Simplify web_view.js
[chromium-blink-merge.git] / cc / trees / layer_sorter.cc
blobe171fe01120f6389931b1acb403581968e7126db
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/trees/layer_sorter.h"
7 #include <algorithm>
8 #include <deque>
9 #include <limits>
10 #include <vector>
12 #include "base/logging.h"
13 #include "cc/base/math_util.h"
14 #include "cc/layers/render_surface_impl.h"
15 #include "ui/gfx/transform.h"
17 namespace cc {
19 // This epsilon is used to determine if two layers are too close to each other
20 // to be able to tell which is in front of the other. It's a relative epsilon
21 // so it is robust to changes in scene scale. This value was chosen by picking
22 // a value near machine epsilon and then increasing it until the flickering on
23 // the test scene went away.
24 const float k_layer_epsilon = 1e-4f;
26 inline static float PerpProduct(const gfx::Vector2dF& u,
27 const gfx::Vector2dF& v) {
28 return u.x() * v.y() - u.y() * v.x();
31 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
32 // Returns true and the point of intersection if they do and false otherwise.
33 static bool EdgeEdgeTest(const gfx::PointF& a,
34 const gfx::PointF& b,
35 const gfx::PointF& c,
36 const gfx::PointF& d,
37 gfx::PointF* r) {
38 gfx::Vector2dF u = b - a;
39 gfx::Vector2dF v = d - c;
40 gfx::Vector2dF w = a - c;
42 float denom = PerpProduct(u, v);
44 // If denom == 0 then the edges are parallel. While they could be overlapping
45 // we don't bother to check here as the we'll find their intersections from
46 // the corner to quad tests.
47 if (!denom)
48 return false;
50 float s = PerpProduct(v, w) / denom;
51 if (s < 0.f || s > 1.f)
52 return false;
54 float t = PerpProduct(u, w) / denom;
55 if (t < 0.f || t > 1.f)
56 return false;
58 u.Scale(s);
59 *r = a + u;
60 return true;
63 GraphNode::GraphNode(LayerImpl* layer_impl)
64 : layer(layer_impl),
65 incoming_edge_weight(0.f) {}
67 GraphNode::~GraphNode() {}
69 LayerSorter::LayerSorter()
70 : z_range_(0.f) {}
72 LayerSorter::~LayerSorter() {}
74 static float CheckFloatingPointNumericAccuracy(float a, float b) {
75 float abs_dif = std::abs(b - a);
76 float abs_max = std::max(std::abs(b), std::abs(a));
77 // Check to see if we've got a result with a reasonable amount of error.
78 return abs_dif / abs_max;
81 // Checks whether layer "a" draws on top of layer "b". The weight value returned
82 // is an indication of the maximum z-depth difference between the layers or zero
83 // if the layers are found to be intesecting (some features are in front and
84 // some are behind).
85 LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a,
86 LayerShape* b,
87 float z_threshold,
88 float* weight) {
89 *weight = 0.f;
91 // Early out if the projected bounds don't overlap.
92 if (!a->projected_bounds.Intersects(b->projected_bounds))
93 return None;
95 gfx::PointF aPoints[4] = { a->projected_quad.p1(),
96 a->projected_quad.p2(),
97 a->projected_quad.p3(),
98 a->projected_quad.p4() };
99 gfx::PointF bPoints[4] = { b->projected_quad.p1(),
100 b->projected_quad.p2(),
101 b->projected_quad.p3(),
102 b->projected_quad.p4() };
104 // Make a list of points that inside both layer quad projections.
105 std::vector<gfx::PointF> overlap_points;
107 // Check all four corners of one layer against the other layer's quad.
108 for (int i = 0; i < 4; ++i) {
109 if (a->projected_quad.Contains(bPoints[i]))
110 overlap_points.push_back(bPoints[i]);
111 if (b->projected_quad.Contains(aPoints[i]))
112 overlap_points.push_back(aPoints[i]);
115 // Check all the edges of one layer for intersection with the other layer's
116 // edges.
117 gfx::PointF r;
118 for (int ea = 0; ea < 4; ++ea)
119 for (int eb = 0; eb < 4; ++eb)
120 if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4],
121 bPoints[eb], bPoints[(eb + 1) % 4],
122 &r))
123 overlap_points.push_back(r);
125 if (overlap_points.empty())
126 return None;
128 // Check the corresponding layer depth value for all overlap points to
129 // determine which layer is in front.
