1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
54 const char deflate_copyright
[] =
55 " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
63 /* ===========================================================================
64 * Function prototypes.
67 need_more
, /* block not completed, need more input or more output */
68 block_done
, /* block flush performed */
69 finish_started
, /* finish started, need only more output at next deflate */
70 finish_done
/* finish done, accept no more input or output */
73 typedef block_state (*compress_func
) OF((deflate_state
*s
, int flush
,
75 /* Compression function. Returns the block state after the call. */
77 local
void fill_window
OF((deflate_state
*s
));
78 local block_state deflate_stored
OF((deflate_state
*s
, int flush
, int clas
));
79 local block_state deflate_fast
OF((deflate_state
*s
, int flush
, int clas
));
81 local block_state deflate_slow
OF((deflate_state
*s
, int flush
, int clas
));
83 local block_state deflate_rle
OF((deflate_state
*s
, int flush
));
84 local block_state deflate_huff
OF((deflate_state
*s
, int flush
));
85 local
void lm_init
OF((deflate_state
*s
));
86 local
void putShortMSB
OF((deflate_state
*s
, uInt b
));
87 local
void flush_pending
OF((z_streamp strm
));
88 local
int read_buf
OF((z_streamp strm
, Bytef
*buf
, unsigned size
));
90 void match_init
OF((void)); /* asm code initialization */
91 uInt longest_match
OF((deflate_state
*s
, IPos cur_match
, int clas
));
93 local uInt longest_match
OF((deflate_state
*s
, IPos cur_match
, int clas
));
97 local
void check_match
OF((deflate_state
*s
, IPos start
, IPos match
,
101 /* ===========================================================================
106 /* Tail of hash chains */
109 # define TOO_FAR 4096
111 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
113 /* Values for max_lazy_match, good_match and max_chain_length, depending on
114 * the desired pack level (0..9). The values given below have been tuned to
115 * exclude worst case performance for pathological files. Better values may be
116 * found for specific files.
118 typedef struct config_s
{
119 ush good_length
; /* reduce lazy search above this match length */
120 ush max_lazy
; /* do not perform lazy search above this match length */
121 ush nice_length
; /* quit search above this match length */
127 local
const config configuration_table
[2] = {
128 /* good lazy nice chain */
129 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
130 /* 1 */ {4, 4, 8, 4, deflate_fast
}}; /* max speed, no lazy matches */
132 local
const config configuration_table
[10] = {
133 /* good lazy nice chain */
134 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
135 /* 1 */ {4, 4, 8, 4, deflate_fast
}, /* max speed, no lazy matches */
136 /* 2 */ {4, 5, 16, 8, deflate_fast
},
137 /* 3 */ {4, 6, 32, 32, deflate_fast
},
139 /* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
140 /* 5 */ {8, 16, 32, 32, deflate_slow
},
141 /* 6 */ {8, 16, 128, 128, deflate_slow
},
142 /* 7 */ {8, 32, 128, 256, deflate_slow
},
143 /* 8 */ {32, 128, 258, 1024, deflate_slow
},
144 /* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* max compression */
147 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
148 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
153 /* result of memcmp for equal strings */
155 #ifndef NO_DUMMY_DECL
156 struct static_tree_desc_s
{int dummy
;}; /* for buggy compilers */
159 /* ===========================================================================
160 * Update a hash value with the given input byte
161 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
162 * input characters, so that a running hash key can be computed from the
163 * previous key instead of complete recalculation each time.
165 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
168 /* ===========================================================================
169 * Insert string str in the dictionary and set match_head to the previous head
170 * of the hash chain (the most recent string with same hash key). Return
171 * the previous length of the hash chain.
172 * If this file is compiled with -DFASTEST, the compression level is forced
173 * to 1, and no hash chains are maintained.
174 * IN assertion: all calls to to INSERT_STRING are made with consecutive
175 * input characters and the first MIN_MATCH bytes of str are valid
176 * (except for the last MIN_MATCH-1 bytes of the input file).
179 #define INSERT_STRING(s, str, match_head) \
180 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
181 match_head = s->head[s->ins_h], \
182 s->head[s->ins_h] = (Pos)(str))
184 #define INSERT_STRING(s, str, match_head) \
185 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
186 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
187 s->head[s->ins_h] = (Pos)(str))
190 /* ===========================================================================
191 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
192 * prev[] will be initialized on the fly.
194 #define CLEAR_HASH(s) \
195 s->head[s->hash_size-1] = NIL; \
196 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
198 /* ========================================================================= */
199 int ZEXPORT
deflateInit_(strm
, level
, version
, stream_size
)
205 return deflateInit2_(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
206 Z_DEFAULT_STRATEGY
, version
, stream_size
);
207 /* To do: ignore strm->next_in if we use it as window */
210 /* ========================================================================= */
211 int ZEXPORT
deflateInit2_(strm
, level
, method
, windowBits
, memLevel
, strategy
,
212 version
, stream_size
)
224 static const char my_version
[] = ZLIB_VERSION
;
227 /* We overlay pending_buf and d_buf+l_buf. This works since the average
228 * output size for (length,distance) codes is <= 24 bits.
231 if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
232 stream_size
!= sizeof(z_stream
)) {
233 return Z_VERSION_ERROR
;
235 if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
238 if (strm
->zalloc
== (alloc_func
)0) {
239 strm
->zalloc
= zcalloc
;
240 strm
->opaque
= (voidpf
)0;
242 if (strm
->zfree
== (free_func
)0) strm
->zfree
= zcfree
;
245 if (level
!= 0) level
= 1;
247 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
250 if (windowBits
< 0) { /* suppress zlib wrapper */
252 windowBits
= -windowBits
;
255 else if (windowBits
> 15) {
256 wrap
= 2; /* write gzip wrapper instead */
260 if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
261 windowBits
< 8 || windowBits
> 15 || level
< 0 || level
> 9 ||
262 strategy
< 0 || strategy
> Z_FIXED
) {
263 return Z_STREAM_ERROR
;
265 if (windowBits
== 8) windowBits
= 9; /* until 256-byte window bug fixed */
266 s
= (deflate_state
*) ZALLOC(strm
, 1, sizeof(deflate_state
));
267 if (s
== Z_NULL
) return Z_MEM_ERROR
;
268 strm
->state
= (struct internal_state FAR
*)s
;
273 s
->w_bits
= windowBits
;
274 s
->w_size
= 1 << s
->w_bits
;
275 s
->w_mask
= s
->w_size
- 1;
277 s
->hash_bits
= memLevel
+ 7;
278 s
->hash_size
= 1 << s
->hash_bits
;
279 s
->hash_mask
= s
->hash_size
- 1;
280 s
->hash_shift
= ((s
->hash_bits
+MIN_MATCH
-1)/MIN_MATCH
);
282 s
->window
= (Bytef
*) ZALLOC(strm
, s
->w_size
, 2*sizeof(Byte
));
283 s
->prev
= (Posf
*) ZALLOC(strm
, s
->w_size
, sizeof(Pos
));
284 s
->head
= (Posf
*) ZALLOC(strm
, s
->hash_size
, sizeof(Pos
));
285 s
->class_bitmap
= NULL
;
286 zmemzero(&s
->cookie_locations
, sizeof(s
->cookie_locations
));
289 s
->high_water
= 0; /* nothing written to s->window yet */
291 s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
293 overlay
= (ushf
*) ZALLOC(strm
, s
->lit_bufsize
, sizeof(ush
)+2);
294 s
->pending_buf
= (uchf
*) overlay
;
295 s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* (sizeof(ush
)+2L);
297 if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
298 s
->pending_buf
== Z_NULL
) {
299 s
->status
= FINISH_STATE
;
300 strm
->msg
= (char*)ERR_MSG(Z_MEM_ERROR
);
304 s
->d_buf
= overlay
+ s
->lit_bufsize
/sizeof(ush
);
305 s
->l_buf
= s
->pending_buf
+ (1+sizeof(ush
))*s
->lit_bufsize
;
308 s
->strategy
= strategy
;
309 s
->method
= (Byte
)method
;
311 return deflateReset(strm
);
314 /* ========================================================================= */
315 int ZEXPORT
deflateSetDictionary (strm
, dictionary
, dictLength
)
317 const Bytef
*dictionary
;
321 uInt length
= dictLength
;
325 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
|| dictionary
== Z_NULL
||
326 strm
->state
->wrap
== 2 ||
327 (strm
->state
->wrap
== 1 && strm
->state
->status
!= INIT_STATE
))
328 return Z_STREAM_ERROR
;
332 strm
->adler
= adler32(strm
->adler
, dictionary
, dictLength
);
334 if (length
< MIN_MATCH
) return Z_OK
;
335 if (length
> s
->w_size
) {
337 dictionary
+= dictLength
- length
; /* use the tail of the dictionary */
339 zmemcpy(s
->window
, dictionary
, length
);
340 s
->strstart
= length
;
341 s
->block_start
= (long)length
;
343 /* Insert all strings in the hash table (except for the last two bytes).
