1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/filters/audio_clock.h"
9 #include "base/logging.h"
13 AudioClock::AudioClock(base::TimeDelta start_timestamp
, int sample_rate
)
14 : start_timestamp_(start_timestamp
),
15 microseconds_per_frame_(
16 static_cast<double>(base::Time::kMicrosecondsPerSecond
) /
18 total_buffered_frames_(0),
19 front_timestamp_(start_timestamp
),
20 back_timestamp_(start_timestamp
) {
23 AudioClock::~AudioClock() {
26 void AudioClock::WroteAudio(int frames_written
,
29 double playback_rate
) {
30 DCHECK_GE(frames_written
, 0);
31 DCHECK_LE(frames_written
, frames_requested
);
32 DCHECK_GE(delay_frames
, 0);
33 DCHECK_GE(playback_rate
, 0);
35 // First write: initialize buffer with silence.
36 if (start_timestamp_
== front_timestamp_
&& buffered_
.empty())
37 PushBufferedAudioData(delay_frames
, 0.0);
39 // Move frames from |buffered_| into the computed timestamp based on
42 // The ordering of compute -> push -> pop eliminates unnecessary memory
43 // reallocations in cases where |buffered_| gets emptied.
44 int64_t frames_played
=
45 std::max(INT64_C(0), total_buffered_frames_
- delay_frames
);
46 PushBufferedAudioData(frames_written
, playback_rate
);
47 PushBufferedAudioData(frames_requested
- frames_written
, 0.0);
48 PopBufferedAudioData(frames_played
);
50 // Update our front and back timestamps. The back timestamp is considered the
51 // authoritative source of truth, so base the front timestamp on range of data
52 // buffered. Doing so avoids accumulation errors on the front timestamp.
53 back_timestamp_
+= base::TimeDelta::FromMicroseconds(
54 frames_written
* playback_rate
* microseconds_per_frame_
);
55 // Don't let front timestamp move earlier in time, as could occur due to delay
56 // frames pushed in the first write, above.
57 front_timestamp_
= std::max(front_timestamp_
,
58 back_timestamp_
- ComputeBufferedMediaDuration());
59 DCHECK_GE(front_timestamp_
, start_timestamp_
);
60 DCHECK_LE(front_timestamp_
, back_timestamp_
);
63 void AudioClock::CompensateForSuspendedWrites(base::TimeDelta elapsed
,
65 const int64_t frames_elapsed
=
66 elapsed
.InMicroseconds() / microseconds_per_frame_
+ 0.5;
68 // No need to do anything if we're within the limits of our played out audio
69 // or there are no delay frames, the next WroteAudio() call will expire
70 // everything correctly.
71 if (frames_elapsed
< total_buffered_frames_
|| !delay_frames
)
74 // Otherwise, flush everything and prime with the delay frames.
75 WroteAudio(0, 0, 0, 0);
76 DCHECK(buffered_
.empty());
77 PushBufferedAudioData(delay_frames
, 0.0);
80 base::TimeDelta
AudioClock::TimeUntilPlayback(base::TimeDelta timestamp
) const {
81 DCHECK_GE(timestamp
, front_timestamp_
);
82 DCHECK_LE(timestamp
, back_timestamp_
);
84 int64_t frames_until_timestamp
= 0;
85 double timestamp_us
= timestamp
.InMicroseconds();
86 double media_time_us
= front_timestamp_
.InMicroseconds();
88 for (size_t i
= 0; i
< buffered_
.size(); ++i
) {
89 // Leading silence is always accounted prior to anything else.
90 if (buffered_
[i
].playback_rate
== 0) {
91 frames_until_timestamp
+= buffered_
[i
].frames
;
95 // Calculate upper bound on media time for current block of buffered frames.
96 double delta_us
= buffered_
[i
].frames
* buffered_
[i
].playback_rate
*
97 microseconds_per_frame_
;
98 double max_media_time_us
= media_time_us
+ delta_us
;
100 // Determine amount of media time to convert to frames for current block. If
101 // target timestamp falls within current block, scale the amount of frames
102 // based on remaining amount of media time.
103 if (timestamp_us
<= max_media_time_us
) {
104 frames_until_timestamp
+=
105 buffered_
[i
].frames
* (timestamp_us
- media_time_us
) / delta_us
;
109 media_time_us
= max_media_time_us
;
110 frames_until_timestamp
+= buffered_
[i
].frames
;
113 return base::TimeDelta::FromMicroseconds(frames_until_timestamp
*
114 microseconds_per_frame_
);
117 void AudioClock::ContiguousAudioDataBufferedForTesting(
118 base::TimeDelta
* total
,
119 base::TimeDelta
* same_rate_total
) const {
120 double scaled_frames
= 0;
121 double scaled_frames_at_same_rate
= 0;
122 bool found_silence
= false;
123 for (size_t i
= 0; i
< buffered_
.size(); ++i
) {
124 if (buffered_
[i
].playback_rate
== 0) {
125 found_silence
= true;
129 // Any buffered silence breaks our contiguous stretch of audio data.
133 scaled_frames
+= (buffered_
[i
].frames
* buffered_
[i
].playback_rate
);
136 scaled_frames_at_same_rate
= scaled_frames
;
139 *total
= base::TimeDelta::FromMicroseconds(scaled_frames
*
140 microseconds_per_frame_
);
141 *same_rate_total
= base::TimeDelta::FromMicroseconds(
142 scaled_frames_at_same_rate
* microseconds_per_frame_
);
145 AudioClock::AudioData::AudioData(int64_t frames
, double playback_rate
)
146 : frames(frames
), playback_rate(playback_rate
) {
149 void AudioClock::PushBufferedAudioData(int64_t frames
, double playback_rate
) {
153 total_buffered_frames_
+= frames
;
155 // Avoid creating extra elements where possible.
156 if (!buffered_
.empty() && buffered_
.back().playback_rate
== playback_rate
) {
157 buffered_
.back().frames
+= frames
;
161 buffered_
.push_back(AudioData(frames
, playback_rate
));
164 void AudioClock::PopBufferedAudioData(int64_t frames
) {
165 DCHECK_LE(frames
, total_buffered_frames_
);
167 total_buffered_frames_
-= frames
;
170 int64_t frames_to_pop
= std::min(buffered_
.front().frames
, frames
);
171 buffered_
.front().frames
-= frames_to_pop
;
172 if (buffered_
.front().frames
== 0)
173 buffered_
.pop_front();
175 frames
-= frames_to_pop
;
179 base::TimeDelta
AudioClock::ComputeBufferedMediaDuration() const {
180 double scaled_frames
= 0;
181 for (const auto& buffer
: buffered_
)
182 scaled_frames
+= buffer
.frames
* buffer
.playback_rate
;
183 return base::TimeDelta::FromMicroseconds(scaled_frames
*
184 microseconds_per_frame_
);