1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/seccomp-bpf/syscall.h"
10 #include "base/logging.h"
11 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
17 #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
18 defined(ARCH_CPU_MIPS_FAMILY)
19 // Number that's not currently used by any Linux kernel ABIs.
20 const int kInvalidSyscallNumber
= 0x351d3;
22 #error Unrecognized architecture
25 asm(// We need to be able to tell the kernel exactly where we made a
26 // system call. The C++ compiler likes to sometimes clone or
27 // inline code, which would inadvertently end up duplicating
29 // "gcc" can suppress code duplication with suitable function
30 // attributes, but "clang" doesn't have this ability.
31 // The "clang" developer mailing list suggested that the correct
32 // and portable solution is a file-scope assembly block.
33 // N.B. We do mark our code as a proper function so that backtraces
34 // work correctly. But we make absolutely no attempt to use the
35 // ABI's calling conventions for passing arguments. We will only
36 // ever be called from assembly code and thus can pick more
37 // suitable calling conventions.
41 ".type SyscallAsm, @function\n"
42 "SyscallAsm:.cfi_startproc\n"
43 // Check if "%eax" is negative. If so, do not attempt to make a
44 // system call. Instead, compute the return address that is visible
45 // to the kernel after we execute "int $0x80". This address can be
46 // used as a marker that BPF code inspects.
49 // Always, make sure that our code is position-independent, or
50 // address space randomization might not work on i386. This means,
51 // we can't use "lea", but instead have to rely on "call/pop".
52 "call 0f; .cfi_adjust_cfa_offset 4\n"
53 "0:pop %eax; .cfi_adjust_cfa_offset -4\n"
56 // Save register that we don't want to clobber. On i386, we need to
57 // save relatively aggressively, as there are a couple or registers
58 // that are used internally (e.g. %ebx for position-independent
59 // code, and %ebp for the frame pointer), and as we need to keep at
60 // least a few registers available for the register allocator.
61 "1:push %esi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset esi, 0\n"
62 "push %edi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset edi, 0\n"
63 "push %ebx; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebx, 0\n"
64 "push %ebp; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebp, 0\n"
65 // Copy entries from the array holding the arguments into the
66 // correct CPU registers.
67 "movl 0(%edi), %ebx\n"
68 "movl 4(%edi), %ecx\n"
69 "movl 8(%edi), %edx\n"
70 "movl 12(%edi), %esi\n"
71 "movl 20(%edi), %ebp\n"
72 "movl 16(%edi), %edi\n"
75 // This is our "magic" return address that the BPF filter sees.
77 // Restore any clobbered registers that we didn't declare to the
79 "pop %ebp; .cfi_restore ebp; .cfi_adjust_cfa_offset -4\n"
80 "pop %ebx; .cfi_restore ebx; .cfi_adjust_cfa_offset -4\n"
81 "pop %edi; .cfi_restore edi; .cfi_adjust_cfa_offset -4\n"
82 "pop %esi; .cfi_restore esi; .cfi_adjust_cfa_offset -4\n"
85 "9:.size SyscallAsm, 9b-SyscallAsm\n"
86 #elif defined(__x86_64__)
89 ".type SyscallAsm, @function\n"
90 "SyscallAsm:.cfi_startproc\n"
91 // Check if "%rdi" is negative. If so, do not attempt to make a
92 // system call. Instead, compute the return address that is visible
93 // to the kernel after we execute "syscall". This address can be
94 // used as a marker that BPF code inspects.
97 // Always make sure that our code is position-independent, or the
98 // linker will throw a hissy fit on x86-64.
99 "lea 2f(%rip), %rax\n"
101 // Now we load the registers used to pass arguments to the system
102 // call: system call number in %rax, and arguments in %rdi, %rsi,
103 // %rdx, %r10, %r8, %r9. Note: These are all caller-save registers
104 // (only %rbx, %rbp, %rsp, and %r12-%r15 are callee-save), so no
105 // need to worry here about spilling registers or CFI directives.
106 "1:movq %rdi, %rax\n"
107 "movq 0(%rsi), %rdi\n"
108 "movq 16(%rsi), %rdx\n"
109 "movq 24(%rsi), %r10\n"
110 "movq 32(%rsi), %r8\n"
111 "movq 40(%rsi), %r9\n"
112 "movq 8(%rsi), %rsi\n"
115 // This is our "magic" return address that the BPF filter sees.