344 * s->lookahead stays null, so s->ins_h will be recomputed at the next
345 * call of fill_window.
347 s
->ins_h
= s
->window
[0];
348 UPDATE_HASH(s
, s
->ins_h
, s
->window
[1]);
349 for (n
= 0; n
<= length
- MIN_MATCH
; n
++) {
350 INSERT_STRING(s
, n
, hash_head
);
352 if (hash_head
) hash_head
= 0; /* to make compiler happy */
356 /* ========================================================================= */
357 int ZEXPORT
deflateReset (strm
)
362 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
363 strm
->zalloc
== (alloc_func
)0 || strm
->zfree
== (free_func
)0) {
364 return Z_STREAM_ERROR
;
367 strm
->total_in
= strm
->total_out
= 0;
368 strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
369 strm
->data_type
= Z_UNKNOWN
;
371 s
= (deflate_state
*)strm
->state
;
373 s
->pending_out
= s
->pending_buf
;
374 TRY_FREE(strm
, s
->class_bitmap
);
375 s
->class_bitmap
= NULL
;
378 s
->wrap
= -s
->wrap
; /* was made negative by deflate(..., Z_FINISH); */
380 s
->status
= s
->wrap
? INIT_STATE
: BUSY_STATE
;
383 s
->wrap
== 2 ? crc32(0L, Z_NULL
, 0) :
385 adler32(0L, Z_NULL
, 0);
386 s
->last_flush
= Z_NO_FLUSH
;
394 /* ========================================================================= */
395 int ZEXPORT
deflateSetHeader (strm
, head
)
399 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
400 if (strm
->state
->wrap
!= 2) return Z_STREAM_ERROR
;
401 strm
->state
->gzhead
= head
;
405 /* ========================================================================= */
406 int ZEXPORT
deflatePrime (strm
, bits
, value
)
411 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
412 strm
->state
->bi_valid
= bits
;
413 strm
->state
->bi_buf
= (ush
)(value
& ((1 << bits
) - 1));
417 /* ========================================================================= */
418 int ZEXPORT
deflateParams(strm
, level
, strategy
)
427 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
431 if (level
!= 0) level
= 1;
433 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
435 if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_FIXED
) {
436 return Z_STREAM_ERROR
;
438 func
= configuration_table
[s
->level
].func
;
440 if ((strategy
!= s
->strategy
|| func
!= configuration_table
[level
].func
) &&
441 strm
->total_in
!= 0) {
442 /* Flush the last buffer: */
443 err
= deflate(strm
, Z_BLOCK
);
445 if (s
->level
!= level
) {
447 s
->max_lazy_match
= configuration_table
[level
].max_lazy
;
448 s
->good_match
= configuration_table
[level
].good_length
;
449 s
->nice_match
= configuration_table
[level
].nice_length
;
450 s
->max_chain_length
= configuration_table
[level
].max_chain
;
452 s
->strategy
= strategy
;
456 /* ========================================================================= */
457 int ZEXPORT
deflateTune(strm
, good_length
, max_lazy
, nice_length
, max_chain
)
466 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
468 s
->good_match
= good_length
;
469 s
->max_lazy_match
= max_lazy
;
470 s
->nice_match
= nice_length
;
471 s
->max_chain_length
= max_chain
;
475 /* =========================================================================
476 * For the default windowBits of 15 and memLevel of 8, this function returns
477 * a close to exact, as well as small, upper bound on the compressed size.
478 * They are coded as constants here for a reason--if the #define's are
479 * changed, then this function needs to be changed as well. The return
480 * value for 15 and 8 only works for those exact settings.
482 * For any setting other than those defaults for windowBits and memLevel,
483 * the value returned is a conservative worst case for the maximum expansion
484 * resulting from using fixed blocks instead of stored blocks, which deflate
485 * can emit on compressed data for some combinations of the parameters.
487 * This function could be more sophisticated to provide closer upper bounds for
488 * every combination of windowBits and memLevel. But even the conservative
489 * upper bound of about 14% expansion does not seem onerous for output buffer
492 uLong ZEXPORT
deflateBound(strm
, sourceLen
)
497 uLong complen
, wraplen
;
500 /* conservative upper bound for compressed data */
501 complen
= sourceLen
+
502 ((sourceLen
+ 7) >> 3) + ((sourceLen
+ 63) >> 6) + 5;
504 /* if can't get parameters, return conservative bound plus zlib wrapper */
505 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
)
508 /* compute wrapper length */
511 case 0: /* raw deflate */
514 case 1: /* zlib wrapper */
515 wraplen
= 6 + (s
->strstart
? 4 : 0);
517 case 2: /* gzip wrapper */
519 if (s
->gzhead
!= Z_NULL
) { /* user-supplied gzip header */
520 if (s
->gzhead
->extra
!= Z_NULL
)
521 wraplen
+= 2 + s
->gzhead
->extra_len
;
522 str
= s
->gzhead
->name
;
527 str
= s
->gzhead
->comment
;
536 default: /* for compiler happiness */
540 /* if not default parameters, return conservative bound */
541 if (s
->w_bits
!= 15 || s
->hash_bits
!= 8 + 7)
542 return complen
+ wraplen
;
544 /* default settings: return tight bound for that case */
545 return sourceLen
+ (sourceLen
>> 12) + (sourceLen
>> 14) +
546 (sourceLen
>> 25) + 13 - 6 + wraplen
;
549 /* =========================================================================
550 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
551 * IN assertion: the stream state is correct and there is enough room in
554 local
void putShortMSB (s
, b
)
558 put_byte(s
, (Byte
)(b
>> 8));
559 put_byte(s
, (Byte
)(b
& 0xff));
562 /* =========================================================================
563 * Flush as much pending output as possible. All deflate() output goes
564 * through this function so some applications may wish to modify it
565 * to avoid allocating a large strm->next_out buffer and copying into it.
