Ignore non-active fullscreen windows for shelf state.
[chromium-blink-merge.git] / net / disk_cache / sparse_control.cc
blobb96ccc9faffda78a9b95e711962b9d528a33d0cf
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/sparse_control.h"
7 #include "base/bind.h"
8 #include "base/format_macros.h"
9 #include "base/logging.h"
10 #include "base/message_loop/message_loop.h"
11 #include "base/strings/string_util.h"
12 #include "base/strings/stringprintf.h"
13 #include "base/time/time.h"
14 #include "net/base/io_buffer.h"
15 #include "net/base/net_errors.h"
16 #include "net/disk_cache/backend_impl.h"
17 #include "net/disk_cache/entry_impl.h"
18 #include "net/disk_cache/file.h"
19 #include "net/disk_cache/net_log_parameters.h"
21 using base::Time;
23 namespace {
25 // Stream of the sparse data index.
26 const int kSparseIndex = 2;
28 // Stream of the sparse data.
29 const int kSparseData = 1;
31 // We can have up to 64k children.
32 const int kMaxMapSize = 8 * 1024;
34 // The maximum number of bytes that a child can store.
35 const int kMaxEntrySize = 0x100000;
37 // The size of each data block (tracked by the child allocation bitmap).
38 const int kBlockSize = 1024;
40 // Returns the name of a child entry given the base_name and signature of the
41 // parent and the child_id.
42 // If the entry is called entry_name, child entries will be named something
43 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
44 // number of the particular child.
45 std::string GenerateChildName(const std::string& base_name, int64 signature,
46 int64 child_id) {
47 return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
48 signature, child_id);
51 // This class deletes the children of a sparse entry.
52 class ChildrenDeleter
53 : public base::RefCounted<ChildrenDeleter>,
54 public disk_cache::FileIOCallback {
55 public:
56 ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
57 : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
59 virtual void OnFileIOComplete(int bytes_copied) OVERRIDE;
61 // Two ways of deleting the children: if we have the children map, use Start()
62 // directly, otherwise pass the data address to ReadData().
63 void Start(char* buffer, int len);
64 void ReadData(disk_cache::Addr address, int len);
66 private:
67 friend class base::RefCounted<ChildrenDeleter>;
68 virtual ~ChildrenDeleter() {}
70 void DeleteChildren();
72 base::WeakPtr<disk_cache::BackendImpl> backend_;
73 std::string name_;
74 disk_cache::Bitmap children_map_;
75 int64 signature_;
76 scoped_ptr<char[]> buffer_;
77 DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
80 // This is the callback of the file operation.
81 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
82 char* buffer = buffer_.release();
83 Start(buffer, bytes_copied);
86 void ChildrenDeleter::Start(char* buffer, int len) {
87 buffer_.reset(buffer);
88 if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
89 return Release();
91 // Just copy the information from |buffer|, delete |buffer| and start deleting
92 // the child entries.
93 disk_cache::SparseData* data =
94 reinterpret_cast<disk_cache::SparseData*>(buffer);
95 signature_ = data->header.signature;
97 int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
98 children_map_.Resize(num_bits, false);
99 children_map_.SetMap(data->bitmap, num_bits / 32);
100 buffer_.reset();
102 DeleteChildren();
105 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
106 DCHECK(address.is_block_file());
107 if (!backend_.get())
108 return Release();
110 disk_cache::File* file(backend_->File(address));
111 if (!file)
112 return Release();
114 size_t file_offset = address.start_block() * address.BlockSize() +
115 disk_cache::kBlockHeaderSize;
117 buffer_.reset(new char[len]);
118 bool completed;
119 if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
120 return Release();
122 if (completed)
123 OnFileIOComplete(len);
125 // And wait until OnFileIOComplete gets called.
128 void ChildrenDeleter::DeleteChildren() {
129 int child_id = 0;
130 if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
131 // We are done. Just delete this object.
132 return Release();
134 std::string child_name = GenerateChildName(name_, signature_, child_id);
135 backend_->SyncDoomEntry(child_name);
136 children_map_.Set(child_id, false);
138 // Post a task to delete the next child.
139 base::MessageLoop::current()->PostTask(
140 FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this));
143 // Returns the NetLog event type corresponding to a SparseOperation.
