Revert 271602 "Implementation of leveldb-backed PrefStore."
[chromium-blink-merge.git] / base / message_loop / message_pump_win.cc
blobae022bf0957f48be47ad16c77b0f0d99693add21
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop/message_pump_win.h"
7 #include <math.h>
9 #include "base/debug/trace_event.h"
10 #include "base/message_loop/message_loop.h"
11 #include "base/metrics/histogram.h"
12 #include "base/process/memory.h"
13 #include "base/strings/stringprintf.h"
14 #include "base/win/wrapped_window_proc.h"
16 namespace base {
18 namespace {
20 enum MessageLoopProblems {
21 MESSAGE_POST_ERROR,
22 COMPLETION_POST_ERROR,
23 SET_TIMER_ERROR,
24 MESSAGE_LOOP_PROBLEM_MAX,
27 } // namespace
29 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
31 // Message sent to get an additional time slice for pumping (processing) another
32 // task (a series of such messages creates a continuous task pump).
33 static const int kMsgHaveWork = WM_USER + 1;
35 //-----------------------------------------------------------------------------
36 // MessagePumpWin public:
38 void MessagePumpWin::AddObserver(MessagePumpObserver* observer) {
39 observers_.AddObserver(observer);
42 void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) {
43 observers_.RemoveObserver(observer);
46 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
47 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg));
50 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
51 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg));
54 void MessagePumpWin::RunWithDispatcher(
55 Delegate* delegate, MessagePumpDispatcher* dispatcher) {
56 RunState s;
57 s.delegate = delegate;
58 s.dispatcher = dispatcher;
59 s.should_quit = false;
60 s.run_depth = state_ ? state_->run_depth + 1 : 1;
62 RunState* previous_state = state_;
63 state_ = &s;
65 DoRunLoop();
67 state_ = previous_state;
70 void MessagePumpWin::Quit() {
71 DCHECK(state_);
72 state_->should_quit = true;
75 //-----------------------------------------------------------------------------
76 // MessagePumpWin protected:
78 int MessagePumpWin::GetCurrentDelay() const {
79 if (delayed_work_time_.is_null())
80 return -1;
82 // Be careful here. TimeDelta has a precision of microseconds, but we want a
83 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
84 // 6? It should be 6 to avoid executing delayed work too early.
85 double timeout =
86 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
88 // If this value is negative, then we need to run delayed work soon.
89 int delay = static_cast<int>(timeout);
90 if (delay < 0)
91 delay = 0;
93 return delay;
96 //-----------------------------------------------------------------------------
97 // MessagePumpForUI public:
99 MessagePumpForUI::MessagePumpForUI()
100 : atom_(0) {
101 InitMessageWnd();
104 MessagePumpForUI::~MessagePumpForUI() {
105 DestroyWindow(message_hwnd_);
106 UnregisterClass(MAKEINTATOM(atom_),
107 GetModuleFromAddress(&WndProcThunk));
110 void MessagePumpForUI::ScheduleWork() {
111 if (InterlockedExchange(&have_work_, 1))
112 return; // Someone else continued the pumping.
114 // Make sure the MessagePump does some work for us.
115 BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
116 reinterpret_cast<WPARAM>(this), 0);
117 if (ret)
118 return; // There was room in the Window Message queue.
120 // We have failed to insert a have-work message, so there is a chance that we
121 // will starve tasks/timers while sitting in a nested message loop. Nested
122 // loops only look at Windows Message queues, and don't look at *our* task
123 // queues, etc., so we might not get a time slice in such. :-(
124 // We could abort here, but the fear is that this failure mode is plausibly
125 // common (queue is full, of about 2000 messages), so we'll do a near-graceful
126 // recovery. Nested loops are pretty transient (we think), so this will
127 // probably be recoverable.