566 * (See also read_buf()).
568 local
void flush_pending(strm
)
571 unsigned len
= strm
->state
->pending
;
573 if (len
> strm
->avail_out
) len
= strm
->avail_out
;
574 if (len
== 0) return;
576 zmemcpy(strm
->next_out
, strm
->state
->pending_out
, len
);
577 strm
->next_out
+= len
;
578 strm
->state
->pending_out
+= len
;
579 strm
->total_out
+= len
;
580 strm
->avail_out
-= len
;
581 strm
->state
->pending
-= len
;
582 if (strm
->state
->pending
== 0) {
583 strm
->state
->pending_out
= strm
->state
->pending_buf
;
587 /* ========================================================================= */
588 int ZEXPORT
deflate (strm
, flush
)
592 int old_flush
; /* value of flush param for previous deflate call */
595 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
596 flush
> Z_BLOCK
|| flush
< 0) {
597 return Z_STREAM_ERROR
;
601 if (strm
->next_out
== Z_NULL
||
602 (strm
->next_in
== Z_NULL
&& strm
->avail_in
!= 0) ||
603 (s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
604 ERR_RETURN(strm
, Z_STREAM_ERROR
);
606 if (strm
->avail_out
== 0) ERR_RETURN(strm
, Z_BUF_ERROR
);
608 s
->strm
= strm
; /* just in case */
609 old_flush
= s
->last_flush
;
610 s
->last_flush
= flush
;
612 /* Write the header */
613 if (s
->status
== INIT_STATE
) {
616 strm
->adler
= crc32(0L, Z_NULL
, 0);
620 if (s
->gzhead
== Z_NULL
) {
626 put_byte(s
, s
->level
== 9 ? 2 :
627 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
629 put_byte(s
, OS_CODE
);
630 s
->status
= BUSY_STATE
;
633 put_byte(s
, (s
->gzhead
->text
? 1 : 0) +
634 (s
->gzhead
->hcrc
? 2 : 0) +
635 (s
->gzhead
->extra
== Z_NULL
? 0 : 4) +
636 (s
->gzhead
->name
== Z_NULL
? 0 : 8) +
637 (s
->gzhead
->comment
== Z_NULL
? 0 : 16)
639 put_byte(s
, (Byte
)(s
->gzhead
->time
& 0xff));
640 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 8) & 0xff));
641 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 16) & 0xff));
642 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 24) & 0xff));
643 put_byte(s
, s
->level
== 9 ? 2 :
644 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
646 put_byte(s
, s
->gzhead
->os
& 0xff);
647 if (s
->gzhead
->extra
!= Z_NULL
) {
648 put_byte(s
, s
->gzhead
->extra_len
& 0xff);
649 put_byte(s
, (s
->gzhead
->extra_len
>> 8) & 0xff);
652 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
,
655 s
->status
= EXTRA_STATE
;
661 uInt header
= (Z_DEFLATED
+ ((s
->w_bits
-8)<<4)) << 8;
664 if (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2)
666 else if (s
->level
< 6)
668 else if (s
->level
== 6)
672 header
|= (level_flags
<< 6);
673 if (s
->strstart
!= 0) header
|= PRESET_DICT
;
674 header
+= 31 - (header
% 31);
676 s
->status
= BUSY_STATE
;
677 putShortMSB(s
, header
);
679 /* Save the adler32 of the preset dictionary: */
680 if (s
->strstart
!= 0) {
681 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
682 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
684 strm
->adler
= adler32(0L, Z_NULL
, 0);
688 if (s
->status
== EXTRA_STATE
) {
689 if (s
->gzhead
->extra
!= Z_NULL
) {
690 uInt beg
= s
->pending
; /* start of bytes to update crc */
692 while (s
->gzindex
< (s
->gzhead
->extra_len
& 0xffff)) {
693 if (s
->pending
== s
->pending_buf_size
) {
694 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
695 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
699 if (s
->pending
== s
->pending_buf_size
)
702 put_byte(s
, s
->gzhead
->extra
[s
->gzindex
]);
705 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
706 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
708 if (s
->gzindex
== s
->gzhead
->extra_len
) {
710 s
->status
= NAME_STATE
;
714 s
->status
= NAME_STATE
;
716 if (s
->status
== NAME_STATE
) {
717 if (s
->gzhead
->name
!= Z_NULL
) {
718 uInt beg
= s
->pending
; /* start of bytes to update crc */
722 if (s
->pending
== s
->pending_buf_size
) {
723 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
724 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
728 if (s
->pending
== s
->pending_buf_size
) {
733 val
= s
->gzhead
->name
[s
->gzindex
++];
736 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
737 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
741 s
->status
= COMMENT_STATE
;
745 s
->status
= COMMENT_STATE
;
747 if (s
->status
== COMMENT_STATE
) {
748 if (s
->gzhead
->comment
!= Z_NULL
) {
749 uInt beg
= s
->pending
; /* start of bytes to update crc */
753 if (s
->pending
== s
->pending_buf_size
) {
754 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
755 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
759 if (s
->pending
== s
->pending_buf_size
) {
764 val
= s
->gzhead
->comment
[s
->gzindex
++];
767 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
768 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
771 s
->status
= HCRC_STATE
;
774 s
->status
= HCRC_STATE
;
776 if (s
->status
== HCRC_STATE
) {
777 if (s
->gzhead
->hcrc
) {
778 if (s
->pending
+ 2 > s
->pending_buf_size
)
780 if (s
->pending
+ 2 <= s
->pending_buf_size
) {
781 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
782 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
783 strm
->adler
= crc32(0L, Z_NULL
, 0);
784 s
->status
= BUSY_STATE
;
788 s
->status
= BUSY_STATE
;
792 /* Flush as much pending output as possible */
793 if (s
->pending
!= 0) {
795 if (strm
->avail_out
== 0) {
796 /* Since avail_out is 0, deflate will be called again with
797 * more output space, but possibly with both pending and
798 * avail_in equal to zero. There won't be anything to do,
799 * but this is not an error situation so make sure we
800 * return OK instead of BUF_ERROR at next call of deflate:
806 /* Make sure there is something to do and avoid duplicate consecutive
807 * flushes. For repeated and useless calls with Z_FINISH, we keep
808 * returning Z_STREAM_END instead of Z_BUF_ERROR.
810 } else if (strm
->avail_in
== 0 && flush
<= old_flush
&&
812 ERR_RETURN(strm
, Z_BUF_ERROR
);
815 /* User must not provide more input after the first FINISH: */
816 if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
817 ERR_RETURN(strm
, Z_BUF_ERROR
);
820 /* Start a new block or continue the current one.