144 net::NetLog::EventType GetSparseEventType(
145 disk_cache::SparseControl::SparseOperation operation) {
146 switch (operation) {
147 case disk_cache::SparseControl::kReadOperation:
148 return net::NetLog::TYPE_SPARSE_READ;
149 case disk_cache::SparseControl::kWriteOperation:
150 return net::NetLog::TYPE_SPARSE_WRITE;
151 case disk_cache::SparseControl::kGetRangeOperation:
152 return net::NetLog::TYPE_SPARSE_GET_RANGE;
153 default:
154 NOTREACHED();
155 return net::NetLog::TYPE_CANCELLED;
159 // Logs the end event for |operation| on a child entry. Range operations log
160 // no events for each child they search through.
161 void LogChildOperationEnd(const net::BoundNetLog& net_log,
162 disk_cache::SparseControl::SparseOperation operation,
163 int result) {
164 if (net_log.IsLoggingAllEvents()) {
165 net::NetLog::EventType event_type;
166 switch (operation) {
167 case disk_cache::SparseControl::kReadOperation:
168 event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
169 break;
170 case disk_cache::SparseControl::kWriteOperation:
171 event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
172 break;
173 case disk_cache::SparseControl::kGetRangeOperation:
174 return;
175 default:
176 NOTREACHED();
177 return;
179 net_log.EndEventWithNetErrorCode(event_type, result);
183 } // namespace.
185 namespace disk_cache {
187 SparseControl::SparseControl(EntryImpl* entry)
188 : entry_(entry),
189 child_(NULL),
190 operation_(kNoOperation),
191 pending_(false),
192 finished_(false),
193 init_(false),
194 range_found_(false),
195 abort_(false),
196 child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
197 offset_(0),
198 buf_len_(0),
199 child_offset_(0),
200 child_len_(0),
201 result_(0) {
202 memset(&sparse_header_, 0, sizeof(sparse_header_));
203 memset(&child_data_, 0, sizeof(child_data_));
206 SparseControl::~SparseControl() {
207 if (child_)
208 CloseChild();
209 if (init_)
210 WriteSparseData();
213 int SparseControl::Init() {
214 DCHECK(!init_);
216 // We should not have sparse data for the exposed entry.
217 if (entry_->GetDataSize(kSparseData))
218 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
220 // Now see if there is something where we store our data.
221 int rv = net::OK;
222 int data_len = entry_->GetDataSize(kSparseIndex);
223 if (!data_len) {
224 rv = CreateSparseEntry();
225 } else {
226 rv = OpenSparseEntry(data_len);
229 if (rv == net::OK)
230 init_ = true;
231 return rv;
234 bool SparseControl::CouldBeSparse() const {
235 DCHECK(!init_);
237 if (entry_->GetDataSize(kSparseData))
238 return false;
240 // We don't verify the data, just see if it could be there.
241 return (entry_->GetDataSize(kSparseIndex) != 0);
244 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
245 int buf_len, const CompletionCallback& callback) {
246 DCHECK(init_);
247 // We don't support simultaneous IO for sparse data.
248 if (operation_ != kNoOperation)
249 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
251 if (offset < 0 || buf_len < 0)
252 return net::ERR_INVALID_ARGUMENT;
254 // We only support up to 64 GB.
255 if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0)
256 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
258 DCHECK(!user_buf_.get());
259 DCHECK(user_callback_.is_null());
261 if (!buf && (op == kReadOperation || op == kWriteOperation))
262 return 0;
264 // Copy the operation parameters.
265 operation_ = op;
266 offset_ = offset;
267 user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
268 buf_len_ = buf_len;
269 user_callback_ = callback;
271 result_ = 0;
272 pending_ = false;
273 finished_ = false;
274 abort_ = false;
276 if (entry_->net_log().IsLoggingAllEvents()) {
277 entry_->net_log().BeginEvent(
278 GetSparseEventType(operation_),
279 CreateNetLogSparseOperationCallback(offset_, buf_len_));
281 DoChildrenIO();
283 if (!pending_) {
284 // Everything was done synchronously.
285 operation_ = kNoOperation;
286 user_buf_ = NULL;
287 user_callback_.Reset();
288 return result_;
291 return net::ERR_IO_PENDING;
294 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
295 DCHECK(init_);
296 // We don't support simultaneous IO for sparse data.