128 InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert.
129 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
130 MESSAGE_LOOP_PROBLEM_MAX);
133 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
135 // We would *like* to provide high resolution timers. Windows timers using
136 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
137 // mechanism because the application can enter modal windows loops where it
138 // is not running our MessageLoop; the only way to have our timers fire in
139 // these cases is to post messages there.
141 // To provide sub-10ms timers, we process timers directly from our run loop.
142 // For the common case, timers will be processed there as the run loop does
143 // its normal work. However, we *also* set the system timer so that WM_TIMER
144 // events fire. This mops up the case of timers not being able to work in
145 // modal message loops. It is possible for the SetTimer to pop and have no
146 // pending timers, because they could have already been processed by the
147 // run loop itself.
149 // We use a single SetTimer corresponding to the timer that will expire
150 // soonest. As new timers are created and destroyed, we update SetTimer.
151 // Getting a spurrious SetTimer event firing is benign, as we'll just be
152 // processing an empty timer queue.
154 delayed_work_time_ = delayed_work_time;
156 int delay_msec = GetCurrentDelay();
157 DCHECK_GE(delay_msec, 0);
158 if (delay_msec < USER_TIMER_MINIMUM)
159 delay_msec = USER_TIMER_MINIMUM;
161 // Create a WM_TIMER event that will wake us up to check for any pending
162 // timers (in case we are running within a nested, external sub-pump).
163 BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
164 delay_msec, NULL);
165 if (ret)
166 return;
167 // If we can't set timers, we are in big trouble... but cross our fingers for
168 // now.
169 // TODO(jar): If we don't see this error, use a CHECK() here instead.
170 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
171 MESSAGE_LOOP_PROBLEM_MAX);
174 //-----------------------------------------------------------------------------
175 // MessagePumpForUI private:
177 // static
178 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
179 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
180 switch (message) {
181 case kMsgHaveWork:
182 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
183 break;
184 case WM_TIMER:
185 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
186 break;
188 return DefWindowProc(hwnd, message, wparam, lparam);
191 void MessagePumpForUI::DoRunLoop() {
192 // IF this was just a simple PeekMessage() loop (servicing all possible work
193 // queues), then Windows would try to achieve the following order according
194 // to MSDN documentation about PeekMessage with no filter):
195 // * Sent messages
196 // * Posted messages
197 // * Sent messages (again)
198 // * WM_PAINT messages
199 // * WM_TIMER messages
201 // Summary: none of the above classes is starved, and sent messages has twice
202 // the chance of being processed (i.e., reduced service time).
204 for (;;) {
205 // If we do any work, we may create more messages etc., and more work may
206 // possibly be waiting in another task group. When we (for example)
207 // ProcessNextWindowsMessage(), there is a good chance there are still more
208 // messages waiting. On the other hand, when any of these methods return
209 // having done no work, then it is pretty unlikely that calling them again
210 // quickly will find any work to do. Finally, if they all say they had no
211 // work, then it is a good time to consider sleeping (waiting) for more
212 // work.
214 bool more_work_is_plausible = ProcessNextWindowsMessage();
215 if (state_->should_quit)
216 break;
218 more_work_is_plausible |= state_->delegate->DoWork();
219 if (state_->should_quit)
220 break;
222 more_work_is_plausible |=
223 state_->delegate->DoDelayedWork(&delayed_work_time_);
224 // If we did not process any delayed work, then we can assume that our
225 // existing WM_TIMER if any will fire when delayed work should run. We
226 // don't want to disturb that timer if it is already in flight. However,
227 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
228 if (more_work_is_plausible && delayed_work_time_.is_null())
229 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
230 if (state_->should_quit)
231 break;
233 if (more_work_is_plausible)
234 continue;
236 more_work_is_plausible = state_->delegate->DoIdleWork();
237 if (state_->should_quit)
238 break;
240 if (more_work_is_plausible)
241 continue;
243 WaitForWork(); // Wait (sleep) until we have work to do again.
247 void MessagePumpForUI::InitMessageWnd() {
248 // Generate a unique window class name.