822 if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
823 (flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
826 if (strm
->clas
&& s
->class_bitmap
== NULL
) {
827 /* This is the first time that we have seen alternative class
828 * data. All data up till this point has been standard class. */
829 s
->class_bitmap
= (Bytef
*) ZALLOC(strm
, s
->w_size
/4, sizeof(Byte
));
830 zmemzero(s
->class_bitmap
, s
->w_size
/4);
833 if (strm
->clas
&& s
->strategy
== Z_RLE
) {
834 /* We haven't patched deflate_rle. */
835 ERR_RETURN(strm
, Z_BUF_ERROR
);
838 if (s
->strategy
== Z_HUFFMAN_ONLY
) {
839 bstate
= deflate_huff(s
, flush
);
840 } else if (s
->strategy
== Z_RLE
) {
841 bstate
= deflate_rle(s
, flush
);
843 bstate
= (*(configuration_table
[s
->level
].func
))
844 (s
, flush
, strm
->clas
);
847 if (bstate
== finish_started
|| bstate
== finish_done
) {
848 s
->status
= FINISH_STATE
;
850 if (bstate
== need_more
|| bstate
== finish_started
) {
851 if (strm
->avail_out
== 0) {
852 s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
855 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
856 * of deflate should use the same flush parameter to make sure
857 * that the flush is complete. So we don't have to output an
858 * empty block here, this will be done at next call. This also
859 * ensures that for a very small output buffer, we emit at most
863 if (bstate
== block_done
) {
864 if (flush
== Z_PARTIAL_FLUSH
) {
866 } else if (flush
!= Z_BLOCK
) { /* FULL_FLUSH or SYNC_FLUSH */
867 _tr_stored_block(s
, (char*)0, 0L, 0);
868 /* For a full flush, this empty block will be recognized
869 * as a special marker by inflate_sync().
871 if (flush
== Z_FULL_FLUSH
) {
872 CLEAR_HASH(s
); /* forget history */
873 if (s
->lookahead
== 0) {
880 if (strm
->avail_out
== 0) {
881 s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
886 Assert(strm
->avail_out
> 0, "bug2");
888 if (flush
!= Z_FINISH
) return Z_OK
;
889 if (s
->wrap
<= 0) return Z_STREAM_END
;
891 /* Write the trailer */
894 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
895 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
896 put_byte(s
, (Byte
)((strm
->adler
>> 16) & 0xff));
897 put_byte(s
, (Byte
)((strm
->adler
>> 24) & 0xff));
898 put_byte(s
, (Byte
)(strm
->total_in
& 0xff));
899 put_byte(s
, (Byte
)((strm
->total_in
>> 8) & 0xff));
900 put_byte(s
, (Byte
)((strm
->total_in
>> 16) & 0xff));
901 put_byte(s
, (Byte
)((strm
->total_in
>> 24) & 0xff));
906 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
907 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
910 /* If avail_out is zero, the application will call deflate again
913 if (s
->wrap
> 0) s
->wrap
= -s
->wrap
; /* write the trailer only once! */
914 return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
917 /* ========================================================================= */
918 int ZEXPORT
deflateEnd (strm
)
923 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
925 status
= strm
->state
->status
;
926 if (status
!= INIT_STATE
&&
927 status
!= EXTRA_STATE
&&
928 status
!= NAME_STATE
&&
929 status
!= COMMENT_STATE
&&
930 status
!= HCRC_STATE
&&
931 status
!= BUSY_STATE
&&
932 status
!= FINISH_STATE
) {
933 return Z_STREAM_ERROR
;
936 /* Deallocate in reverse order of allocations: */
937 TRY_FREE(strm
, strm
->state
->pending_buf
);
938 TRY_FREE(strm
, strm
->state
->head
);
939 TRY_FREE(strm
, strm
->state
->prev
);
940 TRY_FREE(strm
, strm
->state
->window
);
941 TRY_FREE(strm
, strm
->state
->class_bitmap
);
943 ZFREE(strm
, strm
->state
);
944 strm
->state
= Z_NULL
;
946 return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
949 /* =========================================================================
950 * Copy the source state to the destination state.
951 * To simplify the source, this is not supported for 16-bit MSDOS (which
952 * doesn't have enough memory anyway to duplicate compression states).
954 int ZEXPORT
deflateCopy (dest
, source
)
959 return Z_STREAM_ERROR
;
966 if (source
== Z_NULL
|| dest
== Z_NULL
|| source
->state
== Z_NULL
) {
967 return Z_STREAM_ERROR
;
972 zmemcpy(dest
, source
, sizeof(z_stream
));
974 ds
= (deflate_state
*) ZALLOC(dest
, 1, sizeof(deflate_state
));
975 if (ds
== Z_NULL
) return Z_MEM_ERROR
;
976 dest
->state
= (struct internal_state FAR
*) ds
;
977 zmemcpy(ds
, ss
, sizeof(deflate_state
));
980 ds
->window
= (Bytef
*) ZALLOC(dest
, ds
->w_size
, 2*sizeof(Byte
));
981 ds
->prev
= (Posf
*) ZALLOC(dest
, ds
->w_size
, sizeof(Pos
));
982 ds
->head
= (Posf
*) ZALLOC(dest
, ds
->hash_size
, sizeof(Pos
));
983 overlay
= (ushf
*) ZALLOC(dest
, ds
->lit_bufsize
, sizeof(ush
)+2);
984 ds
->pending_buf
= (uchf
*) overlay
;
986 if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
987 ds
->pending_buf
== Z_NULL
) {
991 /* following zmemcpy do not work for 16-bit MSDOS */
992 zmemcpy(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
993 zmemcpy(ds
->prev
, ss
->prev
, ds
->w_size
* sizeof(Pos
));
994 zmemcpy(ds
->head
, ss
->head
, ds
->hash_size
* sizeof(Pos
));
995 zmemcpy(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
997 ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
998 ds
->d_buf
= overlay
+ ds
->lit_bufsize
/sizeof(ush
);
999 ds
->l_buf
= ds
->pending_buf
+ (1+sizeof(ush
))*ds
->lit_bufsize
;
1001 ds
->l_desc
.dyn_tree
= ds
->dyn_ltree
;
1002 ds
->d_desc
.dyn_tree
= ds
->dyn_dtree
;
1003 ds
->bl_desc
.dyn_tree
= ds
->bl_tree
;
1006 #endif /* MAXSEG_64K */
1009 /* ===========================================================================
1010 * Read a new buffer from the current input stream, update the adler32
1011 * and total number of bytes read. All deflate() input goes through
1012 * this function so some applications may wish to modify it to avoid
1013 * allocating a large strm->next_in buffer and copying from it.
1014 * (See also flush_pending()).
