame frame3
= InitStopWaitingFrame(1);
1307 ProcessStopWaitingPacket(&frame3
);
1310 TEST_P(QuicConnectionTest
, TooManySentPackets
) {
1311 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1313 for (int i
= 0; i
< 1100; ++i
) {
1314 SendStreamDataToPeer(1, "foo", 3 * i
, !kFin
, nullptr);
1317 // Ack packet 1, which leaves more than the limit outstanding.
1318 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1319 EXPECT_CALL(visitor_
, OnConnectionClosed(
1320 QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS
, false));
1321 // We're receive buffer limited, so the connection won't try to write more.
1322 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1324 // Nack every packet except the last one, leaving a huge gap.
1325 QuicAckFrame frame1
= InitAckFrame(1100);
1326 for (QuicPacketSequenceNumber i
= 1; i
< 1100; ++i
) {
1327 NackPacket(i
, &frame1
);
1329 ProcessAckPacket(&frame1
);
1332 TEST_P(QuicConnectionTest
, TooManyReceivedPackets
) {
1333 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1334 EXPECT_CALL(visitor_
, OnConnectionClosed(
1335 QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS
, false));
1337 // Miss every other packet for 1000 packets.
1338 for (QuicPacketSequenceNumber i
= 1; i
< 1000; ++i
) {
1339 ProcessPacket(i
* 2);
1340 if (!connection_
.connected()) {
1346 TEST_P(QuicConnectionTest
, LargestObservedLower
) {
1347 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1349 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1350 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1351 SendStreamDataToPeer(1, "eep", 6, !kFin
, nullptr);
1352 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1354 // Start out saying the largest observed is 2.
1355 QuicAckFrame frame1
= InitAckFrame(1);
1356 QuicAckFrame frame2
= InitAckFrame(2);
1357 ProcessAckPacket(&frame2
);
1359 // Now change it to 1, and it should cause a connection error.
1360 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_INVALID_ACK_DATA
, false));
1361 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1362 ProcessAckPacket(&frame1
);
1365 TEST_P(QuicConnectionTest
, AckUnsentData
) {
1366 // Ack a packet which has not been sent.
1367 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_INVALID_ACK_DATA
, false));
1368 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1369 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
1370 QuicAckFrame
frame(MakeAckFrame(1));
1371 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1372 ProcessAckPacket(&frame
);
1375 TEST_P(QuicConnectionTest
, AckAll
) {
1376 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1379 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 1);
1380 QuicAckFrame frame1
= InitAckFrame(0);
1381 ProcessAckPacket(&frame1
);
1384 TEST_P(QuicConnectionTest
, SendingDifferentSequenceNumberLengthsBandwidth
) {
1385 QuicPacketSequenceNumber last_packet
;
1386 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
);
1387 EXPECT_EQ(1u, last_packet
);
1388 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1389 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1390 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1391 writer_
->header().public_header
.sequence_number_length
);
1393 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1394 Return(kMaxPacketSize
* 256));
1396 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
);
1397 EXPECT_EQ(2u, last_packet
);
1398 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1399 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1400 // The 1 packet lag is due to the sequence number length being recalculated in
1401 // QuicConnection after a packet is sent.
1402 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1403 writer_
->header().public_header
.sequence_number_length
);
1405 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1406 Return(kMaxPacketSize
* 256 * 256));
1408 SendStreamDataToPeer(1, "foo", 6, !kFin
, &last_packet
);
1409 EXPECT_EQ(3u, last_packet
);
1410 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1411 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1412 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1413 writer_
->header().public_header
.sequence_number_length
);
1415 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1416 Return(kMaxPacketSize
* 256 * 256 * 256));
1418 SendStreamDataToPeer(1, "bar", 9, !kFin
, &last_packet
);
1419 EXPECT_EQ(4u, last_packet
);
1420 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1421 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1422 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1423 writer_
->header().public_header
.sequence_number_length
);
1425 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1426 Return(kMaxPacketSize
* 256 * 256 * 256 * 256));
1428 SendStreamDataToPeer(1, "foo", 12, !kFin
, &last_packet
);
1429 EXPECT_EQ(5u, last_packet
);
1430 EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER
,
1431 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1432 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1433 writer_
->header().public_header
.sequence_number_length
);
1436 // TODO(ianswett): Re-enable this test by finding a good way to test different
1437 // sequence number lengths without sending packets with giant gaps.
1438 TEST_P(QuicConnectionTest
,
1439 DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta
) {
1440 QuicPacketSequenceNumber last_packet
;
1441 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
);
1442 EXPECT_EQ(1u, last_packet
);
1443 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1444 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1445 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1446 writer_
->header().public_header
.sequence_number_length
);
1448 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 100);
1450 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
);
1451 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1452 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1453 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1454 writer_
->header().public_header
.sequence_number_length
);
1456 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 100 * 256);
1458 SendStreamDataToPeer(1, "foo", 6, !kFin
, &last_packet
);
1459 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1460 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1461 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1462 writer_
->header().public_header
.sequence_number_length
);
1464 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 100 * 256 * 256);
1466 SendStreamDataToPeer(1, "bar", 9, !kFin
, &last_packet
);
1467 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1468 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1469 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1470 writer_
->header().public_header
.sequence_number_length
);
1472 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
,
1473 100 * 256 * 256 * 256);
1475 SendStreamDataToPeer(1, "foo", 12, !kFin
, &last_packet
);
1476 EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER
,
1477 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1478 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1479 writer_
->header().public_header
.sequence_number_length
);
1482 TEST_P(QuicConnectionTest
, BasicSending
) {
1483 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1484 QuicPacketSequenceNumber last_packet
;
1485 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
1486 EXPECT_EQ(1u, last_packet
);
1487 SendAckPacketToPeer(); // Packet 2
1489 EXPECT_EQ(1u, least_unacked());
1491 SendAckPacketToPeer(); // Packet 3
1492 EXPECT_EQ(1u, least_unacked());
1494 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
); // Packet 4
1495 EXPECT_EQ(4u, last_packet
);
1496 SendAckPacketToPeer(); // Packet 5
1497 EXPECT_EQ(1u, least_unacked());
1499 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1501 // Peer acks up to packet 3.
1502 QuicAckFrame frame
= InitAckFrame(3);
1503 ProcessAckPacket(&frame
);
1504 SendAckPacketToPeer(); // Packet 6
1506 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
1508 EXPECT_EQ(4u, least_unacked());
1510 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1512 // Peer acks up to packet 4, the last packet.
1513 QuicAckFrame frame2
= InitAckFrame(6);
1514 ProcessAckPacket(&frame2
); // Acks don't instigate acks.
1516 // Verify that we did not send an ack.
1517 EXPECT_EQ(6u, writer_
->header().packet_sequence_number
);
1519 // So the last ack has not changed.
1520 EXPECT_EQ(4u, least_unacked());
1522 // If we force an ack, we shouldn't change our retransmit state.
1523 SendAckPacketToPeer(); // Packet 7
1524 EXPECT_EQ(7u, least_unacked());
1526 // But if we send more data it should.
1527 SendStreamDataToPeer(1, "eep", 6, !kFin
, &last_packet
); // Packet 8
1528 EXPECT_EQ(8u, last_packet
);
1529 SendAckPacketToPeer(); // Packet 9
1530 EXPECT_EQ(7u, least_unacked());
1533 // QuicConnection should record the the packet sent-time prior to sending the
1535 TEST_P(QuicConnectionTest
, RecordSentTimeBeforePacketSent
) {
1536 // We're using a MockClock for the tests, so we have complete control over the
1538 // Our recorded timestamp for the last packet sent time will be passed in to
1539 // the send_algorithm. Make sure that it is set to the correct value.
1540 QuicTime actual_recorded_send_time
= QuicTime::Zero();
1541 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1542 .WillOnce(DoAll(SaveArg
<0>(&actual_recorded_send_time
), Return(true)));
1544 // First send without any pause and check the result.
1545 QuicTime expected_recorded_send_time
= clock_
.Now();
1546 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
1547 EXPECT_EQ(expected_recorded_send_time
, actual_recorded_send_time
)
1548 << "Expected time = " << expected_recorded_send_time
.ToDebuggingValue()
1549 << ". Actual time = " << actual_recorded_send_time
.ToDebuggingValue();
1551 // Now pause during the write, and check the results.
1552 actual_recorded_send_time
= QuicTime::Zero();
1553 const QuicTime::Delta write_pause_time_delta
=
1554 QuicTime::Delta::FromMilliseconds(5000);
1555 SetWritePauseTimeDelta(write_pause_time_delta
);
1556 expected_recorded_send_time
= clock_
.Now();
1558 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1559 .WillOnce(DoAll(SaveArg
<0>(&actual_recorded_send_time
), Return(true)));
1560 connection_
.SendStreamDataWithString(2, "baz", 0, !kFin
, nullptr);
1561 EXPECT_EQ(expected_recorded_send_time
, actual_recorded_send_time
)
1562 << "Expected time = " << expected_recorded_send_time
.ToDebuggingValue()
1563 << ". Actual time = " << actual_recorded_send_time
.ToDebuggingValue();
1566 TEST_P(QuicConnectionTest
, FECSending
) {
1567 // All packets carry version info till version is negotiated.
1568 size_t payload_length
;
1569 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
1570 // packet length. The size of the offset field in a stream frame is 0 for
1571 // offset 0, and 2 for non-zero offsets up through 64K. Increase
1572 // max_packet_length by 2 so that subsequent packets containing subsequent
1573 // stream frames with non-zero offets will fit within the packet length.
1574 size_t length
= 2 + GetPacketLengthForOneStream(
1575 connection_
.version(), kIncludeVersion
,
1576 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
1577 IN_FEC_GROUP
, &payload_length
);
1578 creator_
->SetMaxPacketLength(length
);
1580 // Send 4 protected data packets, which should also trigger 1 FEC packet.
1581 EXPECT_CALL(*send_algorithm_
,
1582 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(5);
1583 // The first stream frame will have 2 fewer overhead bytes than the other 3.
1584 const string
payload(payload_length
* 4 + 2, 'a');
1585 connection_
.SendStreamDataWithStringWithFec(1, payload
, 0, !kFin
, nullptr);
1586 // Expect the FEC group to be closed after SendStreamDataWithString.
1587 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1588 EXPECT_FALSE(creator_
->IsFecProtected());
1591 TEST_P(QuicConnectionTest
, FECQueueing
) {
1592 // All packets carry version info till version is negotiated.
1593 size_t payload_length
;
1594 size_t length
= GetPacketLengthForOneStream(
1595 connection_
.version(), kIncludeVersion
,
1596 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
1597 IN_FEC_GROUP
, &payload_length
);
1598 creator_
->SetMaxPacketLength(length
);
1599 EXPECT_TRUE(creator_
->IsFecEnabled());
1601 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1603 const string
payload(payload_length
, 'a');
1604 connection_
.SendStreamDataWithStringWithFec(1, payload
, 0, !kFin
, nullptr);
1605 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1606 EXPECT_FALSE(creator_
->IsFecProtected());
1607 // Expect the first data packet and the fec packet to be queued.
1608 EXPECT_EQ(2u, connection_
.NumQueuedPackets());
1611 TEST_P(QuicConnectionTest
, FECAlarmStoppedWhenFECPacketSent
) {
1612 EXPECT_TRUE(creator_
->IsFecEnabled());
1613 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1614 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1616 creator_
->set_max_packets_per_fec_group(2);
1618 // 1 Data packet. FEC alarm should be set.
1619 EXPECT_CALL(*send_algorithm_
,
1620 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1621 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, true, nullptr);
1622 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1624 // Second data packet triggers FEC packet out. FEC alarm should not be set.
1625 EXPECT_CALL(*send_algorithm_
,
1626 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(2);
1627 connection_
.SendStreamDataWithStringWithFec(5, "foo", 0, true, nullptr);
1628 EXPECT_TRUE(writer_
->header().fec_flag
);
1629 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1632 TEST_P(QuicConnectionTest
, FECAlarmStoppedOnConnectionClose
) {
1633 EXPECT_TRUE(creator_
->IsFecEnabled());
1634 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1635 creator_
->set_max_packets_per_fec_group(100);
1637 // 1 Data packet. FEC alarm should be set.
1638 EXPECT_CALL(*send_algorithm_
,
1639 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1640 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1641 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1643 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_NO_ERROR
, false));
1644 // Closing connection should stop the FEC alarm.
1645 connection_
.CloseConnection(QUIC_NO_ERROR
, /*from_peer=*/false);
1646 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1649 TEST_P(QuicConnectionTest
, RemoveFECFromInflightOnRetransmissionTimeout
) {
1650 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1651 EXPECT_TRUE(creator_
->IsFecEnabled());
1652 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1653 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1655 // 1 Data packet. FEC alarm should be set.
1656 EXPECT_CALL(*send_algorithm_
,
1657 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1658 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin
, nullptr);
1659 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1660 size_t protected_packet
=
1661 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1663 // Force FEC timeout to send FEC packet out.
1664 EXPECT_CALL(*send_algorithm_
,
1665 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1666 connection_
.GetFecAlarm()->Fire();
1667 EXPECT_TRUE(writer_
->header().fec_flag
);
1669 size_t fec_packet
= protected_packet
;
1670 EXPECT_EQ(protected_packet
+ fec_packet
,
1671 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1672 clock_
.AdvanceTime(DefaultRetransmissionTime());
1674 // On RTO, both data and FEC packets are removed from inflight, only the data
1675 // packet is retransmitted, and this retransmission (but not FEC) gets added
1676 // back into the inflight.
1677 EXPECT_CALL(*send_algorithm_
, OnRetransmissionTimeout(true));
1678 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
1679 connection_
.GetRetransmissionAlarm()->Fire();
1681 // The retransmission of packet 1 will be 3 bytes smaller than packet 1, since
1682 // the first transmission will have 1 byte for FEC group number and 2 bytes of
1683 // stream frame size, which are absent in the retransmission.
1684 size_t retransmitted_packet
= protected_packet
- 3;
1685 EXPECT_EQ(protected_packet
+ retransmitted_packet
,
1686 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1687 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1689 // Receive ack for the retransmission. No data should be outstanding.
1690 QuicAckFrame ack
= InitAckFrame(3);
1691 NackPacket(1, &ack
);
1692 NackPacket(2, &ack
);
1693 SequenceNumberSet lost_packets
;
1694 lost_packets
.insert(1);
1695 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1696 .WillOnce(Return(lost_packets
));
1697 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1698 ProcessAckPacket(&ack
);
1700 // Ensure the alarm is not set since all packets have been acked or abandoned.