249 string16 class_name = StringPrintf(kWndClassFormat, this);
251 HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
252 WNDCLASSEX wc = {0};
253 wc.cbSize = sizeof(wc);
254 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
255 wc.hInstance = instance;
256 wc.lpszClassName = class_name.c_str();
257 atom_ = RegisterClassEx(&wc);
258 DCHECK(atom_);
260 message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
261 HWND_MESSAGE, 0, instance, 0);
262 DCHECK(message_hwnd_);
265 void MessagePumpForUI::WaitForWork() {
266 // Wait until a message is available, up to the time needed by the timer
267 // manager to fire the next set of timers.
268 int delay = GetCurrentDelay();
269 if (delay < 0) // Negative value means no timers waiting.
270 delay = INFINITE;
272 DWORD result;
273 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
274 MWMO_INPUTAVAILABLE);
276 if (WAIT_OBJECT_0 == result) {
277 // A WM_* message is available.
278 // If a parent child relationship exists between windows across threads
279 // then their thread inputs are implicitly attached.
280 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
281 // that messages are ready for processing (Specifically, mouse messages
282 // intended for the child window may appear if the child window has
283 // capture).
284 // The subsequent PeekMessages call may fail to return any messages thus
285 // causing us to enter a tight loop at times.
286 // The WaitMessage call below is a workaround to give the child window
287 // some time to process its input messages.
288 MSG msg = {0};
289 DWORD queue_status = GetQueueStatus(QS_MOUSE);
290 if (HIWORD(queue_status) & QS_MOUSE &&
291 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
292 WaitMessage();
294 return;
297 DCHECK_NE(WAIT_FAILED, result) << GetLastError();
300 void MessagePumpForUI::HandleWorkMessage() {
301 // If we are being called outside of the context of Run, then don't try to do
302 // any work. This could correspond to a MessageBox call or something of that
303 // sort.
304 if (!state_) {
305 // Since we handled a kMsgHaveWork message, we must still update this flag.
306 InterlockedExchange(&have_work_, 0);
307 return;
310 // Let whatever would have run had we not been putting messages in the queue
311 // run now. This is an attempt to make our dummy message not starve other
312 // messages that may be in the Windows message queue.
313 ProcessPumpReplacementMessage();
315 // Now give the delegate a chance to do some work. He'll let us know if he
316 // needs to do more work.
317 if (state_->delegate->DoWork())
318 ScheduleWork();
321 void MessagePumpForUI::HandleTimerMessage() {
322 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
324 // If we are being called outside of the context of Run, then don't do
325 // anything. This could correspond to a MessageBox call or something of
326 // that sort.
327 if (!state_)
328 return;
330 state_->delegate->DoDelayedWork(&delayed_work_time_);
331 if (!delayed_work_time_.is_null()) {
332 // A bit gratuitous to set delayed_work_time_ again, but oh well.
333 ScheduleDelayedWork(delayed_work_time_);
337 bool MessagePumpForUI::ProcessNextWindowsMessage() {
338 // If there are sent messages in the queue then PeekMessage internally
339 // dispatches the message and returns false. We return true in this
340 // case to ensure that the message loop peeks again instead of calling
341 // MsgWaitForMultipleObjectsEx again.
342 bool sent_messages_in_queue = false;
343 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
344 if (HIWORD(queue_status) & QS_SENDMESSAGE)
345 sent_messages_in_queue = true;
347 MSG msg;
348 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
349 return ProcessMessageHelper(msg);
351 return sent_messages_in_queue;
354 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
355 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
356 "message", msg.message);
357 if (WM_QUIT == msg.message) {
358 // Repost the QUIT message so that it will be retrieved by the primary
359 // GetMessage() loop.
360 state_->should_quit = true;
361 PostQuitMessage(static_cast<int>(msg.wParam));
362 return false;
365 // While running our main message pump, we discard kMsgHaveWork messages.