1016 local
int read_buf(strm
, buf
, size
)
1021 unsigned len
= strm
->avail_in
;
1023 if (len
> size
) len
= size
;
1024 if (len
== 0) return 0;
1026 strm
->avail_in
-= len
;
1028 if (strm
->state
->wrap
== 1) {
1029 strm
->adler
= adler32(strm
->adler
, strm
->next_in
, len
);
1032 else if (strm
->state
->wrap
== 2) {
1033 strm
->adler
= crc32(strm
->adler
, strm
->next_in
, len
);
1036 zmemcpy(buf
, strm
->next_in
, len
);
1037 strm
->next_in
+= len
;
1038 strm
->total_in
+= len
;
1043 /* ===========================================================================
1044 * Initialize the "longest match" routines for a new zlib stream
1046 local
void lm_init (s
)
1049 s
->window_size
= (ulg
)2L*s
->w_size
;
1053 /* Set the default configuration parameters:
1055 s
->max_lazy_match
= configuration_table
[s
->level
].max_lazy
;
1056 s
->good_match
= configuration_table
[s
->level
].good_length
;
1057 s
->nice_match
= configuration_table
[s
->level
].nice_length
;
1058 s
->max_chain_length
= configuration_table
[s
->level
].max_chain
;
1061 s
->block_start
= 0L;
1063 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
1064 s
->match_available
= 0;
1068 match_init(); /* initialize the asm code */
1073 /* class_set sets bits [offset,offset+len) in s->class_bitmap to either 1 (if
1074 * class != 0) or 0 (otherwise). */
1075 local
void class_set(s
, offset
, len
, clas
)
1081 IPos byte
= offset
>> 3;
1082 IPos bit
= offset
& 7;
1083 Bytef class_byte_value
= clas
? 0xff : 0x00;
1084 Bytef class_bit_value
= clas
? 1 : 0;
1085 static const Bytef mask
[8] = {0xfe, 0xfd, 0xfb, 0xf7,
1086 0xef, 0xdf, 0xbf, 0x7f};
1090 s
->class_bitmap
[byte
] &= mask
[bit
];
1091 s
->class_bitmap
[byte
] |= class_bit_value
<< bit
;
1103 s
->class_bitmap
[byte
++] = class_byte_value
;
1108 s
->class_bitmap
[byte
] &= mask
[bit
];
1109 s
->class_bitmap
[byte
] |= class_bit_value
<< bit
;
1115 local
int class_at(s
, window_offset
)
1119 IPos byte
= window_offset
>> 3;
1120 IPos bit
= window_offset
& 7;
1121 return (s
->class_bitmap
[byte
] >> bit
) & 1;
1125 /* ===========================================================================
1126 * Set match_start to the longest match starting at the given string and
1127 * return its length. Matches shorter or equal to prev_length are discarded,
1128 * in which case the result is equal to prev_length and match_start is
1130 * IN assertions: cur_match is the head of the hash chain for the current
1131 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1132 * OUT assertion: the match length is not greater than s->lookahead.
1135 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1136 * match.S. The code will be functionally equivalent.
1138 local uInt
longest_match(s
, cur_match
, clas
)
1140 IPos cur_match
; /* current match */
1143 unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
1144 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1145 register Bytef
*match
; /* matched string */
1146 register int len
; /* length of current match */
1147 int best_len
= s
->prev_length
; /* best match length so far */
1148 int nice_match
= s
->nice_match
; /* stop if match long enough */
1149 IPos limit
= s
->strstart
> (IPos
)MAX_DIST(s
) ?
1150 s
->strstart
- (IPos
)MAX_DIST(s
) : NIL
;
1151 /* Stop when cur_match becomes <= limit. To simplify the code,
1152 * we prevent matches with the string of window index 0.
1154 Posf
*prev
= s
->prev
;
1155 uInt wmask
= s
->w_mask
;
1158 /* Compare two bytes at a time. Note: this is not always beneficial.
1159 * Try with and without -DUNALIGNED_OK to check.
1161 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
1162 register ush scan_start
= *(ushf
*)scan
;
1163 register ush scan_end
= *(ushf
*)(scan
+best_len
-1);
1165 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1166 register Byte scan_end1
= scan
[best_len
-1];
1167 register Byte scan_end
= scan
[best_len
];
1170 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1171 * It is easy to get rid of this optimization if necessary.
1173 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1175 /* Do not waste too much time if we already have a good match: */
1176 if (s
->prev_length
>= s
->good_match
) {
1179 /* Do not look for matches beyond the end of the input. This is necessary
1180 * to make deflate deterministic.
1182 if ((uInt
)nice_match
> s
->lookahead
) nice_match
= s
->lookahead
;
1184 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1187 Assert(cur_match
< s
->strstart
, "no future");
1188 match
= s
->window
+ cur_match
;
1189 /* If the matched data is in the wrong class, skip it. */
1190 if (s
->class_bitmap
&& class_at(s
, cur_match
) != clas
)
1193 /* Skip to next match if the match length cannot increase
1194 * or if the match length is less than 2. Note that the checks below
1195 * for insufficient lookahead only occur occasionally for performance
1196 * reasons. Therefore uninitialized memory will be accessed, and
1197 * conditional jumps will be made that depend on those values.
1198 * However the length of the match is limited to the lookahead, so
1199 * the output of deflate is not affected by the uninitialized values.
1201 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1202 /* This code assumes sizeof(unsigned short) == 2. Do not use
1203 * UNALIGNED_OK if your compiler uses a different size.
1205 if (*(ushf
*)(match
+best_len
-1) != scan_end
||
1206 *(ushf
*)match
!= scan_start
) continue;
1208 /* It is not necessary to compare scan[2] and match[2] since they are
1209 * always equal when the other bytes match, given that the hash keys
1210 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1211 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1212 * lookahead only every 4th comparison; the 128th check will be made
1213 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1214 * necessary to put more guard bytes at the end of the window, or
1215 * to check more often for insufficient lookahead.
1217 Assert(scan
[2] == match
[2], "scan[2]?");
1220 } while (*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1221 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1222 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1223 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1225 /* The funny "do {}" generates better code on most compilers */
1227 /* Here, scan <= window+strstart+257 */
1228 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1229 if (*scan
== *match
) scan
++;
1231 len
= (MAX_MATCH
- 1) - (int)(strend
-scan
);
1232 scan
= strend
- (MAX_MATCH
-1);
1234 #error "UNALIGNED_OK hasn't been patched."
1236 #else /* UNALIGNED_OK */
1238 if (match
[best_len
] != scan_end
||
1239 match
[best_len
-1] != scan_end1
||
1241 *++match
!= scan
[1]) continue;
1243 /* The check at best_len-1 can be removed because it will be made
1244 * again later. (This heuristic is not always a win.)
1245 * It is not necessary to compare scan[2] and match[2] since they
1246 * are always equal when the other bytes match, given that
1247 * the hash keys are equal and that HASH_BITS >= 8.
1250 Assert(*scan
== *match
, "match[2]?");
1252 if (!s
->class_bitmap
) {
1253 /* We check for insufficient lookahead only every 8th comparison;
1254 * the 256th check will be made at strstart+258.
1257 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1258 *++scan
== *++match
&& *++scan
== *++match
&&
1259 *++scan
== *++match
&& *++scan
== *++match
&&
1260 *++scan
== *++match
&& *++scan
== *++match
&&
1263 /* We have to be mindful of the class of the data and not stray. */
1265 } while (*++scan
== *++match
&&
1266 class_at(s
, match
- s
->window
) == clas
&&
1270 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1272 len
= MAX_MATCH
- (int)(strend
- scan
);
1273 scan
= strend
- MAX_MATCH
;
1275 #endif /* UNALIGNED_OK */
1277 if (len
> best_len
) {
1278 s
->match_start
= cur_match
;
1280 if (len
>= nice_match
) break;
1282 scan_end
= *(ushf
*)(scan
+best_len
-1);
1284 scan_end1
= scan
[best_len
-1];
1285 scan_end
= scan
[best_len
];
1288 } while ((cur_match
= prev
[cur_match
& wmask
]) > limit
1289 && --chain_length
!= 0);
1291 if ((uInt
)best_len
<= s
->lookahead
) return (uInt
)best_len
;
1292 return s
->lookahead
;
1296 /* cookie_match is a replacement for longest_match in the case of cookie data.
1297 * Here we only wish to match the entire value so trying the partial matches in
1298 * longest_match is both wasteful and often fails to find the correct match.