1701 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
1702 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1705 TEST_P(QuicConnectionTest
, RemoveFECFromInflightOnLossRetransmission
) {
1706 EXPECT_TRUE(creator_
->IsFecEnabled());
1707 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1709 // 1 FEC-protected data packet. FEC alarm should be set.
1710 EXPECT_CALL(*send_algorithm_
,
1711 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1712 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1713 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1714 size_t protected_packet
=
1715 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1717 // Force FEC timeout to send FEC packet out.
1718 EXPECT_CALL(*send_algorithm_
,
1719 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1720 connection_
.GetFecAlarm()->Fire();
1721 EXPECT_TRUE(writer_
->header().fec_flag
);
1722 size_t fec_packet
= protected_packet
;
1723 EXPECT_EQ(protected_packet
+ fec_packet
,
1724 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1726 // Send more data to trigger NACKs. Note that all data starts at stream offset
1727 // 0 to ensure the same packet size, for ease of testing.
1728 EXPECT_CALL(*send_algorithm_
,
1729 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(4);
1730 connection_
.SendStreamDataWithString(5, "foo", 0, kFin
, nullptr);
1731 connection_
.SendStreamDataWithString(7, "foo", 0, kFin
, nullptr);
1732 connection_
.SendStreamDataWithString(9, "foo", 0, kFin
, nullptr);
1733 connection_
.SendStreamDataWithString(11, "foo", 0, kFin
, nullptr);
1735 // An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
1736 // since the protected packet will have 1 byte for FEC group number and
1737 // 2 bytes of stream frame size, which are absent in the unprotected packet.
1738 size_t unprotected_packet
= protected_packet
- 3;
1739 EXPECT_EQ(protected_packet
+ fec_packet
+ 4 * unprotected_packet
,
1740 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1741 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1743 // Ack data packets, and NACK FEC packet and one data packet. Triggers
1744 // NACK-based loss detection of both packets, but only data packet is
1745 // retransmitted and considered oustanding.
1746 QuicAckFrame ack
= InitAckFrame(6);
1747 NackPacket(2, &ack
);
1748 NackPacket(3, &ack
);
1749 SequenceNumberSet lost_packets
;
1750 lost_packets
.insert(2);
1751 lost_packets
.insert(3);
1752 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1753 .WillOnce(Return(lost_packets
));
1754 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1755 EXPECT_CALL(*send_algorithm_
,
1756 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1757 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1758 ProcessAckPacket(&ack
);
1759 // On receiving this ack from the server, the client will no longer send
1760 // version number in subsequent packets, including in this retransmission.
1761 size_t unprotected_packet_no_version
= unprotected_packet
- 4;
1762 EXPECT_EQ(unprotected_packet_no_version
,
1763 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1765 // Receive ack for the retransmission. No data should be outstanding.
1766 QuicAckFrame ack2
= InitAckFrame(7);
1767 NackPacket(2, &ack2
);
1768 NackPacket(3, &ack2
);
1769 SequenceNumberSet lost_packets2
;
1770 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1771 .WillOnce(Return(lost_packets2
));
1772 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1773 ProcessAckPacket(&ack2
);
1774 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1777 TEST_P(QuicConnectionTest
, FECRemainsInflightOnTLPOfEarlierData
) {
1778 // This test checks if TLP is sent correctly when a data and an FEC packet
1779 // are outstanding. TLP should be sent for the data packet when the
1780 // retransmission alarm fires.
1781 // Turn on TLP for this test.
1782 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1783 EXPECT_TRUE(creator_
->IsFecEnabled());
1784 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1785 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1787 // 1 Data packet. FEC alarm should be set.
1788 EXPECT_CALL(*send_algorithm_
,
1789 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1790 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1791 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1792 size_t protected_packet
=
1793 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1794 EXPECT_LT(0u, protected_packet
);
1796 // Force FEC timeout to send FEC packet out.
1797 EXPECT_CALL(*send_algorithm_
,
1798 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1799 connection_
.GetFecAlarm()->Fire();
1800 EXPECT_TRUE(writer_
->header().fec_flag
);
1801 size_t fec_packet
= protected_packet
;
1802 EXPECT_EQ(protected_packet
+ fec_packet
,
1803 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1805 // TLP alarm should be set.
1806 QuicTime retransmission_time
=
1807 connection_
.GetRetransmissionAlarm()->deadline();
1808 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
1809 // Simulate the retransmission alarm firing and sending a TLP, so send
1810 // algorithm's OnRetransmissionTimeout is not called.
1811 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
1812 EXPECT_CALL(*send_algorithm_
,
1813 OnPacketSent(_
, _
, 3u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1814 connection_
.GetRetransmissionAlarm()->Fire();
1815 // The TLP retransmission of packet 1 will be 3 bytes smaller than packet 1,
1816 // since packet 1 will have 1 byte for FEC group number and 2 bytes of stream
1817 // frame size, which are absent in the the TLP retransmission.
1818 size_t tlp_packet
= protected_packet
- 3;
1819 EXPECT_EQ(protected_packet
+ fec_packet
+ tlp_packet
,
1820 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1823 TEST_P(QuicConnectionTest
, FECRemainsInflightOnTLPOfLaterData
) {
1824 // Tests if TLP is sent correctly when data packet 1 and an FEC packet are
1825 // sent followed by data packet 2, and data packet 1 is acked. TLP should be
1826 // sent for data packet 2 when the retransmission alarm fires. Turn on TLP for
1828 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1829 EXPECT_TRUE(creator_
->IsFecEnabled());
1830 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1831 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1833 // 1 Data packet. FEC alarm should be set.
1834 EXPECT_CALL(*send_algorithm_
,
1835 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1836 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1837 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1838 size_t protected_packet
=
1839 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1840 EXPECT_LT(0u, protected_packet
);
1842 // Force FEC timeout to send FEC packet out.
1843 EXPECT_CALL(*send_algorithm_
,
1844 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1845 connection_
.GetFecAlarm()->Fire();
1846 EXPECT_TRUE(writer_
->header().fec_flag
);
1847 // Protected data packet and FEC packet oustanding.
1848 size_t fec_packet
= protected_packet
;
1849 EXPECT_EQ(protected_packet
+ fec_packet
,
1850 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1852 // Send 1 unprotected data packet. No FEC alarm should be set.
1853 EXPECT_CALL(*send_algorithm_
,
1854 OnPacketSent(_
, _
, 3u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1855 connection_
.SendStreamDataWithString(5, "foo", 0, kFin
, nullptr);
1856 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1857 // Protected data packet, FEC packet, and unprotected data packet oustanding.
1858 // An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
1859 // since the protected packet will have 1 byte for FEC group number and
1860 // 2 bytes of stream frame size, which are absent in the unprotected packet.
1861 size_t unprotected_packet
= protected_packet
- 3;
1862 EXPECT_EQ(protected_packet
+ fec_packet
+ unprotected_packet
,
1863 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1865 // Receive ack for first data packet. FEC and second data packet are still
1867 QuicAckFrame ack
= InitAckFrame(1);
1868 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1869 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1870 ProcessAckPacket(&ack
);
1871 // FEC packet and unprotected data packet oustanding.
1872 EXPECT_EQ(fec_packet
+ unprotected_packet
,
1873 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1875 // TLP alarm should be set.
1876 QuicTime retransmission_time
=
1877 connection_
.GetRetransmissionAlarm()->deadline();
1878 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
1879 // Simulate the retransmission alarm firing and sending a TLP, so send
1880 // algorithm's OnRetransmissionTimeout is not called.
1881 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
1882 EXPECT_CALL(*send_algorithm_
,
1883 OnPacketSent(_
, _
, 4u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1884 connection_
.GetRetransmissionAlarm()->Fire();
1886 // Having received an ack from the server, the client will no longer send
1887 // version number in subsequent packets, including in this retransmission.
1888 size_t tlp_packet_no_version
= unprotected_packet
- 4;
1889 EXPECT_EQ(fec_packet
+ unprotected_packet
+ tlp_packet_no_version
,
1890 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1893 TEST_P(QuicConnectionTest
, NoTLPForFECPacket
) {
1894 // Turn on TLP for this test.
1895 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1896 EXPECT_TRUE(creator_
->IsFecEnabled());
1897 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1899 // Send 1 FEC-protected data packet. FEC alarm should be set.
1900 EXPECT_CALL(*send_algorithm_
,
1901 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1902 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin
, nullptr);
1903 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1904 // Force FEC timeout to send FEC packet out.
1905 EXPECT_CALL(*send_algorithm_
,
1906 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1907 connection_
.GetFecAlarm()->Fire();
1908 EXPECT_TRUE(writer_
->header().fec_flag
);
1910 // Ack data packet, but not FEC packet.
1911 QuicAckFrame ack
= InitAckFrame(1);
1912 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1913 ProcessAckPacket(&ack
);
1915 // No TLP alarm for FEC, but retransmission alarm should be set for an RTO.
1916 EXPECT_LT(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1917 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
1918 QuicTime rto_time
= connection_
.GetRetransmissionAlarm()->deadline();
1919 EXPECT_NE(QuicTime::Zero(), rto_time
);
1921 // Simulate the retransmission alarm firing. FEC packet is no longer
1923 clock_
.AdvanceTime(rto_time
.Subtract(clock_
.Now()));
1924 connection_
.GetRetransmissionAlarm()->Fire();
1926 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
1927 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1930 TEST_P(QuicConnectionTest
, FramePacking
) {
1931 CongestionBlockWrites();
1933 // Send an ack and two stream frames in 1 packet by queueing them.
1934 connection_
.SendAck();
1935 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
1936 IgnoreResult(InvokeWithoutArgs(&connection_
,
1937 &TestConnection::SendStreamData3
)),
1938 IgnoreResult(InvokeWithoutArgs(&connection_
,
1939 &TestConnection::SendStreamData5
))));
1941 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
1942 CongestionUnblockWrites();
1943 connection_
.GetSendAlarm()->Fire();
1944 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1945 EXPECT_FALSE(connection_
.HasQueuedData());
1947 // Parse the last packet and ensure it's an ack and two stream frames from
1948 // two different streams.
1949 EXPECT_EQ(4u, writer_
->frame_count());
1950 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
1951 EXPECT_FALSE(writer_
->ack_frames().empty());
1952 ASSERT_EQ(2u, writer_
->stream_frames().size());
1953 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
1954 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
1957 TEST_P(QuicConnectionTest
, FramePackingNonCryptoThenCrypto
) {
1958 CongestionBlockWrites();
1960 // Send an ack and two stream frames (one non-crypto, then one crypto) in 2
1961 // packets by queueing them.
1962 connection_
.SendAck();
1963 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
1964 IgnoreResult(InvokeWithoutArgs(&connection_
,
1965 &TestConnection::SendStreamData3
)),
1966 IgnoreResult(InvokeWithoutArgs(&connection_
,
1967 &TestConnection::SendCryptoStreamData
))));
1969 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
1970 CongestionUnblockWrites();
1971 connection_
.GetSendAlarm()->Fire();
1972 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1973 EXPECT_FALSE(connection_
.HasQueuedData());
1975 // Parse the last packet and ensure it's the crypto stream frame.
1976 EXPECT_EQ(1u, writer_
->frame_count());
1977 ASSERT_EQ(1u, writer_
->stream_frames().size());
1978 EXPECT_EQ(kCryptoStreamId
, writer_
->stream_frames()[0].stream_id
);
1981 TEST_P(QuicConnectionTest
, FramePackingCryptoThenNonCrypto
) {
1982 CongestionBlockWrites();
1984 // Send an ack and two stream frames (one crypto, then one non-crypto) in 2
1985 // packets by queueing them.
1986 connection_
.SendAck();
1987 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
1988 IgnoreResult(InvokeWithoutArgs(&connection_
,
1989 &TestConnection::SendCryptoStreamData
)),
1990 IgnoreResult(InvokeWithoutArgs(&connection_
,
1991 &TestConnection::SendStreamData3
))));
1993 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
1994 CongestionUnblockWrites();
1995 connection_
.GetSendAlarm()->Fire();
1996 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1997 EXPECT_FALSE(connection_
.HasQueuedData());
1999 // Parse the last packet and ensure it's the stream frame from stream 3.
2000 EXPECT_EQ(1u, writer_
->frame_count());
2001 ASSERT_EQ(1u, writer_
->stream_frames().size());
2002 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2005 TEST_P(QuicConnectionTest
, FramePackingFEC
) {
2006 EXPECT_TRUE(creator_
->IsFecEnabled());
2008 CongestionBlockWrites();
2010 // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on
2011 // for sending protected data; two stream frames are packed in 1 packet.
2012 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2013 IgnoreResult(InvokeWithoutArgs(
2014 &connection_
, &TestConnection::SendStreamData3WithFec
)),
2015 IgnoreResult(InvokeWithoutArgs(
2016 &connection_
, &TestConnection::SendStreamData5WithFec
))));
2017 connection_
.SendAck();
2019 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2020 CongestionUnblockWrites();
2021 connection_
.GetSendAlarm()->Fire();
2022 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2023 EXPECT_FALSE(connection_
.HasQueuedData());
2025 // Parse the last packet and ensure it's in an fec group.
2026 EXPECT_EQ(2u, writer_
->header().fec_group
);
2027 EXPECT_EQ(2u, writer_
->frame_count());
2029 // FEC alarm should be set.
2030 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
2033 TEST_P(QuicConnectionTest
, FramePackingAckResponse
) {
2034 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2035 // Process a data packet to queue up a pending ack.
2036 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
2037 ProcessDataPacket(1, 1, kEntropyFlag
);
2039 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2040 IgnoreResult(InvokeWithoutArgs(&connection_
,
2041 &TestConnection::SendStreamData3
)),
2042 IgnoreResult(InvokeWithoutArgs(&connection_
,
2043 &TestConnection::SendStreamData5
))));
2045 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2047 // Process an ack to cause the visitor's OnCanWrite to be invoked.
2048 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 2);
2049 QuicAckFrame ack_one
= InitAckFrame(0);
2050 ProcessAckPacket(&ack_one
);
2052 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2053 EXPECT_FALSE(connection_
.HasQueuedData());
2055 // Parse the last packet and ensure it's an ack and two stream frames from
2056 // two different streams.