366 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
367 return ProcessPumpReplacementMessage();
369 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
370 return true;
372 WillProcessMessage(msg);
374 uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
375 if (state_->dispatcher)
376 action = state_->dispatcher->Dispatch(msg);
377 if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
378 state_->should_quit = true;
379 if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
380 TranslateMessage(&msg);
381 DispatchMessage(&msg);
384 DidProcessMessage(msg);
385 return true;
388 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
389 // When we encounter a kMsgHaveWork message, this method is called to peek
390 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
391 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
392 // a continuous stream of such messages are posted. This method carefully
393 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
394 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
395 // possibly be posted), and finally dispatches that peeked replacement. Note
396 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
398 bool have_message = false;
399 MSG msg;
400 // We should not process all window messages if we are in the context of an
401 // OS modal loop, i.e. in the context of a windows API call like MessageBox.
402 // This is to ensure that these messages are peeked out by the OS modal loop.
403 if (MessageLoop::current()->os_modal_loop()) {
404 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
405 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
406 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
407 } else {
408 have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
411 DCHECK(!have_message || kMsgHaveWork != msg.message ||
412 msg.hwnd != message_hwnd_);
414 // Since we discarded a kMsgHaveWork message, we must update the flag.
415 int old_have_work = InterlockedExchange(&have_work_, 0);
416 DCHECK(old_have_work);
418 // We don't need a special time slice if we didn't have_message to process.
419 if (!have_message)
420 return false;
422 // Guarantee we'll get another time slice in the case where we go into native
423 // windows code. This ScheduleWork() may hurt performance a tiny bit when
424 // tasks appear very infrequently, but when the event queue is busy, the
425 // kMsgHaveWork events get (percentage wise) rarer and rarer.
426 ScheduleWork();
427 return ProcessMessageHelper(msg);
430 //-----------------------------------------------------------------------------
431 // MessagePumpForIO public:
433 MessagePumpForIO::MessagePumpForIO() {
434 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
435 DCHECK(port_.IsValid());
438 void MessagePumpForIO::ScheduleWork() {
439 if (InterlockedExchange(&have_work_, 1))
440 return; // Someone else continued the pumping.
442 // Make sure the MessagePump does some work for us.
443 BOOL ret = PostQueuedCompletionStatus(port_, 0,
444 reinterpret_cast<ULONG_PTR>(this),
445 reinterpret_cast<OVERLAPPED*>(this));
446 if (ret)
447 return; // Post worked perfectly.
449 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
450 InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed.
451 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
452 MESSAGE_LOOP_PROBLEM_MAX);
455 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
456 // We know that we can't be blocked right now since this method can only be
457 // called on the same thread as Run, so we only need to update our record of
458 // how long to sleep when we do sleep.
459 delayed_work_time_ = delayed_work_time;
462 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
463 IOHandler* handler) {
464 ULONG_PTR key = HandlerToKey(handler, true);
465 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
466 DPCHECK(port);
469 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
470 IOHandler* handler) {
471 // Job object notifications use the OVERLAPPED pointer to carry the message
472 // data. Mark the completion key correspondingly, so we will not try to
473 // convert OVERLAPPED* to IOContext*.
474 ULONG_PTR key = HandlerToKey(handler, false);
475 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
476 info.CompletionKey = reinterpret_cast<void*>(key);
477 info.CompletionPort = port_;
478 return SetInformationJobObject(job_handle,
479 JobObjectAssociateCompletionPortInformation,
480 &info,
481 sizeof(info)) != FALSE;
484 //-----------------------------------------------------------------------------
485 // MessagePumpForIO private:
487 void MessagePumpForIO::DoRunLoop() {
488 for (;;) {
489 // If we do any work, we may create more messages etc., and more work may
490 // possibly be waiting in another task group. When we (for example)
491 // WaitForIOCompletion(), there is a good chance there are still more
492 // messages waiting. On the other hand, when any of these methods return
493 // having done no work, then it is pretty unlikely that calling them
494 // again quickly will find any work to do. Finally, if they all say they
495 // had no work, then it is a good time to consider sleeping (waiting) for
496 // more work.