1300 * So we take the djb2 hash of the cookie and look up the last position for a
1301 * match in a special hash table. */
1302 local uInt
cookie_match(s
, start
, len
)
1307 unsigned hash
= 5381;
1308 Bytef
*str
= s
->window
+ start
;
1310 IPos cookie_location
;
1312 if (len
>= MAX_MATCH
|| len
== 0)
1315 for (i
= 0; i
< len
; i
++)
1316 hash
= ((hash
<< 5) + hash
) + str
[i
];
1318 hash
&= Z_COOKIE_HASH_MASK
;
1319 cookie_location
= s
->cookie_locations
[hash
];
1320 s
->cookie_locations
[hash
] = start
;
1322 if (cookie_location
&&
1323 (start
- cookie_location
) > len
&&
1324 (start
- cookie_location
) < MAX_DIST(s
) &&
1325 len
<= s
->lookahead
) {
1326 for (i
= 0; i
< len
; i
++) {
1327 if (s
->window
[start
+i
] != s
->window
[cookie_location
+i
] ||
1328 class_at(s
, cookie_location
+i
) != 1) {
1332 /* Check that we aren't matching a prefix of another cookie by ensuring
1333 * that the final byte is either a semicolon (which cannot appear in a
1334 * cookie value), or the match is followed by non-cookie data. */
1335 if (s
->window
[cookie_location
+len
-1] != ';' &&
1336 class_at(s
, cookie_location
+len
) != 0) {
1339 s
->match_start
= cookie_location
;
1349 /* ---------------------------------------------------------------------------
1350 * Optimized version for FASTEST only
1352 local uInt
longest_match(s
, cur_match
, clas
)
1354 IPos cur_match
; /* current match */
1357 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1358 register Bytef
*match
; /* matched string */
1359 register int len
; /* length of current match */
1360 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1362 #error "This code not patched"
1364 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1365 * It is easy to get rid of this optimization if necessary.
1367 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1369 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1371 Assert(cur_match
< s
->strstart
, "no future");
1373 match
= s
->window
+ cur_match
;
1375 /* Return failure if the match length is less than 2:
1377 if (match
[0] != scan
[0] || match
[1] != scan
[1]) return MIN_MATCH
-1;
1379 /* The check at best_len-1 can be removed because it will be made
1380 * again later. (This heuristic is not always a win.)
1381 * It is not necessary to compare scan[2] and match[2] since they
1382 * are always equal when the other bytes match, given that
1383 * the hash keys are equal and that HASH_BITS >= 8.
1385 scan
+= 2, match
+= 2;
1386 Assert(*scan
== *match
, "match[2]?");
1388 /* We check for insufficient lookahead only every 8th comparison;
1389 * the 256th check will be made at strstart+258.
1392 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1393 *++scan
== *++match
&& *++scan
== *++match
&&
1394 *++scan
== *++match
&& *++scan
== *++match
&&
1395 *++scan
== *++match
&& *++scan
== *++match
&&
1398 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1400 len
= MAX_MATCH
- (int)(strend
- scan
);
1402 if (len
< MIN_MATCH
) return MIN_MATCH
- 1;
1404 s
->match_start
= cur_match
;
1405 return (uInt
)len
<= s
->lookahead
? (uInt
)len
: s
->lookahead
;
1408 #endif /* FASTEST */
1411 /* ===========================================================================
1412 * Check that the match at match_start is indeed a match.
1414 local
void check_match(s
, start
, match
, length
)
1419 /* check that the match is indeed a match */
1420 if (zmemcmp(s
->window
+ match
,
1421 s
->window
+ start
, length
) != EQUAL
) {
1422 fprintf(stderr
, " start %u, match %u, length %d\n",
1423 start
, match
, length
);
1425 fprintf(stderr
, "%c%c", s
->window
[match
++], s
->window
[start
++]);
1426 } while (--length
!= 0);
1427 z_error("invalid match");
1429 if (z_verbose
> 1) {
1430 fprintf(stderr
,"\\[%d,%d]", start
-match
, length
);
1431 do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
1435 # define check_match(s, start, match, length)
1438 /* ===========================================================================
1439 * Fill the window when the lookahead becomes insufficient.
1440 * Updates strstart and lookahead.
1442 * IN assertion: lookahead < MIN_LOOKAHEAD
1443 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1444 * At least one byte has been read, or avail_in == 0; reads are
1445 * performed for at least two bytes (required for the zip translate_eol
1446 * option -- not supported here).
1448 local
void fill_window(s
)
1451 register unsigned n
, m
;
1453 unsigned more
; /* Amount of free space at the end of the window. */
1454 uInt wsize
= s
->w_size
;
1457 more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
1459 /* Deal with !@#$% 64K limit: */
1460 if (sizeof(int) <= 2) {
1461 if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
1464 } else if (more
== (unsigned)(-1)) {
1465 /* Very unlikely, but possible on 16 bit machine if
1466 * strstart == 0 && lookahead == 1 (input done a byte at time)
1472 /* If the window is almost full and there is insufficient lookahead,
1473 * move the upper half to the lower one to make room in the upper half.
1475 if (s
->strstart
>= wsize
+MAX_DIST(s
)) {
1477 zmemcpy(s
->window
, s
->window
+wsize
, (unsigned)wsize
);
1478 s
->match_start
-= wsize
;
1479 s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
1480 s
->block_start
-= (long) wsize
;
1482 /* Slide the hash table (could be avoided with 32 bit values
1483 at the expense of memory usage). We slide even when level == 0
1484 to keep the hash table consistent if we switch back to level > 0
1485 later. (Using level 0 permanently is not an optimal usage of
1486 zlib, so we don't care about this pathological case.)
1492 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1500 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1501 /* If n is not on any hash chain, prev[n] is garbage but
1502 * its value will never be used.
1507 for (n
= 0; n
< Z_COOKIE_HASH_SIZE
; n
++) {
1508 if (s
->cookie_locations
[n
] > wsize
) {
1509 s
->cookie_locations
[n
] -= wsize
;
1511 s
->cookie_locations
[n
] = 0;
1515 if (s
->class_bitmap
) {
1516 zmemcpy(s
->class_bitmap
, s
->class_bitmap
+ s
->w_size
/8,
1518 zmemzero(s
->class_bitmap
+ s
->w_size
/8, s
->w_size
/8);
1523 if (s
->strm
->avail_in
== 0) return;
1525 /* If there was no sliding:
1526 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1527 * more == window_size - lookahead - strstart
1528 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1529 * => more >= window_size - 2*WSIZE + 2
1530 * In the BIG_MEM or MMAP case (not yet supported),
1531 * window_size == input_size + MIN_LOOKAHEAD &&
1532 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1533 * Otherwise, window_size == 2*WSIZE so more >= 2.
1534 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1536 Assert(more
>= 2, "more < 2");
1538 n
= read_buf(s
->strm
, s
->window
+ s
->strstart
+ s
->lookahead
, more
);
1539 if (s
->class_bitmap
!= NULL
) {
1540 class_set(s
, s
->strstart
+ s
->lookahead
, n
, s
->strm
->clas
);
1544 /* Initialize the hash value now that we have some input: */
1545 if (s
->lookahead
>= MIN_MATCH
) {
1546 s
->ins_h
= s
->window
[s
->strstart
];
1547 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1549 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1552 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1553 * but this is not important since only literal bytes will be emitted.