297 if (operation_ != kNoOperation)
298 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
300 DCHECK(start);
302 range_found_ = false;
303 int result = StartIO(
304 kGetRangeOperation, offset, NULL, len, CompletionCallback());
305 if (range_found_) {
306 *start = offset_;
307 return result;
310 // This is a failure. We want to return a valid start value in any case.
311 *start = offset;
312 return result < 0 ? result : 0; // Don't mask error codes to the caller.
315 void SparseControl::CancelIO() {
316 if (operation_ == kNoOperation)
317 return;
318 abort_ = true;
321 int SparseControl::ReadyToUse(const CompletionCallback& callback) {
322 if (!abort_)
323 return net::OK;
325 // We'll grab another reference to keep this object alive because we just have
326 // one extra reference due to the pending IO operation itself, but we'll
327 // release that one before invoking user_callback_.
328 entry_->AddRef(); // Balanced in DoAbortCallbacks.
329 abort_callbacks_.push_back(callback);
330 return net::ERR_IO_PENDING;
333 // Static
334 void SparseControl::DeleteChildren(EntryImpl* entry) {
335 DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
336 int data_len = entry->GetDataSize(kSparseIndex);
337 if (data_len < static_cast<int>(sizeof(SparseData)) ||
338 entry->GetDataSize(kSparseData))
339 return;
341 int map_len = data_len - sizeof(SparseHeader);
342 if (map_len > kMaxMapSize || map_len % 4)
343 return;
345 char* buffer;
346 Addr address;
347 entry->GetData(kSparseIndex, &buffer, &address);
348 if (!buffer && !address.is_initialized())
349 return;
351 entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN);
353 DCHECK(entry->backend_.get());
354 ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
355 entry->GetKey());
356 // The object will self destruct when finished.
357 deleter->AddRef();
359 if (buffer) {
360 base::MessageLoop::current()->PostTask(
361 FROM_HERE,
362 base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len));
363 } else {
364 base::MessageLoop::current()->PostTask(
365 FROM_HERE,
366 base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len));
370 // We are going to start using this entry to store sparse data, so we have to
371 // initialize our control info.
372 int SparseControl::CreateSparseEntry() {
373 if (CHILD_ENTRY & entry_->GetEntryFlags())
374 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
376 memset(&sparse_header_, 0, sizeof(sparse_header_));
377 sparse_header_.signature = Time::Now().ToInternalValue();
378 sparse_header_.magic = kIndexMagic;
379 sparse_header_.parent_key_len = entry_->GetKey().size();
380 children_map_.Resize(kNumSparseBits, true);
382 // Save the header. The bitmap is saved in the destructor.
383 scoped_refptr<net::IOBuffer> buf(
384 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
386 int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
387 CompletionCallback(), false);
388 if (rv != sizeof(sparse_header_)) {
389 DLOG(ERROR) << "Unable to save sparse_header_";
390 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
393 entry_->SetEntryFlags(PARENT_ENTRY);
394 return net::OK;
397 // We are opening an entry from disk. Make sure that our control data is there.
398 int SparseControl::OpenSparseEntry(int data_len) {
399 if (data_len < static_cast<int>(sizeof(SparseData)))
400 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
402 if (entry_->GetDataSize(kSparseData))
403 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
405 if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
406 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
408 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
409 int map_len = data_len - sizeof(sparse_header_);
410 if (map_len > kMaxMapSize || map_len % 4)
411 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
413 scoped_refptr<net::IOBuffer> buf(
414 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
416 // Read header.
417 int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
418 CompletionCallback());
419 if (rv != static_cast<int>(sizeof(sparse_header_)))
420 return net::ERR_CACHE_READ_FAILURE;
422 // The real validation should be performed by the caller. This is just to
423 // double check.
424 if (sparse_header_.magic != kIndexMagic ||
425 sparse_header_.parent_key_len !=
426 static_cast<int>(entry_->GetKey().size()))
427 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
429 // Read the actual bitmap.
430 buf = new net::IOBuffer(map_len);
431 rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
432 map_len, CompletionCallback());
433 if (rv != map_len)
434 return net::ERR_CACHE_READ_FAILURE;
436 // Grow the bitmap to the current size and copy the bits.
437 children_map_.Resize(map_len * 8, false);
438 children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
439 return net::OK;
442 bool SparseControl::OpenChild() {
443 DCHECK_GE(result_, 0);
445 std::string key = GenerateChildKey();
446 if (child_) {
447 // Keep using the same child or open another one?.