2057 EXPECT_EQ(4u, writer_
->frame_count());
2058 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
2059 EXPECT_FALSE(writer_
->ack_frames().empty());
2060 ASSERT_EQ(2u, writer_
->stream_frames().size());
2061 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2062 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2065 TEST_P(QuicConnectionTest
, FramePackingSendv
) {
2066 // Send data in 1 packet by writing multiple blocks in a single iovector
2068 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2070 char data
[] = "ABCD";
2072 data_iov
.AppendNoCoalesce(data
, 2);
2073 data_iov
.AppendNoCoalesce(data
+ 2, 2);
2074 connection_
.SendStreamData(1, data_iov
, 0, !kFin
, MAY_FEC_PROTECT
, nullptr);
2076 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2077 EXPECT_FALSE(connection_
.HasQueuedData());
2079 // Parse the last packet and ensure multiple iovector blocks have
2080 // been packed into a single stream frame from one stream.
2081 EXPECT_EQ(1u, writer_
->frame_count());
2082 EXPECT_EQ(1u, writer_
->stream_frames().size());
2083 QuicStreamFrame frame
= writer_
->stream_frames()[0];
2084 EXPECT_EQ(1u, frame
.stream_id
);
2085 EXPECT_EQ("ABCD", frame
.data
);
2088 TEST_P(QuicConnectionTest
, FramePackingSendvQueued
) {
2089 // Try to send two stream frames in 1 packet by using writev.
2090 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2093 char data
[] = "ABCD";
2095 data_iov
.AppendNoCoalesce(data
, 2);
2096 data_iov
.AppendNoCoalesce(data
+ 2, 2);
2097 connection_
.SendStreamData(1, data_iov
, 0, !kFin
, MAY_FEC_PROTECT
, nullptr);
2099 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2100 EXPECT_TRUE(connection_
.HasQueuedData());
2102 // Unblock the writes and actually send.
2103 writer_
->SetWritable();
2104 connection_
.OnCanWrite();
2105 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2107 // Parse the last packet and ensure it's one stream frame from one stream.
2108 EXPECT_EQ(1u, writer_
->frame_count());
2109 EXPECT_EQ(1u, writer_
->stream_frames().size());
2110 EXPECT_EQ(1u, writer_
->stream_frames()[0].stream_id
);
2113 TEST_P(QuicConnectionTest
, SendingZeroBytes
) {
2114 // Send a zero byte write with a fin using writev.
2115 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2117 connection_
.SendStreamData(1, empty_iov
, 0, kFin
, MAY_FEC_PROTECT
, nullptr);
2119 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2120 EXPECT_FALSE(connection_
.HasQueuedData());
2122 // Parse the last packet and ensure it's one stream frame from one stream.
2123 EXPECT_EQ(1u, writer_
->frame_count());
2124 EXPECT_EQ(1u, writer_
->stream_frames().size());
2125 EXPECT_EQ(1u, writer_
->stream_frames()[0].stream_id
);
2126 EXPECT_TRUE(writer_
->stream_frames()[0].fin
);
2129 TEST_P(QuicConnectionTest
, OnCanWrite
) {
2130 // Visitor's OnCanWrite will send data, but will have more pending writes.
2131 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2132 IgnoreResult(InvokeWithoutArgs(&connection_
,
2133 &TestConnection::SendStreamData3
)),
2134 IgnoreResult(InvokeWithoutArgs(&connection_
,
2135 &TestConnection::SendStreamData5
))));
2136 EXPECT_CALL(visitor_
, WillingAndAbleToWrite()).WillOnce(Return(true));
2137 EXPECT_CALL(*send_algorithm_
,
2138 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
2139 testing::Return(QuicTime::Delta::Zero()));
2141 connection_
.OnCanWrite();
2143 // Parse the last packet and ensure it's the two stream frames from
2144 // two different streams.
2145 EXPECT_EQ(2u, writer_
->frame_count());
2146 EXPECT_EQ(2u, writer_
->stream_frames().size());
2147 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2148 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2151 TEST_P(QuicConnectionTest
, RetransmitOnNack
) {
2152 QuicPacketSequenceNumber last_packet
;
2153 QuicByteCount second_packet_size
;
2154 SendStreamDataToPeer(3, "foo", 0, !kFin
, &last_packet
); // Packet 1
2155 second_packet_size
=
2156 SendStreamDataToPeer(3, "foos", 3, !kFin
, &last_packet
); // Packet 2
2157 SendStreamDataToPeer(3, "fooos", 7, !kFin
, &last_packet
); // Packet 3
2159 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2161 // Don't lose a packet on an ack, and nothing is retransmitted.
2162 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2163 QuicAckFrame ack_one
= InitAckFrame(1);
2164 ProcessAckPacket(&ack_one
);
2166 // Lose a packet and ensure it triggers retransmission.
2167 QuicAckFrame nack_two
= InitAckFrame(3);
2168 NackPacket(2, &nack_two
);
2169 SequenceNumberSet lost_packets
;
2170 lost_packets
.insert(2);
2171 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2172 .WillOnce(Return(lost_packets
));
2173 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2174 EXPECT_CALL(*send_algorithm_
,
2175 OnPacketSent(_
, _
, _
, second_packet_size
- kQuicVersionSize
, _
)).
2177 ProcessAckPacket(&nack_two
);
2180 TEST_P(QuicConnectionTest
, DoNotSendQueuedPacketForResetStream
) {
2181 // Block the connection to queue the packet.
2184 QuicStreamId stream_id
= 2;
2185 connection_
.SendStreamDataWithString(stream_id
, "foo", 0, !kFin
, nullptr);
2187 // Now that there is a queued packet, reset the stream.
2188 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2190 // Unblock the connection and verify that only the RST_STREAM is sent.
2191 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2192 writer_
->SetWritable();
2193 connection_
.OnCanWrite();
2194 EXPECT_EQ(1u, writer_
->frame_count());
2195 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2198 TEST_P(QuicConnectionTest
, DoNotRetransmitForResetStreamOnNack
) {
2199 QuicStreamId stream_id
= 2;
2200 QuicPacketSequenceNumber last_packet
;
2201 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2202 SendStreamDataToPeer(stream_id
, "foos", 3, !kFin
, &last_packet
);
2203 SendStreamDataToPeer(stream_id
, "fooos", 7, !kFin
, &last_packet
);
2205 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2206 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2208 // Lose a packet and ensure it does not trigger retransmission.
2209 QuicAckFrame nack_two
= InitAckFrame(last_packet
);
2210 NackPacket(last_packet
- 1, &nack_two
);
2211 SequenceNumberSet lost_packets
;
2212 lost_packets
.insert(last_packet
- 1);
2213 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2214 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2215 .WillOnce(Return(lost_packets
));
2216 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2217 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2218 ProcessAckPacket(&nack_two
);
2221 TEST_P(QuicConnectionTest
, DoNotRetransmitForResetStreamOnRTO
) {
2222 QuicStreamId stream_id
= 2;
2223 QuicPacketSequenceNumber last_packet
;
2224 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2226 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2227 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2229 // Fire the RTO and verify that the RST_STREAM is resent, not stream data.
2230 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2231 clock_
.AdvanceTime(DefaultRetransmissionTime());
2232 connection_
.GetRetransmissionAlarm()->Fire();
2233 EXPECT_EQ(1u, writer_
->frame_count());
2234 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2235 EXPECT_EQ(stream_id
, writer_
->rst_stream_frames().front().stream_id
);
2238 TEST_P(QuicConnectionTest
, DoNotSendPendingRetransmissionForResetStream
) {
2239 QuicStreamId stream_id
= 2;
2240 QuicPacketSequenceNumber last_packet
;
2241 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2242 SendStreamDataToPeer(stream_id
, "foos", 3, !kFin
, &last_packet
);
2244 connection_
.SendStreamDataWithString(stream_id
, "fooos", 7, !kFin
, nullptr);
2246 // Lose a packet which will trigger a pending retransmission.
2247 QuicAckFrame ack
= InitAckFrame(last_packet
);
2248 NackPacket(last_packet
- 1, &ack
);
2249 SequenceNumberSet lost_packets
;
2250 lost_packets
.insert(last_packet
- 1);
2251 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2252 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2253 .WillOnce(Return(lost_packets
));
2254 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2255 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2256 ProcessAckPacket(&ack
);
2258 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2260 // Unblock the connection and verify that the RST_STREAM is sent but not the
2261 // second data packet nor a retransmit.
2262 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2263 writer_
->SetWritable();
2264 connection_
.OnCanWrite();
2265 EXPECT_EQ(1u, writer_
->frame_count());
2266 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2267 EXPECT_EQ(stream_id
, writer_
->rst_stream_frames().front().stream_id
);
2270 TEST_P(QuicConnectionTest
, DiscardRetransmit
) {
2271 QuicPacketSequenceNumber last_packet
;
2272 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
2273 SendStreamDataToPeer(1, "foos", 3, !kFin
, &last_packet
); // Packet 2
2274 SendStreamDataToPeer(1, "fooos", 7, !kFin
, &last_packet
); // Packet 3
2276 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2278 // Instigate a loss with an ack.
2279 QuicAckFrame nack_two
= InitAckFrame(3);
2280 NackPacket(2, &nack_two
);
2281 // The first nack should trigger a fast retransmission, but we'll be
2282 // write blocked, so the packet will be queued.
2284 SequenceNumberSet lost_packets
;
2285 lost_packets
.insert(2);
2286 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2287 .WillOnce(Return(lost_packets
));
2288 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2289 ProcessAckPacket(&nack_two
);
2290 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2292 // Now, ack the previous transmission.
2293 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2294 .WillOnce(Return(SequenceNumberSet()));
2295 QuicAckFrame ack_all
= InitAckFrame(3);
2296 ProcessAckPacket(&ack_all
);
2298 // Unblock the socket and attempt to send the queued packets. However,
2299 // since the previous transmission has been acked, we will not
2300 // send the retransmission.
2301 EXPECT_CALL(*send_algorithm_
,
2302 OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2304 writer_
->SetWritable();
2305 connection_
.OnCanWrite();
2307 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2310 TEST_P(QuicConnectionTest
, RetransmitNackedLargestObserved
) {
2311 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2312 QuicPacketSequenceNumber largest_observed
;
2313 QuicByteCount packet_size
;
2314 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2315 .WillOnce(DoAll(SaveArg
<2>(&largest_observed
), SaveArg
<3>(&packet_size
),
2317 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2319 QuicAckFrame frame
= InitAckFrame(1);
2320 NackPacket(largest_observed
, &frame
);
2321 // The first nack should retransmit the largest observed packet.
2322 SequenceNumberSet lost_packets
;
2323 lost_packets
.insert(1);
2324 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2325 .WillOnce(Return(lost_packets
));
2326 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2327 EXPECT_CALL(*send_algorithm_
,
2328 OnPacketSent(_
, _
, _
, packet_size
- kQuicVersionSize
, _
));
2329 ProcessAckPacket(&frame
);
2332 TEST_P(QuicConnectionTest
, QueueAfterTwoRTOs
) {
2333 for (int i
= 0; i
< 10; ++i
) {
2334 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2335 connection_
.SendStreamDataWithString(3, "foo", i
* 3, !kFin
, nullptr);
2338 // Block the writer and ensure they're queued.
2340 clock_
.AdvanceTime(DefaultRetransmissionTime());
2341 // Only one packet should be retransmitted.
2342 connection_
.GetRetransmissionAlarm()->Fire();
2343 EXPECT_TRUE(connection_
.HasQueuedData());
2345 // Unblock the writer.
2346 writer_
->SetWritable();
2347 clock_
.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2348 2 * DefaultRetransmissionTime().ToMicroseconds()));
2349 // Retransmit already retransmitted packets event though the sequence number
2350 // greater than the largest observed.
2351 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2352 connection_
.GetRetransmissionAlarm()->Fire();
2353 connection_
.OnCanWrite();
2356 TEST_P(QuicConnectionTest
, WriteBlockedThenSent
) {
2358 writer_
->set_is_write_blocked_data_buffered(true);
2359 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2360 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2361 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2363 writer_
->SetWritable();
2364 connection_
.OnCanWrite();
2365 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2368 TEST_P(QuicConnectionTest
, RetransmitWriteBlockedAckedOriginalThenSent
) {
2369 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2370 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2371 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2374 writer_
->set_is_write_blocked_data_buffered(true);
2375 // Simulate the retransmission alarm firing.
2376 clock_
.AdvanceTime(DefaultRetransmissionTime());
2377 connection_
.GetRetransmissionAlarm()->Fire();
2379 // Ack the sent packet before the callback returns, which happens in
2380 // rare circumstances with write blocked sockets.
2381 QuicAckFrame ack
= InitAckFrame(1);
2382 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2383 ProcessAckPacket(&ack
);
2385 writer_
->SetWritable();
2386 connection_
.OnCanWrite();
2387 // There is now a pending packet, but with no retransmittable frames.
2388 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2389 EXPECT_FALSE(connection_
.sent_packet_manager().HasRetransmittableFrames(2));
2392 TEST_P(QuicConnectionTest
, AlarmsWhenWriteBlocked
) {
2393 // Block the connection.
2395 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2396 EXPECT_EQ(1u, writer_
->packets_write_attempts());
2397 EXPECT_TRUE(writer_
->IsWriteBlocked());
2399 // Set the send and resumption alarms. Fire the alarms and ensure they don't
2400 // attempt to write.
2401 connection_
.GetResumeWritesAlarm()->Set(clock_
.ApproximateNow());
2402 connection_
.GetSendAlarm()->Set(clock_
.ApproximateNow());
2403 connection_
.GetResumeWritesAlarm()->Fire();
2404 connection_
.GetSendAlarm()->Fire();
2405 EXPECT_TRUE(writer_
->IsWriteBlocked());
2406 EXPECT_EQ(1u, writer_
->packets_write_attempts());
2409 TEST_P(QuicConnectionTest
, NoLimitPacketsPerNack
) {
2410 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2412 // Send packets 1 to 15.
2413 for (int i
= 0; i
< 15; ++i
) {
2414 SendStreamDataToPeer(1, "foo", offset
, !kFin
, nullptr);
2418 // Ack 15, nack 1-14.
2419 SequenceNumberSet lost_packets
;
2420 QuicAckFrame nack
= InitAckFrame(15);
2421 for (int i
= 1; i
< 15; ++i
) {
2422 NackPacket(i
, &nack
);
2423 lost_packets
.insert(i
);
2426 // 14 packets have been NACK'd and lost. In TCP cubic, PRR limits
2427 // the retransmission rate in the case of burst losses.
2428 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2429 .WillOnce(Return(lost_packets
));
2430 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2431 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(14);
2432 ProcessAckPacket(&nack
);
2435 // Test sending multiple acks from the connection to the session.