1556 } while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
1558 /* If the WIN_INIT bytes after the end of the current data have never been
1559 * written, then zero those bytes in order to avoid memory check reports of
1560 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1561 * the longest match routines. Update the high water mark for the next
1562 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1563 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1565 if (s
->high_water
< s
->window_size
) {
1566 ulg curr
= s
->strstart
+ (ulg
)(s
->lookahead
);
1569 if (s
->high_water
< curr
) {
1570 /* Previous high water mark below current data -- zero WIN_INIT
1571 * bytes or up to end of window, whichever is less.
1573 init
= s
->window_size
- curr
;
1574 if (init
> WIN_INIT
)
1576 zmemzero(s
->window
+ curr
, (unsigned)init
);
1577 s
->high_water
= curr
+ init
;
1579 else if (s
->high_water
< (ulg
)curr
+ WIN_INIT
) {
1580 /* High water mark at or above current data, but below current data
1581 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1582 * to end of window, whichever is less.
1584 init
= (ulg
)curr
+ WIN_INIT
- s
->high_water
;
1585 if (init
> s
->window_size
- s
->high_water
)
1586 init
= s
->window_size
- s
->high_water
;
1587 zmemzero(s
->window
+ s
->high_water
, (unsigned)init
);
1588 s
->high_water
+= init
;
1593 /* ===========================================================================
1594 * Flush the current block, with given end-of-file flag.
1595 * IN assertion: strstart is set to the end of the current match.
1597 #define FLUSH_BLOCK_ONLY(s, last) { \
1598 _tr_flush_block(s, (s->block_start >= 0L ? \
1599 (charf *)&s->window[(unsigned)s->block_start] : \
1601 (ulg)((long)s->strstart - s->block_start), \
1603 s->block_start = s->strstart; \
1604 flush_pending(s->strm); \
1605 Tracev((stderr,"[FLUSH]")); \
1608 /* Same but force premature exit if necessary. */
1609 #define FLUSH_BLOCK(s, last) { \
1610 FLUSH_BLOCK_ONLY(s, last); \
1611 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1614 /* ===========================================================================
1615 * Copy without compression as much as possible from the input stream, return
1616 * the current block state.
1617 * This function does not insert new strings in the dictionary since
1618 * uncompressible data is probably not useful. This function is used
1619 * only for the level=0 compression option.
1620 * NOTE: this function should be optimized to avoid extra copying from
1621 * window to pending_buf.
1623 local block_state
deflate_stored(s
, flush
, clas
)
1628 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1629 * to pending_buf_size, and each stored block has a 5 byte header:
1631 ulg max_block_size
= 0xffff;
1634 if (max_block_size
> s
->pending_buf_size
- 5) {
1635 max_block_size
= s
->pending_buf_size
- 5;
1638 /* Copy as much as possible from input to output: */
1640 /* Fill the window as much as possible: */
1641 if (s
->lookahead
<= 1) {
1643 Assert(s
->strstart
< s
->w_size
+MAX_DIST(s
) ||
1644 s
->block_start
>= (long)s
->w_size
, "slide too late");
1647 if (s
->lookahead
== 0 && flush
== Z_NO_FLUSH
) return need_more
;
1649 if (s
->lookahead
== 0) break; /* flush the current block */
1651 Assert(s
->block_start
>= 0L, "block gone");
1653 s
->strstart
+= s
->lookahead
;
1656 /* Emit a stored block if pending_buf will be full: */
1657 max_start
= s
->block_start
+ max_block_size
;
1658 if (s
->strstart
== 0 || (ulg
)s
->strstart
>= max_start
) {
1659 /* strstart == 0 is possible when wraparound on 16-bit machine */
1660 s
->lookahead
= (uInt
)(s
->strstart
- max_start
);
1661 s
->strstart
= (uInt
)max_start
;
1664 /* Flush if we may have to slide, otherwise block_start may become
1665 * negative and the data will be gone:
1667 if (s
->strstart
- (uInt
)s
->block_start
>= MAX_DIST(s
)) {
1671 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1672 return flush
== Z_FINISH
? finish_done
: block_done
;
1675 /* ===========================================================================
1676 * Compress as much as possible from the input stream, return the current
1678 * This function does not perform lazy evaluation of matches and inserts
1679 * new strings in the dictionary only for unmatched strings or for short
1680 * matches. It is used only for the fast compression options.
1682 local block_state
deflate_fast(s
, flush
, clas
)
1687 IPos hash_head
; /* head of the hash chain */
1688 int bflush
; /* set if current block must be flushed */
1691 /* We haven't patched this code for alternative class data. */
1696 /* Make sure that we always have enough lookahead, except
1697 * at the end of the input file. We need MAX_MATCH bytes
1698 * for the next match, plus MIN_MATCH bytes to insert the
1699 * string following the next match.
1701 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1703 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1706 if (s
->lookahead
== 0) break; /* flush the current block */
1709 /* Insert the string window[strstart .. strstart+2] in the
1710 * dictionary, and set hash_head to the head of the hash chain:
1713 if (s
->lookahead
>= MIN_MATCH
) {
1714 INSERT_STRING(s
, s
->strstart
, hash_head
);
1717 /* Find the longest match, discarding those <= prev_length.
1718 * At this point we have always match_length < MIN_MATCH
1720 if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1721 /* To simplify the code, we prevent matches with the string
1722 * of window index 0 (in particular we have to avoid a match
1723 * of the string with itself at the start of the input file).
1725 s
->match_length
= longest_match (s
, hash_head
, clas
);
1726 /* longest_match() sets match_start */
1728 if (s
->match_length
>= MIN_MATCH
) {
1729 check_match(s
, s
->strstart
, s
->match_start
, s
->match_length
);
1731 _tr_tally_dist(s
, s
->strstart
- s
->match_start
,
1732 s
->match_length
- MIN_MATCH
, bflush
);
1734 s
->lookahead
-= s
->match_length
;
1736 /* Insert new strings in the hash table only if the match length
1737 * is not too large. This saves time but degrades compression.
1740 if (s
->match_length
<= s
->max_insert_length
&&
1741 s
->lookahead
>= MIN_MATCH
) {
1742 s
->match_length
--; /* string at strstart already in table */
1745 INSERT_STRING(s
, s
->strstart
, hash_head
);
1746 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1747 * always MIN_MATCH bytes ahead.
1749 } while (--s
->match_length
!= 0);
1754 s
->strstart
+= s
->match_length
;
1755 s
->match_length
= 0;
1756 s
->ins_h
= s
->window
[s
->strstart
];
1757 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1759 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1761 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1762 * matter since it will be recomputed at next deflate call.
1766 /* No match, output a literal byte */
1767 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1768 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1772 if (bflush
) FLUSH_BLOCK(s
, 0);
1774 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1775 return flush
== Z_FINISH
? finish_done
: block_done
;
1779 /* ===========================================================================
1780 * Same as above, but achieves better compression. We use a lazy
1781 * evaluation for matches: a match is finally adopted only if there is
1782 * no better match at the next window position.
1784 local block_state
deflate_slow(s
, flush
, clas
)
1789 IPos hash_head
; /* head of hash chain */
1790 int bflush
; /* set if current block must be flushed */
1792 int first
= 1; /* first says whether this is the first iteration
1793 of the loop, below. */
1795 if (clas
== Z_CLASS_COOKIE
) {
1797 /* Alternative class data must always be presented at the beginning
1801 input_length
= s
->strm
->avail_in
;
1804 /* Process the input block. */
1806 /* Make sure that we always have enough lookahead, except
1807 * at the end of the input file. We need MAX_MATCH bytes
1808 * for the next match, plus MIN_MATCH bytes to insert the
1809 * string following the next match.