448 if (key == child_->GetKey())
449 return true;
450 CloseChild();
453 // See if we are tracking this child.
454 if (!ChildPresent())
455 return ContinueWithoutChild(key);
457 if (!entry_->backend_.get())
458 return false;
460 child_ = entry_->backend_->OpenEntryImpl(key);
461 if (!child_)
462 return ContinueWithoutChild(key);
464 EntryImpl* child = static_cast<EntryImpl*>(child_);
465 if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
466 child->GetDataSize(kSparseIndex) <
467 static_cast<int>(sizeof(child_data_)))
468 return KillChildAndContinue(key, false);
470 scoped_refptr<net::WrappedIOBuffer> buf(
471 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
473 // Read signature.
474 int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
475 CompletionCallback());
476 if (rv != sizeof(child_data_))
477 return KillChildAndContinue(key, true); // This is a fatal failure.
479 if (child_data_.header.signature != sparse_header_.signature ||
480 child_data_.header.magic != kIndexMagic)
481 return KillChildAndContinue(key, false);
483 if (child_data_.header.last_block_len < 0 ||
484 child_data_.header.last_block_len > kBlockSize) {
485 // Make sure these values are always within range.
486 child_data_.header.last_block_len = 0;
487 child_data_.header.last_block = -1;
490 return true;
493 void SparseControl::CloseChild() {
494 scoped_refptr<net::WrappedIOBuffer> buf(
495 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
497 // Save the allocation bitmap before closing the child entry.
498 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
499 CompletionCallback(), false);
500 if (rv != sizeof(child_data_))
501 DLOG(ERROR) << "Failed to save child data";
502 child_->Release();
503 child_ = NULL;
506 std::string SparseControl::GenerateChildKey() {
507 return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
508 offset_ >> 20);
511 // We are deleting the child because something went wrong.
512 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
513 SetChildBit(false);
514 child_->DoomImpl();
515 child_->Release();
516 child_ = NULL;
517 if (fatal) {
518 result_ = net::ERR_CACHE_READ_FAILURE;
519 return false;
521 return ContinueWithoutChild(key);
524 // We were not able to open this child; see what we can do.
525 bool SparseControl::ContinueWithoutChild(const std::string& key) {
526 if (kReadOperation == operation_)
527 return false;
528 if (kGetRangeOperation == operation_)
529 return true;
531 if (!entry_->backend_.get())
532 return false;
534 child_ = entry_->backend_->CreateEntryImpl(key);
535 if (!child_) {
536 child_ = NULL;
537 result_ = net::ERR_CACHE_READ_FAILURE;
538 return false;
540 // Write signature.
541 InitChildData();
542 return true;
545 bool SparseControl::ChildPresent() {
546 int child_bit = static_cast<int>(offset_ >> 20);
547 if (children_map_.Size() <= child_bit)
548 return false;
550 return children_map_.Get(child_bit);
553 void SparseControl::SetChildBit(bool value) {
554 int child_bit = static_cast<int>(offset_ >> 20);
556 // We may have to increase the bitmap of child entries.
557 if (children_map_.Size() <= child_bit)
558 children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
560 children_map_.Set(child_bit, value);
563 void SparseControl::WriteSparseData() {
564 scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
565 reinterpret_cast<const char*>(children_map_.GetMap())));
567 int len = children_map_.ArraySize() * 4;
568 int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
569 len, CompletionCallback(), false);
570 if (rv != len) {
571 DLOG(ERROR) << "Unable to save sparse map";
575 bool SparseControl::VerifyRange() {
576 DCHECK_GE(result_, 0);
578 child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
579 child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
581 // We can write to (or get info from) anywhere in this child.
582 if (operation_ != kReadOperation)
583 return true;
585 // Check that there are no holes in this range.
586 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
587 int start = child_offset_ >> 10;
588 if (child_map_.FindNextBit(&start, last_bit, false)) {
589 // Something is not here.
590 DCHECK_GE(child_data_.header.last_block_len, 0);
591 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
592 int partial_block_len = PartialBlockLength(start);
593 if (start == child_offset_ >> 10) {
594 // It looks like we don't have anything.
595 if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
596 return false;
599 // We have the first part.