130 float max_positive = 0.f;
131 float max_negative = 0.f;
133 // This flag tracks the existance of a numerically accurate seperation
134 // between two layers. If there is no accurate seperation, the layers
135 // cannot be effectively sorted.
136 bool accurate = false;
138 for (size_t o = 0; o < overlap_points.size(); o++) {
139 float za = a->LayerZFromProjectedPoint(overlap_points[o]);
140 float zb = b->LayerZFromProjectedPoint(overlap_points[o]);
142 // Here we attempt to avoid numeric issues with layers that are too
143 // close together. If we have 2-sided quads that are very close
144 // together then we will draw them in document order to avoid
145 // flickering. The correct solution is for the content maker to turn
146 // on back-face culling or move the quads apart (if they're not two
147 // sides of one object).
148 if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon)
149 accurate = true;
151 float diff = za - zb;
152 if (diff > max_positive)
153 max_positive = diff;
154 if (diff < max_negative)
155 max_negative = diff;
158 // If we can't tell which should come first, we use document order.
159 if (!accurate)
160 return ABeforeB;
162 float max_diff =
163 std::abs(max_positive) > std::abs(max_negative) ?
164 max_positive : max_negative;
166 // If the results are inconsistent (and the z difference substantial to rule
167 // out numerical errors) then the layers are intersecting. We will still
168 // return an order based on the maximum depth difference but with an edge
169 // weight of zero these layers will get priority if a graph cycle is present
170 // and needs to be broken.
171 if (max_positive > z_threshold && max_negative < -z_threshold)
172 *weight = 0.f;
173 else
174 *weight = std::abs(max_diff);
176 // Maintain relative order if the layers have the same depth at all
177 // intersection points.
178 if (max_diff <= 0.f)
179 return ABeforeB;
181 return BBeforeA;
184 LayerShape::LayerShape() {}
186 LayerShape::LayerShape(float width,
187 float height,
188 const gfx::Transform& draw_transform) {
189 gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height));
191 // Compute the projection of the layer quad onto the z = 0 plane.
193 gfx::PointF clipped_quad[8];
194 int num_vertices_in_clipped_quad;
195 MathUtil::MapClippedQuad(draw_transform,
196 layer_quad,
197 clipped_quad,
198 &num_vertices_in_clipped_quad);
200 if (num_vertices_in_clipped_quad < 3) {
201 projected_bounds = gfx::RectF();
202 return;
205 projected_bounds =
206 MathUtil::ComputeEnclosingRectOfVertices(clipped_quad,
207 num_vertices_in_clipped_quad);
209 // NOTE: it will require very significant refactoring and overhead to deal
210 // with generalized polygons or multiple quads per layer here. For the sake of
211 // layer sorting it is equally correct to take a subsection of the polygon
212 // that can be made into a quad. This will only be incorrect in the case of
213 // intersecting layers, which are not supported yet anyway.
214 projected_quad.set_p1(clipped_quad[0]);
215 projected_quad.set_p2(clipped_quad[1]);
216 projected_quad.set_p3(clipped_quad[2]);
217 if (num_vertices_in_clipped_quad >= 4) {
218 projected_quad.set_p4(clipped_quad[3]);
219 } else {
220 // This will be a degenerate quad that is actually a triangle.
221 projected_quad.set_p4(clipped_quad[2]);
224 // Compute the normal of the layer's plane.
225 bool clipped = false;
226 gfx::Point3F c1 =
227 MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped);
228 gfx::Point3F c2 =
229 MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped);
230 gfx::Point3F c3 =
231 MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped);
232 // TODO(shawnsingh): Deal with clipping.
233 gfx::Vector3dF c12 = c2 - c1;
234 gfx::Vector3dF c13 = c3 - c1;
235 layer_normal = gfx::CrossProduct(c13, c12);
237 transform_origin = c1;
240 LayerShape::~LayerShape() {}
242 // Returns the Z coordinate of a point on the layer that projects
243 // to point p which lies on the z = 0 plane. It does it by computing the
244 // intersection of a line starting from p along the Z axis and the plane
245 // of the layer.