2436 TEST_P(QuicConnectionTest
, MultipleAcks
) {
2437 QuicPacketSequenceNumber last_packet
;
2438 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
2439 EXPECT_EQ(1u, last_packet
);
2440 SendStreamDataToPeer(3, "foo", 0, !kFin
, &last_packet
); // Packet 2
2441 EXPECT_EQ(2u, last_packet
);
2442 SendAckPacketToPeer(); // Packet 3
2443 SendStreamDataToPeer(5, "foo", 0, !kFin
, &last_packet
); // Packet 4
2444 EXPECT_EQ(4u, last_packet
);
2445 SendStreamDataToPeer(1, "foo", 3, !kFin
, &last_packet
); // Packet 5
2446 EXPECT_EQ(5u, last_packet
);
2447 SendStreamDataToPeer(3, "foo", 3, !kFin
, &last_packet
); // Packet 6
2448 EXPECT_EQ(6u, last_packet
);
2450 // Client will ack packets 1, 2, [!3], 4, 5.
2451 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2452 QuicAckFrame frame1
= InitAckFrame(5);
2453 NackPacket(3, &frame1
);
2454 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2455 ProcessAckPacket(&frame1
);
2457 // Now the client implicitly acks 3, and explicitly acks 6.
2458 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2459 QuicAckFrame frame2
= InitAckFrame(6);
2460 ProcessAckPacket(&frame2
);
2463 TEST_P(QuicConnectionTest
, DontLatchUnackedPacket
) {
2464 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr); // Packet 1;
2465 // From now on, we send acks, so the send algorithm won't mark them pending.
2466 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2467 .WillByDefault(Return(false));
2468 SendAckPacketToPeer(); // Packet 2
2470 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2471 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2472 QuicAckFrame frame
= InitAckFrame(1);
2473 ProcessAckPacket(&frame
);
2475 // Verify that our internal state has least-unacked as 2, because we're still
2476 // waiting for a potential ack for 2.
2478 EXPECT_EQ(2u, stop_waiting()->least_unacked
);
2480 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2481 frame
= InitAckFrame(2);
2482 ProcessAckPacket(&frame
);
2483 EXPECT_EQ(3u, stop_waiting()->least_unacked
);
2485 // When we send an ack, we make sure our least-unacked makes sense. In this
2486 // case since we're not waiting on an ack for 2 and all packets are acked, we
2488 SendAckPacketToPeer(); // Packet 3
2489 // Least_unacked remains at 3 until another ack is received.
2490 EXPECT_EQ(3u, stop_waiting()->least_unacked
);
2491 // Check that the outgoing ack had its sequence number as least_unacked.
2492 EXPECT_EQ(3u, least_unacked());
2494 // Ack the ack, which updates the rtt and raises the least unacked.
2495 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2496 frame
= InitAckFrame(3);
2497 ProcessAckPacket(&frame
);
2499 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2500 .WillByDefault(Return(true));
2501 SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4
2502 EXPECT_EQ(4u, stop_waiting()->least_unacked
);
2503 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2504 .WillByDefault(Return(false));
2505 SendAckPacketToPeer(); // Packet 5
2506 EXPECT_EQ(4u, least_unacked());
2508 // Send two data packets at the end, and ensure if the last one is acked,
2509 // the least unacked is raised above the ack packets.
2510 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2511 .WillByDefault(Return(true));
2512 SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6
2513 SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7
2515 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2516 frame
= InitAckFrame(7);
2517 NackPacket(5, &frame
);
2518 NackPacket(6, &frame
);
2519 ProcessAckPacket(&frame
);
2521 EXPECT_EQ(6u, stop_waiting()->least_unacked
);
2524 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterFecPacket
) {
2525 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2527 // Don't send missing packet 1.
2528 ProcessFecPacket(2, 1, true, !kEntropyFlag
, nullptr);
2529 // Entropy flag should be false, so entropy should be 0.
2530 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2533 TEST_P(QuicConnectionTest
, ReviveMissingPacketWithVaryingSeqNumLengths
) {
2534 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2536 // Set up a debug visitor to the connection.
2537 scoped_ptr
<FecQuicConnectionDebugVisitor
> fec_visitor(
2538 new FecQuicConnectionDebugVisitor());
2539 connection_
.set_debug_visitor(fec_visitor
.get());
2541 QuicPacketSequenceNumber fec_packet
= 0;
2542 QuicSequenceNumberLength lengths
[] = {PACKET_6BYTE_SEQUENCE_NUMBER
,
2543 PACKET_4BYTE_SEQUENCE_NUMBER
,
2544 PACKET_2BYTE_SEQUENCE_NUMBER
,
2545 PACKET_1BYTE_SEQUENCE_NUMBER
};
2546 // For each sequence number length size, revive a packet and check sequence
2547 // number length in the revived packet.
2548 for (size_t i
= 0; i
< arraysize(lengths
); ++i
) {
2549 // Set sequence_number_length_ (for data and FEC packets).
2550 sequence_number_length_
= lengths
[i
];
2552 // Don't send missing packet, but send fec packet right after it.
2553 ProcessFecPacket(fec_packet
, fec_packet
- 1, true, !kEntropyFlag
, nullptr);
2554 // Sequence number length in the revived header should be the same as
2555 // in the original data/fec packet headers.
2556 EXPECT_EQ(sequence_number_length_
, fec_visitor
->revived_header().
2557 public_header
.sequence_number_length
);
2561 TEST_P(QuicConnectionTest
, ReviveMissingPacketWithVaryingConnectionIdLengths
) {
2562 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2564 // Set up a debug visitor to the connection.
2565 scoped_ptr
<FecQuicConnectionDebugVisitor
> fec_visitor(
2566 new FecQuicConnectionDebugVisitor());
2567 connection_
.set_debug_visitor(fec_visitor
.get());
2569 QuicPacketSequenceNumber fec_packet
= 0;
2570 QuicConnectionIdLength lengths
[] = {PACKET_8BYTE_CONNECTION_ID
,
2571 PACKET_4BYTE_CONNECTION_ID
,
2572 PACKET_1BYTE_CONNECTION_ID
,
2573 PACKET_0BYTE_CONNECTION_ID
};
2574 // For each connection id length size, revive a packet and check connection
2575 // id length in the revived packet.
2576 for (size_t i
= 0; i
< arraysize(lengths
); ++i
) {
2577 // Set connection id length (for data and FEC packets).
2578 connection_id_length_
= lengths
[i
];
2580 // Don't send missing packet, but send fec packet right after it.
2581 ProcessFecPacket(fec_packet
, fec_packet
- 1, true, !kEntropyFlag
, nullptr);
2582 // Connection id length in the revived header should be the same as
2583 // in the original data/fec packet headers.
2584 EXPECT_EQ(connection_id_length_
,
2585 fec_visitor
->revived_header().public_header
.connection_id_length
);
2589 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacketThenFecPacket
) {
2590 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2592 ProcessFecProtectedPacket(1, false, kEntropyFlag
);
2593 // Don't send missing packet 2.
2594 ProcessFecPacket(3, 1, true, !kEntropyFlag
, nullptr);
2595 // Entropy flag should be true, so entropy should not be 0.
2596 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2599 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacketsThenFecPacket
) {
2600 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2602 ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
2603 // Don't send missing packet 2.
2604 ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
2605 ProcessFecPacket(4, 1, true, kEntropyFlag
, nullptr);
2606 // Ensure QUIC no longer revives entropy for lost packets.
2607 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2608 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 4));
2611 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacket
) {
2612 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2614 // Don't send missing packet 1.
2615 ProcessFecPacket(3, 1, false, !kEntropyFlag
, nullptr);
2617 ProcessFecProtectedPacket(2, true, !kEntropyFlag
);
2618 // Entropy flag should be false, so entropy should be 0.
2619 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2622 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPackets
) {
2623 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2625 ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
2626 // Don't send missing packet 2.
2627 ProcessFecPacket(6, 1, false, kEntropyFlag
, nullptr);
2628 ProcessFecProtectedPacket(3, false, kEntropyFlag
);
2629 ProcessFecProtectedPacket(4, false, kEntropyFlag
);
2630 ProcessFecProtectedPacket(5, true, !kEntropyFlag
);
2631 // Ensure entropy is not revived for the missing packet.
2632 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2633 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 3));
2636 TEST_P(QuicConnectionTest
, TLP
) {
2637 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
2639 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2640 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2641 QuicTime retransmission_time
=
2642 connection_
.GetRetransmissionAlarm()->deadline();
2643 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
2645 EXPECT_EQ(1u, writer_
->header().packet_sequence_number
);
2646 // Simulate the retransmission alarm firing and sending a tlp,
2647 // so send algorithm's OnRetransmissionTimeout is not called.
2648 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
2649 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
2650 connection_
.GetRetransmissionAlarm()->Fire();
2651 EXPECT_EQ(2u, writer_
->header().packet_sequence_number
);
2652 // We do not raise the high water mark yet.
2653 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2656 TEST_P(QuicConnectionTest
, RTO
) {
2657 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
2658 DefaultRetransmissionTime());
2659 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2660 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2662 EXPECT_EQ(1u, writer_
->header().packet_sequence_number
);
2663 EXPECT_EQ(default_retransmission_time
,
2664 connection_
.GetRetransmissionAlarm()->deadline());
2665 // Simulate the retransmission alarm firing.
2666 clock_
.AdvanceTime(DefaultRetransmissionTime());
2667 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
2668 connection_
.GetRetransmissionAlarm()->Fire();
2669 EXPECT_EQ(2u, writer_
->header().packet_sequence_number
);
2670 // We do not raise the high water mark yet.
2671 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2674 TEST_P(QuicConnectionTest
, RTOWithSameEncryptionLevel
) {
2675 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
2676 DefaultRetransmissionTime());
2677 use_tagging_decrypter();
2679 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2680 // the end of the packet. We can test this to check which encrypter was used.
2681 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2682 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2683 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_last_packet());
2685 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2686 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2687 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2688 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2690 EXPECT_EQ(default_retransmission_time
,
2691 connection_
.GetRetransmissionAlarm()->deadline());
2694 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 3, _
, _
));
2695 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 4, _
, _
));
2698 // Simulate the retransmission alarm firing.
2699 clock_
.AdvanceTime(DefaultRetransmissionTime());
2700 connection_
.GetRetransmissionAlarm()->Fire();
2702 // Packet should have been sent with ENCRYPTION_NONE.
2703 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_previous_packet());
2705 // Packet should have been sent with ENCRYPTION_INITIAL.
2706 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2709 TEST_P(QuicConnectionTest
, SendHandshakeMessages
) {
2710 use_tagging_decrypter();
2711 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2712 // the end of the packet. We can test this to check which encrypter was used.
2713 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2715 // Attempt to send a handshake message and have the socket block.
2716 EXPECT_CALL(*send_algorithm_
,
2717 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
2718 testing::Return(QuicTime::Delta::Zero()));
2720 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2721 // The packet should be serialized, but not queued.
2722 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2724 // Switch to the new encrypter.
2725 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2726 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2728 // Now become writeable and flush the packets.
2729 writer_
->SetWritable();
2730 EXPECT_CALL(visitor_
, OnCanWrite());
2731 connection_
.OnCanWrite();
2732 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2734 // Verify that the handshake packet went out at the null encryption.
2735 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_last_packet());
2738 TEST_P(QuicConnectionTest
,
2739 DropRetransmitsForNullEncryptedPacketAfterForwardSecure
) {
2740 use_tagging_decrypter();
2741 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2742 QuicPacketSequenceNumber sequence_number
;
2743 SendStreamDataToPeer(3, "foo", 0, !kFin
, &sequence_number
);
2745 // Simulate the retransmission alarm firing and the socket blocking.
2747 clock_
.AdvanceTime(DefaultRetransmissionTime());
2748 connection_
.GetRetransmissionAlarm()->Fire();
2750 // Go forward secure.
2751 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2752 new TaggingEncrypter(0x02));
2753 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE
);
2754 connection_
.NeuterUnencryptedPackets();
2756 EXPECT_EQ(QuicTime::Zero(),
2757 connection_
.GetRetransmissionAlarm()->deadline());
2758 // Unblock the socket and ensure that no packets are sent.
2759 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2760 writer_
->SetWritable();
2761 connection_
.OnCanWrite();
2764 TEST_P(QuicConnectionTest
, RetransmitPacketsWithInitialEncryption
) {
2765 use_tagging_decrypter();
2766 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2767 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_NONE
);
2769 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
2771 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2772 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2774 SendStreamDataToPeer(2, "bar", 0, !kFin
, nullptr);
2775 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2777 connection_
.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION
);
2780 TEST_P(QuicConnectionTest
, DelayForwardSecureEncryptionUntilClientIsReady
) {
2781 // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
2782 // the end of the packet. We can test this to check which encrypter was used.
2783 use_tagging_decrypter();
2784 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2785 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2786 SendAckPacketToPeer();
2787 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2789 // Set a forward-secure encrypter but do not make it the default, and verify
2790 // that it is not yet used.
2791 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2792 new TaggingEncrypter(0x03));
2793 SendAckPacketToPeer();
2794 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2796 // Now simulate receipt of a forward-secure packet and verify that the
2797 // forward-secure encrypter is now used.
2798 connection_
.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE
);
2799 SendAckPacketToPeer();
2800 EXPECT_EQ(0x03030303u
, writer_
->final_bytes_of_last_packet());
2803 TEST_P(QuicConnectionTest
, DelayForwardSecureEncryptionUntilManyPacketSent
) {
2804 // Set a congestion window of 10 packets.
2805 QuicPacketCount congestion_window
= 10;
2806 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
2807 Return(congestion_window
* kDefaultMaxPacketSize
));
2809 // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
2810 // the end of the packet. We can test this to check which encrypter was used.
2811 use_tagging_decrypter();
2812 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2813 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2814 SendAckPacketToPeer();
2815 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2817 // Set a forward-secure encrypter but do not make it the default, and
2818 // verify that it is not yet used.
2819 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2820 new TaggingEncrypter(0x03));
2821 SendAckPacketToPeer();
2822 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2824 // Now send a packet "Far enough" after the encrypter was set and verify that
2825 // the forward-secure encrypter is now used.
2826 for (uint64 i
= 0; i
< 3 * congestion_window
- 1; ++i
) {
2827 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2828 SendAckPacketToPeer();
2830 EXPECT_EQ(0x03030303u
, writer_
->final_bytes_of_last_packet());
2833 TEST_P(QuicConnectionTest
, BufferNonDecryptablePackets
) {
2834 // SetFromConfig is always called after construction from InitializeSession.