498 bool more_work_is_plausible = state_->delegate->DoWork();
499 if (state_->should_quit)
500 break;
502 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
503 if (state_->should_quit)
504 break;
506 more_work_is_plausible |=
507 state_->delegate->DoDelayedWork(&delayed_work_time_);
508 if (state_->should_quit)
509 break;
511 if (more_work_is_plausible)
512 continue;
514 more_work_is_plausible = state_->delegate->DoIdleWork();
515 if (state_->should_quit)
516 break;
518 if (more_work_is_plausible)
519 continue;
521 WaitForWork(); // Wait (sleep) until we have work to do again.
525 // Wait until IO completes, up to the time needed by the timer manager to fire
526 // the next set of timers.
527 void MessagePumpForIO::WaitForWork() {
528 // We do not support nested IO message loops. This is to avoid messy
529 // recursion problems.
530 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
532 int timeout = GetCurrentDelay();
533 if (timeout < 0) // Negative value means no timers waiting.
534 timeout = INFINITE;
536 WaitForIOCompletion(timeout, NULL);
539 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
540 IOItem item;
541 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
542 // We have to ask the system for another IO completion.
543 if (!GetIOItem(timeout, &item))
544 return false;
546 if (ProcessInternalIOItem(item))
547 return true;
550 // If |item.has_valid_io_context| is false then |item.context| does not point
551 // to a context structure, and so should not be dereferenced, although it may
552 // still hold valid non-pointer data.
553 if (!item.has_valid_io_context || item.context->handler) {
554 if (filter && item.handler != filter) {
555 // Save this item for later
556 completed_io_.push_back(item);
557 } else {
558 DCHECK(!item.has_valid_io_context ||
559 (item.context->handler == item.handler));
560 WillProcessIOEvent();
561 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
562 item.error);
563 DidProcessIOEvent();
565 } else {
566 // The handler must be gone by now, just cleanup the mess.
567 delete item.context;
569 return true;
572 // Asks the OS for another IO completion result.
573 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
574 memset(item, 0, sizeof(*item));
575 ULONG_PTR key = NULL;
576 OVERLAPPED* overlapped = NULL;
577 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
578 &overlapped, timeout)) {
579 if (!overlapped)
580 return false; // Nothing in the queue.
581 item->error = GetLastError();
582 item->bytes_transfered = 0;
585 item->handler = KeyToHandler(key, &item->has_valid_io_context);
586 item->context = reinterpret_cast<IOContext*>(overlapped);
587 return true;
590 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
591 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
592 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
593 // This is our internal completion.
594 DCHECK(!item.bytes_transfered);
595 InterlockedExchange(&have_work_, 0);
596 return true;
598 return false;
601 // Returns a completion item that was previously received.
602 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
603 DCHECK(!completed_io_.empty());
604 for (std::list<IOItem>::iterator it = completed_io_.begin();
605 it != completed_io_.end(); ++it) {
606 if (!filter || it->handler == filter) {
607 *item = *it;
608 completed_io_.erase(it);
609 return true;
612 return false;
615 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
616 io_observers_.AddObserver(obs);
619 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
620 io_observers_.RemoveObserver(obs);
623 void MessagePumpForIO::WillProcessIOEvent() {
624 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
627 void MessagePumpForIO::DidProcessIOEvent() {
628 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
631 // static
632 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
633 bool has_valid_io_context) {
634 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
636 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
637 // always cleared. We use the lowest bit to distinguish completion keys with
638 // and without the associated |IOContext|.
639 DCHECK((key & 1) == 0);
641 // Mark the completion key as context-less.
642 if (!has_valid_io_context)
643 key = key | 1;
644 return key;
647 // static
648 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
649 ULONG_PTR key,
650 bool* has_valid_io_context) {
651 *has_valid_io_context = ((key & 1) == 0);
652 return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
655 } // namespace base