118 "9:.size SyscallAsm, 9b-SyscallAsm\n"
119 #elif defined(__arm__)
120 // Throughout this file, we use the same mode (ARM vs. thumb)
121 // that the C++ compiler uses. This means, when transfering control
122 // from C++ to assembly code, we do not need to switch modes (e.g.
123 // by using the "bx" instruction). It also means that our assembly
124 // code should not be invoked directly from code that lives in
125 // other compilation units, as we don't bother implementing thumb
126 // interworking. That's OK, as we don't make any of the assembly
127 // symbols public. They are all local to this file.
130 ".type SyscallAsm, %function\n"
131 #if defined(__thumb__)
137 #if !defined(__native_client_nonsfi__)
138 // .fnstart and .fnend pseudo operations creates unwind table.
139 // It also creates a reference to the symbol __aeabi_unwind_cpp_pr0, which
140 // is not provided by PNaCl toolchain. Disable it.
143 "@ args = 0, pretend = 0, frame = 8\n"
144 "@ frame_needed = 1, uses_anonymous_args = 0\n"
145 #if defined(__thumb__)
149 ".cfi_offset 14, -4\n"
150 ".cfi_offset 7, -8\n"
151 ".cfi_def_cfa_offset 8\n"
153 "stmfd sp!, {fp, lr}\n"
156 // Check if "r0" is negative. If so, do not attempt to make a
157 // system call. Instead, compute the return address that is visible
158 // to the kernel after we execute "swi 0". This address can be
159 // used as a marker that BPF code inspects.
164 // We declared (almost) all clobbered registers to the compiler. On
165 // ARM there is no particular register pressure. So, we can go
166 // ahead and directly copy the entries from the arguments array
167 // into the appropriate CPU registers.
168 "1:ldr r5, [r6, #20]\n"
169 "ldr r4, [r6, #16]\n"
170 "ldr r3, [r6, #12]\n"
177 // Restore the frame pointer. Also restore the program counter from
178 // the link register; this makes us return to the caller.
179 #if defined(__thumb__)
183 "2:ldmfd sp!, {fp, pc}\n"
185 #if !defined(__native_client_nonsfi__)
186 // Do not use .fnstart and .fnend for PNaCl toolchain. See above comment,
190 "9:.size SyscallAsm, 9b-SyscallAsm\n"
191 #elif defined(__mips__)
194 ".type SyscallAsm, @function\n"
195 "SyscallAsm:.ent SyscallAsm\n"
196 ".frame $sp, 40, $ra\n"
199 "addiu $sp, $sp, -40\n"
201 // Check if "v0" is negative. If so, do not attempt to make a
202 // system call. Instead, compute the return address that is visible
203 // to the kernel after we execute "syscall". This address can be
204 // used as a marker that BPF code inspects.
210 // On MIPS first four arguments go to registers a0 - a3 and any
211 // argument after that goes to stack. We can go ahead and directly
212 // copy the entries from the arguments array into the appropriate
213 // CPU registers and on the stack.
214 "1:lw $a3, 28($a0)\n"
228 // This is our "magic" return address that the BPF filter sees.
229 // Restore the return address from the stack.
230 "2:lw $ra, 36($sp)\n"
232 " addiu $sp, $sp, 40\n"
235 ".size SyscallAsm,.-SyscallAsm\n"
236 #elif defined(__aarch64__)
239 ".type SyscallAsm, %function\n"
246 "1:ldr x5, [x6, #40]\n"
247 "ldr x4, [x6, #32]\n"
248 "ldr x3, [x6, #24]\n"
249 "ldr x2, [x6, #16]\n"
257 ".size SyscallAsm, .-SyscallAsm\n"
261 #if defined(__x86_64__)
263 intptr_t SyscallAsm(intptr_t nr
, const intptr_t args
[6]);
269 intptr_t Syscall::InvalidCall() {
270 // Explicitly pass eight zero arguments just in case.
271 return Call(kInvalidSyscallNumber
, 0, 0, 0, 0, 0, 0, 0, 0);
274 intptr_t Syscall::Call(int nr
,
283 // We rely on "intptr_t" to be the exact size as a "void *". This is
284 // typically true, but just in case, we add a check. The language
285 // specification allows platforms some leeway in cases, where
286 // "sizeof(void *)" is not the same as "sizeof(void (*)())". We expect
287 // that this would only be an issue for IA64, which we are currently not
288 // planning on supporting. And it is even possible that this would work
289 // on IA64, but for lack of actual hardware, I cannot test.