2835 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
2837 connection_
.SetFromConfig(config
);
2838 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2839 use_tagging_decrypter();
2841 const uint8 tag
= 0x07;
2842 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2844 // Process an encrypted packet which can not yet be decrypted which should
2845 // result in the packet being buffered.
2846 ProcessDataPacketAtLevel(1, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2848 // Transition to the new encryption state and process another encrypted packet
2849 // which should result in the original packet being processed.
2850 connection_
.SetDecrypter(new StrictTaggingDecrypter(tag
),
2851 ENCRYPTION_INITIAL
);
2852 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2853 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2854 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(2);
2855 ProcessDataPacketAtLevel(2, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2857 // Finally, process a third packet and note that we do not reprocess the
2859 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
2860 ProcessDataPacketAtLevel(3, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2863 TEST_P(QuicConnectionTest
, Buffer100NonDecryptablePackets
) {
2864 // SetFromConfig is always called after construction from InitializeSession.
2865 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
2867 config
.set_max_undecryptable_packets(100);
2868 connection_
.SetFromConfig(config
);
2869 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2870 use_tagging_decrypter();
2872 const uint8 tag
= 0x07;
2873 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2875 // Process an encrypted packet which can not yet be decrypted which should
2876 // result in the packet being buffered.
2877 for (QuicPacketSequenceNumber i
= 1; i
<= 100; ++i
) {
2878 ProcessDataPacketAtLevel(i
, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2881 // Transition to the new encryption state and process another encrypted packet
2882 // which should result in the original packets being processed.
2883 connection_
.SetDecrypter(new StrictTaggingDecrypter(tag
), ENCRYPTION_INITIAL
);
2884 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2885 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2886 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(101);
2887 ProcessDataPacketAtLevel(101, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2889 // Finally, process a third packet and note that we do not reprocess the
2891 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
2892 ProcessDataPacketAtLevel(102, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2895 TEST_P(QuicConnectionTest
, TestRetransmitOrder
) {
2896 QuicByteCount first_packet_size
;
2897 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).WillOnce(
2898 DoAll(SaveArg
<3>(&first_packet_size
), Return(true)));
2900 connection_
.SendStreamDataWithString(3, "first_packet", 0, !kFin
, nullptr);
2901 QuicByteCount second_packet_size
;
2902 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).WillOnce(
2903 DoAll(SaveArg
<3>(&second_packet_size
), Return(true)));
2904 connection_
.SendStreamDataWithString(3, "second_packet", 12, !kFin
, nullptr);
2905 EXPECT_NE(first_packet_size
, second_packet_size
);
2906 // Advance the clock by huge time to make sure packets will be retransmitted.
2907 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(10));
2910 EXPECT_CALL(*send_algorithm_
,
2911 OnPacketSent(_
, _
, _
, first_packet_size
, _
));
2912 EXPECT_CALL(*send_algorithm_
,
2913 OnPacketSent(_
, _
, _
, second_packet_size
, _
));
2915 connection_
.GetRetransmissionAlarm()->Fire();
2917 // Advance again and expect the packets to be sent again in the same order.
2918 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(20));
2921 EXPECT_CALL(*send_algorithm_
,
2922 OnPacketSent(_
, _
, _
, first_packet_size
, _
));
2923 EXPECT_CALL(*send_algorithm_
,
2924 OnPacketSent(_
, _
, _
, second_packet_size
, _
));
2926 connection_
.GetRetransmissionAlarm()->Fire();
2929 TEST_P(QuicConnectionTest
, SetRTOAfterWritingToSocket
) {
2931 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2932 // Make sure that RTO is not started when the packet is queued.
2933 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
2935 // Test that RTO is started once we write to the socket.
2936 writer_
->SetWritable();
2937 connection_
.OnCanWrite();
2938 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2941 TEST_P(QuicConnectionTest
, DelayRTOWithAckReceipt
) {
2942 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2943 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2945 connection_
.SendStreamDataWithString(2, "foo", 0, !kFin
, nullptr);
2946 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, nullptr);
2947 QuicAlarm
* retransmission_alarm
= connection_
.GetRetransmissionAlarm();
2948 EXPECT_TRUE(retransmission_alarm
->IsSet());
2949 EXPECT_EQ(clock_
.Now().Add(DefaultRetransmissionTime()),
2950 retransmission_alarm
->deadline());
2952 // Advance the time right before the RTO, then receive an ack for the first
2953 // packet to delay the RTO.
2954 clock_
.AdvanceTime(DefaultRetransmissionTime());
2955 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2956 QuicAckFrame ack
= InitAckFrame(1);
2957 ProcessAckPacket(&ack
);
2958 EXPECT_TRUE(retransmission_alarm
->IsSet());
2959 EXPECT_GT(retransmission_alarm
->deadline(), clock_
.Now());
2961 // Move forward past the original RTO and ensure the RTO is still pending.
2962 clock_
.AdvanceTime(DefaultRetransmissionTime().Multiply(2));
2964 // Ensure the second packet gets retransmitted when it finally fires.
2965 EXPECT_TRUE(retransmission_alarm
->IsSet());
2966 EXPECT_LT(retransmission_alarm
->deadline(), clock_
.ApproximateNow());
2967 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2968 // Manually cancel the alarm to simulate a real test.
2969 connection_
.GetRetransmissionAlarm()->Fire();
2971 // The new retransmitted sequence number should set the RTO to a larger value
2973 EXPECT_TRUE(retransmission_alarm
->IsSet());
2974 QuicTime next_rto_time
= retransmission_alarm
->deadline();
2975 QuicTime expected_rto_time
=
2976 connection_
.sent_packet_manager().GetRetransmissionTime();
2977 EXPECT_EQ(next_rto_time
, expected_rto_time
);
2980 TEST_P(QuicConnectionTest
, TestQueued
) {
2981 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2983 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2984 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2986 // Unblock the writes and actually send.
2987 writer_
->SetWritable();
2988 connection_
.OnCanWrite();
2989 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2992 TEST_P(QuicConnectionTest
, CloseFecGroup
) {
2993 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2994 // Don't send missing packet 1.
2995 // Don't send missing packet 2.
2996 ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
2997 // Don't send missing FEC packet 3.
2998 ASSERT_EQ(1u, connection_
.NumFecGroups());
3000 // Now send non-fec protected ack packet and close the group.
3001 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 4);
3002 QuicStopWaitingFrame frame
= InitStopWaitingFrame(5);
3003 ProcessStopWaitingPacket(&frame
);
3004 ASSERT_EQ(0u, connection_
.NumFecGroups());
3007 TEST_P(QuicConnectionTest
, InitialTimeout
) {
3008 EXPECT_TRUE(connection_
.connected());
3009 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(AnyNumber());
3010 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3012 // SetFromConfig sets the initial timeouts before negotiation.
3013 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3015 connection_
.SetFromConfig(config
);
3016 // Subtract a second from the idle timeout on the client side.
3017 QuicTime default_timeout
= clock_
.ApproximateNow().Add(
3018 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1));
3019 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3021 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3022 // Simulate the timeout alarm firing.
3024 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1));
3025 connection_
.GetTimeoutAlarm()->Fire();
3027 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3028 EXPECT_FALSE(connection_
.connected());
3030 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3031 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3032 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
3033 EXPECT_FALSE(connection_
.GetResumeWritesAlarm()->IsSet());
3034 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3035 EXPECT_FALSE(connection_
.GetSendAlarm()->IsSet());
3038 TEST_P(QuicConnectionTest
, OverallTimeout
) {
3039 // Use a shorter overall connection timeout than idle timeout for this test.
3040 const QuicTime::Delta timeout
= QuicTime::Delta::FromSeconds(5);
3041 connection_
.SetNetworkTimeouts(timeout
, timeout
);
3042 EXPECT_TRUE(connection_
.connected());
3043 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(AnyNumber());
3045 QuicTime overall_timeout
= clock_
.ApproximateNow().Add(timeout
).Subtract(
3046 QuicTime::Delta::FromSeconds(1));
3047 EXPECT_EQ(overall_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3048 EXPECT_TRUE(connection_
.connected());
3050 // Send and ack new data 3 seconds later to lengthen the idle timeout.
3051 SendStreamDataToPeer(1, "GET /", 0, kFin
, nullptr);
3052 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(3));
3053 QuicAckFrame frame
= InitAckFrame(1);
3054 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3055 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3056 ProcessAckPacket(&frame
);
3058 // Fire early to verify it wouldn't timeout yet.
3059 connection_
.GetTimeoutAlarm()->Fire();
3060 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3061 EXPECT_TRUE(connection_
.connected());
3063 clock_
.AdvanceTime(timeout
.Subtract(QuicTime::Delta::FromSeconds(2)));
3065 EXPECT_CALL(visitor_
,
3066 OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT
, false));
3067 // Simulate the timeout alarm firing.
3068 connection_
.GetTimeoutAlarm()->Fire();
3070 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3071 EXPECT_FALSE(connection_
.connected());
3073 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3074 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3075 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
3076 EXPECT_FALSE(connection_
.GetResumeWritesAlarm()->IsSet());
3077 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3078 EXPECT_FALSE(connection_
.GetSendAlarm()->IsSet());
3081 TEST_P(QuicConnectionTest
, PingAfterSend
) {
3082 EXPECT_TRUE(connection_
.connected());
3083 EXPECT_CALL(visitor_
, HasOpenDataStreams()).WillRepeatedly(Return(true));
3084 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3086 // Advance to 5ms, and send a packet to the peer, which will set
3088 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3089 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3090 SendStreamDataToPeer(1, "GET /", 0, kFin
, nullptr);
3091 EXPECT_TRUE(connection_
.GetPingAlarm()->IsSet());
3092 EXPECT_EQ(clock_
.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)),
3093 connection_
.GetPingAlarm()->deadline());
3095 // Now recevie and ACK of the previous packet, which will move the
3096 // ping alarm forward.
3097 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3098 QuicAckFrame frame
= InitAckFrame(1);
3099 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3100 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3101 ProcessAckPacket(&frame
);
3102 EXPECT_TRUE(connection_
.GetPingAlarm()->IsSet());
3103 // The ping timer is set slightly less than 15 seconds in the future, because
3104 // of the 1s ping timer alarm granularity.
3105 EXPECT_EQ(clock_
.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15))
3106 .Subtract(QuicTime::Delta::FromMilliseconds(5)),
3107 connection_
.GetPingAlarm()->deadline());
3110 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(15));
3111 connection_
.GetPingAlarm()->Fire();
3112 EXPECT_EQ(1u, writer_
->frame_count());
3113 ASSERT_EQ(1u, writer_
->ping_frames().size());
3116 EXPECT_CALL(visitor_
, HasOpenDataStreams()).WillRepeatedly(Return(false));
3117 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3118 SendAckPacketToPeer();
3120 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3123 TEST_P(QuicConnectionTest
, TimeoutAfterSend
) {
3124 EXPECT_TRUE(connection_
.connected());
3125 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3127 connection_
.SetFromConfig(config
);
3128 EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_
));
3130 const QuicTime::Delta initial_idle_timeout
=
3131 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1);
3132 const QuicTime::Delta five_ms
= QuicTime::Delta::FromMilliseconds(5);
3133 QuicTime default_timeout
= clock_
.ApproximateNow().Add(initial_idle_timeout
);
3135 // When we send a packet, the timeout will change to 5ms +
3136 // kInitialIdleTimeoutSecs.
3137 clock_
.AdvanceTime(five_ms
);
3139 // Send an ack so we don't set the retransmission alarm.
3140 SendAckPacketToPeer();
3141 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3143 // The original alarm will fire. We should not time out because we had a
3144 // network event at t=5ms. The alarm will reregister.
3145 clock_
.AdvanceTime(initial_idle_timeout
.Subtract(five_ms
));
3146 EXPECT_EQ(default_timeout
, clock_
.ApproximateNow());
3147 connection_
.GetTimeoutAlarm()->Fire();
3148 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3149 EXPECT_TRUE(connection_
.connected());
3150 EXPECT_EQ(default_timeout
.Add(five_ms
),
3151 connection_
.GetTimeoutAlarm()->deadline());
3153 // This time, we should time out.
3154 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3155 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3156 clock_
.AdvanceTime(five_ms
);
3157 EXPECT_EQ(default_timeout
.Add(five_ms
), clock_
.ApproximateNow());
3158 connection_
.GetTimeoutAlarm()->Fire();
3159 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3160 EXPECT_FALSE(connection_
.connected());
3163 TEST_P(QuicConnectionTest
, TimeoutAfterSendSilentClose
) {
3164 // Same test as above, but complete a handshake which enables silent close,
3165 // causing no connection close packet to be sent.
3166 EXPECT_TRUE(connection_
.connected());
3167 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3170 // Create a handshake message that also enables silent close.
3171 CryptoHandshakeMessage msg
;
3172 string error_details
;
3173 QuicConfig client_config
;
3174 client_config
.SetInitialStreamFlowControlWindowToSend(
3175 kInitialStreamFlowControlWindowForTest
);
3176 client_config
.SetInitialSessionFlowControlWindowToSend(
3177 kInitialSessionFlowControlWindowForTest
);
3178 client_config
.SetIdleConnectionStateLifetime(
3179 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
),
3180 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
));
3181 client_config
.ToHandshakeMessage(&msg
);
3182 const QuicErrorCode error
=
3183 config
.ProcessPeerHello(msg
, CLIENT
, &error_details
);
3184 EXPECT_EQ(QUIC_NO_ERROR
, error
);
3186 connection_
.SetFromConfig(config
);
3187 EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_
));
3189 const QuicTime::Delta default_idle_timeout
=
3190 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
- 1);
3191 const QuicTime::Delta five_ms
= QuicTime::Delta::FromMilliseconds(5);
3192 QuicTime default_timeout
= clock_
.ApproximateNow().Add(default_idle_timeout
);
3194 // When we send a packet, the timeout will change to 5ms +
3195 // kInitialIdleTimeoutSecs.
3196 clock_
.AdvanceTime(five_ms
);
3198 // Send an ack so we don't set the retransmission alarm.
3199 SendAckPacketToPeer();
3200 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3202 // The original alarm will fire. We should not time out because we had a
3203 // network event at t=5ms. The alarm will reregister.
3204 clock_
.AdvanceTime(default_idle_timeout
.Subtract(five_ms
));
3205 EXPECT_EQ(default_timeout
, clock_
.ApproximateNow());
3206 connection_
.GetTimeoutAlarm()->Fire();
3207 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3208 EXPECT_TRUE(connection_
.connected());
3209 EXPECT_EQ(default_timeout
.Add(five_ms
),
3210 connection_
.GetTimeoutAlarm()->deadline());
3212 // This time, we should time out.