1811 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1813 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1816 if (s
->lookahead
== 0) break; /* flush the current block */
1819 /* Insert the string window[strstart .. strstart+2] in the
1820 * dictionary, and set hash_head to the head of the hash chain:
1823 if (s
->lookahead
>= MIN_MATCH
) {
1824 INSERT_STRING(s
, s
->strstart
, hash_head
);
1827 /* Find the longest match, discarding those <= prev_length.
1829 s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
1830 s
->match_length
= MIN_MATCH
-1;
1832 if (clas
== Z_CLASS_COOKIE
&& first
) {
1833 s
->match_length
= cookie_match(s
, s
->strstart
, input_length
);
1834 } else if (clas
== Z_CLASS_STANDARD
&&
1836 s
->prev_length
< s
->max_lazy_match
&&
1837 s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1838 /* To simplify the code, we prevent matches with the string
1839 * of window index 0 (in particular we have to avoid a match
1840 * of the string with itself at the start of the input file).
1842 s
->match_length
= longest_match (s
, hash_head
, clas
);
1844 /* longest_match() sets match_start */
1846 if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
1847 #if TOO_FAR <= 32767
1848 || (s
->match_length
== MIN_MATCH
&&
1849 s
->strstart
- s
->match_start
> TOO_FAR
)
1853 /* If prev_match is also MIN_MATCH, match_start is garbage
1854 * but we will ignore the current match anyway.
1856 s
->match_length
= MIN_MATCH
-1;
1859 /* If there was a match at the previous step and the current
1860 * match is not better, output the previous match:
1863 if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
&&
1864 /* We will only accept an exact match for Z_CLASS_COOKIE data and
1865 * we won't match Z_CLASS_HUFFMAN_ONLY data at all. */
1866 (clas
== Z_CLASS_STANDARD
|| (clas
== Z_CLASS_COOKIE
&&
1867 s
->prev_length
== input_length
&&
1868 s
->prev_match
> 0 &&
1869 /* We require that a Z_CLASS_COOKIE match be
1870 * preceded by either a semicolon (which cannot be
1871 * part of a cookie), or non-cookie data. This is
1872 * to prevent a cookie from being a suffix of
1874 (class_at(s
, s
->prev_match
-1) == Z_CLASS_STANDARD
||
1875 *(s
->window
+ s
->prev_match
-1) == ';')))) {
1876 uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
1877 /* Do not insert strings in hash table beyond this. */
1879 check_match(s
, s
->strstart
-1, s
->prev_match
, s
->prev_length
);
1881 _tr_tally_dist(s
, s
->strstart
-1 - s
->prev_match
,
1882 s
->prev_length
- MIN_MATCH
, bflush
);
1884 /* Insert in hash table all strings up to the end of the match.
1885 * strstart-1 and strstart are already inserted. If there is not
1886 * enough lookahead, the last two strings are not inserted in
1889 s
->lookahead
-= s
->prev_length
-1;
1890 s
->prev_length
-= 2;
1892 if (++s
->strstart
<= max_insert
) {
1893 INSERT_STRING(s
, s
->strstart
, hash_head
);
1895 } while (--s
->prev_length
!= 0);
1896 s
->match_available
= 0;
1897 s
->match_length
= MIN_MATCH
-1;
1900 if (bflush
) FLUSH_BLOCK(s
, 0);
1902 } else if (s
->match_available
) {
1903 /* If there was no match at the previous position, output a
1904 * single literal. If there was a match but the current match
1905 * is longer, truncate the previous match to a single literal.
1907 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1908 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1910 FLUSH_BLOCK_ONLY(s
, 0);
1914 if (s
->strm
->avail_out
== 0) return need_more
;
1916 /* There is no previous match to compare with, wait for
1917 * the next step to decide.
1919 s
->match_available
= 1;
1924 Assert (flush
!= Z_NO_FLUSH
, "no flush?");
1925 if (s
->match_available
) {
1926 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1927 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1928 s
->match_available
= 0;
1930 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1931 return flush
== Z_FINISH
? finish_done
: block_done
;
1933 #endif /* FASTEST */
1935 /* ===========================================================================
1936 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1937 * one. Do not maintain a hash table. (It will be regenerated if this run of
1938 * deflate switches away from Z_RLE.)
1940 local block_state
deflate_rle(s
, flush
)
1944 int bflush
; /* set if current block must be flushed */
1945 uInt prev
; /* byte at distance one to match */
1946 Bytef
*scan
, *strend
; /* scan goes up to strend for length of run */
1949 /* Make sure that we always have enough lookahead, except
1950 * at the end of the input file. We need MAX_MATCH bytes
1951 * for the longest encodable run.
1953 if (s
->lookahead
< MAX_MATCH
) {
1955 if (s
->lookahead
< MAX_MATCH
&& flush
== Z_NO_FLUSH
) {
1958 if (s
->lookahead
== 0) break; /* flush the current block */
1961 /* See how many times the previous byte repeats */
1962 s
->match_length
= 0;
1963 if (s
->lookahead
>= MIN_MATCH
&& s
->strstart
> 0) {
1964 scan
= s
->window
+ s
->strstart
- 1;
1966 if (prev
== *++scan
&& prev
== *++scan
&& prev
== *++scan
) {
1967 strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1969 } while (prev
== *++scan
&& prev
== *++scan
&&
1970 prev
== *++scan
&& prev
== *++scan
&&
1971 prev
== *++scan
&& prev
== *++scan
&&
1972 prev
== *++scan
&& prev
== *++scan
&&
1974 s
->match_length
= MAX_MATCH
- (int)(strend
- scan
);
1975 if (s
->match_length
> s
->lookahead
)
1976 s
->match_length
= s
->lookahead
;
1980 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1981 if (s
->match_length
>= MIN_MATCH
) {
1982 check_match(s
, s
->strstart
, s
->strstart
- 1, s
->match_length
);
1984 _tr_tally_dist(s
, 1, s
->match_length
- MIN_MATCH
, bflush
);
1986 s
->lookahead
-= s
->match_length
;
1987 s
->strstart
+= s
->match_length
;
1988 s
->match_length
= 0;
1990 /* No match, output a literal byte */
1991 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1992 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1996 if (bflush
) FLUSH_BLOCK(s
, 0);
1998 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1999 return flush
== Z_FINISH
? finish_done
: block_done
;
2002 /* ===========================================================================
2003 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2004 * (It will be regenerated if this run of deflate switches away from Huffman.)
2006 local block_state
deflate_huff(s
, flush
)
2010 int bflush
; /* set if current block must be flushed */
2013 /* Make sure that we have a literal to write. */
2014 if (s
->lookahead
== 0) {
2016 if (s
->lookahead
== 0) {
2017 if (flush
== Z_NO_FLUSH
)
2019 break; /* flush the current block */
2023 /* Output a literal byte */
2024 s
->match_length
= 0;
2025 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
2026 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
2029 if (bflush
) FLUSH_BLOCK(s
, 0);
2031 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
2032 return flush
== Z_FINISH
? finish_done
: block_done
;