290 static_assert(sizeof(void*) == sizeof(intptr_t),
291 "pointer types and intptr_t must be exactly the same size");
293 // TODO(nedeljko): Enable use of more than six parameters on architectures
294 // where that makes sense.
295 #if defined(__mips__)
296 const intptr_t args
[8] = {p0
, p1
, p2
, p3
, p4
, p5
, p6
, p7
};
298 DCHECK_EQ(p6
, 0) << " Support for syscalls with more than six arguments not "
299 "added for this architecture";
300 DCHECK_EQ(p7
, 0) << " Support for syscalls with more than six arguments not "
301 "added for this architecture";
302 const intptr_t args
[6] = {p0
, p1
, p2
, p3
, p4
, p5
};
303 #endif // defined(__mips__)
305 // Invoke our file-scope assembly code. The constraints have been picked
306 // carefully to match what the rest of the assembly code expects in input,
307 // output, and clobbered registers.
308 #if defined(__i386__)
312 // N.B. These are not the calling conventions normally used by the ABI.
314 : "0"(ret
), "D"(args
)
315 : "cc", "esp", "memory", "ecx", "edx");
316 #elif defined(__x86_64__)
317 intptr_t ret
= SyscallAsm(nr
, args
);
318 #elif defined(__arm__)
321 register intptr_t inout
__asm__("r0") = nr
;
322 register const intptr_t* data
__asm__("r6") = args
;
325 // N.B. These are not the calling conventions normally used by the ABI.
327 : "0"(inout
), "r"(data
)
336 #if !defined(__thumb__)
337 // In thumb mode, we cannot use "r7" as a general purpose register, as
338 // it is our frame pointer. We have to manually manage and preserve
340 // In ARM mode, we have a dedicated frame pointer register and "r7" is
341 // thus available as a general purpose register. We don't preserve it,
342 // but instead mark it as clobbered.
345 #endif // !defined(__thumb__)
349 #elif defined(__mips__)
351 intptr_t ret
= Syscall::SandboxSyscallRaw(nr
, args
, &err_status
);
354 // On error, MIPS returns errno from syscall instead of -errno.
355 // The purpose of this negation is for SandboxSyscall() to behave
356 // more like it would on other architectures.
359 #elif defined(__aarch64__)
362 register intptr_t inout
__asm__("x0") = nr
;
363 register const intptr_t* data
__asm__("x6") = args
;
364 asm volatile("bl SyscallAsm\n"
366 : "0"(inout
), "r"(data
)
367 : "memory", "x1", "x2", "x3", "x4", "x5", "x8", "x30");
372 #error "Unimplemented architecture"
377 void Syscall::PutValueInUcontext(intptr_t ret_val
, ucontext_t
* ctx
) {
378 #if defined(__mips__)
379 // Mips ABI states that on error a3 CPU register has non zero value and if
380 // there is no error, it should be zero.
381 if (ret_val
<= -1 && ret_val
>= -4095) {
382 // |ret_val| followes the Syscall::Call() convention of being -errno on
383 // errors. In order to write correct value to return register this sign
384 // needs to be changed back.
386 SECCOMP_PARM4(ctx
) = 1;
388 SECCOMP_PARM4(ctx
) = 0;
390 SECCOMP_RESULT(ctx
) = static_cast<greg_t
>(ret_val
);
393 #if defined(__mips__)
394 intptr_t Syscall::SandboxSyscallRaw(int nr
,
395 const intptr_t* args
,
397 register intptr_t ret
__asm__("v0") = nr
;
398 // a3 register becomes non zero on error.
399 register intptr_t err_stat
__asm__("a3") = 0;
401 register const intptr_t* data
__asm__("a0") = args
;
403 "la $t9, SyscallAsm\n"
406 : "=r"(ret
), "=r"(err_stat
)
409 // a2 is in the clober list so inline assembly can not change its
411 : "memory", "ra", "t9", "a2");
414 // Set an error status so it can be used outside of this function
419 #endif // defined(__mips__)
421 } // namespace sandbox