600 child_len_ = (start << 10) - child_offset_;
601 if (partial_block_len) {
602 // We may have a few extra bytes.
603 child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
605 // There is no need to read more after this one.
606 buf_len_ = child_len_;
608 return true;
611 void SparseControl::UpdateRange(int result) {
612 if (result <= 0 || operation_ != kWriteOperation)
613 return;
615 DCHECK_GE(child_data_.header.last_block_len, 0);
616 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
618 // Write the bitmap.
619 int first_bit = child_offset_ >> 10;
620 int block_offset = child_offset_ & (kBlockSize - 1);
621 if (block_offset && (child_data_.header.last_block != first_bit ||
622 child_data_.header.last_block_len < block_offset)) {
623 // The first block is not completely filled; ignore it.
624 first_bit++;
627 int last_bit = (child_offset_ + result) >> 10;
628 block_offset = (child_offset_ + result) & (kBlockSize - 1);
630 // This condition will hit with the following criteria:
631 // 1. The first byte doesn't follow the last write.
632 // 2. The first byte is in the middle of a block.
633 // 3. The first byte and the last byte are in the same block.
634 if (first_bit > last_bit)
635 return;
637 if (block_offset && !child_map_.Get(last_bit)) {
638 // The last block is not completely filled; save it for later.
639 child_data_.header.last_block = last_bit;
640 child_data_.header.last_block_len = block_offset;
641 } else {
642 child_data_.header.last_block = -1;
645 child_map_.SetRange(first_bit, last_bit, true);
648 int SparseControl::PartialBlockLength(int block_index) const {
649 if (block_index == child_data_.header.last_block)
650 return child_data_.header.last_block_len;
652 // This may be the last stored index.
653 int entry_len = child_->GetDataSize(kSparseData);
654 if (block_index == entry_len >> 10)
655 return entry_len & (kBlockSize - 1);
657 // This is really empty.
658 return 0;
661 void SparseControl::InitChildData() {
662 // We know the real type of child_.
663 EntryImpl* child = static_cast<EntryImpl*>(child_);
664 child->SetEntryFlags(CHILD_ENTRY);
666 memset(&child_data_, 0, sizeof(child_data_));
667 child_data_.header = sparse_header_;
669 scoped_refptr<net::WrappedIOBuffer> buf(
670 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
672 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
673 CompletionCallback(), false);
674 if (rv != sizeof(child_data_))
675 DLOG(ERROR) << "Failed to save child data";
676 SetChildBit(true);
679 void SparseControl::DoChildrenIO() {
680 while (DoChildIO()) continue;
682 // Range operations are finished synchronously, often without setting
683 // |finished_| to true.
684 if (kGetRangeOperation == operation_ &&
685 entry_->net_log().IsLoggingAllEvents()) {
686 entry_->net_log().EndEvent(
687 net::NetLog::TYPE_SPARSE_GET_RANGE,
688 CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
690 if (finished_) {
691 if (kGetRangeOperation != operation_ &&
692 entry_->net_log().IsLoggingAllEvents()) {
693 entry_->net_log().EndEvent(GetSparseEventType(operation_));
695 if (pending_)
696 DoUserCallback(); // Don't touch this object after this point.
700 bool SparseControl::DoChildIO() {
701 finished_ = true;
702 if (!buf_len_ || result_ < 0)
703 return false;
705 if (!OpenChild())
706 return false;
708 if (!VerifyRange())
709 return false;
711 // We have more work to do. Let's not trigger a callback to the caller.
712 finished_ = false;
713 CompletionCallback callback;
714 if (!user_callback_.is_null()) {
715 callback =
716 base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
719 int rv = 0;
720 switch (operation_) {
721 case kReadOperation:
722 if (entry_->net_log().IsLoggingAllEvents()) {
723 entry_->net_log().BeginEvent(
724 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
725 CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
726 child_len_));
728 rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
729 child_len_, callback);
730 break;
731 case kWriteOperation:
732 if (entry_->net_log().IsLoggingAllEvents()) {
733 entry_->net_log().BeginEvent(
734 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
735 CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
736 child_len_));
738 rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
739 child_len_, callback, false);
740 break;
741 case kGetRangeOperation:
742 rv = DoGetAvailableRange();
743 break;
744 default:
745 NOTREACHED();
748 if (rv == net::ERR_IO_PENDING) {
749 if (!pending_) {
750 pending_ = true;
751 // The child will protect himself against closing the entry while IO is in
752 // progress. However, this entry can still be closed, and that would not
753 // be a good thing for us, so we increase the refcount until we're
754 // finished doing sparse stuff.