3213 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3214 clock_
.AdvanceTime(five_ms
);
3215 EXPECT_EQ(default_timeout
.Add(five_ms
), clock_
.ApproximateNow());
3216 connection_
.GetTimeoutAlarm()->Fire();
3217 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3218 EXPECT_FALSE(connection_
.connected());
3221 TEST_P(QuicConnectionTest
, SendScheduler
) {
3222 // Test that if we send a packet without delay, it is not queued.
3223 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3224 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3225 connection_
.SendPacket(
3226 ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
, HAS_RETRANSMITTABLE_DATA
);
3227 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3230 TEST_P(QuicConnectionTest
, SendSchedulerEAGAIN
) {
3231 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3233 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 1, _
, _
)).Times(0);
3234 connection_
.SendPacket(
3235 ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
, HAS_RETRANSMITTABLE_DATA
);
3236 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
3239 TEST_P(QuicConnectionTest
, TestQueueLimitsOnSendStreamData
) {
3240 // All packets carry version info till version is negotiated.
3241 size_t payload_length
;
3242 size_t length
= GetPacketLengthForOneStream(
3243 connection_
.version(), kIncludeVersion
,
3244 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
3245 NOT_IN_FEC_GROUP
, &payload_length
);
3246 creator_
->SetMaxPacketLength(length
);
3248 // Queue the first packet.
3249 EXPECT_CALL(*send_algorithm_
,
3250 TimeUntilSend(_
, _
, _
)).WillOnce(
3251 testing::Return(QuicTime::Delta::FromMicroseconds(10)));
3252 const string
payload(payload_length
, 'a');
3253 EXPECT_EQ(0u, connection_
.SendStreamDataWithString(3, payload
, 0, !kFin
,
3254 nullptr).bytes_consumed
);
3255 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3258 TEST_P(QuicConnectionTest
, LoopThroughSendingPackets
) {
3259 // All packets carry version info till version is negotiated.
3260 size_t payload_length
;
3261 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
3262 // packet length. The size of the offset field in a stream frame is 0 for
3263 // offset 0, and 2 for non-zero offsets up through 16K. Increase
3264 // max_packet_length by 2 so that subsequent packets containing subsequent
3265 // stream frames with non-zero offets will fit within the packet length.
3266 size_t length
= 2 + GetPacketLengthForOneStream(
3267 connection_
.version(), kIncludeVersion
,
3268 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
3269 NOT_IN_FEC_GROUP
, &payload_length
);
3270 creator_
->SetMaxPacketLength(length
);
3272 // Queue the first packet.
3273 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(7);
3274 // The first stream frame will have 2 fewer overhead bytes than the other six.
3275 const string
payload(payload_length
* 7 + 2, 'a');
3276 EXPECT_EQ(payload
.size(),
3277 connection_
.SendStreamDataWithString(1, payload
, 0, !kFin
, nullptr)
3281 TEST_P(QuicConnectionTest
, LoopThroughSendingPacketsWithTruncation
) {
3282 // Set up a larger payload than will fit in one packet.
3283 const string
payload(connection_
.max_packet_length(), 'a');
3284 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
)).Times(AnyNumber());
3286 // Now send some packets with no truncation.
3287 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3288 EXPECT_EQ(payload
.size(),
3289 connection_
.SendStreamDataWithString(
3290 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3291 // Track the size of the second packet here. The overhead will be the largest
3292 // we see in this test, due to the non-truncated connection id.
3293 size_t non_truncated_packet_size
= writer_
->last_packet_size();
3295 // Change to a 4 byte connection id.
3297 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 4);
3298 connection_
.SetFromConfig(config
);
3299 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3300 EXPECT_EQ(payload
.size(),
3301 connection_
.SendStreamDataWithString(
3302 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3303 // Verify that we have 8 fewer bytes than in the non-truncated case. The
3304 // first packet got 4 bytes of extra payload due to the truncation, and the
3305 // headers here are also 4 byte smaller.
3306 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 8);
3308 // Change to a 1 byte connection id.
3309 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 1);
3310 connection_
.SetFromConfig(config
);
3311 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3312 EXPECT_EQ(payload
.size(),
3313 connection_
.SendStreamDataWithString(
3314 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3315 // Just like above, we save 7 bytes on payload, and 7 on truncation.
3316 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 7 * 2);
3318 // Change to a 0 byte connection id.
3319 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 0);
3320 connection_
.SetFromConfig(config
);
3321 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3322 EXPECT_EQ(payload
.size(),
3323 connection_
.SendStreamDataWithString(
3324 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3325 // Just like above, we save 8 bytes on payload, and 8 on truncation.
3326 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 8 * 2);
3329 TEST_P(QuicConnectionTest
, SendDelayedAck
) {
3330 QuicTime ack_time
= clock_
.ApproximateNow().Add(DefaultDelayedAckTime());
3331 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3332 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3333 const uint8 tag
= 0x07;
3334 connection_
.SetDecrypter(new StrictTaggingDecrypter(tag
),
3335 ENCRYPTION_INITIAL
);
3336 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
3337 // Process a packet from the non-crypto stream.
3338 frame1_
.stream_id
= 3;
3340 // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
3341 // instead of ENCRYPTION_NONE.
3342 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
3343 ProcessDataPacketAtLevel(1, 0, !kEntropyFlag
, ENCRYPTION_INITIAL
);
3345 // Check if delayed ack timer is running for the expected interval.
3346 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3347 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3348 // Simulate delayed ack alarm firing.
3349 connection_
.GetAckAlarm()->Fire();
3350 // Check that ack is sent and that delayed ack alarm is reset.
3351 EXPECT_EQ(2u, writer_
->frame_count());
3352 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3353 EXPECT_FALSE(writer_
->ack_frames().empty());
3354 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3357 TEST_P(QuicConnectionTest
, SendDelayedAckOnHandshakeConfirmed
) {
3358 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3360 // Check that ack is sent and that delayed ack alarm is set.
3361 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3362 QuicTime ack_time
= clock_
.ApproximateNow().Add(DefaultDelayedAckTime());
3363 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3365 // Completing the handshake as the server does nothing.
3366 QuicConnectionPeer::SetPerspective(&connection_
, Perspective::IS_SERVER
);
3367 connection_
.OnHandshakeComplete();
3368 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3369 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3371 // Complete the handshake as the client decreases the delayed ack time to 0ms.
3372 QuicConnectionPeer::SetPerspective(&connection_
, Perspective::IS_CLIENT
);
3373 connection_
.OnHandshakeComplete();
3374 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3375 EXPECT_EQ(clock_
.ApproximateNow(), connection_
.GetAckAlarm()->deadline());
3378 TEST_P(QuicConnectionTest
, SendDelayedAckOnSecondPacket
) {
3379 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3382 // Check that ack is sent and that delayed ack alarm is reset.
3383 EXPECT_EQ(2u, writer_
->frame_count());
3384 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3385 EXPECT_FALSE(writer_
->ack_frames().empty());
3386 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3389 TEST_P(QuicConnectionTest
, NoAckOnOldNacks
) {
3390 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3391 // Drop one packet, triggering a sequence of acks.
3393 size_t frames_per_ack
= 2;
3394 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3395 EXPECT_FALSE(writer_
->ack_frames().empty());
3398 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3399 EXPECT_FALSE(writer_
->ack_frames().empty());
3402 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3403 EXPECT_FALSE(writer_
->ack_frames().empty());
3406 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3407 EXPECT_FALSE(writer_
->ack_frames().empty());
3409 // Now only set the timer on the 6th packet, instead of sending another ack.
3411 EXPECT_EQ(0u, writer_
->frame_count());
3412 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3415 TEST_P(QuicConnectionTest
, SendDelayedAckOnOutgoingPacket
) {
3416 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3418 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 0, !kFin
,
3420 // Check that ack is bundled with outgoing data and that delayed ack
3422 EXPECT_EQ(3u, writer_
->frame_count());
3423 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3424 EXPECT_FALSE(writer_
->ack_frames().empty());
3425 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3428 TEST_P(QuicConnectionTest
, SendDelayedAckOnOutgoingCryptoPacket
) {
3429 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3431 connection_
.SendStreamDataWithString(kCryptoStreamId
, "foo", 0, !kFin
,
3433 // Check that ack is bundled with outgoing crypto data.
3434 EXPECT_EQ(3u, writer_
->frame_count());
3435 EXPECT_FALSE(writer_
->ack_frames().empty());
3436 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3439 TEST_P(QuicConnectionTest
, BlockAndBufferOnFirstCHLOPacketOfTwo
) {
3440 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3443 writer_
->set_is_write_blocked_data_buffered(true);
3444 connection_
.SendStreamDataWithString(kCryptoStreamId
, "foo", 0, !kFin
,
3446 EXPECT_TRUE(writer_
->IsWriteBlocked());
3447 EXPECT_FALSE(connection_
.HasQueuedData());
3448 connection_
.SendStreamDataWithString(kCryptoStreamId
, "bar", 3, !kFin
,
3450 EXPECT_TRUE(writer_
->IsWriteBlocked());
3451 EXPECT_TRUE(connection_
.HasQueuedData());
3454 TEST_P(QuicConnectionTest
, BundleAckForSecondCHLO
) {
3455 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3456 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3457 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(
3458 IgnoreResult(InvokeWithoutArgs(&connection_
,
3459 &TestConnection::SendCryptoStreamData
)));
3460 // Process a packet from the crypto stream, which is frame1_'s default.
3461 // Receiving the CHLO as packet 2 first will cause the connection to
3462 // immediately send an ack, due to the packet gap.
3464 // Check that ack is sent and that delayed ack alarm is reset.
3465 EXPECT_EQ(3u, writer_
->frame_count());
3466 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3467 EXPECT_EQ(1u, writer_
->stream_frames().size());
3468 EXPECT_FALSE(writer_
->ack_frames().empty());
3469 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3472 TEST_P(QuicConnectionTest
, BundleAckWithDataOnIncomingAck
) {
3473 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3474 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 0, !kFin
,
3476 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 3, !kFin
,
3478 // Ack the second packet, which will retransmit the first packet.
3479 QuicAckFrame ack
= InitAckFrame(2);
3480 NackPacket(1, &ack
);
3481 SequenceNumberSet lost_packets
;
3482 lost_packets
.insert(1);
3483 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3484 .WillOnce(Return(lost_packets
));
3485 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3486 ProcessAckPacket(&ack
);
3487 EXPECT_EQ(1u, writer_
->frame_count());
3488 EXPECT_EQ(1u, writer_
->stream_frames().size());
3491 // Now ack the retransmission, which will both raise the high water mark
3492 // and see if there is more data to send.
3493 ack
= InitAckFrame(3);
3494 NackPacket(1, &ack
);
3495 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3496 .WillOnce(Return(SequenceNumberSet()));
3497 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3498 ProcessAckPacket(&ack
);
3500 // Check that no packet is sent and the ack alarm isn't set.
3501 EXPECT_EQ(0u, writer_
->frame_count());
3502 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3505 // Send the same ack, but send both data and an ack together.
3506 ack
= InitAckFrame(3);
3507 NackPacket(1, &ack
);
3508 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3509 .WillOnce(Return(SequenceNumberSet()));
3510 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(
3511 IgnoreResult(InvokeWithoutArgs(
3513 &TestConnection::EnsureWritableAndSendStreamData5
)));
3514 ProcessAckPacket(&ack
);
3516 // Check that ack is bundled with outgoing data and the delayed ack
3518 EXPECT_EQ(3u, writer_
->frame_count());
3519 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3520 EXPECT_FALSE(writer_
->ack_frames().empty());
3521 EXPECT_EQ(1u, writer_
->stream_frames().size());
3522 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3525 TEST_P(QuicConnectionTest
, NoAckSentForClose
) {
3526 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3528 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, true));
3529 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
3530 ProcessClosePacket(2, 0);
3533 TEST_P(QuicConnectionTest
, SendWhenDisconnected
) {
3534 EXPECT_TRUE(connection_
.connected());
3535 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, false));
3536 connection_
.CloseConnection(QUIC_PEER_GOING_AWAY
, false);
3537 EXPECT_FALSE(connection_
.connected());
3538 EXPECT_FALSE(connection_
.CanWriteStreamData());
3539 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3540 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 1, _
, _
)).Times(0);
3541 connection_
.SendPacket(
3542 ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
, HAS_RETRANSMITTABLE_DATA
);
3545 TEST_P(QuicConnectionTest
, PublicReset
) {
3546 QuicPublicResetPacket header
;
3547 header
.public_header
.connection_id
= connection_id_
;
3548 header
.public_header
.reset_flag
= true;
3549 header
.public_header
.version_flag
= false;
3550 header
.rejected_sequence_number
= 10101;
3551 scoped_ptr
<QuicEncryptedPacket
> packet(
3552 framer_
.BuildPublicResetPacket(header
));
3553 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PUBLIC_RESET
, true));
3554 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet
);
3557 TEST_P(QuicConnectionTest
, GoAway
) {
3558 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3560 QuicGoAwayFrame goaway
;
3561 goaway
.last_good_stream_id
= 1;
3562 goaway
.error_code
= QUIC_PEER_GOING_AWAY
;
3563 goaway
.reason_phrase
= "Going away.";
3564 EXPECT_CALL(visitor_
, OnGoAway(_
));
3565 ProcessGoAwayPacket(&goaway
);
3568 TEST_P(QuicConnectionTest
, WindowUpdate
) {
3569 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3571 QuicWindowUpdateFrame window_update
;
3572 window_update
.stream_id
= 3;
3573 window_update
.byte_offset
= 1234;
3574 EXPECT_CALL(visitor_
, OnWindowUpdateFrames(_
));
3575 ProcessFramePacket(QuicFrame(&window_update
));
3578 TEST_P(QuicConnectionTest
, Blocked
) {
3579 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3581 QuicBlockedFrame blocked
;
3582 blocked
.stream_id
= 3;
3583 EXPECT_CALL(visitor_
, OnBlockedFrames(_
));
3584 ProcessFramePacket(QuicFrame(&blocked
));
3587 TEST_P(QuicConnectionTest
, ZeroBytePacket
) {
3588 // Don't close the connection for zero byte packets.
3589 EXPECT_CALL(visitor_
, OnConnectionClosed(_
, _
)).Times(0);
3590 QuicEncryptedPacket
encrypted(nullptr, 0);
3591 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted
);
3594 TEST_P(QuicConnectionTest
, MissingPacketsBeforeLeastUnacked
) {
3595 // Set the sequence number of the ack packet to be least unacked (4).