246 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF& p) const {
247 gfx::Vector3dF z_axis(0.f, 0.f, 1.f);
248 gfx::Vector3dF w = gfx::Point3F(p) - transform_origin;
250 float d = gfx::DotProduct(layer_normal, z_axis);
251 float n = -gfx::DotProduct(layer_normal, w);
253 // Check if layer is parallel to the z = 0 axis which will make it
254 // invisible and hence returning zero is fine.
255 if (!d)
256 return 0.f;
258 // The intersection point would be given by:
259 // p + (n / d) * u but since we are only interested in the
260 // z coordinate and p's z coord is zero, all we need is the value of n/d.
261 return n / d;
264 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first,
265 LayerImplList::iterator last) {
266 DVLOG(2) << "Creating graph nodes:";
267 float min_z = FLT_MAX;
268 float max_z = -FLT_MAX;
269 for (LayerImplList::const_iterator it = first; it < last; it++) {
270 nodes_.push_back(GraphNode(*it));
271 GraphNode& node = nodes_.at(nodes_.size() - 1);
272 RenderSurfaceImpl* render_surface = node.layer->render_surface();
273 if (!node.layer->DrawsContent() && !render_surface)
274 continue;
276 DVLOG(2) << "Layer " << node.layer->id() <<
277 " (" << node.layer->bounds().width() <<
278 " x " << node.layer->bounds().height() << ")";
280 gfx::Transform draw_transform;
281 float layer_width, layer_height;
282 if (render_surface) {
283 draw_transform = render_surface->draw_transform();
284 layer_width = render_surface->content_rect().width();
285 layer_height = render_surface->content_rect().height();
286 } else {
287 draw_transform = node.layer->draw_transform();
288 layer_width = node.layer->content_bounds().width();
289 layer_height = node.layer->content_bounds().height();
292 node.shape = LayerShape(layer_width, layer_height, draw_transform);
294 max_z = std::max(max_z, node.shape.transform_origin.z());
295 min_z = std::min(min_z, node.shape.transform_origin.z());
298 z_range_ = std::abs(max_z - min_z);
301 void LayerSorter::CreateGraphEdges() {
302 DVLOG(2) << "Edges:";
303 // Fraction of the total z_range below which z differences
304 // are not considered reliable.
305 const float z_threshold_factor = 0.01f;
306 float z_threshold = z_range_ * z_threshold_factor;
308 for (size_t na = 0; na < nodes_.size(); na++) {
309 GraphNode& node_a = nodes_[na];
310 if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface())
311 continue;
312 for (size_t nb = na + 1; nb < nodes_.size(); nb++) {
313 GraphNode& node_b = nodes_[nb];
314 if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface())
315 continue;
316 float weight = 0.f;
317 ABCompareResult overlap_result = CheckOverlap(&node_a.shape,
318 &node_b.shape,
319 z_threshold,
320 &weight);
321 GraphNode* start_node = NULL;
322 GraphNode* end_node = NULL;
323 if (overlap_result == ABeforeB) {
324 start_node = &node_a;
325 end_node = &node_b;
326 } else if (overlap_result == BBeforeA) {
327 start_node = &node_b;
328 end_node = &node_a;
331 if (start_node) {
332 DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id();
333 edges_.push_back(GraphEdge(start_node, end_node, weight));
338 for (size_t i = 0; i < edges_.size(); i++) {
339 GraphEdge& edge = edges_[i];
340 active_edges_[&edge] = &edge;
341 edge.from->outgoing.push_back(&edge);
342 edge.to->incoming.push_back(&edge);
343 edge.to->incoming_edge_weight += edge.weight;
347 // Finds and removes an edge from the list by doing a swap with the
348 // last element of the list.
349 void LayerSorter::RemoveEdgeFromList(GraphEdge* edge,
350 std::vector<GraphEdge*>* list) {
351 std::vector<GraphEdge*>::iterator iter =
352 std::find(list->begin(), list->end(), edge);
353 DCHECK(iter != list->end());
354 list->erase(iter);
357 // Sorts the given list of layers such that they can be painted in a
358 // back-to-front order. Sorting produces correct results for non-intersecting
359 // layers that don't have cyclical order dependencies. Cycles and intersections
360 // are broken (somewhat) aribtrarily. Sorting of layers is done via a
361 // topological sort of a directed graph whose nodes are the layers themselves.