755 entry_->AddRef(); // Balanced in DoUserCallback.
757 return false;
759 if (!rv)
760 return false;
762 DoChildIOCompleted(rv);
763 return true;
766 int SparseControl::DoGetAvailableRange() {
767 if (!child_)
768 return child_len_; // Move on to the next child.
770 // Check that there are no holes in this range.
771 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
772 int start = child_offset_ >> 10;
773 int partial_start_bytes = PartialBlockLength(start);
774 int found = start;
775 int bits_found = child_map_.FindBits(&found, last_bit, true);
777 // We don't care if there is a partial block in the middle of the range.
778 int block_offset = child_offset_ & (kBlockSize - 1);
779 if (!bits_found && partial_start_bytes <= block_offset)
780 return child_len_;
782 // We are done. Just break the loop and reset result_ to our real result.
783 range_found_ = true;
785 // found now points to the first 1. Lets see if we have zeros before it.
786 int empty_start = std::max((found << 10) - child_offset_, 0);
788 int bytes_found = bits_found << 10;
789 bytes_found += PartialBlockLength(found + bits_found);
791 if (start == found)
792 bytes_found -= block_offset;
794 // If the user is searching past the end of this child, bits_found is the
795 // right result; otherwise, we have some empty space at the start of this
796 // query that we have to subtract from the range that we searched.
797 result_ = std::min(bytes_found, child_len_ - empty_start);
799 if (!bits_found) {
800 result_ = std::min(partial_start_bytes - block_offset, child_len_);
801 empty_start = 0;
804 // Only update offset_ when this query found zeros at the start.
805 if (empty_start)
806 offset_ += empty_start;
808 // This will actually break the loop.
809 buf_len_ = 0;
810 return 0;
813 void SparseControl::DoChildIOCompleted(int result) {
814 LogChildOperationEnd(entry_->net_log(), operation_, result);
815 if (result < 0) {
816 // We fail the whole operation if we encounter an error.
817 result_ = result;
818 return;
821 UpdateRange(result);
823 result_ += result;
824 offset_ += result;
825 buf_len_ -= result;
827 // We'll be reusing the user provided buffer for the next chunk.
828 if (buf_len_ && user_buf_.get())
829 user_buf_->DidConsume(result);
832 void SparseControl::OnChildIOCompleted(int result) {
833 DCHECK_NE(net::ERR_IO_PENDING, result);
834 DoChildIOCompleted(result);
836 if (abort_) {
837 // We'll return the current result of the operation, which may be less than
838 // the bytes to read or write, but the user cancelled the operation.
839 abort_ = false;
840 if (entry_->net_log().IsLoggingAllEvents()) {
841 entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED);
842 entry_->net_log().EndEvent(GetSparseEventType(operation_));
844 // We have an indirect reference to this object for every callback so if
845 // there is only one callback, we may delete this object before reaching
846 // DoAbortCallbacks.
847 bool has_abort_callbacks = !abort_callbacks_.empty();
848 DoUserCallback();
849 if (has_abort_callbacks)
850 DoAbortCallbacks();
851 return;
854 // We are running a callback from the message loop. It's time to restart what
855 // we were doing before.
856 DoChildrenIO();
859 void SparseControl::DoUserCallback() {
860 DCHECK(!user_callback_.is_null());
861 CompletionCallback cb = user_callback_;
862 user_callback_.Reset();
863 user_buf_ = NULL;
864 pending_ = false;
865 operation_ = kNoOperation;
866 int rv = result_;
867 entry_->Release(); // Don't touch object after this line.
868 cb.Run(rv);
871 void SparseControl::DoAbortCallbacks() {
872 for (size_t i = 0; i < abort_callbacks_.size(); i++) {
873 // Releasing all references to entry_ may result in the destruction of this
874 // object so we should not be touching it after the last Release().
875 CompletionCallback cb = abort_callbacks_[i];
876 if (i == abort_callbacks_.size() - 1)
877 abort_callbacks_.clear();
879 entry_->Release(); // Don't touch object after this line.
880 cb.Run(net::OK);
884 } // namespace disk_cache