3596 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 3);
3597 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3598 QuicStopWaitingFrame frame
= InitStopWaitingFrame(4);
3599 ProcessStopWaitingPacket(&frame
);
3600 EXPECT_TRUE(outgoing_ack()->missing_packets
.empty());
3603 TEST_P(QuicConnectionTest
, ReceivedEntropyHashCalculation
) {
3604 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3605 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3606 ProcessDataPacket(1, 1, kEntropyFlag
);
3607 ProcessDataPacket(4, 1, kEntropyFlag
);
3608 ProcessDataPacket(3, 1, !kEntropyFlag
);
3609 ProcessDataPacket(7, 1, kEntropyFlag
);
3610 EXPECT_EQ(146u, outgoing_ack()->entropy_hash
);
3613 TEST_P(QuicConnectionTest
, ReceivedEntropyHashCalculationHalfFEC
) {
3614 // FEC packets should not change the entropy hash calculation.
3615 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3616 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3617 ProcessDataPacket(1, 1, kEntropyFlag
);
3618 ProcessFecPacket(4, 1, false, kEntropyFlag
, nullptr);
3619 ProcessDataPacket(3, 3, !kEntropyFlag
);
3620 ProcessFecPacket(7, 3, false, kEntropyFlag
, nullptr);
3621 EXPECT_EQ(146u, outgoing_ack()->entropy_hash
);
3624 TEST_P(QuicConnectionTest
, UpdateEntropyForReceivedPackets
) {
3625 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3626 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3627 ProcessDataPacket(1, 1, kEntropyFlag
);
3628 ProcessDataPacket(5, 1, kEntropyFlag
);
3629 ProcessDataPacket(4, 1, !kEntropyFlag
);
3630 EXPECT_EQ(34u, outgoing_ack()->entropy_hash
);
3631 // Make 4th packet my least unacked, and update entropy for 2, 3 packets.
3632 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 5);
3633 QuicPacketEntropyHash six_packet_entropy_hash
= 0;
3634 QuicPacketEntropyHash random_entropy_hash
= 129u;
3635 QuicStopWaitingFrame frame
= InitStopWaitingFrame(4);
3636 frame
.entropy_hash
= random_entropy_hash
;
3637 if (ProcessStopWaitingPacket(&frame
)) {
3638 six_packet_entropy_hash
= 1 << 6;
3641 EXPECT_EQ((random_entropy_hash
+ (1 << 5) + six_packet_entropy_hash
),
3642 outgoing_ack()->entropy_hash
);
3645 TEST_P(QuicConnectionTest
, UpdateEntropyHashUptoCurrentPacket
) {
3646 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3647 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3648 ProcessDataPacket(1, 1, kEntropyFlag
);
3649 ProcessDataPacket(5, 1, !kEntropyFlag
);
3650 ProcessDataPacket(22, 1, kEntropyFlag
);
3651 EXPECT_EQ(66u, outgoing_ack()->entropy_hash
);
3652 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 22);
3653 QuicPacketEntropyHash random_entropy_hash
= 85u;
3654 // Current packet is the least unacked packet.
3655 QuicPacketEntropyHash ack_entropy_hash
;
3656 QuicStopWaitingFrame frame
= InitStopWaitingFrame(23);
3657 frame
.entropy_hash
= random_entropy_hash
;
3658 ack_entropy_hash
= ProcessStopWaitingPacket(&frame
);
3659 EXPECT_EQ((random_entropy_hash
+ ack_entropy_hash
),
3660 outgoing_ack()->entropy_hash
);
3661 ProcessDataPacket(25, 1, kEntropyFlag
);
3662 EXPECT_EQ((random_entropy_hash
+ ack_entropy_hash
+ (1 << (25 % 8))),
3663 outgoing_ack()->entropy_hash
);
3666 TEST_P(QuicConnectionTest
, EntropyCalculationForTruncatedAck
) {
3667 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3668 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3669 QuicPacketEntropyHash entropy
[51];
3671 for (int i
= 1; i
< 51; ++i
) {
3672 bool should_send
= i
% 10 != 1;
3673 bool entropy_flag
= (i
& (i
- 1)) != 0;
3675 entropy
[i
] = entropy
[i
- 1];
3679 entropy
[i
] = entropy
[i
- 1] ^ (1 << (i
% 8));
3681 entropy
[i
] = entropy
[i
- 1];
3683 ProcessDataPacket(i
, 1, entropy_flag
);
3685 for (int i
= 1; i
< 50; ++i
) {
3686 EXPECT_EQ(entropy
[i
], QuicConnectionPeer::ReceivedEntropyHash(
3691 TEST_P(QuicConnectionTest
, ServerSendsVersionNegotiationPacket
) {
3692 connection_
.SetSupportedVersions(QuicSupportedVersions());
3693 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
3695 QuicPacketHeader header
;
3696 header
.public_header
.connection_id
= connection_id_
;
3697 header
.public_header
.version_flag
= true;
3698 header
.packet_sequence_number
= 12;
3701 frames
.push_back(QuicFrame(&frame1_
));
3702 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3703 char buffer
[kMaxPacketSize
];
3704 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
3705 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
3707 framer_
.set_version(version());
3708 connection_
.set_perspective(Perspective::IS_SERVER
);
3709 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3710 EXPECT_TRUE(writer_
->version_negotiation_packet() != nullptr);
3712 size_t num_versions
= arraysize(kSupportedQuicVersions
);
3713 ASSERT_EQ(num_versions
,
3714 writer_
->version_negotiation_packet()->versions
.size());
3716 // We expect all versions in kSupportedQuicVersions to be
3717 // included in the packet.
3718 for (size_t i
= 0; i
< num_versions
; ++i
) {
3719 EXPECT_EQ(kSupportedQuicVersions
[i
],
3720 writer_
->version_negotiation_packet()->versions
[i
]);
3724 TEST_P(QuicConnectionTest
, ServerSendsVersionNegotiationPacketSocketBlocked
) {
3725 connection_
.SetSupportedVersions(QuicSupportedVersions());
3726 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
3728 QuicPacketHeader header
;
3729 header
.public_header
.connection_id
= connection_id_
;
3730 header
.public_header
.version_flag
= true;
3731 header
.packet_sequence_number
= 12;
3734 frames
.push_back(QuicFrame(&frame1_
));
3735 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3736 char buffer
[kMaxPacketSize
];
3737 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
3738 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
3740 framer_
.set_version(version());
3741 connection_
.set_perspective(Perspective::IS_SERVER
);
3743 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3744 EXPECT_EQ(0u, writer_
->last_packet_size());
3745 EXPECT_TRUE(connection_
.HasQueuedData());
3747 writer_
->SetWritable();
3748 connection_
.OnCanWrite();
3749 EXPECT_TRUE(writer_
->version_negotiation_packet() != nullptr);
3751 size_t num_versions
= arraysize(kSupportedQuicVersions
);
3752 ASSERT_EQ(num_versions
,
3753 writer_
->version_negotiation_packet()->versions
.size());
3755 // We expect all versions in kSupportedQuicVersions to be
3756 // included in the packet.
3757 for (size_t i
= 0; i
< num_versions
; ++i
) {
3758 EXPECT_EQ(kSupportedQuicVersions
[i
],
3759 writer_
->version_negotiation_packet()->versions
[i
]);
3763 TEST_P(QuicConnectionTest
,
3764 ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered
) {
3765 connection_
.SetSupportedVersions(QuicSupportedVersions());
3766 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
3768 QuicPacketHeader header
;
3769 header
.public_header
.connection_id
= connection_id_
;
3770 header
.public_header
.version_flag
= true;
3771 header
.packet_sequence_number
= 12;
3774 frames
.push_back(QuicFrame(&frame1_
));
3775 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3776 char buffer
[kMaxPacketSize
];
3777 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
3778 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
3780 framer_
.set_version(version());
3781 connection_
.set_perspective(Perspective::IS_SERVER
);
3783 writer_
->set_is_write_blocked_data_buffered(true);
3784 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3785 EXPECT_EQ(0u, writer_
->last_packet_size());
3786 EXPECT_FALSE(connection_
.HasQueuedData());
3789 TEST_P(QuicConnectionTest
, ClientHandlesVersionNegotiation
) {
3790 // Start out with some unsupported version.
3791 QuicConnectionPeer::GetFramer(&connection_
)->set_version_for_tests(
3792 QUIC_VERSION_UNSUPPORTED
);
3794 QuicPacketHeader header
;
3795 header
.public_header
.connection_id
= connection_id_
;
3796 header
.public_header
.version_flag
= true;
3797 header
.packet_sequence_number
= 12;
3799 QuicVersionVector supported_versions
;
3800 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
3801 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
3804 // Send a version negotiation packet.
3805 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3806 framer_
.BuildVersionNegotiationPacket(
3807 header
.public_header
, supported_versions
));
3808 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3810 // Now force another packet. The connection should transition into
3811 // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
3812 header
.public_header
.version_flag
= false;
3814 frames
.push_back(QuicFrame(&frame1_
));
3815 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3816 char buffer
[kMaxPacketSize
];
3817 encrypted
.reset(framer_
.EncryptPacket(ENCRYPTION_NONE
, 12, *packet
, buffer
,
3819 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
3820 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3821 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3823 ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_
));
3826 TEST_P(QuicConnectionTest
, BadVersionNegotiation
) {
3827 QuicPacketHeader header
;
3828 header
.public_header
.connection_id
= connection_id_
;
3829 header
.public_header
.version_flag
= true;
3830 header
.packet_sequence_number
= 12;
3832 QuicVersionVector supported_versions
;
3833 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
3834 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
3837 // Send a version negotiation packet with the version the client started with.
3838 // It should be rejected.
3839 EXPECT_CALL(visitor_
,
3840 OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET
,
3842 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3843 framer_
.BuildVersionNegotiationPacket(
3844 header
.public_header
, supported_versions
));
3845 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3848 TEST_P(QuicConnectionTest
, CheckSendStats
) {
3849 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3850 connection_
.SendStreamDataWithString(3, "first", 0, !kFin
, nullptr);
3851 size_t first_packet_size
= writer_
->last_packet_size();
3853 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3854 connection_
.SendStreamDataWithString(5, "second", 0, !kFin
, nullptr);
3855 size_t second_packet_size
= writer_
->last_packet_size();
3857 // 2 retransmissions due to rto, 1 due to explicit nack.
3858 EXPECT_CALL(*send_algorithm_
, OnRetransmissionTimeout(true));
3859 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(3);
3861 // Retransmit due to RTO.
3862 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(10));
3863 connection_
.GetRetransmissionAlarm()->Fire();
3865 // Retransmit due to explicit nacks.
3866 QuicAckFrame nack_three
= InitAckFrame(4);
3867 NackPacket(3, &nack_three
);
3868 NackPacket(1, &nack_three
);
3869 SequenceNumberSet lost_packets
;
3870 lost_packets
.insert(1);
3871 lost_packets
.insert(3);
3872 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3873 .WillOnce(Return(lost_packets
));
3874 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3875 EXPECT_CALL(visitor_
, OnCanWrite()).Times(2);
3876 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3877 ProcessAckPacket(&nack_three
);
3879 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate()).WillOnce(
3880 Return(QuicBandwidth::Zero()));
3882 const QuicConnectionStats
& stats
= connection_
.GetStats();
3883 EXPECT_EQ(3 * first_packet_size
+ 2 * second_packet_size
- kQuicVersionSize
,
3885 EXPECT_EQ(5u, stats
.packets_sent
);
3886 EXPECT_EQ(2 * first_packet_size
+ second_packet_size
- kQuicVersionSize
,
3887 stats
.bytes_retransmitted
);
3888 EXPECT_EQ(3u, stats
.packets_retransmitted
);
3889 EXPECT_EQ(1u, stats
.rto_count
);
3890 EXPECT_EQ(kDefaultMaxPacketSize
, stats
.max_packet_size
);
3893 TEST_P(QuicConnectionTest
, CheckReceiveStats
) {
3894 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3896 size_t received_bytes
= 0;
3897 received_bytes
+= ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
3898 received_bytes
+= ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
3899 // Should be counted against dropped packets.
3900 received_bytes
+= ProcessDataPacket(3, 1, !kEntropyFlag
);
3901 received_bytes
+= ProcessFecPacket(4, 1, true, !kEntropyFlag
, nullptr);
3903 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate()).WillOnce(
3904 Return(QuicBandwidth::Zero()));
3906 const QuicConnectionStats
& stats
= connection_
.GetStats();
3907 EXPECT_EQ(received_bytes
, stats
.bytes_received
);
3908 EXPECT_EQ(4u, stats
.packets_received
);
3910 EXPECT_EQ(1u, stats
.packets_revived
);
3911 EXPECT_EQ(1u, stats
.packets_dropped
);
3914 TEST_P(QuicConnectionTest
, TestFecGroupLimits
) {
3915 // Create and return a group for 1.
3916 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 1) != nullptr);
3918 // Create and return a group for 2.
3919 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) != nullptr);
3921 // Create and return a group for 4. This should remove 1 but not 2.
3922 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 4) != nullptr);
3923 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 1) == nullptr);
3924 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) != nullptr);
3926 // Create and return a group for 3. This will kill off 2.
3927 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 3) != nullptr);
3928 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) == nullptr);
3930 // Verify that adding 5 kills off 3, despite 4 being created before 3.
3931 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 5) != nullptr);
3932 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 4) != nullptr);
3933 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 3) == nullptr);
3936 TEST_P(QuicConnectionTest
, ProcessFramesIfPacketClosedConnection
) {
3937 // Construct a packet with stream frame and connection close frame.
3938 QuicPacketHeader header
;
3939 header
.public_header
.connection_id
= connection_id_
;
3940 header
.packet_sequence_number
= 1;
3941 header
.public_header
.version_flag
= false;
3943 QuicConnectionCloseFrame qccf
;
3944 qccf
.error_code
= QUIC_PEER_GOING_AWAY
;
3947 frames
.push_back(QuicFrame(&frame1_
));
3948 frames
.push_back(QuicFrame(&qccf
));
3949 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3950 EXPECT_TRUE(nullptr != packet
.get());
3951 char buffer
[kMaxPacketSize
];
3952 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
3953 ENCRYPTION_NONE
, 1, *packet
, buffer
, kMaxPacketSize
));
3955 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, true));
3956 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
3957 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3959 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3962 TEST_P(QuicConnectionTest
, SelectMutualVersion
) {
3963 connection_
.SetSupportedVersions(QuicSupportedVersions());
3964 // Set the connection to speak the lowest quic version.