362 // An edge from node A to node B signifies that layer A needs to be drawn before
363 // layer B. If A and B have no dependency between each other, then we preserve
364 // the ordering of those layers as they were in the original list.
366 // The draw order between two layers is determined by projecting the two
367 // triangles making up each layer quad to the Z = 0 plane, finding points of
368 // intersection between the triangles and backprojecting those points to the
369 // plane of the layer to determine the corresponding Z coordinate. The layer
370 // with the lower Z coordinate (farther from the eye) needs to be rendered
371 // first.
373 // If the layer projections don't intersect, then no edges (dependencies) are
374 // created between them in the graph. HOWEVER, in this case we still need to
375 // preserve the ordering of the original list of layers, since that list should
376 // already have proper z-index ordering of layers.
378 void LayerSorter::Sort(LayerImplList::iterator first,
379 LayerImplList::iterator last) {
380 DVLOG(2) << "Sorting start ----";
381 CreateGraphNodes(first, last);
383 CreateGraphEdges();
385 std::vector<GraphNode*> sorted_list;
386 std::deque<GraphNode*> no_incoming_edge_node_list;
388 // Find all the nodes that don't have incoming edges.
389 for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) {
390 if (!la->incoming.size())
391 no_incoming_edge_node_list.push_back(&(*la));
394 DVLOG(2) << "Sorted list: ";
395 while (active_edges_.size() || no_incoming_edge_node_list.size()) {
396 while (no_incoming_edge_node_list.size()) {
397 // It is necessary to preserve the existing ordering of layers, when there
398 // are no explicit dependencies (because this existing ordering has
399 // correct z-index/layout ordering). To preserve this ordering, we process
400 // Nodes in the same order that they were added to the list.
401 GraphNode* from_node = no_incoming_edge_node_list.front();
402 no_incoming_edge_node_list.pop_front();
404 // Add it to the final list.
405 sorted_list.push_back(from_node);
407 DVLOG(2) << from_node->layer->id() << ", ";
409 // Remove all its outgoing edges from the graph.
410 for (size_t i = 0; i < from_node->outgoing.size(); i++) {
411 GraphEdge* outgoing_edge = from_node->outgoing[i];
413 active_edges_.erase(outgoing_edge);
414 RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming);
415 outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight;
417 if (!outgoing_edge->to->incoming.size())
418 no_incoming_edge_node_list.push_back(outgoing_edge->to);
420 from_node->outgoing.clear();
423 if (!active_edges_.size())
424 break;
426 // If there are still active edges but the list of nodes without incoming
427 // edges is empty then we have run into a cycle. Break the cycle by finding
428 // the node with the smallest overall incoming edge weight and use it. This
429 // will favor nodes that have zero-weight incoming edges i.e. layers that
430 // are being occluded by a layer that intersects them.
431 float min_incoming_edge_weight = FLT_MAX;
432 GraphNode* next_node = NULL;
433 for (size_t i = 0; i < nodes_.size(); i++) {
434 if (nodes_[i].incoming.size() &&
435 nodes_[i].incoming_edge_weight < min_incoming_edge_weight) {
436 min_incoming_edge_weight = nodes_[i].incoming_edge_weight;
437 next_node = &nodes_[i];
440 DCHECK(next_node);
441 // Remove all its incoming edges.
442 for (size_t e = 0; e < next_node->incoming.size(); e++) {
443 GraphEdge* incoming_edge = next_node->incoming[e];
445 active_edges_.erase(incoming_edge);
446 RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing);
448 next_node->incoming.clear();
449 next_node->incoming_edge_weight = 0.f;
450 no_incoming_edge_node_list.push_back(next_node);
451 DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
452 next_node->layer->id() <<
453 " (weight = " << min_incoming_edge_weight << ")";
456 // Note: The original elements of the list are in no danger of having their
457 // ref count go to zero here as they are all nodes of the layer hierarchy and
458 // are kept alive by their parent nodes.
459 int count = 0;
460 for (LayerImplList::iterator it = first; it < last; it++)
461 *it = sorted_list[count++]->layer;
463 DVLOG(2) << "Sorting end ----";
465 nodes_.clear();
466 edges_.clear();
467 active_edges_.clear();
470 } // namespace cc