3965 connection_
.set_version(QuicVersionMin());
3966 EXPECT_EQ(QuicVersionMin(), connection_
.version());
3968 // Pass in available versions which includes a higher mutually supported
3969 // version. The higher mutually supported version should be selected.
3970 QuicVersionVector supported_versions
;
3971 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
3972 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
3974 EXPECT_TRUE(connection_
.SelectMutualVersion(supported_versions
));
3975 EXPECT_EQ(QuicVersionMax(), connection_
.version());
3977 // Expect that the lowest version is selected.
3978 // Ensure the lowest supported version is less than the max, unless they're
3980 EXPECT_LE(QuicVersionMin(), QuicVersionMax());
3981 QuicVersionVector lowest_version_vector
;
3982 lowest_version_vector
.push_back(QuicVersionMin());
3983 EXPECT_TRUE(connection_
.SelectMutualVersion(lowest_version_vector
));
3984 EXPECT_EQ(QuicVersionMin(), connection_
.version());
3986 // Shouldn't be able to find a mutually supported version.
3987 QuicVersionVector unsupported_version
;
3988 unsupported_version
.push_back(QUIC_VERSION_UNSUPPORTED
);
3989 EXPECT_FALSE(connection_
.SelectMutualVersion(unsupported_version
));
3992 TEST_P(QuicConnectionTest
, ConnectionCloseWhenWritable
) {
3993 EXPECT_FALSE(writer_
->IsWriteBlocked());
3996 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
3997 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3998 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4000 TriggerConnectionClose();
4001 EXPECT_EQ(2u, writer_
->packets_write_attempts());
4004 TEST_P(QuicConnectionTest
, ConnectionCloseGettingWriteBlocked
) {
4006 TriggerConnectionClose();
4007 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4008 EXPECT_TRUE(writer_
->IsWriteBlocked());
4011 TEST_P(QuicConnectionTest
, ConnectionCloseWhenWriteBlocked
) {
4013 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4014 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
4015 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4016 EXPECT_TRUE(writer_
->IsWriteBlocked());
4017 TriggerConnectionClose();
4018 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4021 TEST_P(QuicConnectionTest
, AckNotifierTriggerCallback
) {
4022 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4024 // Create a delegate which we expect to be called.
4025 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4026 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4028 // Send some data, which will register the delegate to be notified.
4029 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4031 // Process an ACK from the server which should trigger the callback.
4032 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4033 QuicAckFrame frame
= InitAckFrame(1);
4034 ProcessAckPacket(&frame
);
4037 TEST_P(QuicConnectionTest
, AckNotifierFailToTriggerCallback
) {
4038 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4040 // Create a delegate which we don't expect to be called.
4041 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4042 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(0);
4044 // Send some data, which will register the delegate to be notified. This will
4045 // not be ACKed and so the delegate should never be called.
4046 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4048 // Send some other data which we will ACK.
4049 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4050 connection_
.SendStreamDataWithString(1, "bar", 0, !kFin
, nullptr);
4052 // Now we receive ACK for packets 2 and 3, but importantly missing packet 1
4053 // which we registered to be notified about.
4054 QuicAckFrame frame
= InitAckFrame(3);
4055 NackPacket(1, &frame
);
4056 SequenceNumberSet lost_packets
;
4057 lost_packets
.insert(1);
4058 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4059 .WillOnce(Return(lost_packets
));
4060 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4061 ProcessAckPacket(&frame
);
4064 TEST_P(QuicConnectionTest
, AckNotifierCallbackAfterRetransmission
) {
4065 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4067 // Create a delegate which we expect to be called.
4068 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4069 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4071 // Send four packets, and register to be notified on ACK of packet 2.
4072 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
4073 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, delegate
.get());
4074 connection_
.SendStreamDataWithString(3, "baz", 0, !kFin
, nullptr);
4075 connection_
.SendStreamDataWithString(3, "qux", 0, !kFin
, nullptr);
4077 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
4078 QuicAckFrame frame
= InitAckFrame(4);
4079 NackPacket(2, &frame
);
4080 SequenceNumberSet lost_packets
;
4081 lost_packets
.insert(2);
4082 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4083 .WillOnce(Return(lost_packets
));
4084 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4085 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4086 ProcessAckPacket(&frame
);
4088 // Now we get an ACK for packet 5 (retransmitted packet 2), which should
4089 // trigger the callback.
4090 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4091 .WillRepeatedly(Return(SequenceNumberSet()));
4092 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4093 QuicAckFrame second_ack_frame
= InitAckFrame(5);
4094 ProcessAckPacket(&second_ack_frame
);
4097 // AckNotifierCallback is triggered by the ack of a packet that timed
4098 // out and was retransmitted, even though the retransmission has a
4099 // different sequence number.
4100 TEST_P(QuicConnectionTest
, AckNotifierCallbackForAckAfterRTO
) {
4103 // Create a delegate which we expect to be called.
4104 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4105 new StrictMock
<MockAckNotifierDelegate
>);
4107 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
4108 DefaultRetransmissionTime());
4109 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, delegate
.get());
4110 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
4112 EXPECT_EQ(1u, writer_
->header().packet_sequence_number
);
4113 EXPECT_EQ(default_retransmission_time
,
4114 connection_
.GetRetransmissionAlarm()->deadline());
4115 // Simulate the retransmission alarm firing.
4116 clock_
.AdvanceTime(DefaultRetransmissionTime());
4117 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
4118 connection_
.GetRetransmissionAlarm()->Fire();
4119 EXPECT_EQ(2u, writer_
->header().packet_sequence_number
);
4120 // We do not raise the high water mark yet.
4121 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
4123 // Ack the original packet, which will revert the RTO.
4124 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4125 EXPECT_CALL(*delegate
, OnAckNotification(1, _
, _
));
4126 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4127 QuicAckFrame ack_frame
= InitAckFrame(1);
4128 ProcessAckPacket(&ack_frame
);
4130 // Delegate is not notified again when the retransmit is acked.
4131 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4132 QuicAckFrame second_ack_frame
= InitAckFrame(2);
4133 ProcessAckPacket(&second_ack_frame
);
4136 // AckNotifierCallback is triggered by the ack of a packet that was
4137 // previously nacked, even though the retransmission has a different
4139 TEST_P(QuicConnectionTest
, AckNotifierCallbackForAckOfNackedPacket
) {
4142 // Create a delegate which we expect to be called.
4143 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4144 new StrictMock
<MockAckNotifierDelegate
>);
4146 // Send four packets, and register to be notified on ACK of packet 2.
4147 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
4148 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, delegate
.get());
4149 connection_
.SendStreamDataWithString(3, "baz", 0, !kFin
, nullptr);
4150 connection_
.SendStreamDataWithString(3, "qux", 0, !kFin
, nullptr);
4152 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
4153 QuicAckFrame frame
= InitAckFrame(4);
4154 NackPacket(2, &frame
);
4155 SequenceNumberSet lost_packets
;
4156 lost_packets
.insert(2);
4157 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4158 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4159 .WillOnce(Return(lost_packets
));
4160 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4161 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4162 ProcessAckPacket(&frame
);
4164 // Now we get an ACK for packet 2, which was previously nacked.
4165 SequenceNumberSet no_lost_packets
;
4166 EXPECT_CALL(*delegate
.get(), OnAckNotification(1, _
, _
));
4167 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4168 .WillOnce(Return(no_lost_packets
));
4169 QuicAckFrame second_ack_frame
= InitAckFrame(4);
4170 ProcessAckPacket(&second_ack_frame
);
4172 // Verify that the delegate is not notified again when the
4173 // retransmit is acked.
4174 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4175 .WillOnce(Return(no_lost_packets
));
4176 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4177 QuicAckFrame third_ack_frame
= InitAckFrame(5);
4178 ProcessAckPacket(&third_ack_frame
);
4181 TEST_P(QuicConnectionTest
, AckNotifierFECTriggerCallback
) {
4182 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4184 // Create a delegate which we expect to be called.
4185 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4186 new MockAckNotifierDelegate
);
4187 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4189 // Send some data, which will register the delegate to be notified.
4190 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4191 connection_
.SendStreamDataWithString(2, "bar", 0, !kFin
, nullptr);
4193 // Process an ACK from the server with a revived packet, which should trigger
4195 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4196 QuicAckFrame frame
= InitAckFrame(2);
4197 NackPacket(1, &frame
);
4198 frame
.revived_packets
.insert(1);
4199 ProcessAckPacket(&frame
);
4200 // If the ack is processed again, the notifier should not be called again.
4201 ProcessAckPacket(&frame
);
4204 TEST_P(QuicConnectionTest
, AckNotifierCallbackAfterFECRecovery
) {
4205 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4206 EXPECT_CALL(visitor_
, OnCanWrite());
4208 // Create a delegate which we expect to be called.
4209 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4210 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4212 // Expect ACKs for 1 packet.
4213 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4215 // Send one packet, and register to be notified on ACK.
4216 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4218 // Ack packet gets dropped, but we receive an FEC packet that covers it.
4219 // Should recover the Ack packet and trigger the notification callback.
4222 QuicAckFrame ack_frame
= InitAckFrame(1);
4223 frames
.push_back(QuicFrame(&ack_frame
));
4225 // Dummy stream frame to satisfy expectations set elsewhere.
4226 frames
.push_back(QuicFrame(&frame1_
));
4228 QuicPacketHeader ack_header
;
4229 ack_header
.public_header
.connection_id
= connection_id_
;
4230 ack_header
.public_header
.reset_flag
= false;
4231 ack_header
.public_header
.version_flag
= false;
4232 ack_header
.entropy_flag
= !kEntropyFlag
;
4233 ack_header
.fec_flag
= true;
4234 ack_header
.packet_sequence_number
= 1;
4235 ack_header
.is_in_fec_group
= IN_FEC_GROUP
;
4236 ack_header
.fec_group
= 1;
4238 QuicPacket
* packet
= BuildUnsizedDataPacket(&framer_
, ack_header
, frames
);
4240 // Take the packet which contains the ACK frame, and construct and deliver an
4241 // FEC packet which allows the ACK packet to be recovered.
4242 ProcessFecPacket(2, 1, true, !kEntropyFlag
, packet
);
4245 TEST_P(QuicConnectionTest
, NetworkChangeVisitorCwndCallbackChangesFecState
) {
4246 size_t max_packets_per_fec_group
= creator_
->max_packets_per_fec_group();
4248 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4249 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4250 EXPECT_TRUE(visitor
);
4252 // Increase FEC group size by increasing congestion window to a large number.
4253 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
4254 Return(1000 * kDefaultTCPMSS
));
4255 visitor
->OnCongestionWindowChange();
4256 EXPECT_LT(max_packets_per_fec_group
, creator_
->max_packets_per_fec_group());
4259 TEST_P(QuicConnectionTest
, NetworkChangeVisitorConfigCallbackChangesFecState
) {
4260 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4261 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4262 EXPECT_TRUE(visitor
);
4263 EXPECT_EQ(QuicTime::Delta::Zero(),
4264 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4266 // Verify that sending a config with a new initial rtt changes fec timeout.
4267 // Create and process a config with a non-zero initial RTT.
4268 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
4270 config
.SetInitialRoundTripTimeUsToSend(300000);
4271 connection_
.SetFromConfig(config
);
4272 EXPECT_LT(QuicTime::Delta::Zero(),
4273 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4276 TEST_P(QuicConnectionTest
, NetworkChangeVisitorRttCallbackChangesFecState
) {
4277 // Verify that sending a config with a new initial rtt changes fec timeout.
4278 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4279 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4280 EXPECT_TRUE(visitor
);
4281 EXPECT_EQ(QuicTime::Delta::Zero(),
4282 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4284 // Increase FEC timeout by increasing RTT.
4285 RttStats
* rtt_stats
= QuicSentPacketManagerPeer::GetRttStats(manager_
);
4286 rtt_stats
->UpdateRtt(QuicTime::Delta::FromMilliseconds(300),
4287 QuicTime::Delta::Zero(), QuicTime::Zero());
4288 visitor
->OnRttChange();
4289 EXPECT_LT(QuicTime::Delta::Zero(),
4290 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4293 TEST_P(QuicConnectionTest
, OnPacketHeaderDebugVisitor
) {
4294 QuicPacketHeader header
;
4296 scoped_ptr
<MockQuicConnectionDebugVisitor
> debug_visitor(
4297 new MockQuicConnectionDebugVisitor());
4298 connection_
.set_debug_visitor(debug_visitor
.get());
4299 EXPECT_CALL(*debug_visitor
, OnPacketHeader(Ref(header
))).Times(1);
4300 connection_
.OnPacketHeader(header
);
4303 TEST_P(QuicConnectionTest
, Pacing
) {
4304 TestConnection
server(connection_id_
, IPEndPoint(), helper_
.get(), factory_
,
4305 Perspective::IS_SERVER
, version());
4306 TestConnection
client(connection_id_
, IPEndPoint(), helper_
.get(), factory_
,
4307 Perspective::IS_CLIENT
, version());
4308 EXPECT_FALSE(client
.sent_packet_manager().using_pacing());
4309 EXPECT_FALSE(server
.sent_packet_manager().using_pacing());
4312 TEST_P(QuicConnectionTest
, ControlFramesInstigateAcks
) {
4313 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4315 // Send a WINDOW_UPDATE frame.
4316 QuicWindowUpdateFrame window_update
;
4317 window_update
.stream_id
= 3;
4318 window_update
.byte_offset
= 1234;
4319 EXPECT_CALL(visitor_
, OnWindowUpdateFrames(_
));
4320 ProcessFramePacket(QuicFrame(&window_update
));
4322 // Ensure that this has caused the ACK alarm to be set.
4323 QuicAlarm
* ack_alarm
= QuicConnectionPeer::GetAckAlarm(&connection_
);
4324 EXPECT_TRUE(ack_alarm
->IsSet());
4326 // Cancel alarm, and try again with BLOCKED frame.
4327 ack_alarm
->Cancel();
4328 QuicBlockedFrame blocked
;
4329 blocked
.stream_id
= 3;
4330 EXPECT_CALL(visitor_
, OnBlockedFrames(_
));
4331 ProcessFramePacket(QuicFrame(&blocked
));
4332 EXPECT_TRUE(ack_alarm
->IsSet());
4335 TEST_P(QuicConnectionTest
, NoDataNoFin
) {
4336 // Make sure that a call to SendStreamWithData, with no data and no FIN, does
4337 // not result in a QuicAckNotifier being used-after-free (fail under ASAN).
4338 // Regression test for b/18594622
4339 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4341 connection_
.SendStreamDataWithString(3, "", 0, !kFin
, delegate
.get()),
4342 "Attempt to send empty stream frame");